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Abstract 

Background: Topologically associating domains (TADs) are locally highly-interacting 
genome regions, which also play a critical role in regulating gene expression in the cell. 
TADs have been first identified while investigating the 3D genome structure over High-
throughput Chromosome Conformation Capture (Hi-C) interaction dataset. Substantial 
degree of efforts have been devoted to develop techniques for inferring TADs from 
Hi-C interaction dataset. Many TAD-calling methods have been developed which differ 
in their criteria and assumptions in TAD inference. Correspondingly, TADs inferred via 
these callers vary in terms of both similarities and biological features they are enriched 
in.

Result: We have carried out a systematic comparison of 27 TAD-calling methods over 
mammals. We use Micro-C, a recent high-resolution variant of Hi-C, to compare TADs at 
a very high resolution, and classify the methods into 3 categories: feature-based meth-
ods, Clustering methods, Graph-partitioning methods. We have evaluated TAD bound-
aries, gaps between adjacent TADs, and quality of TADs across various criteria. We also 
found particularly CTCF and Cohesin proteins to be effective in formation of TADs with 
corner dots. We have also assessed the callers performance on simulated datasets 
since a gold standard for TADs is missing. TAD sizes and numbers change remarkably 
between TAD callers and dataset resolutions, indicating that TADs are hierarchically-
organized domains, instead of disjoint regions. A core subset of feature-based TAD 
callers regularly perform the best while inferring reproducible domains, which are also 
enriched for TAD related biological properties.

Conclusion: We have analyzed the fundamental principles of TAD-calling methods, 
and identified the existing situation in TAD inference across high resolution Micro-C 
interaction datasets over mammals. We come up with a systematic, comprehensive, 
and concise framework to evaluate the TAD-calling methods performance across 
Micro-C datasets. Our research will be useful in selecting appropriate methods for TAD 
inference and evaluation based on available data, experimental design, and biologi-
cal question of interest. We also introduce our analysis as a benchmarking tool with 
publicly available source code.

Keywords: Chromatin organization, Hi-C, Micro-C, Topologically associating domains, 
TAD callers
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Introduction
Chromosomes store epigenetic and genetic code in the cell, they have complex 3D 
structure, and they are interweaved into a tiny spatial space in 3D. A chromosome’s 3D 
conformation is important in genomic organization [1–3] as well as regulation, tran-
scription, and DNA replication [4–8] as shown by a number of up-to-date studies. High-
throughput chromatin conformation capture (Hi-C) [9] and Micro-C [10] technologies 
have been developed to quantitatively measure the number of interactions among all 
genomic loci pairs throughout the genome via high-throughput sequencing. These high-
throughput techniques are derived from chromatin proximity ligation method [11–14]. 
Among these techniques, Micro-C uses micrococcal nuclease rather than restriction 
enzymes to partition the chromatin into fragments which enables chromosome folding 
maps at nucleosome resolution. Micro-C can also be seen as a variant of Hi-C method. 
More Importantly, we can analyze the chromatin structure in more detail via Micro-C 
by overcoming the Hi-C experiment’s resolution gap at micro scales. By using Hi-C and 
Micro-C, multiple species’ genome structures have been investigated. For instance, yeast 
[10, 15, 16], drosophila [2, 17], plants [18, 19], and mammals [1, 3, 9, 20, 21].

Chromosomal regions identified by these datasets favorably interact with each other, 
resulting in high-order structural regions such as topologically associating domains 
(TADs), compartments, and chromosomal territories. These constituent structures have 
different sizes, and are related with different molecular features in the genome [1, 2, 22, 
23]. For instance, TADs are chromosomal regions with almost megabase size which self-
interact more frequently than the other chromosomal regions [1–3]. One of the most 
important characteristic of TADs is their demarcation via boundaries. TADs are in 
general found to be highly conserved, relatively stable across cell types and species [1, 
24], even though such notion that TADs are highly conserved across cell types has been 
questioned recently [25, 26] including single cell studies showing extensive variability in 
TAD-like structures [27–30]. TADs possess important biological functions such as them 
having relationship with cancers and genetic disorders [31–35]. TADs are also stable 
during replication-timing regulation [36] and cell differentiation. Even though the link 
between gene expression changes and TADs has recently been debated [37–45], TADs 
are associated with developmental processes [46]. Therefore, accurate identification of 
TADs is important in linking the cellular function to the spatial genome organization.

Recently, subTADs have been discovered which are sub-megabased size, smaller 
domains in the chromatin. These subTADs are nested hierarchically inside TADs across 
mammalian Hi-C interaction maps [3, 47, 48]. The large fraction of nested subTADs 
are missing in the low resolution Hi-C data. However, almost all of them can be eas-
ily identified at genome-wide scale after creation of better techniques that allow us to 
generate genome-wide architecture maps at a high resolution (1–4 kb). The demarcation 
by boundaries is also observed in subTADs so their domain structure looks like TADs. 
Even though the existence of similar demarcation, insulation strength is weaker in sub-
TAD boundaries since they can attenuate long distance interactions among domains at a 
lower capacity. SubTADs also show cell-type-dynamic folding characteristics more than 
TADs [1, 47].

CTCF binding sites are enriched at TAD boundaries [49–55] in addition to cohesin 
proteins SCM3 and RAD21 [55]. Many other functional elements are also enriched 
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at TAD boundaries. For instance, RNA polymerase II, short interspersed nuclear ele-
ments (SINEs), housekeeping genes, promoter-associated histone marks, and transcrip-
tion start sites (TSSs) [1, 2, 56, 57]. Particularly, H3K9me3 is a histone mark associated 
with non-promoters and TAD boundaries are depleted in terms of H3K9me3 [1]. These 
enrichments and depletions show the importance of TADs, as well as their importance 
in the genome at various angles. In addition, TADs sometimes consist of subTADs indi-
cating their hierarchical structure [58–60].

TAD inference has become an important promising research topic in the last decace 
since their discovery by Dixon et al. [1]. Dixon et al. [1] has come up with the TAD con-
cept and has developed DI (directionality index) technique to detect TADs. Afterwards, 
many computational TAD identification techniques (TAD callers) have been developed. 
The development of Hi-C techniques is important from genome research perspective 
since it has opened a new era while promoting many characteristics of TADs. In this 
case, relative analysis and comparison of the developed TAD callers is quite important 
in promoting faster enhancement in TAD identification. Such comparison will be help-
ful to researchers in customizing their methods according to available design and data-
sets. Only in last two years, many techniques have been proposed to detect TADs across 
different species. These novel methods include the most recent TADBD, SpectralTAD, 
OnTAD, Constrained HAC, MSTD, GRiNCH, and deDoc [1, 3, 56, 57, 59–85]. Up-to-
now, there are almost 31 TAD callers and Table  1 summarizes the characteristics of 
these methods.

In this research, we systematically evaluate and compare the performance of 27 TAD 
identification methods on synthetic data as well as on experimental high-resolution 
Micro-C interaction datasets. By such comparison, we evaluate these methods as well as 
their biological and statistical features. We apply the following 3 strategies in our com-
parison: between the labeled TADs and the inferred TADs on synthetic data, between 
replicates over the same TAD caller, among callers on the same experimental data. 
We evaluate the performance of callers by 8 metrics such as Jaccard Index (JI), p value 
( ≤ 0.05 ) ratio, fold change, boundary tagged ratio, average peak, TADadjR2 , false pos-
itive rate  (FPR), and true positive rate  (TPR). Our analysis consists of the following 3 
criteria: TADs and TAD boundaries reproducibility in replicates, depletion and enrich-
ment of functional elements near TAD boundaries, and interaction frequencies decay by 
the distance in the genome. Moreover, we also focus on the quality of the TAD callers 
implementation. We have the following main contributions in this research: Expose up-
to-date research status in TAD identification which will include the features of different 
TAD-calling methods as well as potential limits in TAD inference.

This research will complement the previous benchmarking studies [53, 55, 86–88] on 
Hi-C analysis. It will enhance the reproducibility and robustness of these studies results, 
and will provide a list of guidelines in designing molecular and computational Hi-C stud-
ies. Different than the previous benchmarking studies, we make the following additional 
contributions: 1- We classify TAD callers into 3 groups: Feature-based methods, Clus-
tering methods, Graph-partitioning methods. We found that feature-based TAD call-
ers in general consistently outperform graph-based and clustering-based TAD callers, 
2- We evaluate TAD callers on the recent significantly high-resolution Micro-C datasets 
instead of lower resolution Hi-C datasets, 3- We evaluate TAD callers across mammals 
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Table 1 The comparison of the evaluated TAD caller features

The parameters below are as follows: Hi-C/Micro-C interaction matrix size is referred by n. TADtree’s S parameter refers to 
the maximum size of inferred TADs. OnTAD’s d parameter refers to the maximum size of inferred TADs, whereas m refers to 
the expected count of possible boundaries. Matryoshka’s t parameter defines the number of resolutions to be inferred, and 
l refers to interval frequency while clustering the inferred t resolutions. HiCseg’s K parameter defines the maximum number 
of diagonal TAD partitions. h parameter in Constrained HAC is the bandwidth. k in GRiNCH is the rank of low-dimensional 
matrices. Lastly, Armatus’ t parameter defines the number of resolutions to be inferred

TAD Caller Runtime 
complexity

Hierarchical 
TADs

Gaps 
Allowed

Parameters Input Details Implementation 
Language

3DNetMod 
[76]

O(n) ✓ ✓ 18 Sparse 3-col-
umn matrix

Python

Armatus [56] O(tn2) ✓ ✓ 1 n× n matrix C++
Arrowhead [3] O(n2) ✓ ✓ 1 .hic file Java

CaTCH [60] NA ✓ ✓ 1 Sparse 4-col-
umn matrix

R

Constrained 
HAC [78]

O(n(h+ log(n)))✗ ✗ 1 n× n matrix R

CHDF [64] NA ✗ ✗ 1 n× n matrix C++
chromoR [62] NA ✗ ✗ 2 n× n matrix R

ClusterTAD 
[67]

NA ✗ ✓ 1 n× n matrix MATLAB

deDoc [74] O(n log2 n) ✓ ✓ 0 Sparse 3-col-
umn matrix

Java

DI [1] NA ✗ ✓ 3 n× (n+ 3) 
matrix

MATLAB, Perl

EAST [68] O(n2) ✗ ✓ 3 n× n matrix Python

GMAP [73] NA ✓ ✓ 10 n× n matrix R, C++
GRiNCH [85] O(kn2) ✗ ✓ 3 n× n matrix C++
HiCExplorer 
[77]

NA ✗ ✓ 4 h5 file Python

HiCKey [84] O(n3) ✓ ✓ 3 n× n matrix C++
HiCseg [61] O(Kn2) ✗ ✗ 3 n× n matrix R, C

HiTAD [71] NA ✗ ✓ 1 .cool file Python

IC-Finder [66] NA ✗ ✓ 2 n× n matrix MATLAB

Insulation-
Score [63]

NA ✗ ✗ 5 (n+ 1)× (n+ 1) 
matrix

Perl

Matryoshka 
[75]

O(tl2) ✓ ✓ 1 n× (n+ 3) 
matrix

C++

MrTADFinder 
[72]

O(n3) ✗ ✓ 1 Sparse 3-col-
umn matrix

Julia

MSTD [80] NA ✗ ✓ 1 n× n matrix Python

OnTAD [79] O(md2) ✓ ✓ 5 n× n matrix C++
PSYCHIC [69] NA ✓ ✗ 1 n× n matrix MATLAB, 

Python,Perl

Spectral [65] NA ✗ ✓ 2 n× n matrix MATLAB

SpectralTAD 
[81]

O(n) ✓ ✓ 11 n× n matrix R

TADBD [82] NA ✗ ✓ 2 n× n matrix R

TADbit [70] NA ✗ ✗ 1 n× n matrix Python, C

TADpole [83] NA ✓ ✓ 3 n× n matrix R

TADtree [59] O(nS5) ✓ ✓ 6 n× n matrix Python

TopDom [57] NA ✗ ✓ 1 n× (n+ 3) 
matrix

R
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instead of just human, 4- We evaluate the TAD callers performance in terms of inferring 
corner-dot domains  (with extrusion loop) and TADs without corner dots, 5- We also 
assess the TAD callers performance on the systematically-generated synthetic data at a 
high resolution where supervised learning is quite difficult, 6- Lastly, we compare TAD 
callers in detail in terms of eight metrics. In summary, our work provides users with 
clear guideline to make the best appropriate choice of which TAD callers to use accord-
ing to their experimental design and available data.

Materials and methods
TAD callers

The massive amount of Hi-C experiments that provide interaction counts between pairs 
of genomic loci have resulted in continuous research on chromatin interactions. As a 
result of these experiments, we obtain n-by-n symmetric interaction matrix where each 
matrix entry represents the number of chromatin interactions between pair of loci. 
Among the identified genomic structures through these experiments, topologically asso-
ciating domains (TADs) are one of the most common ones. Practically, TAD callers infer 
TADs via extracting square diagonal consecutive regions with higher number of inter-
actions. Hierarhical structure of TADs has been observed more recently. As a result, 
earlier TAD-calling methods cannot detect hierarchical TADs whereas the most recent 
callers can also detect hierarchical TADs. Even though there is now a plenty of research 
helping us to understand the nature of TADs, the precise definition of TADs is still miss-
ing in terms of hierarchy, size, and number which is one of the major difficulties in TAD 
analysis. As a result, benchmarks are missing, and TAD accuracy is evaluated indirectly 
via relating TADs with biological attributes in many cases.

Even though TAD-calling methods simply depend on its contiguous highly self-inter-
acting chromosomal segments definition of TADs, we partition the current TAD call-
ers that combine various dataset features and different techniques into 3 categories as 
discussed in [88]: 1- Feature-based techniques, 2- Clustering techniques, and 3- Graph-
partitioning techniques. Among these techniques, the feature-based techniques in 
general utilize the patterns and attributes identified in Hi-C data by using common tech-
niques. For instance, they solve for an optimization problem by dynamic programming, 
and filter out false positives by statistical tests. The clustering techniques in general use 
more traditional classification and clustering methods, where they focus on clustering 
contiguous genomic segments into a single cluster by using the similarity values or simi-
larly transitioning states. Lastly, the graph-partioning techniques mostly consider Hi-C 
interaction frequency matrix as an undirected graph. Then, they partition the graph into 
subgraphs that correspond to TADs by using graph-based techniques.

Below, we provide a summary of each evaluated TAD-calling method. We have not 
included 3 TAD callers in our analysis [62, 71, 76] since they have failed to identify TADs 
in our experiments.

Feature‑based methods

Filippova et al. [56] introduced an optimization method called Armatus to detect non-
overlapping TADs across multiple scales based on the scaled density, inspired by the 
observation that TADs may exist at multiple length scales. Armatus detects TADs with 
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a quality function combining the definition of TADs and resolution parameters, and this 
function is a scaled density of contact frequencies between genomic locus pairs. Arma-
tus uses an n× n Hi-C matrix (n refers to the dimension of the symmetric Hi-C matrix, 
same below in the present section) as input data and has thirteen parameters. Except for 
the necessary and optional parameters, the only key parameter in Armatus represents 
the maximum detection resolution. The time complexity of Armatus is O(tn2) , where 
t refers to the number of resolution parameters that needs to be computed. Armatus 
outputs a set of overlapped TADs at multiple scales, but these TADs are not coordinated 
into an ultimate set of hierarchical TADs.

Rao et  al. [3] proposed a method called Arrowhead, which applies an ad hoc trans-
formation on the Hi-C contact matrix to highlight TAD borders. After transformation, 
TADs are visualized as arrowhead shapes whose corner pixels are closely related to three 
criteria. Then, TADs are extracted on each pixel by dynamic programming. Arrowhead 
uses .hic files as input data, which can be converted from text files by Juicer software 
[89] and has one key parameter deciding the sliding window size. The time complexity 
of Arrowhead is O(n2) . Arrowhead outputs TADs that are qualified by fixed thresholds, 
which may lead to missing TADs.

Zhan et al. [60] introduced the CaTCH method based on the reciprocal insulation (RI) 
measure, which estimates the quality of isolation between a TAD and its adjacent TADs. 
Given a reciprocal insulation threshold, two consecutive TADs whose RIs are smaller 
than the threshold are merged into a one TAD. CaTCH systematically identifies a set 
of hierarchical TADs by adjusting the threshold. CaTCH uses a sparse 4-column Hi-C 
matrix as input data, and its threshold is the key parameter.

Shavit et  al. [62] proposed the chromoR method, based on a wavelet change point 
analysis. chromoR assumes that the Hi-C matrix obeys Poisson distribution. chromoR 
method calculates 1D contact profile which corresponds to the row sums of the con-
tact matrix, followed by a wavelet Poisson change point detection algorithm. The final 
detected change points are treated as TAD boundaries. The chromoR method uses an 
n× n Hi-C matrix as input data and has two key parameters that are minimal and maxi-
mal levels at which the change points are detected.

Roayaei Ardakany et al. [68] proposed the EAST method based on fast 2D convolution 
of Haarlike features with a scoring function. The summed area table (SAT) calculating 
the sum of values in a rectangular region is used to assess how well a such region satis-
fies the features of a TAD. EAST outputs a set of contiguous non-overlapping TADs by 
optimizing the objective function. EAST accepts an n× n Hi-C matrix as input data and 
its time complexity is O(n2).

Yu et al. [73] introduced the Gaussian Mixture model And Proportion test (GMAP) 
algorithm to detect TADs. GMAP has three main steps: (1) distinguishing chromatin 
contacts within and outside a TAD by fitting a two-component Gaussian mixture model, 
(2) detecting significant boundaries by a proportion test, and (3) identifying TADs based 
on the boundaries in former step. GMAP identifies a set of hierarchical TADs by recur-
rently detecting subTADs from TADs. GMAP uses an n× n Hi-C matrix as input data 
and has ten key parameters.

Ramírez et al. [77] developed a TAD detection method which is integrated in the HiC-
Explorer software. HiCExplorer first transforms the Hi-C contact matrix into a z-score 



Page 7 of 39Sefer  BMC Bioinformatics          (2022) 23:127  

matrix where each entry is calculated based on the mean and standard deviation of all 
entries at the same genomic distance. For each bin, the TAD-separation score is com-
puted as the mean of z-scores between upstream and downstream regions with a win-
dow. TAD-separation scores calculated in multiple window sizes are averaged as the 
final score for each bin. Like TopDom, a Wilcoxon rank-sum test is used to compare 
the z-scores in each of upstream and downstream regions for the bin, and the highest 
value of two p values is used. By correcting the p values using the Bonferroni method, 
bins with p value lower than the threshold is retained. HiCExplorer outputs a set of non-
overlapping TADs.

Xing et  al. [84] developed a statistical model of TADs called HiCKey, which identi-
fies TADs in two main steps: (1) initially, the method proposes a generalized likelihood-
ratio test to detect transition points in given interaction matrix which can follow general 
mixture or negative binomial distribution, (2) the method runs a number of search 
strategies to infer hiearchical TADs with their associated p values calculated by the gen-
eralized likelihood-ratio test. HiCKey can use an n× n Hi-C matrix as input data and 
has three key parameters: lower bound of TAD size, threshold to test whether a bound-
ary (change-point) is significant, threshold for identifying nested TADs. The worst-case 
time complexity of HiCKey is O(n3).

Lévy-Leduc et  al. [61] developed a statistical model of TADs called HiCseg, which 
identifies TADs with two ending points of diagonal blocks after reducing the 2D seg-
mentation problem to the 1D segmentation problem by maximum likelihood estimation. 
HiCseg uses an n× n Hi-C matrix as input data and has three key parameters: the maxi-
mal number of change points, the distribution of data, and the type of model. The time 
complexity of HiCseg is O(Kn2) , where K is the maximal number of diagonal blocks. 
HiCseg assumes that the Hi-C data follow a certain distribution, which may be impracti-
cal and sometimes not applicable.

Crane et al. [63] designed a method of turning points, called InsulationScore, which 
has three main steps: (1) Calculating an insulation score representing the average con-
tact frequencies between upstream and downstream regions with a window, (2) detect-
ing the local minima of the insulation score curve, and (3) filtering out the local minima 
whose boundary strength is less than 0.1. The local minima are treated as TAD bounda-
ries. InsulationScore uses an (n+ 1)× (n+ 1) Hi-C matrix and five key parameters. 
InsulationScore relies on the sharply falling contact frequencies around TAD bounda-
ries. However, its fixed parameters are inelastic to filter the false positives.

Malik et al. [75] developed a method named Matryoshka from the Armatus method. 
Matryoshka obtains a hierarchy of non-overlapping TADs at multiple resolutions. The 
resolution values are clustered based on the variation of information distance between 
the corresponding TAD sets and are used to determine the discrete levels of the hier-
archy. Matryoshka identifies a set of consensus TADs at each level of hierarchy. Matry-
oshka uses an n× n Hi-C matrix as input data. The time complexity of Matryoshka is 
O(tl2) , where t is the number of resolution parameters and l is the number of intervals in 
the step of clustering t TAD sets.

An et  al. [79] proposed a method of turning points called OnTAD. Another similar 
method TopDom detects TADs with a fixed window, which is not flexible enough to 
detect TADs of different sizes and hierarchies. On the other hand, OnTAD captures the 
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candidate boundaries by an adaptive local minimum search approach at multiple win-
dow sizes and prunes false positives according to a threshold flexible to the data. Then, 
TADs are assembled recursively from the candidate boundaries using dynamic program-
ming. OnTAD uses an n× n Hi-C matrix as input data and has five key parameters. The 
time complexity of OnTAD is O(md2) , where m is the number of candidate boundaries 
and d is the maximum TAD size. The multiple window sizes and flexible filtering of 
OnTAD enable it to outperform InsulationScore and TopDom, though all of them are 
based on turning points.

Ron et al. [69] designed a method to identify promoter-enhancer interactions called 
PSYCHIC. PSYCHIC performs a two-component probabilistic model to obtain the 
probability of intra- and inter-TAD interactions. Afterwards, it uses a Dynamic Pro-
gramming algorithm to find the optimal segmentation of each chromosome with a prob-
abilistic score computing the log-posterior ratio of the two sub-models. PSYCHIC uses 
an n× n Hi-C matrix as input data and outputs a hierarchical set of TADs. PSYCHIC 
requires window size as its key parameter.

Lyu et  al. [82] introduced a method called TADBD based on Haar feature. TADBD 
has three main steps: (1) Calculating Haar feature of each point on the diagonal of con-
tact matrix, (2) detecting candidate TAD boundaries by considering multi-scale aggrega-
tion at Haar template size, and (3) retaining significant TAD boundaries in the Wilcoxon 
rank-sum test between the intra-TAD vector and the inter-TAD vector. TADBD uses an 
n× n Hi-C matrix as input data and outputs non-overlapping TADs.

Serra et  al. [70] developed a breakpoint detection method, called TADbit. TADbit 
assumes that the contact frequencies follow the Poisson distribution and a power-law 
decay. TADbit partitions a chromosome into TADs with the optimal log-likelihood 
which uses the Poisson regression and penalized Bayesian Information Criterion. TAD-
bit accepts an n× n Hi-C matrix as input data and has one key parameter deciding the 
maximal TAD size.

Weinreb et al. [59] designed an optimization method that is based on empirical dis-
tributions of contact frequencies within TADs, called TADtree. TADtree models hier-
archies of nested TADs, including TAD trees and TAD forests, and detects TADs with 
quality functions calculating the density of contact frequencies between genomic locus 
pairs based on two ideas: the enrichment of contact frequencies increases at a faster 
rate within TADs, and the ending points of TADs should have a high boundary index. 
TADtree uses an n× n Hi-C matrix as input data and has six key parameters. The time 
complexity of TADtree is O(nS5) , where S is the maximum TAD size. TADtree outputs 
hierarchical TADs from its complicated model, but its high computational complexity 
limits its practical application.

Shin et al. [57] developed a method called TopDom based on turning points. TopDom 
has three steps: (1) calculating binSignal which represents the average contact frequen-
cies between upstream and downstream regions with a window, (2) detecting the local 
minima of the binSignal curve, and (3) filtering the false-positive minima by testing 
the difference between interactions and within interactions by the Wilcoxon rank-sum 
test. Regions between two consecutive local minima are annotated as TADs. Using an 
n× (n+ 3) Hi-C matrix as input data, TopDom has the window size as its single key 
parameter, and may result in missing TADs of different sizes.
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Clustering methods

Wang et  al. [64] assumed that three kinds of regions exist in a Hi-C contact matrix-
domain regions, the regions between two adjacent regions, and the residuals-and devel-
oped a clustering method called CHDF. CHDF clusters the contact matrix by dynamic 
programming with a criterion function combining the sum-of-squared-error and a pen-
alty term related to chromosome contact density. Then, TADs are detected as the two 
ending points of clusters of domain regions. CHDF uses an n× n Hi-C matrix as input 
data and has one key parameter, which is the maximum TAD size.

Oluwadare et  al. [67] designed a new method by combining unsupervised learning, 
called ClusterTAD. TADs are identified as clusters by (1) Roughly estimating the cluster 
count, (2) Clustering via the K-means approach, and (3) Adjusting through the quality 
assessment of clusters with chromosome contact frequencies. ClusterTAD uses an n× n 
Hi-C matrix as input data and has the maximum TAD size as its only key parameter. 
ClusterTAD reveals the close similarity of adjacent bins belonging to the same TAD by 
applying an unsupervised learning approach to TAD calling.

Ambroise et al. [78] developed a fast clustering method based on classical hierarchi-
cal agglomerative clustering (HAC), so-called Constrained HAC. Constrained HAC 
iteratively merges two most similar adjacent clusters into one cluster using HAC with 
Ward’s linkage [90]. TADs are finally recognized by clustering on the dendrogram with 
a broken stick model or slope heuristic. Constrained HAC reduces the time and space 
complexity under a band similarity assumption, which makes it an efficient algorithm 
on high dimensional data. Constrained HAC accepts an n× n Hi-C matrix as input 
data and bandwidth is the key parameter. The time complexity of Constrained HAC is 
O(n(h+ log(n))) , where h is the bandwidth.

Dixon et  al. [1] developed a clustering method based on the hidden Markov model 
(HMM), called DI (directionality index). DI calculates the difference of contact frequen-
cies between downstream bins and upstream bins for each bin with a window, which is 
then applied in HMM to predict each bin to be one of three preset states. TADs are clus-
tered as continuous regions from the beginning bin of the downstream-biased state to 
the last bin of the upstream-biased state. DI needs an n× (n+ 3) Hi-C matrix as input 
data and has three key parameters. DI was the first method to call TADs and is also used 
as the benchmarking method to compare the later methods.

Lee et  al. [85] developed a clustering method based on constrained non-negative 
matrix-factorization  (NMF), called GRiNCH. GRiNCH is based on NMF, which is a 
strong dimensionality reduction technique to infer meaningful low-dimensional struc-
tures from higher-dimensional data. Strong distance dependence exists in Hi-C data, 
so they employ a graph-regularized NMF where underlying graph handles the interac-
tion frequencies distance dependence so the inferred low-dimensional structure changes 
smoothly. GRiNCH can also achieve smoothing out of a sparse interaction matrix by 
imputing missing matrix entries via NMF. GRiNCH uses an n× n Hi-C matrix as input 
data and has three key parameters: k as the low-dimensional matrices rank, � which con-
trols the regularization degree, and r for neighborhood radius in regularization graph. 
The worst-case time complexity of GRiNCH is O(kn2).

Wang et  al. [71] presented HiTAD, which is developed from DI. HiTAD com-
putes an adaptive directionality index (DI)-based Hidden Markov Model to generate 



Page 10 of 39Sefer  BMC Bioinformatics          (2022) 23:127 

a genome-wide pool of bottom domains. Regarding the bottom domains as basic ele-
ments, TADs are detected by combining the global intra-chromosomal interactions 
under an objective function. TADs are repeatedly used to call sub-TADs to form a hier-
archical set of TADs. HiTAD accepts a cool file as input file and has a key parameter, 
namely the maximal TAD size.

Haddad et al. [66] developed a method based on the hierarchical clustering approach, 
called IC-Finder. IC-Finder has three steps: 1- Defining each bin as an individual cluster, 
2- Merging the closest clusters of weak heterogeneity into a larger cluster while impos-
ing linear connectivity, and 3- Stopping clustering when clusters of strong heterogeneity 
remain. IC-Finder uses an n× n Hi-C matrix as input data and has two key parameters, 
which are the low and high thresholds to control the merging of two clusters. IC-Finder 
uses flexible criteria to determine TADs, which is different from the rough estimation of 
the number of TADs in ClusterTAD.

Ye et al. [80] proposed a fast density-based clustering method called MSTD. MSTD 
aims to call TADs by clustering points with rectangular shapes, and it has two main 
steps: 1- Determining cluster centers via the density of chromosome contact frequen-
cies, and 2- Assigning the remaining elements to the same cluster as its nearest-neighbor 
element of higher density layer by layer. Additionally, MSTD detects promoter-anchored 
interacting domains  (PADs) by working on the promoter-capture Hi-C maps that are 
asymmetric. MSTD uses an n× n Hi-C matrix as input data for TAD calling and has one 
key parameter. MSTD first determines the center of TADs with high local density, which 
is novel and flexible for adjusting the neighboring bins, but fixed thresholds are still its 
main limitations.

Soler-Vila et  al. [83] developed a clustering method based on combining principal 
component analysis and constrained hierarchical clustering, called TADpole. TADpole 
has three main steps: 1- Preprocessing of the input interaction matrix by principal com-
ponent analysis, 2- Constrained hierarchical clustering optimization, and 3- Genome 
segmentation. Once distance matrix is formed by the principal components identified 
in the first step, TADpole than partitions this distance matrix into TADs by utilizing a 
constrained hierarchical clustering process. TADpole uses an n× n Hi-C matrix as input 
data and has three key parameters: the maximum number of principal components 
to extract, the minimum number of TADs to infer, and the fraction of the interaction 
matrix which will be tagged as useless columns.

Graph partitioning methods

Norton et al. [76] presented the 3DNetMod method using the network modularity after 
formulating the TAD detection problem as a community detection problem. 3DNetMod 
applies a Louvain-like, locally greedy algorithm to maximize a given network modular-
ity, and the adjacent nodes belonging to a community are detected as a TAD. 3DNetMod 
uses a sparse-3 column matrix as input and outputs a hierarchical set of TADs. The time 
complexity of 3DNetMod is O(n).

Li et al. [74] formulated the TAD identification problem as a graph-partitioning prob-
lem and designed a method called deDoc. deDoc initializes the graph as a coding tree 
and then performs greedy merging and greedy combining operations with minimal 
graph structural entropy to minimize the global uncertainty of the Hi-C graph until no 
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operation can be performed. TADs are extracted as the continuous leaf nodes in the final 
coding tree. deDoc uses a sparse matrix as input data and has no extra key parameter 
in addition to the necessary parameters. The time complexity of deDoc is O(n log2 n) . 
deDoc is the first TAD caller without a parameter, which automatically and naturally 
partitions TADs from Hi-C data. deDoc outputs hierarchical TADs with two levels.

Yan et  al. [72] introduced the MrTADFinder method by formulating the TAD iden-
tification as a community detection problem in graph theory. MrTADFinder defines 
the modularity and objective function in a randomized null model. By optimizing the 
objective function via the modified Louvain algorithm, MrTADFinder continuously par-
titions the network into non-overlapping TADs along the chromosome. MrTADFinder 
accepts sparse 3-column Hi-C matrix as input data, and its resolution parameter is the 
key parameter. The time complexity of MrTADFinder is subject to O(n3).

Chen et al. [65] regarded Hi-C matrix as an undirected weighted graph and proposed 
the Spectral method based on the spectral algorithm. Spectral performs a power trans-
form and a Toeplitz normalization on Hi-C matrix for pre-processing. Spectral calcu-
lates the Fiedler vector of the Laplacian matrix to form an initial set of TADs, and then 
repeatedly computes the Fiedler number and vector from the previously found TADs 
until the Fiedler number is larger than the threshold, or the TAD size reaches the lower 
bound. Spectral uses an n× n Hi-C matrix as input data and outputs non-overlapping 
TADs.

Cresswell et al. [81] observed the graph-like structure of the Hi-C contact matrix and 
developed a method based on spectral graph theory, called SpectralTAD. SpectralTAD 
calls hierarchical TADs via the modified spectral clustering approach with a sliding win-
dow to speed up the algorithm and increase the stability. SpectralTAD uses either sparse 
3-column, n× n or n× (n+ 3) Hi-C matrix as input data and has one key parameter to 
specify the hierarchy levels of TADs. The time complexity of SpectralTAD is reduced 
from O(n3) to O(n).

Data and materials

We partition the datasets into 2 categories: Experimental Micro-C datasets and several 
synthetic datasets. We used Micro-C datasets to effectively interrogate features below 
the level of TADs that are largely inaccessible by conventional Hi-C analysis. We retrieve 
Micro-C datasets over human embryonic stem cells (ESCs) and human fibroblasts from 
[91] which map chromosome folding at single nucleosome resolution. In these cell lines, 
we have generated a single sample with the combined sequenced reads by pooling all the 
replicates. We have also used Micro-C dataset on mouse embryonic stem cells  (ESCs) 
[21]. There are thirty-eight biological replicates from mouse embryonic stem cells 
(ESCs), which were then pooled after confirming high reproducibility ( > 0.95 ) across 
samples. During this text, we may generally use the term Hi-C to refer both Hi-C and its 
very high nucleosome resolution varint Micro-C experiments.

We mainly use HiCNorm [92] to normalize Micro-C contact matrices, which is an 
explicit individual-sample approach for Micro-C normalization [92]. HiCNorm intro-
duces a Poisson regression model to correct contact matrix. In HiCNorm, the systematic 
biases, including fragment length, GC content and sequence mappability, are estimated 
as a Poisson offset, and the residuals of the regression are regarded as the normalized 
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matrix. We analyze the pooled samples by normalizing interaction matrices 5kb, 10kb 
resolutions. We have generated subsamples having various sequencing depths according 
to different ratios (0.01, 0.1, 0.5, 0.9) by randomly downsampling the pooled sample. We 
have also analyzed the impact of various sequencing depths by generating the normal-
ized interaction matrices at resolutions 5kb and 10kb over the pooled sample. Addition-
ally, we have generated normalized interaction matrices at 1kb resolution over replicate 
mouse ESCs by KR Normalization [93]. We use these normalized matrices to analyze the 
outcome in regard to the reproducibility of TADs and biological feature enrichment.

The synthetic datasets are made up of two parts. First of all, in silico realistic Hi-C 
dataset by Haddad et  al. [66]. This dataset has been generated via simulating block 
copolymers’ interaction frequency with various epigenomic partitions, including 100 
interaction maps in total. Secondly, dataset of various noise levels ( 0.05− 0.2 with step 
size = 0.05) and various structures such as nested and non-nested TADs have been gen-
erated with a 1kb resolution by the procedure of Forcato et al. [86] over mouse embry-
onic stem cells.

We obtain structural proteins (SMC3, CTCF, and RAD21), ChIP-seq peaks for Poly-
merase II, and ChIP-seq peaks for histone marks (H3K4me3, H3K36me3 and H3K9me3) 
for human embryonic stem cells and human fibroblasts in the hg19 genome from UCSC 
Encode [94] and NIH Roadmap Epigenomics [95]. We align the housekeeping genes in 
this research to hg19 genome [96]. Lastly, we obtain SINEs and TSSs files again from 
UCSC Genome Browser. Similarly, we obtain the same datasets for mouse embryonic 
stem cells again from from UCSC Encode and NIH Roadmap Epigenomics.

TAD performance evaluation metrics

We evaluate the TAD-calling methods performance by using 8 metrics as discussed in 
[88]. Among them, we use Jaccard Index (JI), p value ( ≤ 0.05 ) ratio, fold change, bound-
ary tagged ratio, average peak, and TADadjR2 to evaluate the performance of real data-
sets. We use the remaining false positive rate (FPR) and true positive rate (TPR) metrics 
to evaluate the performance on synthetic datasets since both of these metrics require the 
known ground truth.

We use TADadjR2 to validate the inferred TADs since contact decay’s regularity is 
combined with the growing distance in its definition. TADadjR2 takes high values if 
TAD partition is good. TADadjR2 also measures the variability proportion of Hi-C signal 
as captured via TADs. TADadjR2 indicator describes how good inferred TADs explain 
the interaction dataset as well as how good TAD partition in the genome is structured. 
Additionally, TADadjR2 indicator is an important measure as large proportion of vari-
ability in the interaction frequencies in regard to the distance.

Apart from TADadjR2 , TAD boundaries are also validated by regulatory functional 
elements throughout the genome which is an important frequently-applied approach 
in the literature. We validate the distribution of regulatory functional elements with 
respect to TADs mainly by p value  (≤ 0.05 ), fold change, boundary tagged ratio, the 
average peak since these elements are depleted or enriched close to TAD boundaries. 
As a result, the degree of depletion or enrichment of elements can thus be evaluated 
at different angles by these metrics. Among these metrics, the boundary tagged ratio 
and average peak show the density and depletion or enrichment frequency better than 
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the other two metrics. The p value (≤ 0.05 ) ratio and fold change focus on the relative 
strength across the background. Moreover, we can also calculate Jaccard Index between 
functional elements and TAD boundaries which can address the average peak metric’s 
unbalance issue where average peak metric is distorted by the values around known 
TAD boundaries. Jaccard Index measures the similarity of 2 TAD boundaries sets. We 
use JI to evaluate the TAD-calling methods concordance as well as TAD boundaries’ 
reproducibility or similarity. Additionally, we evaluate the results on synthetic data by 
true positive and false positive rates. The better performance is indicated by a lower false 
positive rate and higher true positive rate. We provide a more detailed definition of these 
indicators below:

TADadjR2

Due to the fact that TADs with higher contact frequencies are more likely to be 
extracted, TADadjR2 [79] is a measurement of the proportion of Hi-C signal variation 
which can be explained by TADs at a genomic distance. TADadjR2 is a modified version 
of R2 (coefficient of determination) in regression analysis. For a given genomic distance, 
let Yi denote the contact frequencies of the i-th bin, q denote the number of bins at the 
same genomic distance as the i-th bin, and p denote the number of identified TADs 
whose sizes are not less than the genomic distance. If the i-th bin is in a TAD, Ŷi denotes 
the average contact frequency at the genomic distance within the TAD. If the i-th bin 
belongs to a gap between TADs, Ŷi denotes the average contact frequency at the genomic 
distance in the gap region. Y  is the global average contact frequencies at the genomic 
distance. Then, given a genomic distance, TADadjR2 is calculated as

Average peak

The average peak [88] is a measurement to describe the density of the occurrence fre-
quency of regulatory elements near the TAD boundaries. Let n denote the number of 
unique TAD boundaries detected in a chromosome and Di denote the average frequency 
of occurrence of regulatory elements per 1kb within a 2kb range centered on the i-th 
unique TAD boundary. The average peak is calculated as

Boundary tagged ratio

The boundary tagged ratio [55] is a measurement to describe how frequent TAD bound-
aries enriched for regulatory elements are. Let S denote the set of TAD boundaries on 
which a regulatory element occurs within a centered 2kb range and n denote the number 
of unique TAD boundaries detected in a chromosome. The boundary tagged ratio is cal-
culated as

(1)TADadjR2 = 1−
(q − 1)

∑q
i=1(Yi − Ŷi)

2

(q − p− 1)
∑q

i=1(Yi − Y )2

(2)Average peak =
1

n

n∑

i=1

Di
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where |.| means the number of items in a set.

Fold change

The fold change [55] is a measurement to describe how much the occurrence density of 
regulatory elements changes between the region far away from the TAD boundaries and 
the region near the TAD boundaries. Let Ai denote the average occurrence frequency of 
regulatory elements per 1kb within a 2kb range centered on the i-th unique TAD bound-
ary; let Bi denote the average frequency of occurrence of regulatory elements per 1kb in 
bilateral regions on both sides 200kb to 500kb from the i-th unique TAD boundary, and 
let n denote the number of unique TAD boundaries detected in a chromosome. The fold 
change is calculated as

p value ( ≤ 0.05 ) ratio

The p value refers to the probability of finding the observed, or more extreme, results 
when the null hypothesis of a study question is true. Here, the p value is used to evalu-
ate whether the average peak is significant compared to the background. Ai , Bi and n are 
the same as above. Let Ci denote the variance of the occurrence frequency of regulatory 
elements per 1kb in the range of 200kb to 500kb on both sides from the i-th unique TAD 
boundary. Let T denote the set of TAD boundaries whose Ai is significant based on the 
Gaussian distribution with Bi as the mean and Ci as the variance. The p value ( ≤ 0.05 ) 
ratio is calculated as

Jaccard Index

The Jaccard Index (JI) is also known as the intersection over union and is a measure-
ment of similarity between two finite sets. JI is defined as the size of the intersection set 
divided by the size of the union set between two finite sets. Let A and B be two finite 
sets. Then, JI is calculated as

More specifically, the JI for the similarity of TAD boundaries [86] is based on the bin in 
which the TAD boundary is located, without shifting to the other bins. Furthermore, JI 
between TAD boundaries within the ±10 kb window and regulatory elements is calcu-
lated to reflect the degree of intersection of TAD boundaries and regulatory elements. 
Since the size of TAD boundaries and the size of regulatory elements are not consist-
ent, the denominator in JI is calculated as the sum of numbers of TAD boundaries and 

(3)Boundary tagged ratio =
1

n
|S|

(4)Fold change =
1

n

n∑

i=1

log2(
Ai

Bi
)

(5)p−value(≤ 0.05)ratio =
1

n
|T |

(6)JI(A,B) =
|A ∩ B|

|A ∪ B|
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regulatory elements, while the numerator in JI is calculated as the number of TAD 
boundaries and that of regulatory elements, respectively.

TPR

The true positive rate is a frequently used metric in machine learning. In a binary clas-
sification problem, true positive (TP) samples are the number of positive samples classi-
fied as positive samples, false positive (FP) samples are the number of negative samples 
classified as positive samples, false negative (FN) samples are the number of positive 
samples classified as negative samples, and true negative (TN) samples are the number 
of negative samples classified as negative samples. The true positive rate is defined as the 
quantity of true positive samples divided by the quantity of all positive samples.

FPR

The false positive rate is defined as the proportion of false positive samples to predicted 
positive samples.

Ranking

For a regulatory element, such as CTCF, the continuous region between the minimum 
and maximum values of an indicator among all the TAD callers is equally divided into 
four regions in an ascending order, corresponding to ranking levels (1-4) from the lowest 
to the highest. The main goal of ranking is to replace the value of an indicator obtained 
by a method with the corresponding ranking level number.

Results
TAD inference across callers, resolutions, and sequencing depths

TAD caller, resolution, sequencing depth are key factors that influence the distribution 
of TADs, on which we assessed the TAD inference performance. We have evaluated the 
impact of those factors in TAD inference over human ESC cell line. When compared 
across a number of resolutions (5kb, 10kb), TAD counts decrease but TAD sizes increase 
for many TAD callers by decreasing resolution as in Fig. 1A, B. Besides TADs’ size and 
number distribution, TAD inference results’ similarity is also a widely-used assessment 
factor on TAD inference. For many callers, TAD boundaries’ similarities between a sin-
gle method and the remaining callers increase by decreasing resolution as in Fig. 1C. As 
a result, those callers infer more similar topological domains at lower resolutions. Some 
callers can generate gaps between the inferred topological domains, where the mean gap 
size increases and the gap count decreases by decreasing resolution.

Recently, [48] clearly distinguished between large TADs (compartment domains) that 
look like TADs but lack a corner dot (extrusion loop), and relatively smaller TADs that 
follow extrusion process properties having a corner dot. Bringing in this perspective, we 

(7)TPR =
TP

TP + FN

(8)FPR =
FP

TP + FP
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found feature-based methods such as Armatus, HiCseg, TADbit to identify a more bal-
anced mixture of TADs with and without a corner dot as seen in Fig. 2A over mouse 
ESCs Micro-C interactions at a lower 1kb resolution, where y axis represents the frac-
tion of TADs with a corner dot. However, certain methods such as CaTCH and Cluster-
TAD tend to identify larger non-corner dot TADs more frequently, whereas a number of 
methods such as Matryoskha and CHDF frequently extract smaller TADs with a corner 
dot. Additionally, average size of non-corner dot domains are in general larger than aver-
age size of corner-dot domains across all finders as seen in Fig. 2B.

The sequencing depth is an important factor in TAD inference. To explore the 
impact of sequencing depth, we generate samples where reads are downsampled from 

Fig. 1 TAD inference performance via TAD callers across a number of interaction matrix resolutions (5kb, 
10kb) using HiCNorm normalized Micro-C interaction dataset over human embryonic stem cell line. A 
Across multiple resolutions, the number of TADs inferred via callers in all chromosomes. B The mean TAD 
size inferred by considered TAD callers across different resolutions over all chromosomes. C The comparison 
of topologically associating domain boundaries inferred by a single caller with the remaining callers for a 
number of resolutions over all chromosomes in terms of Jaccard Index similarity metric

Fig. 2 Identification of TADs with and without corner dot (extrusion loop) via evaluated TAD callers over 
normalized mouse ESCs Micro-C dataset at a lower 1kb resolution. A The fraction of TADs with a corner-dot 
by each caller in all chromosomes. B The mean TAD size with and without corner dot, identified by each caller 
in all chromosomes
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pooled samples randomly by a number of ratios (0.01, 0.1, 0.5, 0.9), and investigate the 
performance of TADs inferred over these generated samples. In contrast to Spectral 
and MrTADFinder, increasing the sequencing depth increases the quantity of topo-
logical domains inferred via IC-Finder and Arrowhead as in Fig. 3. As we increase the 
sequencing depth, the mean sizes of TADs from Spectral and Arrowhead increase. In 
terms of similarities of TAD boundaries across different TAD callers, TADs inferred 
by MrTADFinder and Arrowhead decrease by decreasing the sequencing depth, 
opposite of Spectral and CaTCH. Among the compared methods, Spectral, CaTCH, 
MrTADFinder, Arrowhead seem to be affected greater by the sequencing depth, 
which influences these callers choices about the TAD size and count. The bounda-
ries of TADs inferred over 100% of all reads and TADs inferred over various ratios 
of downsampled reads become gradually more similar for most callers by increas-
ing sequencing depths as in Fig. 3. According to this figure, for a single TAD-calling 
method, TAD inference on an interaction dataset with a low sequencing depth will be 
more biased.

We differentiate between different TAD-calling methods in terms of the gap size 
between TADs, the number of gaps between TADs, TAD size, the number of TADs, and 
similarities of TADs. Practically, TAD-callers have differences in terms of gaps and TADs 
they generate, which is affected by their different preferences. TAD boundaries identi-
fied by TAD caller pairs are not highly similar, which shows the callers different perspec-
tive in TAD inference. For instance, heatmaps in Fig. 4 show a part of interaction matrix 
and TADs (red blocks) over the matrix inferred via each method. Even though a number 

Fig. 3 TAD inference performance via TAD callers across a number of sequencing depths at 5kb resolution 
using HiCNorm normalized Micro-C interaction dataset over human embryonic stem cell line. A Across 
multiple ratio of downsampled sequenced reads, the number of TADs inferred by each caller in all 
chromosomes. B The mean TAD size inferred by considered TAD callers across different ratio of downsampled 
sequenced reads over all chromosomes. C The comparison of TAD boundaries inferred by one TAD caller 
with the others across a number of sequencing depths over all chromosomes in terms of Jaccard Index 
similarity metric. We do not report CHDF results as CHDF has inferred each bin in the interaction matrix as an 
independent TAD after downsampling the dataset
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of TAD-calling methods agree on a portion of TADs, no consensus exists between vari-
ous TAD-calling methods over the same data.

Biological assessment of TADs and TAD boundaries

Evaluating TAD callers accuracy is difficult since reaching a consensus agreement for 
them even on the same data is difficult, and any dataset is not available for labeling and 
benchmarking. Nevertheless, up-to-date research on TADs have identified the impor-
tance of a number of regulatory functional elements and their association with topo-
logical domain boundaries [1, 49–52, 54, 55, 97, 98]. Several cohesin complexes such as 
SMC3 [55] and RAD21, and chromatin insulator CTCF [49–52, 54, 55] are known to 
contribute to TAD formation where these elements binding sites are also enriched near 
domain boundaries. Additionally, TAD boundaries are also enriched in terms of histone 
modifications such as H3K36me3 and H3K4me3, and promoter-related factors such as 
RNA polymerase II [1, 97, 98]. In contrast, TAD boundaries are depleted in terms of 
histone modification H3K9me3 [1, 97]. The housekeeping genes  (HK genes) [57] and 
TSSs (Transcription start sites) [1] exist frequently near TAD boundaries. Finally, TAD 
boundaries in the human genome are enriched especially in terms of Alu SINE elements 
[1]. When considered all together, these relationships between the regulatory elements 
and TADs show that TADs are widely-known structures correlated with complex gene 
regulation in the cell. By analyzing these relationships, extracting extra biological infor-
mation on the inferred TAD boundaries will be useful in evaluating the TAD-calling 
methods performance.

We calculate the depletion and enrichment of these regulatory functional elements 
near TAD boundaries by means of 1kb distance from 500kb downstream to 500  kb 
upstream TAD boundaries regions for all callers. Even though the profiles of depletion 
and enrichment curves are similar as in Fig. 5, we have calculated p value ( ≤ 0.05 ), fold 
change, boundary tagged ratio, and average peak to investigate the density of these ele-
ments’ peaks around topological domain boundaries. The boundary tagged ratio and 
average peak define the degree of depletion and enrichment of these elements near TAD 
boundaries. Similarly, we calculate p value and fold change to analyze the significance 

Fig. 4 Annotated TADs and heatmaps inferred by TAD callers over the first chromosome region 1900–2000 at 
5kb resolution over HiCNorm normalized human embryonic stem cell’s first experiment sample
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of depletion or enrichment of these regulatory elements. These metrics are already ori-
ented near TAD boundaries. So, we also calculate the JI between regulatory elements 
and TAD boundaries inside ±10 kb window in order to take into account the bias of 
depletion or enrichment around TAD boundaries.

The majority of functional regulatory elements are remarkably enriched in terms 
of average peak metric around TAD boundaries inferred via DI, which is accompa-
nied by feature-based method TADbit and clustering-based method Constrained 
HAC as in Table 2 over the normalized human embryonic stem cell interaction data-
set with 29 replicate samples at the 5kb resolution. The TAD boundaries inferred 
via HiCExplorer and DI are remarkably enriched for the majority of regulatory ele-
ments, which are accompanied by feature-based TADbit according to the boundary 
tagged ratio as in Table 4. The TAD boundaries inferred via CaTCH are remarkably 
enriched for the majority of regulatory elements, which is accompanied by Con-
strained HAC according to the fold change as in Table 3. In terms of p value ( ≤ 0.05 ), 
TAD boundaries inferred via TADtree, TADbit, SpectralTAD, OnTAD, Matryoshka, 
HiCseg, IC-Finder, DI, CaTCH are significantly enriched around TAD boundaries. 
The feature-based callers OnTAD and TADtree, and MrTADFinder outperform the 
remaining callers in terms of JI between the functional elements and TAD bounda-
ries. The ranking column in the tables define the summation of every caller’s ranking 
for enrichment of the whole set of functional elements except H3K9me3. According 

Fig. 5 Regulatory elements enrichment and depletion per 1kb near topologically associating domain 
boundaries with a 1000kb window, identified by different TAD callers at 5kb resolution over HiCNorm 
normalized human embryonic stem cell’s first experiment sample. A CTCF for enrichment and B H3K9me3 for 
depletion. The top rows show the topmost performing 5 callers, whereas the bottom rows show the worst 
perfoming 5 callers
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to such ranking criteria, the topmost rankings are achieved by OnTAD, HiCseg, HiC-
Explorer, and DI as in Tables 2, 3 and 4. According to the Tables 2, 3 and 4, in terms 
of depletion, TAD boundaries inferred via CaTCH is mainly depleted for H3K9me3 
according to fold change, boundary tagged ratio, and average peak metrics. In terms 
of p value, TAD boundaries called by almost all callers are significantly depleted in 
terms of H3K9me3. Lastly, Jaccard Index between TAD boundaries inferred via Clus-
terTAD and H3K9me3 is the smallest.

Besides human Micro-C datasets, we have also performed the analysis of enrich-
ment of four typical regulatory elements (CTCF, Housekeeping genes, RAD21, TSSs) 
near TAD boundaries over Micro-C dataset at a lower 1kb resolution from the mouse 
ESCs as in Table 5. In this table, we evaluate the performance in terms of 6 metrics: (1) 
Average peak near inferred topological domain boundaries, (2) Inferred TAD bound-
aries’ boundary tagged ratio, (3) Fold change ( log2 ) between bilateral regions and 
topological domain boundaries, (4) p value ( ≤ 0.05 ) of average peak around inferred 
TAD boundaries in bilateral regions, (5) JI between functional regulatory elements 
and topological domain boundaries using number of TAD boundaries as numerator, 
and (6) JI between functional regulatory elements and topological domain boundaries 
using the number of regulatory elements as numerator, respectively. According to the 
Table, HiCseg frequently outperforms the other TAD callers in the mouse ESCs in 
most of the considered metrics. DI method has frequently the topmost rank accord-
ing to the summation of every caller’s ranking for enrichment of the whole set of 
functional elements in mouse ESCs.

CTCF and Cohesin complex proteins such as RAD21, SMC3 exists more frequently 
around the boundaries for TADs with corner dot as in Table  6 over the normalized 
mouse ESCs Micro-C dataset at a lower 1kb resolution. Such abundance is observed 
slightly more on TADs with corner dot called by feature-based methods. However, dis-
tribution of peaks for histone modifications H3K36me3, H3K4me3, and H3K9me3 do 
not depend on whether TAD have an extrusion loop or not. Such coexistence of CTCF 
and cohesin related complex SMC3 have been previously discussed in [48, 99–101] 
where SMC complexes, for instance cohesin and condensin, arrange the chromatin by 
loop extrusion during the cell phases. The loop extrusion is thought to be a viable chro-
matin organization mechanism according to [48, 102].

Lastly, we also found TADs to keep their biological effects. In terms of TAD defini-
tion, TADs having lower interaction frequencies can be rarely identified while TADs 
having larger interaction frequencies can be more frequently inferred. Additionally, the 
interaction frequency between each loci pair decay by the increasing genomic distance. 
In this case, we measure the rate of variability of interaction frequencies described via 
the inferred TADs throughout genomic distances by TADadjR2 . Figure 6 demonstrates 
TADadjR2 profile throughout 0− 1.5 M distance over human embryonic cell line’s first 
replicate at 5kb resolution, where the top row shows the topmost performing 5 callers, 
whereas the bottom row shows the worst perfoming 5 callers. We have estimated the 
mean TADadjR2 across 0− 1.5 M distance to analyze the inferred TADs’ quality in the 
experimental datasets. As seen in Table  7, OnTAD performs better than the remain-
ing callers having the largest mean average TADadjR2 scores, over normalized human 
embryonic stem cell interacton dataset of replicates at 5kb resolution. We also observe 
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Table 7 The ratio of signal variance over the inferrred TADs as evaluated via TADadjR2 among a loci 
pair across 0− 1 M distance

Multiple TAD callers are evaluated on the interaction dataset normalized by HiCNorm at 5kb resolution over human 
embryonic stem cell line. Bold numbers show the leading result for every column

With corner dot (extrusion loop) Without corner dot

Average Max Min Average Max Min

Armatus 0.641 0.709 0.524 0.653 0.721 0.535

Arrowhead 0.654 0.740 0.531 0.666 0.751 0.533

CaTCH 0.699 0.759 0.571 0.712 0.773 0.585

Constrained HAC 0.698 0.768 0.568 0.711 0.779 0.579

CHDF 0.654 0.726 0.544 0.667 0.739 0.556

ClusterTAD 0.674 0.741 0.555 0.687 0.755 0.567

deDoc 0.695 0.761 0.573 0.707 0.774 0.585

DI 0.690 0.754 0.568 0.701 0.765 0.582

EAST 0.714 0.801 0.583 0.725 0.813 0.595

GMAP 0.645 0.712 0.527 0.657 0.725 0.540

GRiNCH 0.648 0.715 0.531 0.659 0.728 0.545

HiCExplorer 0.697 0.766 0.573 0.709 0.777 0.586

HiCKey 0.658 0.735 0.549 0.667 0.745 0.559

HiCseg 0.655 0.733 0.544 0.665 0.744 0.556

IC-Finder 0.685 0.752 0.564 0.696 0.761 0.575

InsulationScore 0.665 0.729 0.549 0.678 0.741 0.561

Matryoshka 0.692 0.761 0.565 0.703 0.774 0.578

MrTADFinder 0.631 0.685 0.535 0.642 0.695 0.545

MSTD 0.671 0.736 0.553 0.683 0.748 0.566

OnTAD 0.732 0.799 0.597 0.745 0.812 0.609
Spectral 0.638 0.711 0.519 0.651 0.722 0.531

SpectralTAD 0.645 0.708 0.533 0.656 0.721 0.545

TADBD 0.686 0.753 0.565 0.696 0.763 0.576

TADbit 0.724 0.793 0.594 0.736 0.805 0.605

TADpole 0.670 0.741 0.559 0.685 0.751 0.571

TADtree 0.672 0.738 0.558 0.682 0.748 0.569

TopDom 0.654 0.717 0.541 0.667 0.729 0.553

Fig. 6 The ratio of Hi-C/Micro-C signal variance over the inferrred TADs as evaluated via TADadjR2 among 
a loci pair across 0− 1 Mb distance. Multiple TAD callers are evaluated on Micro-C interaction dataset 
normalized by HiCNorm at 5kb resolution over embryonic stem cell line’s first sample. The top row shows the 
topmost performing 5 callers, whereas the bottom row shows the worst perfoming 5 callers
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similar TADadjR2 scores over human fibroblast interaction dataset at 5kb resolution. As 
a result, results for the majority of callers are in line with the biological results about 
topological domains. However, there is no single caller that outperforms all the remain-
ing ones throughout all used metrics.

Concordance and reproducibility of TADs

Besides the biological evaluation of topological domains in terms of functional regula-
tory elements, concordance and reproducibility of topological domains are major met-
rics as well while evaluating the TAD callers. While analyzing the concordance and 
reproducibility of TADs, the experimental dataset is composed of technical and biologi-
cal replicate samples. Even though TAD boundaries are altered during cell differentia-
tion [38] and development [39, 40] to a certain extent, TADs are still highly reproducible 
and topological domain boundaries tend to be stable between replicates [1, 3].

First of all, we have analyzed the inferred TAD boundaries reproducibility among 
biological and technical replicates at 5kb resolution in terms of JI, over human embry-
onic stem cell dataset by replicates with almost identical sequencing depths. As antici-
pated, TAD boundaries among technical replicates are more reproducible than TAD 

Fig. 7 The evaluation of TAD boundaries statistically among the considered TAD callers between replicates 
over normalized human embryonic stem cell line Micro-C dataset at 5kb resolution, having the same 
sequencing depths. A TAD boundaries reproducibility between technical and biological replicates, as 
evaluated via Jaccard Index. B TAD count distribution relative to various reproducibility levels for individual 
TAD callers (Levels of reproducibility are between 8 and 1 from top to bottom). C The mean TAD interaction 
frequency across various TAD reproducibility levels between samples. D TAD sizes across various TAD 
reproducibility levels between samples
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boundaries among biological replicates as in Fig. 7A over replicates with almost identical 
sequencing depths. This reproducibility result is also observed across human fibroblast 
dataset and Micro-C dataset on mouse embryonic stem cells.

The topological domains matching identically by lower an upper boundaries entails the 
TADs absolute concordance. We have calculated how TAD numbers change across vari-
ous reproducibility degrees at 5kb resolution over replicates in human embryonic stem 
cells dataset, where the reproducibility degree defines how many times same TAD occur 
in the replicates. The majority of topological domains cannot be identified in many repli-
cates simultaneously as seen in Fig. 7B. According to this figure, the majority of topolog-
ical domains identified by one TAD-calling method on any replicate are less probable to 
be common across the remaining replicates. Such result is also observed across human 
fibroblast dataset and Micro-C dataset on mouse embryonic stem cells. Among the call-
ers, feature-based method Armatus and graph-based method MrTADFinder infer topo-
logical domains with higher reproducibility than remaining callers. Finding a substantial 
reproducible set of TAD boundaries by one caller supports the previous findings that 
topological domains are greatly conserved. Evidently, we have found that smaller and 
highly-interacting domains tend to be mostly related to robust TADs.

Moreover, to understand the existence of any prospective pattern in TAD inference, 
we have analyzed the size and mean interaction frequency of topological domains at 
various reproducibility degrees. The mean interaction frequencies of domains that are 
highly reproducible are significantly greater than the mean interaction frequencies of 
domains that have low reproducibility as in Fig. 7C according to Wilcoxon signed-rank 
test at p < 0.05 threshold. As a result, we found that topological domains that have low 
mean interaction frequencies are less robust than domains having higher mean interac-
tion frequencies. The mean interaction frequencies of topological domains differ less for 
TAD-calling methods which performance is further balanced as mentioned previously. 
As opposed to this result, the mean TAD size that have lower reproducibility is greater 
than the mean TAD size with higher reproducibility for many methods as in Fig.  7D. 
This result might show that large-scale topological domains are less robust than small-
scale domains. These discoveries are also observed across human fibroblast dataset and 
Micro-C dataset on mouse embryonic stem cells. According to this analysis, smaller and 
highly-interacting TADs are highly reproducible, which is in line with TAD definition.

Assessment in simulations

Although labeled topological domains are not provided by the experimental datasets, 
labeled TADs are available in synthetic datasets and they can be utilized to evaluate 
TAD-calling methods performance. By using synthetic datasets, we can also evaluate 
TAD-calling methods performance across various data categories such as without or 
with nested TADs and noise levels.

First of all, we have generated the synthetic datasets by mimicking mouse embryonic 
stem cells’ Micro-C interaction matrix for chromosome 5 at 1kb resolution via For-
cato et al.’s method [86]. We have also repeated the same procedure on the remaining 
chromosomes and we found the results to be highly similar. Among the callers, deDoc 
and HiCseg are highly sensitive to noise as the TAD counts for both methods have 
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consistently dropped at high noise degrees as seen in Fig. 8. Then, we have evaluated the 
TAD boundaries in terms of FDR and TPR. CHDF outperforms the remaining callers in 
accurate inference of TAD boundaries over both nested and non-nested synthetic data 
in terms of TPR. As the noise levels increase, TPR scores for plenty of callers decrease, 
such as HiCseg, HiCExplorer, deDoc. On the other hand, TPR scores for a number of 
callers slightly decrease showing the capability of these callers in supressing a certain 
noise level, such as TADbit, IC-Finder, and OnTAD. According to FDR, EAST, TADtree, 
and Spectral infers the most of incorrect TAD boundaries. As noise levels increase, FDR 

Fig. 8 Different TAD callers performance using simulated dataset with various noise levels. A The total 
number (top), TPR (middle), and FDR (bottom) of TADs from non-nested TADs simulated interaction dataset 
(dashed lines indicate labelled TADs of the simulated data). B The total number (top), TPR (middle), and FDR 
(bottom) of TADs from the nested TADs simulated data
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scores for numerous callers, such as EAST and Armatus, increase. At higher noise levels, 
IC-Finder performs the best in calling hardly any incorrect TAD boundaries. This find-
ing at a higher levels of noise can also be explained by smaller TADs being more con-
nected and decreasing the number of inaccurate TAD boundaries. Finally, feature-based 
caller TADbit’s performance is more balanced with lower FDR and higher TPR for TAD 
boundaries on the synthetic datasets. Additionally, the topological domains inferred 
over synthetic datasets with non-nested domains are more similar to labeled domains 
than topological domains inferred over synthetic datasets with nested domains.

Secondly, we have simulated the block copolymers interaction frequency with various 
epigenomic partitions, and generated in-silico datasets. We have evaluated the perfor-
mance in terms of FDR and TPR of TAD boundaries as in Table  8. According to the 
table, on average, the domain boundaries inferred via CHDF is the topmost in terms 
of TPR whereas the domain boundaries inferred via TADBD is the lowest in terms of 
FDR. Practically, the performance of IC-Finder and TopDom is more balanced than the 
remaining callers as they exhibit lower FDR and higher TPR over in-silico dataset.

Table 8 TAD boundaries’ True Positive Rate and False Positive Rate called from the in silico dataset

Bold numbers show the leading result for every column

True Positive Rate (TPR) False Positive Rate (FPR)

Average Max Min Average Max Min

Armatus 0.708 0.917 0.462 0.192 0.438 0.041

Arrowhead 0.218 0.35 0.141 0.586 0.703 0.444

CaTCH 0.194 0.471 0.044 0.052 0.375 0
CHAC 0.355 0.5 0.233 0.047 0.179 0
CHDF 0.965 1 0.81 0.381 0.517 0.237

ClusterTAD 0.354 0.453 0.244 0.153 0.375 0
deDoc 0.497 0.632 0.372 0.28 0.46 0.068

DI 0.113 0.198 0.041 0.864 0.95 0.754

EAST 0.26 0.343 0.014 0.539 0.636 0.417

GMAP 0.255 0.412 0.136 0.425 0.6 0.182

GRiNCH 0.341 0.504 0.217 0.327 0.562 0.113

HiCExplorer 0.877 0.949 0.709 0.002 0.036 0
HiCKey 0.316 0.429 0.215 0.018 0.089 0.012

HiCseg 0.275 0.406 0.181 0.006 0.071 0
IC-Finder 0.946 1 0.848 0.077 0.158 0.025

InsulationScore 0.09 0.203 0.024 0.636 0.875 0.333

Matryoshka 0.706 0.875 0.5 0.332 0.606 0.127

MrTADFinder 0.752 0.895 0.557 0.337 0.594 0.107

MSTD 0.264 0.383 0.174 0.053 0.211 0
OnTAD 0.429 0.487 0.367 0.014 0.094 0
Spectral 0.182 0.425 0.058 0.785 0.887 0.571

SpectralTAD 0.869 0.956 0.684 0.213 0.367 0.089

TADBD 0.482 0.5 0.38 0 0 0
TADbit 0.452 0.571 0.304 0.478 0.653 0.313

TADpole 0.431 0.522 0.345 0.216 0.521 0.128

TADtree 0.961 1 0.785 0.001 0.016 0
TopDom 0.708 0.917 0.462 0.192 0.438 0.041
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TAD callers perform better over synthetic dataset with non-nested topological 
domains than the dataset with nested domains, which can be explained by the inter-
action dataset’s complexity. According to these findings, experimental interaction data-
set is composed of hierarchical TADs so topological domain inference is a challenging 
problem. Apart of these findings, the degree of noise also has an impact on TAD-calling 
methods performance. Different than the experimental dataset, synthetic dataset gen-
eration takes into account only certain factors so the results on synthetic datasets might 
solely reveal certain features of those callers up to a certain degree.

Implementation assessment

Every compared TAD-calling method is available publicly either as a software or web 
service. It is important for implementations to be easy to be used. But, the runtime of 
the callers is also very important since computer resources are costly.

We have evaluated the runtime of various callers by calling them over a single chro-
mosome. The runtime has changed between the callers. We have recorded the runtime 
of callers under predetermined parameters at 5kb resolution over human embryonic 
cell line’s chromosome 6 as seen in Table 9. TADtree takes the longest to infer TADs, 

Table 9 Running time of different TAD callers at 5kb resolution for chromosome 6 on human 
embryonic stem cell line, tested over a 2.9 GHz 8-Core Intel i9 cpu having 128 GB memory

Methods Key Parameters Running time (s)

Armatus g = 0.5 90.76

Arrowhead Normalization = KR 92.93

CaTCH Defaults 44.19

Constrained HAC h = 342 26.48

CHDF length = 3422; number = 3422; size = 342 952.38

ClusterTAD Max_TADsize = 800000 7608.69

deDoc Defaults 264.85

DI window = 2500000; min = 2; prob = 0.99 294.77

EAST Defaults 11.28

GMAP Defaults 62.46

GRiNCH Defaults 22.57

HiCExplorer minDepth = 3*50000; maxDepth = 6*50000; step = 50000 22.94

HiCKey Defaults 42.13

HiCseg change_max = 342; distrib = ‘G’; 146.32

IC-Finder Defaults 64.49

InsulationScore is = 2500000; ids = 1000000; im = mean; bmoe = 3; nt = 0.1 474.39

Matryoshka g = 0.5 123.95

MrTADFinder res = 1.5 625.73

MSTD MDHD = 10; window = 10 16.48

OnTAD Defaults 4.78

Spectral Threshold = 0.8; region size = 1 61.69

SpectralTAD levels = 2 32.15

TADBD Defaults 19.19

TADbit Defaults 20910.81

TADpole Defaults 211.63

TADtree S = 50; q = 12; p = 3; M = 10; N = 1025; gamma = 500 32732.71

TopDom w = 5 28.43
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whereas feature-based OnTAD consumes the least amount of time in TAD inference. 
OnTAD takes less amount of time since OnTAD’s inference complexity does not depend 
on interaction matrix size n, and terms appearing in the complexity are in general less 
than n. On the other hand, the runtime complexity of TADtree is the highest among all 
callers. The input data in experiments is a sparse large interaction matrix with n = 32442 
and 75.25% zero entries. In general, the reported runtimes are in line with these call-
ers theoretical complexity. One exception is deDoc which runs slower than its expected 
complexity O(n log2 n) . Such mismatch can be explained by: 1- deDoc’s greedy strategy 
might be impacting its inference negatively, 2- deDoc runs its internal function twice 
which is subject n log2 n . The different callers have been implemented by different pro-
gramming languages which change in their runtime characteristics. In the future, we still 
expect a caller to infer TADs via using less resources in a reasonable amount of time. 
Evidently, a caller having higher complexity can only process low resolution datasets 
which prevents them from inferring TADs over high-dimensional matrices.

Discussion
We obtain different results for the compared TAD-calling methods since callers are run 
on different datasets with different parameters. It is a challenging task to fairly evaluate 
the existing callers effectiveness. Nonetheless, the compared callers in general come up 
with similar results by using regularized sample attributes and reasonable parameters. 
We use the same parameters for the whole set of callers in our comparisons. So, we have 
not stressed out the diversity of the findings across various parameters.

Numerous callers have recently been proposed to extract TADs with the advent of 
interaction datasets, which is helping us to better analyze the fundamental genome 
structure. First of all, we have analyzed the impact of sequencing depth and resolution 
on the inferred topological domains. The size and number of TADs, and gaps between 
nearby topological domains can be modified uniformly by the resolution parameter for 
most callers. Different TAD-calling methods have different sensitivities, so inference 
results from various sequencing depths are not uniform in the size and number of topo-
logical domains. Both the sequencing depth and resolution generally have an impact on 
TAD boundaries similarity. While a number of TAD-calling methods vary in their infer-
ence standards, different TAD partitions from these TAD-calling methods are praise-
worthy to the following genome analysis because of TAD variability. Even though a gold 
standard dataset over TADs for benchmarking purpose is missing, we can still evaluate 
the callers performance by TADs specificity and quantity, for instance standards for Hi-C 
signal variation and TAD boundaries. As a result of missing benchmark for TAD infer-
ence, verification of the TADs biological features appears to be one meaningful direc-
tion to analyze whether domains are inferred incorrectly. Certain TAD-calling methods 
perform better than the remaining ones when evaluated in terms of 1- validating the 
association between topological domain boundaries and known regulatory functional 
elements, 2- validating by TADadjR2 which measures the ratio of Hi-C signal variabil-
ity that can be described by topological domains. Since there are numerous evidences 
showing that topological domains behave as genome’s stable composition, a robust caller 
might infer significantly reproducible domains in replicates. TAD boundaries on aver-
age are less reproducible between biological replicates than between technical replicates. 
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Smaller topological domains with high interaction frequencies are highly reproduc-
ible across TADs with various reproducibility between replicates. Moreover we have 
analyzed the TAD-calling methods performance by comparing the domains inferred 
via various callers over labeled domains on simulated dataset. Particularly, topological 
domains inferred from synthetic data not having nested TADs perform superior than 
that inferred from synthetic data having nested TADs, which shows it is highly probable 
that the callers do not accurately infer hierarchical TADs. Overall, the callers that are 
developed to infer hierarchical domains frequently perform worse than the callers that 
are not developed to call hierarchical domains since inferring hierarchical domains is 
more difficult than inferring non-hierarchical domains.

We have explored the reason behind the remarkable differences between different 
TAD-calling methods, particularly according to reproducibility, size, and number of 
TADs. In this case, making a number of assumptions about the hierarchy, size and num-
ber of TADs might bring about different topological domains. Additionally, employing 
different factors in determining the final topological domains might also bring about dif-
ferent topological domains. Some sample factors are the window size to calculate the 
mean interaction frequencies between the downstream and upstream bins, and false 
positive threshold while removing false positive topological domains.

Among 3 caller categories, feature-based callers utilize concise techniques, work on 
larger-scale, and they have broad quality capturing chromosome interactions. These 
methods are effective in inferring the patterns and features of TADs from interaction 
data, and in integrating statistical techniques into inference. On the other hand, cluster-
ing methods generally merge adjacent bins by similarity in TAD inference, which is a 
significant contribution to the TAD callers. Finding a criterion in determining the rel-
evant clusters is one of the difficulties in clustering techniques, which is handled mainly 
by assumption of experience. Lastly, graph-partitioning callers utilize the graph-based 
techniques in inferring topological domains by treating interaction matrix as a graph’s 
adjacency matrix, without integrating many TAD patterns and TAD features in the 
interaction data. According to our assessment of the inferred topological domains, 
feature-based callers frequently outperform the remaining callers which suggests the 
significance of TAD patterns and TAD features in the interaction data. Nevertheless, a 
number of existing callers are limited in TAD inference such as them fixing the window 
size limits the topological domains probes and misses the global knowledge. Another 
issue may be the parameter that decides the maximal TAD number, which will be espe-
cially difficult for users that do not have knowledge on experimental datasets apriori.

On top of TAD-calling methods, Hi-C and Micro-C datasets are also concerning in 
TAD inference. We expect simulated datasets having labels to help in accelerating the 
TAD inference since experimental dataset with labels do not exist. Even though the sim-
ulated datasets try to imitate the experimental datasets, it is still open whether simu-
lated datasets distribution is consistent in regard to the distribution of the experimental 
datasets. The reliable generation of simulated interaction datasets that mimic the dis-
tribution of experimental datasets is a challenging problem. Lately, Generative Adver-
sarial Network (GAN)-based models [103–106] has appeared which can better learn the 
generation of synthetic datasets across super-resolution, such as the distribution of the 
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generated high-resolution dataset is more consistent with that of low-resolution data. 
According to these models, GANs can be a great tool in generating reliable simulated 
datasets which can better mimic the experimental datasets while also being labeled. 
Since the availability of reliable and consistent synthetic interaction datasets also lead 
to significant enhancements in TAD inference, callers will not be restricted to unsuper-
vised learning techniques.

In this research, we have compared 27 TAD callers performance across various 
sequencing depths and resolutions, including their concordance, reproducibility, and 
quality over synthetic and experimental datasets, and also analyze their performance 
in terms of callers features. We have also analyzed several potential challenges in TAD 
inference and also discussed the enhancement direction of the developed techniques. 
Centered on our systematic comparison of callers, we have come up with a framework 
to enhance the TAD-calling methods quality by taking implementation efficiency, prac-
ticality, reproducibility, and quality into account. In comparison to the current reviews 
[53, 55, 86, 88], the major motivation behind this study is to develop a systematic, com-
prehensive, and concise framework to evaluate the TAD-calling methods performance. 
We also provide these callers implementations in order to compare the performance of 
callers as quick as possible.

As a future work, we come up with the subsequent views in order to advance 3D 
genomics area. First of all, TAD inference quality can be enhanced. At the initial step, 
extracting patterns and decreasing the datasets noise levels are critical steps in improv-
ing topological domains quality as the experimental datasets are already noisy. Since 
many enhanced normalization techniques [107–111] have already been applied to 
decrease the interaction datasets noise, a number of novel deep learning-based tech-
niques such as ZSSR (“Zero-Shot” Super-Resolution) model [112] can be applied to 
decrease the datasets noise. Graph-partitioning methods are good candidates for meth-
odological enhancement since they can probe the fundamental structures in genome 
via global knowledge of interaction data as well as these methods have recently started 
to receive more frequent attention in TAD identification. Graph-partitioning methods 
could take the global knowledge on the interaction dataset into account, when compared 
to the feature-based approaches. Additionally, almost all of the graph-partitioning meth-
ods do not need the number of clusters to be provided as apriori.

Furthermore, the relationship between topological domains and gene regulation can 
be analyzed as well. Numerous functional elements are found to be closely related to 
topological domain boundaries, which in turn lead to the conformation of stable struc-
ture in gene expression and regulation [1, 97, 98]. But, many open questions still exist 
in analyzing the relationship between TADs and gene regulation. Joint analysis of 
inferred TADs with additional genome analysis is significant in explaining the associa-
tions between different functional regulatory elements and gene regulation mechanisms, 
including replication activities, translation, and transcription. Additionally, such joint 
analysis is useful in capturing how expression of genome functions are affected by 3D 
chromosome structure. For instance, more comprehensive and broad analysis of ChIP-
seq might be carried out around topological domain boundaries.

Moreover, topological domains can be used to explain phenotypes. To a certain extent, 
topological domain boundaries and topological domains are not static since TADs differ 
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across species, cell types, and cell cycle phases. Cancers, gene mutations, and genetic 
diseases modify the topological domain boundaries which accordingly change the 
phenotypes. Additional research on differential gene expression across different cell 
phases or cell types can be carried out to better understand the mechanism by which 
genes influence phenotypes. We can also carry out control experiments for topological 
domain inference to find disease related genes. TADs are principal spatial genome struc-
tures, they regulate the normal cell development, and their analysis will be important in 
genomics.

Conclusion
As a summary, inferring topological domains from interaction datasets is a compu-
tational challenge. Almost all TAD callers are grounded on the assumption that the 
interaction frequencies of the same topological domain are denser than the inter-
action frequencies between bins that are not in the same topological domain. Even 
though TAD inference assumption is similar across the callers, numerous callers have 
been developed to infer topological domains from different perspectives. We propose 
a common comparison framework to evaluate the inferred TADs quantitatively, we 
assess different TAD callers performance, and we have extracted their features and 
preferences. Even though some callers have been outperformed by the remaining ones 
in our analysis, each proposed caller have brought insights into TAD inference, jointly 
advanced the TAD inference development, and have disclosed compelling discoveries 
about topological domains. This work is intended to reveal the existing state of TAD 
inference and clarify potential challenges. In the meantime, TAD inference is an area 
of development, constant renewal, and modification. TAD inference has not currently 
been rigorously studied, and significant amount of research should be carried out over 
it.
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