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Introduction

Historique

Bases mathématiques développées dans les années 1920 par R.A.
Fisher :

Génération d’estimateurs applicables à des cas plus complexes que
ceux traités jusqu’alors en statistiques.

Première application à la phylogénie moléculaire par Neyman
(1971).

Élargissement par Kashyap et Subas (1974) puis par Felsenstein
(1981).

Permet d’inférer des états de caractères ancestraux.

Nécessite en théorie l’exploration de l’ensemble des topologies
possibles.
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Introduction

Distribution discrète

La fonction de vraisemblance d’une hypothèse H est définie par :

L(H ) = P(D |H )

soit la probabilité d’observer les données D sous l’hypothèse H .

Maintenant, si D se décompose en ` observations indépendantes
D (i) (1 ≤ i ≤ `), alors :

L(H ) = P(D (1)|H )× P(D (2)|H )× · · · × P(D (`)|H )

=
∏̀
i=1

L(i)(H ) =
∏̀
i=1

P(D (i)|H )

Soit, sous forme logarithmique :

ln L(H ) =
∑̀
i=1

ln L(i)(H ) =
∑̀
i=1

lnP(D (i)|H )
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Introduction

Distribution continue

Expression sous la forme d’une fonction de densité.

Soit x = (x1, x2, x3, . . . , x`) un échantillon provenant d’une
distribution de paramètres θ = (θ1, θ2, . . . , θk ) inconnus.

Dans ce cas, la fonction de vraisemblance associée est telle que :

L(θ) = f (x|θ) = f (x1|θ)× f (x2|θ)× · · · × f (x`|θ)

=
∏̀
i=1

f (xi |θ)

Soit, sous forme logarithmique :

ln L(θ) =
∑̀
i=1

ln f (xi |θ)
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Introduction

Caractéristiques

Maximiser la vraisemblance consiste à :

Trouver un ensemble d’estimations des paramètres θ̂ de façon à ce
que que f (x|θ̂) soit maximisée.
La fonction de vraisemblance f (x|θ) n’est pas une fonction de
densité de probabilité et, la plupart du temps :∫

f (x|θ)dθ 6= 1

Les estimations au maximum de vraisemblance sont :

Non biaisées (E(θ̂) = θ).
Consistantes (l’estimation converge vers la vraie valeur quand
`→∞).
De variance minimale.
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Introduction

Notations pour la phylogénie

En phylogénie moléculaire, les données sont représentées par un
ensemble de séquences alignées S :

Chaque site dans l’alignement est désigné par le terme S (i)

(1 ≤ i ≤ `).
Par ailleurs, le vecteur des paramètres est θ = (τ,b,ϑ, α), avec :

τ la topologie de l’arbre.
b le vecteur des longueurs de branches.
ϑ le vecteur des paramètre du modèle d’évolution utilisé.
α le paramètre de forme de la loi Gamma, le cas échéant.

On en déduit l’expression de la vraisemblance de S , étant donné θ :

L(θ) = P(S |θ) =
∏̀
i=1

P
(

S (i)|τ,b,ϑ, α
)
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Calcul d’une distance évolutive

Modèle de Jukes et Cantor

Le calcul de la distance évolutive entre deux séquences au moyen
du modèle de Jukes et Cantor est donnée par la formule :

d = −3

4
ln

(
1− 4

3
p

)
⇔ p =

3

4
− 3

4
e−4d/3

Soit ` le nombre de sites dans l’alignement et n le nombre de sites
pour lesquels il y a une substitution entre les deux séquences :

Dans ce cas, la fonction de vraisemblance pour d est donnée par la
loi binomiale B(`, p) telle que :

L(d) = f (p|d) =

(
`

n

)
pn(1− p)`−n

=
`!

n!(`− n)!

(
3

4
− 3

4
e−4d/3

)n (
1

4
+

3

4
e−4d/3

)`−n
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Calcul d’une distance évolutive

Simplification des calculs

Le coefficient binomial
(
`
n

)
étant une constante, il peut être omis

pour effectuer les calculs :

La vraisemblance obtenue change, mais le maximum sera toujours
obtenu pour la même valeur de d .

Passage en logarithmes pour éviter les dérives numériques du fait
que les valeurs attendues sont très faibles :

ln L(d) ∝ n ln

(
3

4
− 3

4
e−4d/3

)
+ (`− n) ln

(
1

4
+

3

4
e−4d/3

)
Variation des valeurs de d sur l’intervalle [0.001, 2], réaliste du
point de vue évolutif.
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Calcul d’une distance évolutive

Application numérique

Paire Homme-Gorille du jeu
de données de Brown et al.
(1982) :

` = 896
n = 89

Calcul direct de la distance :

d ' 0.1066

Estimation au maximum de
vraisemblance :

max[ln(L(d)] ' −289.95
soit d ' 0.1066 0.001 0.005 0.050 0.500−7

00
−6

00
−5

00
−4

00
−3

00

Distance évolutive (d )

ln
 L

(d
)
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Vraisemblance à un site Exemple à quatre UTO

Arbre à quatre UTO

Soit un arbre à quatre UTO
de topologie τ et dont les
longueurs de branches sont
fixées.

U1, U2, U3 et U4 représentent
les feuilles de l’arbre.

V1, V2 et V3 représentent les
nœuds internes.

Les états de caractères cor-
respondants sont dénotés par
u1, u2, u3, u4, v1, v2,
v3 ∈ {A,C,T,G}.

ml-calcul

u2

u1

b1
b2

b3
b4

u3

b5 b6v1

u4

V1

v2
v3

V2
V3

U1

U2 U3

U4

!
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Vraisemblance à un site Exemple à quatre UTO

Fonction de vraisemblance

La vraisemblance à un site S (i) de l’alignement est telle que :

L(i)(θ) = P
(

S (i)|τ,b,ϑ
)

= P(u1, u2, u3, u4, v1, v2, v3|τ,b,ϑ)

Or les états ancestraux v1, v2 et v3 sont inconnus :

Nécessité de prendre en compte tous les scénarios évolutifs possibles
à chaque nœud interne de l’arbre.
L’expression de la vraisemblance s’écrit alors comme :

L(i)(θ) =
∑
v1

∑
v2

∑
v3

P(v1)P(v2|v1, b5)P(v3|v1, b6)P(u1|v2, b1)

× P(u2|v2, b2)P(u3|v3, b3)P(u4|v3, b4)
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Vraisemblance à un site Exemple à quatre UTO

Calcul de la vraisemblance

La détermination de la vraisemblance totale nécessite le calcul de
L(i)(θ) pour chacun des ` sites.

Le calcul des probabilités conditionnelles P(x |y , b) se fait par
l’intermédiaire des modèles probabilistes vus précédemment.

Sous l’hypothèse que le processus markovien modélisant l’évolution
des séquences est à l’état stationnaire, on a :

P(v1) = πv1

La valeur de πv1 étant estimée par la fréquence de l’état de
caractère v1 dans S .
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Vraisemblance à un site Calcul

Exemple de calcul

Données :

Site de l’alignement tel
que : u1 = C, u2 = T,
u3 = A, u4 = A.

Vecteur des paramètres θ :

Topologie τ racinée en V1.
Vecteur b des longueurs de
branches tel que : b1 = 0.5,
b2 = 0.4, b3 = b6 = 0.3,
b4 = b5 = 0.2
Modèle de Jukes et Cantor
à un paramètre (p) :

– Fréquences à l’équilibre
πi = 1/4 ∀i .

ml-exemple

u2 = T

u1 = C

b1 = 0.5

u3 = A

v1

u4 = A

V1

v2

v3

V2

V3

U1

U2 U3

U4

! b2 = 0.4

b6 = 0.3

b4 = 0.2

b5 = 0.2

b3 = 0.3
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Vraisemblance à un site Calcul

Probabilités de substitution

Calcul des probabilités de substitution associées à chaque branche
de longueur b au moyen de la relation :

p(b) =
3

4
− 3

4
e−4b/3

On en déduit les valeurs de p(b) pour les différentes longueurs de
branches observées :

p(b1) = p(0.5) = 0.36
p(b2) = p(0.4) = 0.31
p(b3) = p(b6) = p(0.3) = 0.25
p(b4) = p(b5) = p(0.2) = 0.18

Les probabilités de substitution pij (i 6= j ) sont toutes égales à
p(b)/3.

Les probabilités de conservations pii sont toutes égales à 1− p(b).
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Vraisemblance à un site Calcul

Matrices de substitution

On en déduit les matrices de substitution P(b) associées aux
différentes longueurs de branches :

Valeurs utilisées pour calculer les probabilités conditionnelles
P(x |y , b) :

P(0.5) =


0.64 0.12 0.12 0.12
0.12 0.64 0.12 0.12
0.12 0.12 0.64 0.12
0.12 0.12 0.12 0.64

 P(0.4) =


0.69 0.10 0.10 0.10
0.10 0.69 0.10 0.10
0.10 0.10 0.69 0.10
0.10 0.10 0.10 0.69



P(0.3) =


0.75 0.08 0.08 0.08
0.08 0.75 0.08 0.08
0.08 0.08 0.75 0.08
0.08 0.08 0.08 0.75

 P(0.2) =


0.82 0.06 0.06 0.06
0.06 0.82 0.06 0.06
0.06 0.06 0.82 0.06
0.06 0.06 0.06 0.82


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Vraisemblance à un site Calcul

Calcul d’une valeur

On se place dans le cas où v1 = v2 = v3 = A :

Calcul de :

P(v1 = A)P(v2 = A|v1 = A, b5 = 0.2)P(v3 = A|v1 = A, b6 = 0.3)

× P(u1 = C|v2 = A, b1 = 0.5)P(u2 = T|v2 = A, b2 = 0.4)

× P(u3 = A|v3 = A, b3 = 0.3)P(u4 = A|v3 = A, b4 = 0.2)

Soit, avec une écriture simplifiée :

P(A)P(A|A, 0.2)P(A|A, 0.3)P(C|A, 0.5)P(T|A, 0.4)

× P(A|A, 0.3)P(A|A, 0.2)

= πApAA(0.2)pAA(0.3)pCA(0.5)pTA(0.4)pAA(0.3)pAA(0.2)

= 0.25× 0.82× 0.75× 0.12× 0.10× 0.75× 0.82

= 0.001134675
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Vraisemblance à un site Calcul

Calcul des toutes les combinaisons (I)

v1 v2 v3 Vraisemblance v1 v2 v3 Vraisemblance
A A A 1.134675 × 10−3 C A A 8.856 × 10−6

A A C 9.4464 × 10−7 C A C 6.48 × 10−7

A A T 9.4464 × 10−7 C A T 6.912 × 10−8

A A G 9.4464 × 10−7 C A G 6.912 × 10−8

A C A 4.428 × 10−4 C C A 6.45504 × 10−4

A C C 3.6864 × 10−7 C C C 4.7232 × 10−5

A C T 3.6864 × 10−7 C C T 5.03808 × 10−6

A C G 3.6864 × 10−7 C C G 5.03808 × 10−6

A T A 5.728725 × 10−4 C T A 6.11064 × 10−5

A T C 4.76928 × 10−7 C T C 4.4712 × 10−6

A T T 4.76928 × 10−7 C T T 4.76928 × 10−7

A T G 4.76928 × 10−7 C T G 4.76928 × 10−7

A G A 8.3025 × 10−5 C G A 8.856 × 10−6

A G C 6.912 × 10−8 C G C 6.48 × 10−7

A G T 6.912 × 10−8 C G T 6.912 × 10−8

A G G 6.912 × 10−8 C G G 6.912 × 10−8
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Vraisemblance à un site Calcul

Calcul des toutes les combinaisons (II)

v1 v2 v3 Vraisemblance v1 v2 v3 Vraisemblance
T A A 8.856 × 10−6 G A A 8.856 × 10−6

T A C 6.912 × 10−8 G A C 6.912 × 10−8

T A T 6.48 × 10−7 G A T 6.912 × 10−8

T A G 6.912 × 10−8 G A G 6.48 × 10−7

T C A 4.7232 × 10−5 G C A 4.7232 × 10−5

T C C 3.6864 × 10−7 G C C 3.6864 × 10−7

T C T 3.456 × 10−6 G C T 3.6864 × 10−7

T C G 3.6864 × 10−7 G C G 3.456 × 10−6

T T A 8.351208 × 10−4 G T A 6.11064 × 10−5

T T C 6.518016 × 10−6 G T C 4.76928 × 10−7

T T T 6.11064 × 10−5 G T T 4.76928 × 10−7

T T G 6.518016 × 10−6 G T G 4.4712 × 10−6

T G A 8.856 × 10−6 G G A 1.21032 × 10−4

T G C 6.912 × 10−8 G G C 9.4464 × 10−7

T G T 6.48 × 10−7 G G T 9.4464 × 10−7

T G G 6.912 × 10−8 G G G 8.856 × 10−6

Sommation de tous les termes : L(i)(θ) = 0.004267
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Vraisemblance à un site Complexité

Ensemble des scénarios possibles

ml-scenario

……

u2

u1

b1

b2 b3

b4

u3

b5
b6

A
C

A

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

b1

b2 b3

b4

u3

b5
b6

A
A

A

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

b1

b2 b3

b4

u3

b5
b6

A
A

T

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

b1

b2 b3

b4

u3

b5
b6

A
T

A

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

b1

b2 b3

b4

u3

b5
b6

A
C

T

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

b1

b2 b3

b4

u3

b5
b6

A
G

A

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

b1

b2 b3

b4

u3

b5
b6

G
G

G

U1

U2 U3 u4

U4

V1

V2
V3

43 = 64 scénarios pour chaque site S(i)
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Vraisemblance à un site Complexité

Nombre de termes de la fonction

Le nombre de termes de la fonction de vraisemblance crôıt de
façon exponentielle avec le nombre d’UTO :

Complexité en O(`cn−1) pour le calcul de L(θ) :

– Avec c = 4 (séquences nucléotidiques) ou c = 20 (séquences
protéiques).

Expression rapidement incalculable.

Simplifications possibles, du fait que les mêmes valeurs sont
recalculées de nombreuses fois :

ml-recalculs

u2
u1

b1
b2 b3

b4

u3

b5
b6

A
A

A

U1

U2 U3 u4

U4

V1
V2

V3

u2
u1

b1
b2 b3

b4

u3

b5
b6

A
T

A

U1

U2 U3 u4

U4

V1
V2

V3

u1

b1

U1 u2

b2 b3
b4

u3

b5
b6

A
C

A

U2 U3 u4

U4

V1
V2

V3

u1

b1

U1 u2

b2 b3
b4

u3

b5
b6

A
G

A

U2 U3 u4

U4

V1
V2

V3
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L’élagage de Felsenstein Principe

Algorithme

Felsenstein (1981) a proposé une méthode dite d’élagage, per-
mettant de réduire très fortement la complexité des calculs :

Modification de la fonction de vraisemblance en décalant les
sommations le plus à droite possible :

L(i)(θ) =
∑
v1

P(v1)

[∑
v2

P(v2|v1, b5)P(u1|v2, b1)P(u2|v2, b2)

]

×

[∑
v3

P(v3|v1, b6)P(u3|v3, b3)P(u4|v3, b4)

]

Approche fondée sur le calcul de vraisemblances conditionnelles (ou

partielles) L
(i)
K (k) à chaque nœud K de l’arbre :

– Probabilités d’observer les données aux feuilles du sous-arbre raciné
par K , sachant l’état de caractère k à ce nœud.
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L’élagage de Felsenstein Principe

Vraisemblances partielles d’une feuille

Dans le cas de séquences nucléotidiques, si K correspond à une
feuille quelconque de l’abre, alors :

L
(i)
K (k) = 1 pour l’un des quatre états de caractère et L

(i)
K (k) = 0

pour les trois autres (k ∈ {A,C,T,G}).
Par exemple, si le nucléotide C est observé à la feuille U1, alors le
vecteur des vraisemblances partielles correspondant est :

L
(i)
U1

=
(

L
(i)
U1

(A),L
(i)
U1

(C),L
(i)
U1

(T),L
(i)
U1

(G)
)

= (0, 1, 0, 0)

Cette représentation permet de prendre en compte les ambigüités
pouvant exister à certaines positions :

– Pour une pyrimidine, le vecteur sera égal à (0, 1, 1, 0).
– Pour un gap, il sera égal à (1, 1, 1, 1).
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L’élagage de Felsenstein Principe

Vraisemblance partielle d’un nœud

Si K correspond à un nœud, alors :

L
(i)
K (k) =

∑
l

P(l |k , bl )L
(i)
L (l)×

∑
m

P(m|k , bm)L
(i)
M (m)

avec L et M les deux nœuds fils de K , bl la longueur de la branche
reliant K à L et bm la longueur de la branche reliant K à M .

En partant des feuilles, le calcul est réitéré jusqu’à atteindre la
racine V1 de l’arbre.

À la racine, le vecteur des vraisemblances partielles obtenu permet
de déterminer :

L(i)(θ) =
∑
v1

πv1L
(i)
V1

(v1)
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L’élagage de Felsenstein Principe

Calcul à un nœud

ml-cond

Calcul de la vraisemblance partielle LK(A)

bl bm

k

L M

A TC G

l A TC G

LL(G)LL(T)LL(C)LL(A)

mA TC G

LM(G)LM(T)LM(C)LM(A)

LK(G)LK(T)LK(C)LK(A)

K

LL LM

LK
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L’élagage de Felsenstein Principe

Complexité de l’algorithme

Aucune influence de la position de la racine sous l’hypothèse de
réversibilité du processus markovien.

Pour un site, c vraisemblances partielles sont déterminées pour
chacun des n − 1 nœuds de la topologie racinée :

Chacun de ces calculs implique le produit de deux termes, chaque
terme étant le résultat d’une somme de c produits :
Complexité en O(`nc2) pour le calcul de L(θ) :

– Avec c = 4 (séquences nucléotidiques) ou c = 20 (séquences
protéiques).

Gains de temps possibles au moyen de certaines astuces :

Identification des sites identiques dans l’alignement afin d’éviter le
recalcul de la même valeur.
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L’élagage de Felsenstein Calcul

Vraisemblances partielles aux feuilles

Sachant que u1 = C, u2 = T, u3 = A, u4 = A, les vecteurs de
vraisemblances partielles aux feuilles sont donc tels que :

L
(i)
U1

=
(

L
(i)
U1

(A),L
(i)
U1

(C),L
(i)
U1

(T),L
(i)
U1

(G)
)

= (0, 1, 0, 0)

L
(i)
U2

=
(

L
(i)
U2

(A),L
(i)
U2

(C),L
(i)
U2

(T),L
(i)
U2

(G)
)

= (0, 0, 1, 0)

L
(i)
U3

=
(

L
(i)
U3

(A),L
(i)
U3

(C),L
(i)
U3

(T),L
(i)
U3

(G)
)

= (1, 0, 0, 0)

L
(i)
U4

=
(

L
(i)
U4

(A),L
(i)
U4

(C),L
(i)
U4

(T),L
(i)
U4

(G)
)

= (1, 0, 0, 0)
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L’élagage de Felsenstein Calcul

Vraisemblances partielles aux feuilles

Initialisation du calcul de L(i)(θ) aux feuilles :

ml-4uto-1

b1 = 0.5

b2 = 0.4

b3 = 0.3

b4 = 0.2

b5 = 0.2 b6 = 0.3

LV2

LV1

0010

0100
0001

0001

0.0120.0830.0640.012
LV3

LU1

LU2

LU3

LU4

0.0050.0050.0050.615

0.0096 0.00317 0.00394 0.00052
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L’élagage de Felsenstein Calcul

Vraisemblances partielles au nœud V2

Calcul de L
(i)
V2

(A) :

L
(i)
V2

(A) =
[
pAA(0.5)L

(i)
U1

(A) + pAC(0.5)L
(i)
U1

(C) + pAT(0.5)L
(i)
U1

(T) + pAG(0.5)L
(i)
U1

(G)
]

×
[
pAA(0.4)L

(i)
U2

(A) + pAC(0.4)L
(i)
U2

(C) + pAT(0.4)L
(i)
U2

(T) + pAG(0.4)L
(i)
U2

(G)
]

=
[
0 + pAC(0.5)L

(i)
U1

(C) + 0 + 0
]
×

[
0 + 0 + pAT(0.4)L

(i)
U2

(T) + 0
]

= 0.12 × 1 × 0.10 × 1 = 0.012

Calcul de L
(i)
V2

(C) :

L
(i)
V2

(C) =
[
pCA(0.5)L

(i)
U1

(A) + pCC(0.5)L
(i)
U1

(C) + pCT(0.5)L
(i)
U1

(T) + pCG(0.5)L
(i)
U1

(G)
]

×
[
pCA(0.4)L

(i)
U2

(A) + pCC(0.4)L
(i)
U2

(C) + pCT(0.4)L
(i)
U2

(T) + pCG(0.4)L
(i)
U2

(G)
]

=
[
0 + pCC(0.5)L

(i)
U1

(C) + 0 + 0
]
×

[
0 + 0 + pCT(0.4)L

(i)
U2

(T) + 0
]

= 0.64 × 1 × 0.10 × 1 = 0.064
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L’élagage de Felsenstein Calcul

Vraisemblances partielles au nœud V2

Calcul de L
(i)
V2

(T) :

L
(i)
V2

(T) =
[
pTA(0.5)L

(i)
U1

(A) + pTC(0.5)L
(i)
U1

(C) + pTT(0.5)L
(i)
U1

(T) + pTG(0.5)L
(i)
U1

(G)
]

×
[
pTA(0.4)L

(i)
U2

(A) + pTC(0.4)L
(i)
U2

(C) + pTT(0.4)L
(i)
U2

(T) + pTG(0.4)L
(i)
U2

(G)
]

=
[
0 + pTC(0.5)L

(i)
U1

(C) + 0 + 0
]
×

[
0 + 0 + pTT(0.4)L

(i)
U2

(T) + 0
]

= 0.12 × 1 × 0.69 × 1 = 0.0828

Calcul de L
(i)
V2

(G) :

L
(i)
V2

(C) =
[
pGA(0.5)L

(i)
U1

(A) + pGC(0.5)L
(i)
U1

(C) + pGT(0.5)L
(i)
U1

(T) + pGG(0.5)L
(i)
U1

(G)
]

×
[
pGA(0.4)L

(i)
U2

(A) + pGC(0.4)L
(i)
U2

(C) + pGT(0.4)L
(i)
U2

(T) + pGG(0.4)L
(i)
U2

(G)
]

=
[
0 + pGC(0.5)L

(i)
U1

(C) + 0 + 0
]
×

[
0 + 0 + pGT(0.4)L

(i)
U2

(T) + 0
]

= 0.12 × 1 × 0.10 × 1 = 0.012
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L’élagage de Felsenstein Calcul

Vraisemblances partielles au nœud V2

Construction du vecteur des vraisemblances partielles L
(i)
V2

:

ml-4uto-2

b1 = 0.5

b2 = 0.4

b3 = 0.3

b4 = 0.2

b5 = 0.2 b6 = 0.3

LV2

LV1

0010

0100
0001

0001

0.0120.0830.0640.012
LV3

LU1

LU2

LU3

LU4

0.0050.0050.0050.615

0.0096 0.00317 0.00394 0.00052
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L’élagage de Felsenstein Calcul

Vraisemblances partielles au nœud V3

Calcul de L
(i)
V3

(A) :

L
(i)
V3

(A) =
[
pAA(0.3)L

(i)
U3

(A) + pAC(0.3)L
(i)
U3

(C) + pAT(0.3)L
(i)
U3

(T) + pAG(0.3)L
(i)
U3

(G)
]

×
[
pAA(0.2)L

(i)
U4

(A) + pAC(0.2)L
(i)
U4

(C) + pAT(0.2)L
(i)
U4

(T) + pAG(0.2)L
(i)
U4

(G)
]

=
[
pAA(0.3)L

(i)
U3

(A) + 0 + 0 + 0
]
×

[
pAA(0.2)L

(i)
U4

(A) + 0 + 0 + 0
]

= 0.75 × 1 × 0.82 × 1 = 0.615

Calcul de L
(i)
V3

(C) :

L
(i)
V3

(C) =
[
pCA(0.3)L

(i)
U3

(A) + pCC(0.3)L
(i)
U3

(C) + pCT(0.3)L
(i)
U3

(T) + pCG(0.3)L
(i)
U3

(G)
]

×
[
pCA(0.2)L

(i)
U4

(A) + pCC(0.2)L
(i)
U4

(C) + pCT(0.2)L
(i)
U4

(T) + pCG(0.2)L
(i)
U4

(G)
]

=
[
pCA(0.3)L

(i)
U3

(A) + 0 + 0 + 0
]
×

[
pCA(0.2)L

(i)
U4

(A) + 0 + 0 + 0
]

= 0.08 × 1 × 0.06 × 1 = 0.048
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L’élagage de Felsenstein Calcul

Vraisemblances partielles au nœud V3

Calcul de L
(i)
V3

(T) :

L
(i)
V3

(T) =
[
pTA(0.3)L

(i)
U3

(A) + pTC(0.3)L
(i)
U3

(C) + pTT(0.3)L
(i)
U3

(T) + pTG(0.3)L
(i)
U3

(G)
]

×
[
pTA(0.2)L

(i)
U4

(A) + pTC(0.2)L
(i)
U4

(C) + pTT(0.2)L
(i)
U4

(T) + pTG(0.2)L
(i)
U4

(G)
]

=
[
pTA(0.3)L

(i)
U3

+ 0 + 0 + 0
]
×

[
pTA(0.2)L

(i)
U4

+ 0 + 0 + 0
]

= 0.08 × 1 × 0.06 × 1 = 0.048

Calcul de L
(i)
V3

(G) :

L
(i)
V3

(C) =
[
pGA(0.3)L

(i)
U3

(A) + pGC(0.3)L
(i)
U3

(C) + pGT(0.3)L
(i)
U3

(T) + pGG(0.3)L
(i)
U3

(G)
]

×
[
pGA(0.2)L

(i)
U4

(A) + pGC(0.2)L
(i)
U4

(C) + pGT(0.2)L
(i)
U4

(T) + pGG(0.2)L
(i)
U4

(G)
]

=
[
[pGA(0.3)L

(i)
U3

+ 0 + 0 + 0
]
×

[
pGA(0.2)L

(i)
U4

+ 0 + 0 + 0
]

= 0.08 × 1 × 0.06 × 1 = 0.048
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L’élagage de Felsenstein Calcul

Vraisemblances partielles au nœud V3

Construction du vecteur des vraisemblances partielles L
(i)
V3

:

ml-4uto-3

b1 = 0.5

b2 = 0.4

b3 = 0.3

b4 = 0.2

b5 = 0.2 b6 = 0.3

LV2

LV1

0010

0100
0001

0001

0.0120.0830.0640.012
LV3

LU1

LU2

LU3

LU4

0.0050.0050.0050.615

0.0096 0.00317 0.00394 0.00052
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L’élagage de Felsenstein Calcul

Vraisemblances partielles à la racine V1

Calcul de L
(i)
V1

(A) :

L
(i)
V1

(A) =
[
pAA(0.2)L

(i)
V2

(A) + pAC(0.2)L
(i)
V2

(C) + pAT(0.2)L
(i)
V2

(T) + pAG(0.2)L
(i)
V2

(G)
]

×
[
pAA(0.3)L

(i)
V3

(A) + pAC(0.3)L
(i)
V3

(C) + pAT(0.3)L
(i)
V3

(T) + pAG(0.3)L
(i)
V3

(G)
]

= [0.82 × 0.012 + 0.06 × 0.064 + 0.06 × 0.0828 + 0.06 × 0.012]

× [0.75 × 0.615 + 0.08 × 0.0048 + 0.08 × 0.0048 + 0.08 × 0.0048]

= 0.008956

Calcul de L
(i)
V1

(C) :

L
(i)
V1

(C) =
[
pCA(0.2)L

(i)
V2

(A) + pCC(0.2)L
(i)
V2

(C) + pCT(0.2)L
(i)
V2

(T) + pCG(0.2)L
(i)
V2

(G)
]

×
[
pCA(0.3)L

(i)
V3

(A) + pCC(0.3)L
(i)
V3

(C) + pCT(0.3)L
(i)
V3

(T) + pCG(0.3)L
(i)
V3

(G)
]

= [0.06 × 0.012 + 0.82 × 0.064 + 0.06 × 0.0828 + 0.06 × 0.012]

× [0.08 × 0.615 + 0.75 × 0.0048 + 0.08 × 0.0048 + 0.08 × 0.0048]

= 0.003155
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L’élagage de Felsenstein Calcul

Vraisemblances partielles à la racine V1

Calcul de L
(i)
V1

(T) :

L
(i)
V1

(T) =
[
pTA(0.2)L

(i)
V2

(A) + pTC(0.2)L
(i)
V2

(C) + pTT(0.2)L
(i)
V2

(T) + pTG(0.2)L
(i)
V2

(G)
]

×
[
pTA(0.3)L

(i)
V3

(A) + pTC(0.3)L
(i)
V3

(C) + pTT(0.3)L
(i)
V3

(T) + pTG(0.3)L
(i)
V3

(G)
]

= [0.06 × 0.012 + 0.06 × 0.064 + 0.82 × 0.0828 + 0.06 × 0.012]

× [0.08 × 0.615 + 0.08 × 0.0048 + 0.75 × 0.0048 + 0.08 × 0.0048]

= 0.00392

Calcul de L
(i)
V1

(G) :

L
(i)
V1

(C) =
[
pGA(0.2)L

(i)
V2

(A) + pGC(0.2)L
(i)
V2

(C) + pGT(0.2)L
(i)
V2

(T) + pGG(0.2)L
(i)
V2

(G)
]

×
[
pGA(0.3)L

(i)
V3

(A) + pGC(0.3)L
(i)
V3

(C) + pGT(0.3)L
(i)
V3

(T) + pGG(0.3)L
(i)
V3

(G)
]

= [0.06 × 0.012 + 0.06 × 0.064 + 0.06 × 0.0828 + 0.82 × 0.012]

× [0.08 × 0.615 + 0.08 × 0.0048 + 0.08 × 0.0048 + 0.75 × 0.0048]

= 0.001038
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L’élagage de Felsenstein Calcul

Vraisemblances partielles à la racine V1

Construction du vecteur des vraisemblances partielles L
(i)
V1

:

ml-4uto-4

b1 = 0.5

b2 = 0.4

b3 = 0.3

b4 = 0.2

b5 = 0.2 b6 = 0.3

LV2

LV1

0010

0100
0001

0001

0.0120.0830.0640.012
LV3

LU1

LU2

LU3

LU4

0.0050.0050.0050.615

0.00896 0.00317 0.00392 0.00104
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L’élagage de Felsenstein Calcul

Calcul de la vraisemblance au site S (i)

À partir du vecteur des vraisemblances partielles à la racine, on en
déduit la valeur de L(i)(θ) :

L(i)(θ) =
∑
v1

πv1L
(i)
V1

(v1)

= πAL
(i)
V1

(A) + πCL
(i)
V1

(C) + πTL
(i)
V1

(T) + πGL
(i)
V1

(G)

=
1

4
(0.008956 + 0.003155 + 0.00392 + 0.001038)

= 0.004267

Soit, sous forme logarithmique :

ln L(i)(θ) = ln(0.004267) ' −5.4568
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L’élagage de Felsenstein Vraisemblance d’un arbre

Procédure générale

En théorie, nécessité d’explorer l’ensemble des topologies et des
combinaisons de longueurs de branches :

Impossible du fait de la croissance très rapide du nombre de
topologies et du caractère continu des longueurs de branches.

En pratique :

Exploration de l’espace des topologies via les heuristiques vues
précédemment (NNI, SPR, TBR).
Optimisation branche par branche pour déterminer les longueurs
maximisant la vraisemblance.

Pour une topologie et un ensemble de longueurs de branches
données :

Calcul des valeurs de vraisemblances par site L(i)(θ) :

– Calcul de la vraisemblance globale lnL(θ) =
∑

i lnL(i)(θ).
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Avantages et limitations

Avantages et limitations

Méthode la mieux justifiée du point de vue théorique (si vous êtes
fréquentiste).

Donne de meilleurs résultats que la parcimonie ou les méthodes de
distances dans la plupart des cas.

Consistante si l’on utilise le bon modèle.

Coûteuse en temps de calcul :

Bootstrap standard difficile d’utilisation.

Risques de surparamétrisation avec les modèles trop complexes :

Tests pour sélectionner le modèle permettant d’obtenir le meilleur
compromis vraisemblance/nombre de paramètres.
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Avantages et limitations

Performances en simulation

Génération aléatoire de 5000
arbres à 40 UTO :

Variation des longueurs de
branches.

Construction des séquences
d’ADN correspondantes :

Modèle de Kimura à deux
paramètres.

Qualité des reconstructions
obtenues :

Distance topologique entre
l’arbre vrai (connu) et
l’arbre reconstruit.
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