Splicing

Alternative Splicing

Alternative Splicing

RNAseq data

Reads (100nt)

RNAseq data

Reads (100nt)

De Bruijn graph

- De Bruijn graphs (DBG) are used as a first step in many short reads assemblers.
- Node = k-mer, Edge = overlap of k-1 bases
- Example:

GACTCAA, k=3

De Bruijn graph

- More complicated example
- reference GACTCAACTG (unknown) read1 GACTCA read2 CAACTG

De Bruijn graph

- Even more complicated example
- reference GACTCAACTGACT (unknown)

read1 GACTCA read2 CAACTG read3 CTGACT

DBG from RNAseq data

Drosophila transcriptome, shallow coverage (100k reads)

DBG from RNAseq data

Drosophila transcriptome, shallow coverage (100k reads)

An alternative splicing event corresponds to a bubble in the DBG

SNPs and indels also generate bubbles in the DBG

Inexact repeats generate branching bubbles in the DBG

Issue: Some repeats are present in very high copy number (even in transcriptomes) and generate very dense subgraphs, which is the main cause for the combinatorial explosion

AS event flanked by repeats

SCN5A gene in patients with myotonic dystrophy Trick: this bubble has less than 5 branching nodes

KisSplice pipeline

- Input: RNAseq data (.fastq)
- KisSplice :
 - Build DBG from RNAseq data
 - Enumerate all bubbles
 - Quantify bubbles

Sacomoto et al. BMC Bioinformatics 2012

KisSplice pipeline

- Input: RNAseq data (.fastq)
- KisSplice :
 - Build DBG from RNAseq data
 - Enumerate all bubbles
 - Quantify bubbles
- KissDE :
 - Differential analysis

Sacomoto et al. BMC Bioinformatics 2012 Lopez-Maestre et al. NAR 2016

KisSplice pipeline

- Input: RNAseq data (.fastq)
- KisSplice :
 - Build DBG from RNAseq data
 - Enumerate all bubbles
 - Quantify bubbles
- KissDE :
 - Differential analysis
- KisSplice2RefGenome
 - Annotate bubbles (if reference genome is available)
- Output: List of differentially spliced genes

Two approaches to assemble transcripts

What is the overlap between the predictions of the two approaches ?

Identify pros and cons of assemblyfirst and mapping-first methods

 \rightarrow Comparison done on alternative skipped exon (ASE) events only

→ Public dataset (ENCODE) from neuroblastoma SK-N-SH cell line with or without retinoic acid (RA) treatment

Assembly-

first

Mapping

first

Compared pipelines

FaRLine developed in the group of Didier Auboeuf

Mapping-first approach finds many unfrequent variants

Mapping-first approach finds many unfrequent variants

The overlap between methods increases when unfrequent variants are filtered out

Unfrequent variant = less than 5 reads, or relative abundance < 10%

Some abundant transcripts are systematically missed by one approach

Experimental Validations

Annotation summary

Mapping-first is stronger for rare variants and exonised Alus Assembly-first is stronger for novel variants and recent paralogs

Should I care about these differences ? Does it have an impact on my differential analysis ?

Magnitude of the effect

Magnitude of the effect

Percent Spliced In (PSI) = 60 / (60 + 40) = 60%The major isoform is the inclusion isoform, the exon is included in 60% of cases

Magnitude of the effect

Condition 1: PSI1 = 60%DeltaPSI = PSI1 - PSI2 = 60-20 = 40%The inclusion level of the exon decreased by 40%

Statistical Analysis

- Count regression with negative binomial distribution
- Generalised linear model, 2 way design, with interaction

- Target hypothesis: $H_0 : \{(\alpha\beta)_{ij} = 0\}$
- Likelihood ratio test
- P-values adjusted with benjamini-hochberg procedure

Comparison after differential analysis

AS events found by one method and not the other can be significant |DeltaPSI| > 10%, FDR<0.05

Comparison to global methods

Methods Summary

Annotating alternative splicing with a single approach leads to **missing a large number of candidates**.

These candidates should not be neglected, since many of them are **differentially regulated** across conditions.

We advocate for the use of a combination of both mapping-first and assemblyfirst approaches for annotation and differential analysis of alternative splicing from RNA-seq data.

Benoit-Pilven et al. Scientific Reports 2018 – kissplice.prabi.fr/pipeline_ks_farline

Two applicative case studies

 Application to a spliceosomopathy (collaboration with the group of Patrick Edery & Sylvie Mazoyer, HCL)

Two applicative case studies

- Application to a spliceosomopathy (collaboration with the group of Patrick Edery & Sylvie Mazoyer, HCL)
- Application to Influenza A virus infection (collaboration with the group of Nadia Naffakh at Institut Pasteur)

Cologne et al. RNA 2019 Ashraf et al. NAR Genomics & Bionformatics 2020

Volcano Plots

Spliceosomopathy (TALS patients fibroblasts)

Volcano Plots

(TALS patients fibroblasts)

IAV infection (A549 cells)

Volcano Plots

(TALS patients fibroblasts)

IAV infection (A549 cells)