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Concepts généraux Introduction

Quelques grandes étapes I

Première phylogénie moléculaire (Doolittle et Blombäck, 1964).

Hypothèse de l’horloge moléculaire (Zuckerkandl et Pauling, 1965).

Application de la parcimonie aux séquences (Camin et Sokal,
1965).

Approximation des moindres carrés (Fitch et Margoliash, 1967).

Premier modèle d’évolution pour les séquences d’ADN (Jukes et
Cantor, 1969).

Algorithme efficace pour la parcimonie (Fitch, 1971).

Maximum de vraisemblance appliqué aux séquences (Neyman,
1971).
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Concepts généraux Introduction

Quelques grandes étapes II

Modèle PAM pour les séquences d’acides aminés (Dayhoff et al.,
1978)

Modèle de Kimura à deux paramètres (Kimura, 1980).

Premier algorithme efficace pour le maximum de vraisemblance
(Felsenstein, 1981).

Introduction du bootstrap (Felsenstein, 1985).

Méthode du Neighbor Joining (Saitou et Nei, 1987).

Modélisation de l’hétérogénéité des vitesses d’évolution (Yang,
1994).

Première phylogénie construite par une approche bayésienne
(Yang et Rannala, 1996).
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Concepts généraux Introduction

À quoi ça sert ?

Histoire évolutive de familles de gènes :

Analyse des duplications et des pertes de gènes.
Détection de transferts horizontaux.
Histoire évolutive des organismes les portant.

Écologie :

Phylogéographie.
Co-évolution hôte-parasite.

Épidémiologie.

Assignation taxonomique ou fonctionnelle.

Identification de chimères.
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Concepts généraux Données utilisées

Les données

Point de départ :

Un ensemble de séquences homologues alignées.
Chaque position dans l’alignement constitue un site.

Résultat obtenu :

Un arbre décrivant les relations évolutives entre les séquences (i.e.,
un arbre phylogénétique).

alignement

Homme

Chimpanzé

Gorille

Orang-outan

Gibbon

Babouin

Macaque

Gibbon     AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTAACCTCTT
Orang      AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCT
Gorille    AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCAT
Homme      AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCT
Chimpanzé  AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCT
Macaque    AAGCTTTTCCGGCGCAACCATCCTTATGATCGCTCACGGACTCACCTCTT
Babouin    AAGCTTCTCCGGTGCAACCATCCTTATGATTGCCCACGGACTCACCTCTT

Alignement
Arbre
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Concepts généraux Données utilisées

Mutations et substitutions

La grande majorité des mutations sont soit neutres (i.e., n’ont
aucun effet sur le phénotype), soit délétères :

Les mutations avantageuses sont très rares.

Les substitutions correspondent aux mutations qui ont passé le
crible de la sélection naturelle.

Mutations

Sélection

Substitutions

selection
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Concepts généraux Données utilisées

Homologie ou similarité ?

La phylogénie moléculaire est fondée sur l’utilisation de séquences
homologues :

Deux séquences sont dites homologues si et seulement si elles
possèdent un ancêtre commun.
L’existence d’un ancêtre commun est inférée à partir de la similarité.
Seuil variable suivant les circonstances :

– Similarité sans homologie (convergence, répétitions).
– Homologie avec faible similarité (limitation à quelques positions clés

dans les séquences).
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Concepts généraux Données utilisées

Orthologues et paralogues

Primates Rongeurs

Gène ancestral

INS
Homme

INS1
Rat

INS1
Souris

INS1 INS2

INS2
Rat

INS2
Souris

Spéciation

Duplication

Orthologie

Paralogie

orthologues
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Concepts généraux Données utilisées

Duplications et phylogénie

Duplication 
Spéciation 

Phylogénie 
déduite 

Phylogénie 
vraie 

dupli-4 
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Concepts généraux Données utilisées

Les paralogues sont fréquents

Nombre très important même chez les organismes unicellulaires :

30% des gènes d’E. coli K12.
40% en moyenne chez les mammifères.

Existence de duplications multiples :

Les relations d’orthologie sont souvent non bijectives.

Divergences pouvant être importantes après duplication :

Difficulté à identifier de nombreux paralogues.
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Concepts généraux Structure et représentation

Typologie

Arbre non raciné Arbre raciné

E

A

B

C

D

F

G

H

R

Racine

Temps

Arbre polytomique

Temps

A

B

E

H

C

DG

F

E

A

B

C

D

F

H

R

arbres

Unité Taxonomique Opérationelle (UTO)
Unité Taxonomique Hypothétique (UTH)
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Concepts généraux Structure et représentation

Mono-, poly- et paraphylie

tetrapodes

Euthériens
Marsupiaux
Monotrèmes
Lissamphibiens

Sauropsidés

Amniotes

Mammifères
Tétrapodes

Thériens

Mammifères

Crocodiliens
Oiseaux

Lézards
Serpents
Tortues

Archosauriens

Diapsidés Reptiles

Homéothermes

Dans cette phylogénie des Tétrapodes :

Les Mammifères sont monophylétiques.
Les Homéothermes sont polyphylétiques.
Les Reptiles (au sens ancien du terme) sont paraphylétiques.
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Concepts généraux Structure et représentation

Format Newick standard

Les UTO (ou groupes d’UTO) descendant d’un même nœud sont
placées entre parenthèses.

Les UTO et groupes d’UTO sont séparés par des virgules.

La fin de l’arbre est indiquée par un point-virgule.

newick-1

((A,B),(C,D),E);
A

B

E

H

C

DG

F
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Concepts généraux Structure et représentation

Extensions courantes

Longueurs des branches indiquées par leur valeur précédée de deux
points.

Robustesses des branches internes indiquées par un nombre
localisé après les parenthèses fermantes délimitant les groupes.

newick-2

((A:bAF,B:bBF):bFH,(C:bCG,D:bDG):bGH,E:bEH);
A

B

E

H

C

DG

F
bAF

bBF

bFH

bGH

bEH

bDG

bCD
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Concepts généraux Structure et représentation

Extensions courantes

Longueurs des branches indiquées par leur valeur précédée de deux
points.

Robustesses des branches internes indiquées par un nombre
localisé après les parenthèses fermantes délimitant les groupes.

newick-3

((A:bAF,B:bBF)gFH:bFH,(C:bCG,D:bDG)gGH:bGH,E:bEH);
A

B

E

H

C

DG

F
bAF

bBF

bFH

bGH

bEH

bDG

bCD

gFH

gGH
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Concepts généraux Nombre d’arbres

Nombre d’arbres racinés

Soit B
(n)
r le nombre d’arbres racinés à n UTO :

Pour construire un arbre raciné à n UTO, il suffit d’ajouter une
UTO à un arbre raciné à n − 1 UTO.

Un arbre raciné à n − 1 UTO possède n − 1 branches terminales et
n − 2 branches internes, soit 2n − 3 branches au total.

On en déduit la formule de récurrence :

B (n)
r = (2n − 3)B (n−1)

r

= (2n − 3)× (2n − 5)× · · · × 9× 7× 5× 3× 1

Il est ensuite facile de démontrer que :

B (n)
r =

(2n − 3)!

2n−2(n − 2)!

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 16 / 270



Concepts généraux Nombre d’arbres

Nombre d’arbres non racinés

Soit B
(n)
u le nombre d’arbres non racinés à n UTO.

Pour construire un arbre non raciné à n UTO, il suffit d’ajouter
une UTO à un arbre non raciné à n − 1 UTO.

Un arbre non raciné à n − 1 UTO possède n − 1 branches
terminales et n− 4 branches internes, soit 2n− 5 branches au total.

On en déduit la formule de récurrence :

B (n)
u = (2n − 5)B (n−1)

u

= (2n − 5)× (2n − 7)× · · · × 9× 7× 5× 3× 1

De la même façon que précédemment, on en déduit que :

B (n)
u =

(2n − 5)!

2n−3(n − 3)!
= B (n−1)

r
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Concepts généraux Nombre d’arbres

L’arbre caché dans la forêt

Le nombre d’arbres (racinés ou non) crôıt donc extrêmement
rapidement :

Retrouver le bon arbre est pratiquement impossible dès que n ≥ 12.

n B
(n)
r B

(n)
u

2 1 1
3 3 1
4 15 3
5 105 15
6 945 105
7 10395 945
8 135135 10395
9 2027025 135135

10 34459425 2027025
15 ≈ 2.13× 1014 ≈ 7.91× 1012

20 ≈ 8.20× 1021 ≈ 2.22× 1020

30 ≈ 4.95× 1038 ≈ 8.69× 1036

50 ≈ 2.75× 1076 ≈ 2.84× 1074
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Concepts généraux Racinement

Position de la racine

A C

B D A B C D

A C

B D B A C D

A C

B D D C A B

Position-1

C D A B

A C

B D

C D A B

A C

B D

position-2

Arbre non raciné à n UTO :

n branches externes.

n − 3 branches internes.

2n − 3 positions pour la racine.
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Concepts généraux Racinement

Racinement d’un arbre

La plupart des méthodes produisent des arbres sans racine :

Pas d’estimation de la direction des changements au cours du temps.

Plusieurs méthodes de racinement existent :
Au point moyen :

– Hypothèse que toutes les séquences ont évolué à la même vitesse
depuis leur divergence avec l’ancêtre commun.

À l’aide d’un groupe externe (outgroup) fixé a priori et connu
comme étant extérieur aux taxons étudiés.
En utilisant un paralogue.

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 20 / 270



Concepts généraux Racinement

Racinement au point moyen

Détermination des deux UTO les plus distantes dans l’arbre :

Placement de la racine au milieu du chemin.

Dans l’arbre ci-dessous, A et E sont les deux UTO les plus
éloignées et le racinement au point moyen donne :

midpoint

b1

E

F

D

C

A

B
b2

b3

b4

b5

b6

b7

b8

b9

R

B

A

C

D

FE

b1
b2

b3

b4

b6
b7

b8b9

b5

R
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Concepts généraux Racinement

Racinement par un groupe externe

Choix du groupe externe :

Une espèce ou un groupe d’espèces monophylétique qui ne soit ni
trop proche ni trop éloigné des organismes d’intérêt.

Racinement par le groupe {A, B}, supposé extérieur aux
organismes d’intérêt que sont C, D, E et F :

outgroup

D

C

E

F

BA

B

A

F

E

D

C

RR

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 22 / 270



Concepts généraux Racinement

Racinement par un paralogue

Duplication chez l’ancêtre commun à l’ensemble des organismes
étudiés :

Racinement en utilisant une des deux copies paralogues.
Utilisé pour la construction de phylogénies « universelles » (i.e.,
regroupant les trois domaines du vivant).

efactor

A1

B1

C1

A2

B2

C2

R

C2

B2

A2

C1

A1

B1

R
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Concepts généraux Exploration des topologies

Exploration des topologies

Plusieurs méthodes de reconstruction phylogénétique nécessitent
théoriquement d’évaluer l’ensemble des topologies.

Différentes approches en fonction du nombre d’UTO :

n < 12 : recherche exhaustive.
n < 20 : algorithme branch-and-bound.
n ≥ 20 : utilisation d’heuristiques.

Dans le cas des heuristiques, recherche limitée à une sous-partie de
l’ensemble des topologies :

Initialisation en utilisant une topologie supposée proche de celle de
l’arbre à retrouver.
Réarrangements en utilisant différentes méthodes :

– Nearest Neighbor Interchange (NNI).
– Subtree Pruning and Regrafting (SPR).
– Tree Bisection and Reconnection (TBR).
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Concepts généraux Exploration des topologies

Principe du NNI

Examen de tous les arbres se situant à une distance topologique
dT = 2 de l’arbre de départ :

2n − 6 réarrangements à effectuer au total.
Complexité en O(n).
Méthode la plus rapide et la plus répandue.

nni

A D

EC

B B D

EC

A

A C

EB

D A D

CB

E

A D

EB

C

! "

!

"
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Concepts généraux Exploration des topologies

Principe du SPR

Coupure de l’arbre de départ au niveau d’une branche interne ou
d’une branche externe :

Obtention de deux sous-arbres (partie élaguée et partie résiduelle).
Placement successif de la partie élaguée sur chacune des branches
internes ou externes de la partie résiduelle :

spr

DA E

B F

C G

Partie
élaguée

Partie
résiduelle

!

"

#
$

! "

# $

AE D

F B

G C

CE B

F A

G D

BE C

F A

G D

B

A

D

C

E

F

G
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Concepts généraux Exploration des topologies

Nombre de réarrangements

Réitération en échangeant la partie résiduelle et la partie élaguée :

Nombre de réarrangements pour une branche interne :

(2n1 − 3− 1) + (2n2 − 3− 1) = 2n − 8

avec n1 et n2 le nombre d’UTO présents de part et d’autre de la
branche considérée (n1 + n2 = n).
De la même façon, on démontre que le nombre de réarrangements
pour une branche externe est égal à 2n − 6.

Réitération du processus complet pour chacune des n branches
externes et des n − 3 branches internes de l’arbre :

Le nombre total de réarrangements est donc égal à :

n(2n − 6) + (n − 3)(2n − 8) = 4(n − 3)(n − 2)

Complexité en O(n2).
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Concepts généraux Exploration des topologies

Principe du TBR

Variante du SPR dans laquelle les deux sous-arbres résultant d’une
coupure sont considérés comme étant indépendants :

Réalisation de toutes les connexions possibles entre chacune des
branches à l’intérieur des deux sous-arbres :

tbr

A D

B E

C F

C D

A E

B F

B D

A E

C F

A E

B D

C F

B E

A D

C F

C E

A D

B F

A F

B D

C E

B F

A D

C E

C F

A D

B E
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Concepts généraux Exploration des topologies

Nombre de réarrangements

Nombre de réarrangements pour une branche interne :

(2n1 − 3)(2n2 − 3)− 1

avec n1 et n2 le nombre d’UTO présents de part et d’autre de la
branche considérée.

Pas de formule générale du calcul du nombre total de réarran-
gements possibles :

Dépendance en fonction de la topologie de départ considérée.
Le nombre maximum de réarrangements possibles est égal à :

(2n − 3)(n − 3)2

Complexité en O(n3).
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Concepts généraux Distance topologique

Distance de Robinson et Foulds

Il existe plusieurs mesures de distances topologiques entre deux
arbres construits avec des ensembles d’UTO identiques.

La distance de Robinson et Foulds (1981) est la plus répandue et
elle se calcule au moyen de la formule :

dT = 2(bt − bc)

avec bt le nombre total de branches internes et bc le nombre de
branches internes présentant des bipartitions identiques entre les
deux arbres.

On en déduit que la distance maximale possible entre deux arbres
à n UTO est égale à :

dTmax = 2bt = 2(n − 3)
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Concepts généraux Distance topologique

Distance normalisée

La distance de Robinson-Foulds standard dépend du nombre de
branches internes des arbres étudiés :

Pas de comparaisons possibles entre des arbres ne possédant pas le
même nombre d’UTO.

Utilisation d’une valeur normalisée, comprise entre 0 et 1 :

d̃T = dT/dTmax

= 2(bt − bc)/2bt

= 1− bc/bt
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Concepts généraux Distance topologique

Exemple

rf-dist-4 

Gène 1 Gène 2 

A B C 

F E 

D D C B A 

E F 

{AB|CDEF} 

{ABC|DEF} 

{ABCF|DE} 

{AB|CDEF} 

{ABF|CDE} 

{ABEF|CD} 

bt = 3 bt = 3 

dT = 2(bt – bc) = 4 
 dT  = 1 – bc /bt = 0.667 

bc = 1 

~ 
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Modèles
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Modèles Introduction

Divergence observée

Appelée p (ou p-distance), c’est l’estimation la plus simple de la
distance entre deux séquences :

p = n/`

avec n le nombre total de substitutions et ` le nombre de sites
homologues comparés.

Variance de l’estimation :

V(p) =
p(1− p)

`

Variation pour deux séquences de composition homogène :

Pour l’ADN : 0 ≤ p ≤ 0.75.
Pour les protéines : 0 ≤ p ≤ 0.95.
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Modèles Introduction

Substitutions multiples

La distance évolutive réelle (d) est généralement supérieure à la
divergence observée (p).

En faisant des hypothèses sur la nature du processus évolutif, il est
possible d’estimer d à partir de p.

A

A G

C

A G

G

A A

A

A G

C

Substitution

multisub
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Modèles Introduction

Types de substitutions

ACTGAACGTAACGC

A
C
T
G

T ! C ! A
A

G ! C
G

A ! T
A

T ! C ! A
C
G
C

A
C " A
T
G
A
A
C " A
G
T " A
A
A " T
C
G
C " T " C

Substitution simple

Substitutions multiples

Substitutions coïncidentes

Substitutions parallèles

Substitutions convergentes

Substitution inverse

ACTGTAGGAATCGC
AATGAAAGAATCGC

p = 3/14
d = 12/14

typesub
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Modèles Introduction

Modèles de Markov en phylogénie

Utilisés pour les séquences
nucléotidiques et protéiques.

Les substitutions se font sui-
vant un processus de Markov.

Impliquent de déterminer des
probabilités de substitution :

16 valeurs en théorie pour
les séquences d’ADN.
Moins en pratique :

– Hypothèses simplifi-
catrices.

Ch. 1
Ch. 2
Ch. 3

⋮

A
C
T
G
A
A
C
G
T
A

A
C
T
A
A
A
C
G
T
A

A
C
T
A
A
A
C
C
T
A

Évolution des sites d’une séquence
d’ADN selon un processus markovien

0 1 2 t

markov

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 37 / 270



Modèles Introduction

Propriétés des modèles standards

Temps continu.

Hypothèses communes (simplificatrices) :
Stationnarité :

– La fréquences des nucléotides/acides aminés dans les séquences est
la même de la racine aux feuilles de l’arbre.

Réversibilité :

– La quantité de changement d’un nucléotide/acide aminé i → j est
égale à la quantité de changement j → i .

Homogénéité par branche :

– Un seul taux global de substitution tout au long de l’arbre.

Homogénéité par sites (ou uniformité) :

– Tous les sites évoluent suivant le même processus.
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Modèles ADN

Nombre de substitutions

On pose Ω = {A, C, T, G} l’ensemble des états possibles.

Soit N = (nij ) (i , j ∈ Ω), la matrice contenant le nombre de
substitutions (i 6= j ) et de conservations (i = j ) observées entre
deux séquences alignées :

N =




nAA nAC nAT nAG

nCA nCC nCT nCG

nTA nTC nTT nTG

nGA nGC nGT nGG




Le nombre total de substitutions observées n est tel que :

n =
∑

i 6=j

nij
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Modèles ADN

Fréquence des substitutions

Soit F = (fij ) la matrice contenant les fréquences des substitutions
(i 6= j ) et des conservations (i = j ) observées entre deux séquences
alignées :

F =




fAA fAC fAT fAG

fCA fCC fCT fCG

fTA fTC fTT fTG

fGA fGC fGT fGG




Soient ` le nombre de sites homologues comparés, dans ce cas :

fij =
nij

`
et p =

∑

i 6=j

fij =
n

`
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Modèles ADN

Transitions et transversions

Beaucoup de modèles font la distinction entre les substitutions de
type transitions et celles de type transversions :

A C

G T

trtv

Soit r la fréquence des transitions et v celle des transversions,
telles que :

r = rR + rY = fAG + fGA + fCT + fTC

v = fAC + fCA + fAT + fTA + fCG + fGC + fGT + fTG
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Probabilités de substitution

Soit pij (t) la probabilité de substitution d’un nucléotide i vers un
nucléotide j au cours du temps t :

Probabilités de transition du processus de Markov.

L’ensemble de ces probabilités peuvent être regroupées dans une
matrice P(t) = (pij (t)) telle que :

P(t) =




pAA(t) pAC(t) pAT(t) pAG(t)
pCA(t) pCC(t) pCT(t) pCG(t)
pTA(t) pTC(t) pTT(t) pTG(t)
pGA(t) pGC(t) pGT(t) pGG(t)




Les sommes en ligne de P(t) sont égales à 1.
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Taux de substitution

Soit qij (i 6= j ) le taux de substitution instantané d’un nucléotide i
vers un nucléotide j .

Dans ce cas, le taux de changement instantané d’un nucléotide i
est défini comme λi = qii =

∑
j 6=i qij .

L’ensemble des taux de substitutions et des taux de changements
peuvent être regroupés dans une matrice Q = (qij ) telle que :

Q =




−λA qAC qAT qAG

qCA −λC qCT qCG

qTA qTC −λT qTG

qGA qGC qGT −λG




Les sommes en ligne de Q sont égales à 0.
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Calcul de P(t)

La dynamique des probabilités de substitutions pour un accrois-
sement infinitésimal dt peut s’exprimer sous la forme :

P(t + dt) = P(t)(I + Qdt)

avec I la matrice identité.

La solution de l’équation précédente est :

P(t) = eQt

Ce calcul nécessite la diagonalisation de la matrice Q.
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Stationnarité

Au bout d’un temps infini, un processus de Markov atteint ce
qu’on appelle un état stationnaire :

Les fréquences des différents états ne changent plus :

lim
t→∞

pij (t) = πj

avec πj la fréquence à l’équilibre du nucléotide j .

Les modèles standards considèrent que la stationnarité est atteinte
dès la racine de l’arbre :

Utilisation des fréquences des bases dans le jeu de données pour
estimer les valeurs des fréquences à l’équilibre.
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Réversibilité

Un processus de Markov est dit réversible si, lorsque la station-
narité est atteinte, on a :

πipij (t) = πjpji(t), ∀i , j ∈ Ω

À l’équilibre, la quantité de changement i → j est égale à la
quantité de changement j → i .

Pas de directionalité dans l’écoulement du temps :

Pas d’influence de la position de racine sur le calcul.
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Échangeabilités

En remplaçant les probabilités de substitution par les taux
instantanés, l’équation précédente devient :

πiqij = πj qji

Soit :
qij
πj

=
qji
πi

= sij = sji

avec sij = sji un terme symétrique, appelé paramètre d’échangea-
bilité entre i et j .
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Matrices S et Π

Sous l’hypothèse de réversibilité, l’expression de Q peut s’écrire
comme étant le produit :

Q = SΠ =




· sAC sAT sAG

sCA · sCT sCG

sTA sTC · sTG

sGA sGC sGT ·


×




πA 0 0 0
0 πC 0 0
0 0 πT 0
0 0 0 πG




avec S = (sij ) la matrice des échangeabilités et Π = diag(πi) la
matrice diagonale des fréquences à l’équilibre.
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Simplification de l’écriture

Les échangeabilités étant symétriques, on pose :

sAC = sCA = α sAT = sTA = β

sAG = sGA = γ sCT = sTC = δ

sCG = sGC = ε sTG = sGT = η

Et le produit matriciel précédent peut s’écrire :

Q = SΠ =




· α β γ
α · δ ε
β δ · η
γ ε η ·


×




πA 0 0 0
0 πC 0 0
0 0 πT 0
0 0 0 πG



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Expression de Q

Au moyen du produit matriciel précédent, on déduit l’expres-
sion de Q :

Q =




−λA πCα πTβ πGγ
πAα −λC πTδ πGε
πAβ πCδ −λT πGη
πAγ πCε πTη −λG




avec





λA = πCα+ πTβ + πGγ
λC = πAα+ πTδ + πGε
λT = πAβ + πCδ + πGη
λG = πAγ + πCε+ πTη

Soit neuf paramètres à estimer :

Modèle GTR (Generalised Time Reversible) ou REV.
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Modèles ADN

Imbrication des modèles

imbric

GTR
pA, pT, pC, a, b, d, e, g, h

JC
a

a = b = e = h

pS = 1/2

pC + pG = pS

pA = pT = pC = 1/4

a = b

K2P
a, b

F81
pA, pT, pC, a

HKY, F84
pA, pT, pC, a, b

TN93
pA, pT, pC, aR, aY, b

SYM
a, b, d, e, g, h

T92
pS,a, b

K3P
a, b, g

pA = pT = pC = 1/4 b = g

a = b

aR =aY

a = h, b = e, g = d

9

6

5

4

3

2

1
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Paramètres des modèles

rates 

πA = πC = πT = πG = ¼  

πA ≠ πC ≠ πT ≠ πG 

G T 

A C 

F81 
(α) 

G T 

A C 

HKY, F84 
(α, β) 

G T 

A C 

GTR 
(α, β, δ, ε, γ, η) 

G T 

A C 

TN93 
(αR, αY, β) 

G T 

A C 

JC 
(α) 

G T 

A C 

K2P 
(α, β) 

G T 

A C 

SYM 
(α, β, δ, ε, γ, η) 

G T 

A C 

K3P 
(α, β, γ) 
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Calcul de la distance évolutive

Soit λ, le taux global de substitutions entre deux séquences. Sous
l’hypothèse de réversibilité, ce taux est égal à :

λ =
∑

i

πiλi

avec λi =
∑

j 6=i qij le taux de changement instantané d’un nucléo-
tide en n’importe lequel des trois autres.

Dans ce cas, la distance évolutive entre deux séquences est donnée
par la formule :

d = λt =
∑

i

πiλi t
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Normalisation

Par convention, les valeurs des taux instantanés sont normalisées
de façon à ce que :

λ =
∑

i

πiλi = 1

Sous cette contrainte, la distance évolutive entre deux séquences
est assimilable au temps écoulé :

d = λt = t

Équivalence de ces deux expressions dans les notations utilisées
par la suite.

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 54 / 270
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Modèle de Jukes et Cantor

Une seule échangeabilité (α), identique pour chacun des quatre
nucléotides.

Fréquences à l’équilibre πA = πC = πT = πG = 1/4.

Matrice des taux instantanés :

Q =




−λ α α α
α −λ α α
α α −λ α
α α α −λ




Taux global de substitutions :

λ =
∑

i

πiλi = 3α = 1
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Résolution

Le calcul de P(t) = eQt permet de déterminer que :

pij (t) =





1

4
+

3

4
e−4αt (i = j )

1

4
− 1

4
e−4αt (i 6= j )

Simplification en sachant que 3α = 1.

Introduction de la divergence observée entre deux séquences
p = 3pij (t) (i 6= j ).

Formule de Jukes et Cantor pour le calcul de la distance évolutive :

d = −3

4
ln

(
1− 4

3
p

)
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Caractéristiques du modèle

Variance de l’estimation :

V(d) =
9p(1− p)

(3− 4p)2`

Ratio transitions/transversions :

κ =
α

α
= 1

Ceci quelle que soit la composition des séquences.

Limites d’utilisation :

Lorsque p → 3/4, d →∞.
Le modèle n’est pas utilisable pour des séquences divergentes à plus
de 75%.
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Modèle de Kimura à deux paramètres

L’échangeabilité pour les transitions (α) est différente de celle des
transversions (β).

Fréquences à l’équilibre πA = πC = πT = πG = 1/4.

Matrice des taux instantanés :

Q =




−λ β β α
β −λ α β
β α −λ β
α β β −λ




Taux global de substitutions :

λ =
∑

i

πiλi = α+ 2β = 1
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Résolution

Le calcul de P(t) = eQt permet de déterminer que :

pij (t) =





1

4
+

1

4
e−4βt +

1

2
e−2(α+β)t (i = j )

1

4
+

1

4
e−4βt − 1

2
e−2(α+β)t (i 6= j , transition)

1

4
− 1

4
e−4βt (i 6= j , transversion)
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Calcul de la distance

Simplification en sachant que α+ 2β = 1.

Introduction de la fréquence des transitions et des transversions
observées entre deux séquences :

r = pij (t) (i 6= j , transition)

v = 2pij (t) (i 6= j , transversion)

Formule de Kimura pour le calcul du nombre de substitutions :

d = −1

2
ln(1− 2r − v)− 1

4
ln(1− 2v)
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Caractéristiques du modèle

Variance de l’estimation :

V(d) =
1

`

[
c2

1r + c2
3v − (c1r + c3v)2

]

avec c1 = 1/(1− 2r − v), c2 = 1/(1− 2v) et c3 = (c1 + c2)/2.

Ratio transitions/transversions :

κ =
α

β
=

2 ln(1− 2r − v)

ln(1− 2v)
− 1

Limites d’utilisation :

Lorsque v → 1/2, d →∞.
Le modèle n’est pas utilisable pour des séquences présentant plus de
50% de transversions.

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 61 / 270
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Modèle de Felsenstein (1981)

Une seule échangeabilité (α), identique pour chacun des quatre
nucléotides.

Fréquences à l’équilibre πA 6= πC 6= πT 6= πG.

Matrice des taux instantanés :

Q =




−λA πCα πTα πGα
πAα −λC πTα πGα
πAα πCα −λT πGα
πAα πCα πTα −λG




Taux global de substitutions :

λ =
∑

i

πiλi = 2α(πRπY + πAπG + πCπT) = 1

avec πR = πA + πG et πY = πC + πT.
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Résolution

Le calcul de P(t) = eQt permet de déterminer que :

pij (t) =

{
πj + (1− πj )e−αt (i = j )

πj (1− e−αt) (i 6= j )

Simplification en sachant que 2α(πRπY + πAπG + πCπT) = 1.

Formule de Felsenstein (1981) pour le calcul du nombre de
substitutions :

d = −a ln
(

1− p

a

)

avec a = 1− π2
A − π2

C − π2
T − π2

G.
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Caractéristiques du modèle

Variance de l’estimation :

V(d) =
p(1− p)

(1− p/a)2`

Ratio transitions/transversions :

κ =
α

α
= 1

Ceci quelle que soit la composition des séquences.

Limites d’utilisation :

Lorsque p → a, d →∞.
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Modèle de Tamura et Nei

Deux échangeabilités pour les transitions entre purines (αR) et
pyrimidines (αY) et une échangeabilité pour les transversions (β).

Fréquences à l’équilibre πA 6= πC 6= πT 6= πG.

Matrice des taux instantanés :

Q =




−λA πCβ πTβ πGαR

πAβ −λC πTαY πGβ
πAβ πCαY −λT πGβ
πAαR πCβ πTβ −λG




Taux global de substitutions :

λ =
∑

i

πiλi = 2(πAπGαR + πTπCαY + πRπYβ) = 1
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Résolution

Le calcul de P(t) = eQt permet de déterminer que :

pij (t) =





πj (1− e−βt) (1)

πj +
πjπR

πY

e−βt − πj
πY

e−(πYαY+πRβ)t (2)

πj +
πjπY

πR

e−βt − πj
πR

e−(πRαR+πYβ)t (3)

πj +
πjπR

πY

e−βt +
πk
πY

e−(πYαY+πRβ)t (4)

πj +
πjπY

πR

e−βt +
πk
πR

e−(πRαR+πYβ)t (5)

(1) Transversions (4) i , j , k ∈ {C, T}, i = j et k 6= j
(2) i , j ∈ {C, T} et i 6= j (5) i , j , k ∈ {A, G}, i = j et k 6= j
(3) i , j ∈ {A, G} et i 6= j
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Calcul de la distance

Simplification en sachant que 2(πAπGαR + πTπCαY + πRπYβ) = 1.

Formule de Tamura et Nei pour le calcul du nombre de
substitutions :

d =
2πTπC

πY

(a1 − πRb) +
2πAπG

πR

(a2 − πYb) + 2πYπRb

avec





a1 = − ln

(
1− πY

2πTπC

rY −
1

2πY

v

)

a2 = − ln

(
1− πR

2πAπG

rR −
1

2πR

v

)

b = − ln

(
1− 1

2πRπY

v

)
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Caractéristiques du modèle

Variance de l’estimation :

Trop complexe pour tenir sur une seule diapositive (cf. Tamura et
Nei, 1993) !

Ratio transitions/transversions :

κY =
αY

β
=

a1 − πRb

πYb
et κR =

αR

β
=

a2 − πYb

πRb

avec κ = κY + κR.

Limites d’utilisation :

Logarithmes indéfinis pour les valeurs de a1, a2 ou b si séquences
trop divergentes (valeurs négatives).
Le modèle n’est pas utilisable pour des séquences présentant plus de
50% de transversions.
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Modèles ADN

Modèle GTR

Pas de solution analytique au calcul de P(t) = eQt .

Expression matricielle du calcul de la distance :

Soit Π = diag(πi) la matrice diagonale contenant les valeurs des
fréquences des bases à l’équilibre, dans ce cas on a :

d = λt = − trace(ΠQt)

Du fait que P(t) = eQt , l’expression ci-dessus est équivalente à :

d = − trace[Π ln P(t)]

Estimation de Π à partir des fréquences des bases dans le jeu de
données.
Quel estimateur pour P(t) ?
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Introduction de F(t)

Soit fij (t) la probabilité d’avoir au temps t une substitution i → j
dans l’alignement :

fij (t) = πipij (t)

Soit, sous forme matricielle :

F(t) = ΠP(t)

Dans ce cas, la formule permettant le calcul de la distance peut
s’écrire comme :

d = − trace
{
Π ln

[
Π−1F(t)

]}

Du fait que P(t) = Π−1F(t).
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Estimation de F(t)

Utilisation de F, construite à partir des fréquences des substi-
tutions observées dans le jeu de données (cf. Diapo. 40).

Π−1F doit être diagonalisable pour permettre le calcul de son
logarithme.

Les valeurs propres de Π−1F doivent être des réels positifs non
nuls :

Symétrisation de F en F∗ par l’opération :

F∗ =
1

2

(
F + FT

)

Π−1F∗ correspond alors au produit d’une matrice diagonale par
une matrice symétrique définie positive.
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Utilité des modèles complexes

Modélisent mieux l’évolution des séquences :

Plus proches de la réalité biologique.
Sous-estimation des distances évolutives par les modèles simples.

Nécessitent de disposer de données en quantités plus importantes :

Nombre croissant de paramètres à estimer.
Augmentation de la variance avec le nombre de paramètres.

Séquences trop divergentes :

Impossible de calculer d .

Tests de sélection de modèles (maximum de vraisemblance) :

Compromis entre l’augmentation du nombre de paramètres et le
gain de vraisemblance.
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Séquences protéiques

Premières séquences biologiques à avoir été utilisées pour cons-
truire des phylogénies moléculaires.

Toujours fréquemment utilisées :
Plus conservées que les séquences d’ADN (substitutions
synonymes) :

– Utiles pour des analyses portant sur de longues durées évolutives ou
sur des séquences évoluant rapidement.

– Généralement inutilisables dans le cas d’organismes trop proches.

Existence de nombreux modèles permettant d’estimer le nombre de
substitutions entre deux séquences.
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Modèle GTR pour les protéines ?

Matrice 20× 20 des taux instantanés :

Q = SΠ =




−λA πRsAR · · · πVsAV

πAsAR −λR · · · πVsRV

...
...

. . .
...

πAsAV πRsRV · · · −λV




Soit 190 paramètres d’échangeabilité sij et 19 fréquences à
l’équilibre πi (i , j ∈ {A,R,N, . . . ,V}).
Non directement réalisable entre deux séquences :

Pas assez de données pour permettre l’estimation d’un si grand
nombre de paramètres.
Estimation à partir de jeux de données de référence comprenant un
grand nombre de séquences.
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Modèles empiriques courants

Approche par comptage des substitutions :
PAM (Point Accepted Mutation, Dayhoff et al., 1978) :

– 1300 séquences provenant de 71 familles pour un total de 1572
substitutions.

– Existence de plusieurs variantes (DCMut, Gonnet).

JTT (Jones, Taylor et Thornton, 1992) :

– 16300 séquences totalisant 59190 substitutions.

Approche au maximum de vraisemblance :
WAG (Whelan et Goldman, 2001) :

– 3905 séquences provenant de 182 familles.

LG (Le et Gascuel, 2008) :

– 49637 séquences provenant de 3912 familles.

Modèles « spécialisés » (mtMAM, cpREV, HIVb, FLU, etc.)
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Calcul de la matrice P(t)

matgen

Fréquences à 
l’équilibre

Jeu de données
de référence

Jeu de données
étudié

Arbres

Fréquence des 
substitutions

F*

S Échangea-
bilités

P(t)

Q Taux
instantanés

Probabilités
de transition

P(0.01)
Normalisation 

à t = 0.01 

Π�

�

�
��

��

��

� PAM, JTT
� WAG, LG

��
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Calcul d’une distance évolutive

La divergence observée entre deux séquences est égale à :

p =
∑

i 6=j

fij (t) =
∑

i 6=j

πipij (t) = 1−
∑

i

πipii(t)

Pour p = 0.01, on fait l’hypothèse de l’absence de substitutions
multiples, ce qui implique :

t = p = 1−
∑

i

πipii(0.01) = 0.01

Maintenant, si p 6= 0.01, comment calculer t ?
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Propriété de Chapman-Kolmogorov

Pour une châıne de Markov en temps continu, la propriété de
Chapman-Kolmogorov fait que :

P(r × t) = P(t)r (r > 0)

Toute distance peut donc s’exprimer sous la forme t = r × 0.01, r
étant la puissance à laquelle il faut élever P(0.01) de façon à ce
que :

p = 1−
∑

i

πipii(r × 0.01) = pobs

avec pobs la divergence observée entre les deux séquences.

Calcul itératif jusqu’à convergence vers la bonne valeur.
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Exemple numérique

Calcul de t pour pobs = 0.17 avec le modèle PAM :

P(0.01) = P(0.01)1 ⇒ p = 0.01 < pobs

P(0.17) = P(0.01)17 ⇒ p ' 0.15201 < pobs

P(0.18) = P(0.01)18 ⇒ p ' 0.15993 < pobs

P(0.19) = P(0.01)19 ⇒ p ' 0.16774 < pobs

P(0.20) = P(0.01)20 ⇒ p ' 0.17556 > pobs

P(0.195) = P(0.01)19.5 ⇒ p ' 0.17162 > pobs

P(0.1925) = P(0.01)19.25 ⇒ p ' 0.16968 < pobs

P(0.19375) = P(0.01)19.375 ⇒ p ' 0.17065 > pobs

. . .
P(0.19291) = P(0.01)19.291 ⇒ p ' 0.17⇒ t ' 0.19291

Le même calcul avec un autre modèle donnerait un résultat
différent.
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Approximation des distances

Calcul rapide d’une distance évolutive avec les ordinateurs actuels,
mais pas au moment de la conception des modèles.

Approximation de Kimura (1983) pour PAM :

t̂ = − ln(1− p − 0.2p2)

Approximation de Nei et Kumar (2000) pour PAM et JTT :

t̂ = a[(1− p)−1/a − 1]

avec a = 2.25 (PAM) et a = 2.4 (JTT).
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Limites d’utilisation

Méthodes simples et rapides :

Encore implémentées dans
des programmes actuels.

Limitations :

Pas de prise en compte des
fréquences à l’équilibre des
séquences étudiées.
La précision de l’estimation
diminue avec la divergence.
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Matrices de scores

Utilisées par les programmes d’alignement et de recherche de
similarités (e.g., BLAST).

Fondées sur les matrices de probabilités de transition :

Calcul d’un ensemble de matrices obtenues par exponentiation de
P(0.01) pour différentes valeurs de t (e.g., 0.5, 1.5, 2.5).
Pour chacune des matrices P(t) précédentes, construction d’une
matrice de score M(t) = (µij (t)), telle que :

µij (t) = 10 log

(
pij (t)

πj

)

avec arrondi à l’entier le plus proche.
Construction de PAM250 à partir de la matrice de probabilités de
transition P(2.5) = P(0.01)250 de PAM.
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PAM250

pam250

A 2
R -2 6
N  0  0 2
D  0 -1 2 4
C -2 -4 -4 -5 12
Q  0 1 1 2 -5 4
E  0 -1 1 3 -5 2 4
G 1 -3 0 1 -3 -1 0 5
H -1 2 2 1 -3 3 1 -2 7
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6
K -1 3 1 0 -5 1 0 -2 0 -2 -3 5
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6
F -4 -4 -4 -6 -4 -5 -5 -5 -2 1 2 -5 0 9
P 1 0  0 -1 -3 0 -1 0  0 -2 -3 -1 -2 -5 6
S 1 0 1 0  0 -1 0 1 -1 -1 -3 0 -2 -3 1 2
T 1 -1 0  0 -2 -1 0  0 -1 0 -2 0 -1 -3 0 1 3
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10
V  0 -3 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V

Non polaire

Petit

Polaire
Chargé

Aliphatique

Aromatique

Très petit

⊕

A
G

SP
N

D
E

R
K

T

VI
L

M

F
Y

W
Q

H

C

⊝
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Interconversion des matrices

S

Q

P(t) M(t)F
Fréquence des 
substitutions

symétrisée* ou non

Scores des 
alignements
symétrique

Taux instantanés
non symétrique

Échangeabilités
symétrique

Probabilités de 
transition

non symétrique

matAA

� PAM, JTT
� WAG, LG
� BLOSUM

�

�

�

�

��

��

��
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Comparaison des échangeabilités

Sur- ou sous-estimations de certaines valeurs de PAM :

Problème lié à la taille de l’échantillon utilisé
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Modèles hétérogènes

Les hypothèses d’homogénéité sont la plupart du temps non
vérifiées :

Positions I, II et III des codons.
Contraintes structurales (ARNr, protéines).
Accélération évolutive dans certaines lignées.

Utilisation de modèles hétérogènes :
Hétérogénéité par sites :

– Correction par la loi Gamma.
– Modèles de mélange.
– Modèles de partition (concaténations).

Hétérogénéité par branches.
Hétérogénéité par sites et par branches.
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Exemple de l’ARNr 16S

Marqueur couramment utilisé
en phylogénie.

Structure secondaire indis-
pensable à la fonction.

Taux de substitutions dif-
férents suivant les régions :

Régions appariées évoluant
lentement.
Régions dans les boucles
évoluant rapidement.
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Correction par la loi Gamma

Hypothèse des modèles homogènes :

Tous les sites possèdent le même taux instantané de substitution
dont la valeur normalisée est fixée à λ = 1.

Proposition par Yang (1994) d’utiliser un taux variable r :

Tirage de la valeur de r dans une distribution Gamma.

Taux unique (l)

S1S2S3S4S5S6….Si….Sl

S1S2S3S4S5S6….Si….Sl

Temps

S1S2S3S4S5S6….Si….Sl

S1S2S3S4S5S6….Si….Sl

Taux variable (r)

tvariable
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Distribution Gamma

Fonction de densité de pro-
babilité G(α, β) telle que :

g(r) =
rα−1e−r/β

Γ(α)βα

avec α le paramètre de forme
et β le paramètre d’échelle.

Détermination de α, avec
β = 1/α, de façon à ce que :

Moyenne : αβ = 1.
Variance : αβ2 = 1/α.
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Discrétisation

Nombre de classes K fixé par l’utilisateur (2 ≤ K ≤ 8).

Bornes zk (k = {1, 2, . . . ,K − 1}) correspondants aux quantiles à
k/K de la distribution Gamma correspondante :

Le taux d’un site tiré au hasard a une probabilité 1/K d’appartenir
à chacune d’entre elles.

Ajout éventuel d’une classe supplémentaire pour prendre en
compte les sites invariants :

Cas particulier où r = 0.
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Décorations d’un modèle

Indication des corrections éventuellement apportées à la version
standard des modèles.

Exemple avec le modèle LG :

Si estimation des fréquences à l’équilibre en utilisant les séquences
du jeu de données étudié : LG+F.
Si, en plus du précédent, correction par une loi Gamma avec K
classes : LG+F+ΓK ou LG+F+GK .
Si, en plus du précédent, utilisation des invariants : LG+F+ΓK+I
ou LG+F+GK+I.
Toutes les combinaisons des trois modifications ci-dessus sont
possibles.
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Approche classique

Échangeabilités estimées à partir d’un jeu de données établi par les
concepteurs du modèle.
Fréquences à l’équilibre provenant du modèle ou bien à partir des
séquences de l’alignement.
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Limites de l’approche classique

M A E I G R L I E F S A M V D F W 
M A E I G R L V E Y S A M V D F W 
M A D L G K L I D Y S A L V D F W 
M S D I G K L V E F S P M V E F W 
M S E I G R L V E F T P M V E F W 
L S E L G R L V D F T A M V D F W 
L A E L G K L V E Y A P M I D F W 
L S D L G K L I D F S A M I N F W 

A R N D C Q E G H I L K M F P S T W Y V
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08

Fréquences à l’équilibre globales 
(peu adaptées)  
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Fréquences à l’équilibre site spécifiques 
(plus réalistes) 
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Modèles Hétérogénéité

Modèles de mélange

L’utilisation d’un jeu de valeurs πi unique n’est pas réaliste.

Il n’est cependant pas possible d’utiliser un jeu par site de
l’alignement :

Risques de surparamétrisation.

Développement du modèle CAT (Le et al., 2008) dans lequel il
existe des catégories de sites :

Fréquences à l’équilibre :

– Un jeu de valeurs de πi par catégorie.
– Cinq variantes à 20, 30, 40, 50 et 60 catégories.

Échangeabilités :

– Une valeur unique, à l’image du modèle F81 (CAT-Poissson).
– Valeurs provenant des modèles classiques (e.g., CAT-JTT).
– Valeurs estimées sur le jeu de données (CAT-GTR).
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Modèles Hétérogénéité

CAT-Poisson

catmodel 

K catégories de valeurs de πi 
(K = 20, 30, 40, 50, 60) 

Une échangeabilité α 

M A E I G R L I E F S A M V D F W  
M A E I G R L V E Y S A M V D F W 
M A D L G K L I D Y S A L V D F W 
M S D I G K L V E F S P M V E F W 
M S E I G R L V E F T P M V E F W 
L S E L G R L V D F T A M V D F W 
L A E L G K L V E Y A P M I D F W 
L S D L G K L I D F S A M I N F W 

… 
K 1 2 3 

A R N D C Q E G H I L K M F P S T W Y V
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W
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Q
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D

N

R

A
Equal
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Distances

Plan

1 Concepts généraux

2 Modèles

3 Distances

4 Maximum de vraisemblance

5 Tests

6 Approche bayésienne

7 Annexes
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Distances Introduction

Principe général

Alignement de séquences

Matrice de distances évolutives
entre paires de séquences

Mesures de distances
évolutives

Arbre

Calcul de l’arbre à
partir de la matrice

distances
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Distances Introduction

Notion de distance

En mathématiques, une distance (ou métrique) sur un ensemble E
est une fonction d : E × E 7→ R+.

Cette fonction doit satisfaire à trois conditions, ceci ∀i , j , k ∈ E :

Symétrie – la distance entre deux points est la même, quelle que soit
la direction considérée (dij = dji).
Séparation – si la distance entre deux points est égale à zéro, alors
ces deux points sont confondus (dij = 0⇔ i = j ).
Inégalité triangulaire – le chemin direct entre deux points est le plus
court (dik ≤ dij + djk ) :

triangle

j

i
k

dij djk

dik
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Distances Introduction

Distance arborée

Dans un arbre, la distance δij entre deux UTO i et j est donnée
par la somme des longueurs de branches les séparant :

On parle de distance arborée ou patristique :

– Doit vérifier, en plus des trois conditions standard, la condition des
quatre points (δij + δkl ≤ max(δik + δjl , δil + δjk )).

Objectif des différentes méthodes de distances :

Faire que les valeurs δij correspondent le plus fidèlement possible
aux valeurs de dij présentes dans la matrice de départ.

Matrice D = (dij)

dAB

A B C

B

C

D

dAC

dAD dBD dCD

dBC

obj-dist

Arbre

A C

B D

b1

b2 b3

b4

b5

Matrice ! = (!ij)

!AB

A B C

B

C

D

!AC

!AD !BD !CD

!BC
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Distances Introduction

Typologie

Méthodes nécessitant d’explorer l’ensemble des topologies
(optimisation d’un critère) :

Moindres carrés (Least Squares, LS) :
Mimum d’évolution (Minimum of Evolution, ME).

Méthodes construisant un arbre unique :

Classification ascendante hiérarchique au lien moyen (Unweighted
Pair-Group Method with Arithmetic means, UPGMA).
Neighbor Joining (NJ).
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Distances Moindres carrés

Principe général

Pour une topologie τ donnée, déterminer quelles sont les valeurs
des longueurs de branches minimisant :

Q =
∑

i<j

wij (dij − δij )2

avec wij les valeurs de pondération associées à chaque paire (i , j ) :

Pondération uniforme (wij = 1).
Inverse de la distance (wij = 1/dij ).
Inverse du carré de la distance (wij = 1/d2

ij ).

Effectuer ces calculs pour l’ensemble des topologies possibles :

Retenir celle pour laquelle Q est minimale.
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Distances Moindres carrés

Moindres carrés standard

Soit bk la longueur de la branche k de l’arbre à n UTO considéré
(1 ≤ k ≤ 2n − 3).

Soit xij ,k une variable indicatrice telle que :

xij ,k = 1 si la branche k se situe sur le chemin allant du taxon i au
taxon j .
xij ,k = 0 dans le cas contraire.

Dans ce cas, la valeur de la distance patristique entre i et j est
égale à δij =

∑
k xij ,k bk , et Q peut s’écrire comme :

Q =
∑

i<j

wij

(
dij −

2n−3∑

k=1

xij ,k bk

)2
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Distances Moindres carrés

Expression matricielle

Soient b, d, X et W tels que :

b = (b1, b2, . . . , bk ), le vecteur des longueurs de branches.
d = (d12, d13, . . . , dn−1n), le vecteur ordonné contenant l’ensemble
des distances.
X = (xij ,k ), la matrice des valeurs de xij ,k ordonnées de façon à ce
que chaque ligne de X corresponde aux lignes de d.
W = diag(w12,w13, . . . ,wn−1n), la matrice diagonale des
pondérations.

Dans ce cas, l’expression matricielle permettant de déterminer b
de façon à minimiser Q est :

b = (XTWX)−1XTWd

soit la solution standard du problème des moindres carrés.
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Distances Moindres carrés

Jeu de données exemple

Jeu de données de Brown et al. (1982) sur les séquences d’ADN
mitochondrial d’Hominöıdes.

Modèle de Kimura à deux paramètres pour le calcul de la matrice
de distances :

fm-1

Humain = H
Chimpanzé = C
Gorille = G
Orang-outan = O
Gibbon = B

H C G

G

O

B

O

C 0.092

0.106

0.177

0.207

0.111

0.193

0.218

0.188

0.218 0.219

0H

B

0

0

0

0

D = (dij)
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Distances Moindres carrés

Arbre obtenu

Pondération par l’inverse du carré de la distance.

Racinement par la séquence du Gibbon.

ls-tree 

Homme 

Chimpanzé 

Gorille 

Orang-outan 

Gibbon 

0.006 

0.051 

0.041 

0.056 

0.037 

0.124 

0.091 

0.01 
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Distances Moindres carrés

Scores des topologies

B = Gibbon, H = Homme, C = Chimpanzé, G = Gorille, O = Orang-outan 

H 

B 

C 
G 

O 3.16×10-3 

H 

C 

B 
G 

O 2.16×10-3 

H 

G 

B 
C 

O 2.48×10-3 

H 

O 

B 
C 

G 2.79×10-3 

B 

G 

H 
C 

O 2.83×10-3 

H 

B 

G 
C 

O 2.71×10-3 

H 

G 

C 
B 

O 3.61×10-5 

H 

O 

G 
B 

C 2.88×10-3 

C 

G 

H 
B 

O 1.36×10-4 

H 

B 

O 
C 

G 2.47×10-3 

H 

C 

O 
B 

G 2.02×10-3 

H 

G 

O 
B 

C 2.72×10-3 

H 

O 

C 
B 

G 3.14×10-3 

O 

G 

H 
B 

C 3.03×10-3 

H 

C 

G 
B 

O 3.59×10-5 

ls-brown 
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Distances Moindres carrés

Commentaires sur le résultat

La différence de scores entre la bonne topologie (retenue) et la
deuxième meilleure porte sur la septième décimale :

Quelle est la significativité de cette différence ?

L’utilisation de la pondération uniforme ou par l’inverse de la
distance ne permettent pas de retenir la topologie vraie.
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Distances Moindres carrés

Avantages et limitations

Méthode consistante.

Algorithme de complexité en O(n3) :

Inversion de XTWX.

Aussi efficace que le maximum de vraisemblance si les variables
suivent une distribution normale :

Nécessité d’avoir un grand nombre de sites dans l’alignement.

Peut donner des longueurs de branches négatives.

Problèmes de dérives numériques si la matrice est mal condition-
née (i.e., det(XTWX) ' 0) :

Utilisation de simplifications ne nécessitant pas d’effectuer une
inversion de matrice :

– Approximation de Fitch et Margoliash (1967).
– Simplification de Rzhetsky et Nei (1992).
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Distances Moindres carrés

Approximation de Fitch et Margoliash

Estimations moins précises que celles obtenues par les moindres
carrés proprement dits :

Différences observées souvent négligeables.

Construction en effectuant des groupements par triplets :
Correspondance exacte entre distance observée et la distance
patristique :

– Calcul simple des longueurs de branches.

Soit dAB , dAC et dBC les valeurs des distances entre trois groupes
A, B et C , dans ce cas, il est possible d’écrire que :





dAB = bA + bB
dAC = bA + bC
dBC = bB + bC

⇔





bA = (dAB + dAC − dBC )/2
bB = (dAB + dBC − dAC )/2
bC = (dAC + dBC − dAB )/2

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 109 / 270



Distances Moindres carrés

Algorithme I

Pour chacune des n(n − 1)/2 paires (i , j ) possibles, faire :

1 A← i , B ← j et regroupement de toutes les autres UTO dans C .

2 Calcul des distances dAC et dBC telles que :

dAC =
1

nC

∑

j∈C
dAj et dBC =

1

nC

∑

j∈C
dBj

avec nC = card(C ) le nombre d’éléments présents dans C .
3 Calcul des trois longueurs de branches au moyen de la formule

précédente :

Soustraction des longueurs déjà calculées le cas échéant.
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Distances Moindres carrés

Algorithme II

4 Regrouper A et B dans un même ensemble Z = A ∪ B puis
calculer, pour chaque j ∈ C :

dZj =
1

nZ

∑

i∈Z
dij

avec nZ = card(Z ), le nombre d’éléments présents dans Z . Les
valeurs obtenues remplacent celles correspondant à A et à B .

5 Si dim(D) ≥ 3, alors :

Réinitialiser A et B avec les UTO ou les groupes d’UTO pour
lesquels dij est minimale et retourner en 2.

Sinon, aller en 6.

6 Calcul de la valeur de Q .
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Distances Moindres carrés

Exemple d’utilisation I

Initialisation en prenant la paire (i , j ) telle que dij soit minimale :

A← {H}, B ← {C} et C ← {G,O,B}

Calcul de dAB , dAC et dBC :





dAB = 0.092
dAC = (0.106 + 0.177 + 0.207)/3 = 0.163
dBC = (0.111 + 0.193 + 0.218)/3 = 0.174

Calcul des longueurs de branches correspondantes :





bA = (0.092 + 0.163− 0.174)/2 = 0.041
bB = (0.092 + 0.174− 0.163)/2 = 0.052
bC = (0.163 + 0.174− 0.092)/2 = 0.123
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Distances Moindres carrés

Exemple d’utilisation II

Calcul des nouvelles distances, avec Z = A ∪ B = {H,C} :





dZG = (0.106 + 0.111)/2 = 0.108
dZO = (0.177 + 0.193)/2 = 0.185
dZB = (0.207 + 0.218)/2 = 0.212

Nouvelles valeurs de D et arbre obtenu :

fm-2

H,C G O

G

O

B

B

H,C 0

0

0

0

0.108

0.185

0.212

0.188

0.218 0.219

H

C

G,O,B0.025

D = (dij)
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Distances Moindres carrés

Exemple d’utilisation III

Du fait que dim(D) ≥ 3, on relance une itération avec :

A← {H,C}, B ← {G} et C ← {O,B}

Calcul de dAB , dAC et dBC :





dAB = 0.108
dAC = (0.185 + 0.212)/2 = 0.199
dBC = (0.188 + 0.218)/2 = 0.203

Calcul des longueurs de branches correspondantes :





bA = (0.108 + 0.199− 0.203)/2 = 0.052
bB = (0.108 + 0.203− 0.199)/2 = 0.056
bC = (0.199 + 0.203− 0.108)/2 = 0.147
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Distances Moindres carrés

Exemple d’utilisation IV

Dans le cas de bA, prise en compte des longueurs de branches
existantes conduisant aux éléments de A :

La longueur de la branche interne à ajouter est égale à
0.052− (0.0405 + 0.0515)/2 = 0.006.

Calcul des nouvelles distances, avec Z = A ∪ B = {{H,C},G} :
{

dZO = (0.185 + 0.188)/2 = 0.186
dZB = (0.212 + 0.218)/2 = 0.215

Nouvelles valeurs de D et arbre obtenus :

fm-3

H,C,G O B

H,C,G

O

B

0

0

0

0.186

0.215 0.219

H

C

O,B

G

0.025

D = (dij)
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Distances Moindres carrés

Exemple d’utilisation V

Dernière itération avec :

A← {H,C,G}, B ← {O} et C ← {B}

Calcul de dAB , dAC et dBC :





dAB = 0.186
dAC = 0.215
dBC = 0.219

Calcul des longueurs de branches correspondantes :





bA = (0.186 + 0.215− 0.219)/2 = 0.091
bB = (0.186 + 0.219− 0.215)/2 = 0.095
bC = (0.215 + 0.219− 0.186)/2 = 0.124
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Distances Moindres carrés

Exemple d’utilisation VI

Dans le cas de bA prise en compte des longueurs de branches
existantes conduisant aux éléments de A :

La longueur de la branche interne à ajouter est égale à
0.091− (0.0405 + 0.006 + 0.0515 + 0.006 + 0.056)/3 = 0.038.

Matrice des distances patristiques et arbre obtenus :

fm-4

H

C

B

G

O

H C G

G

O

B

O

C 0.092

0.103

0.179

0.208

0.113

0.191

0.220

0.189

0.218 0.219

0H

B

0

0

0

0

D = (dij)

0.025

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 117 / 270



Distances Moindres carrés

Avantages et limitations

Calcul simultané de la topologie et des longueurs de branches.

Pas d’exploration de l’ensemble des topologies :
Seulement n(n − 1)/2 itérations (i.e., le nombre de paires possibles
entre deux UTO) :

– Complexité globale de l’algorithme en O(n5).

Pas de garantie que l’arbre obtenu soit effectivement celui des
moindres carrés.
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Distances Minimum d’évolution

Minimum d’évolution

Méthode très comparable aux moindres carrés (mêmes avantages
et mêmes inconvénients).

Pour une topologie τ donnée :

Détermination des longueurs de branches par les moindres carrés.
Calcul de la longueur de l’arbre S , telle que :

S =

2n−3∑

k=1

bk

Effectuer ces calculs pour l’ensemble des topologies possibles :

Retenir celle pour laquelle S est minimale.
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Distances Minimum d’évolution

Arbre obtenu

Mêmes paramamètres que pour les moindres carrés.

Même topologie retenue, et donc mêmes longueurs de branches.

Racinement par la séquence du Gibbon.

ls-tree 

Homme 

Chimpanzé 

Gorille 

Orang-outan 

Gibbon 

0.006 

0.051 

0.041 

0.056 

0.037 

0.124 

0.091 

0.01 
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Distances Minimum d’évolution

Scores des topologies

B = Gibbon, H = Homme, C = Chimpanzé, G = Gorille, O = Orang-outan 

H 

B 

C 
G 

O 0.434 

H 

C 

B 
G 

O 0.427 

H 

G 

B 
C 

O 0.434 

H 

O 

B 
C 

G 0.435 

B 

G 

H 
C 

O 0.438 

H 

B 

G 
C 

O 0.440 

H 

G 

C 
B 

O 0.415 

H 

O 

G 
B 

C 0.438 

C 

G 

H 
B 

O 0.412 

H 

B 

O 
C 

G 0.432 

H 

C 

O 
B 

G 0.429 

H 

G 

O 
B 

C 0.434 

H 

O 

C 
B 

G 0.435 

O 

G 

H 
B 

C 0.436 

H 

C 

G 
B 

O 0.411 

me-brown 
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Distances UPGMA

Classification ascendante hiérarchique

Méthode la plus simple du point de vue algorithmique.

Tire son nom du fait que la construction de l’arbre démarre à
partir des feuilles.

Une des seules à produire des arbres enracinés.

Les distances patristiques générées par cette méthode sont dites
ultramétriques :

Doivent satisfaire la condition dite d’inégalité ultratriangulaire
(δik ≤ max(δij , δjk ) ∀i , j , k).
Les longueurs des chemins allant de la racine à n’importe quelle
feuille sont égales.
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Distances UPGMA

Algorithme I

Tant que dim(D) > 1 :

1 Identifier les deux ensembles d’UTO Ci et Cj pour lesquels dij est
minimale.

2 Créer l’ensemble Cu tel que Cu ← Ci ∪ Cj , avec u une UTH
nouvellement créée.

3 Connecter Ci et Cj à u et attribuer aux deux branches reliant u à
Ci et Cj la longueur dij /2 :

Tout comme dans le cas de Fitch et Margoliash, soustraction
éventuelle des longueurs déjà calculées pour les branches internes.
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Distances UPGMA

Algorithme II

5 Calculer la distance entre Cu et chacun des k autres groupes
présents dans D (exceptés Ci et Cj ) au moyen de :

duk =
ni

ni + nj
dik +

nj

ni + nj
djk

avec ni = card(Ci) et nj = card(Cj ).

6 Supprimer de D les lignes et colonnes correspondant à Ci et Cj et
ajouter la ligne et la colonne correspondant à Cu avec les valeurs
de duk .
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Distances UPGMA

Exemple d’utilisation I

Initialisation avec Ci ← {H} et Cj ← {C}.
Cu ← Ci ∪ Cj = {H,C}
Calcul des longueurs de branches conduisant à u :

bui = buj = 0.092/2 = 0.046

Calcul des distances entre Cu et les trois autres groupes présents
dans D (i.e., {G}, {O} et {B}) :





duG = 0.106/2 + 0.111/2 = 0.108
duO = 0.177/2 + 0.193/2 = 0.185
duB = 0.207/2 + 0.218/2 = 0.213
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Distances UPGMA

Exemple d’utilisation II

Nouvelles valeurs de D et arbre obtenu :

upgma-1

H,C G O

G

O

B

B

H,C 0

0

0

0

0.108

0.185

0.213

0.188

0.218 0.219
H C

u

0.025

D = (dij)

Démarrage de la 2ème itération avec Ci ← {H,C} et Cj ← {G}.
Cu ← Ci ∪ Cj = {H,C,G}
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Distances UPGMA

Exemple d’utilisation III

Calcul des longueurs de branches conduisant à u :

bui = buj = 0.108/2 = 0.054

Dans le cas de i , il existe déjà une branche de longueur 0.046
reliant {H} à son ancêtre commun avec {C} :

La longueur de la branche interne à ajouter est égale à
0.054− 0.046 = 0.008.

Calcul des distances entre Cu et les deux autres groupes présents
dans D (i.e., {O} et {B}) :

{
duO = 2/3× 0.185 + 1/3× 0.188 = 0.186
duB = 2/3× 0.213 + 1/3× 0.218 = 0.215

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 127 / 270



Distances UPGMA

Exemple d’utilisation IV

Nouvelles valeurs de D et arbre obtenu :

upgma-2

H,C,G O B

H,C,G

O

B

0

0

0

0.186

0.215 0.219 H C G

u

0.025

D = (dij)

Démarrage de la 3ème itération avec Ci ← {H,C,G} et Cj ← {O}.
Cu ← Ci ∪ Cj = {H,C,G,O}
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Distances UPGMA

Exemple d’utilisation V

Calcul des longueurs de branches conduisant à u :

bui = buj = 0.186/2 = 0.093

Dans le cas de i , prise en compte des longueurs de branches
conduisant aux feuilles :

La longueur de la branche interne à ajouter est égale à
0.093− 0.046− 0.008 = 0.039.

Calcul des distances entre Cu et le dernier groupe présent dans D
(i.e., {B}) :

duB = 3/4× 0.215 + 1/4× 0.219 = 0.216
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Distances UPGMA

Exemple d’utilisation VI

Nouvelles valeurs de D et arbre obtenu :

upgma-3

H,C,G,O B

H,C,G,O

B

0

00.216

H C G O

u0.025

D = (dij)

Démarrage de la dernière itération avec Ci ← {H,C,G,O} et
Cj ← {B}.
Cu ← Ci ∪ Cj = {H,C,G,O,B}
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Distances UPGMA

Exemple d’utilisation VII

Calcul des longueurs de branches conduisant à u :

bui = buj = 0.216/2 = 0.108

Dans le cas de i , prise en compte des longueurs de branches
conduisant aux feuilles :

La longueur de la branche interne à ajouter est égale à
0.108− 0.046− 0.008− 0.039 = 0.015.

Arbre raciné final :

upgma-4

H C G O

0.025

B

u
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Distances UPGMA

Avantages et limitations

Complexité en O(n3), ce qui en fait une méthode très rapide,
utilisable même avec des milliers d’UTO.

Valide uniquement dans le cas où les vitesses d’évolution sont les
mêmes dans toutes les lignées :

Hypothèse de l’horloge moléculaire.
Utilisation limitée à des séquences proches du point de vue évolutif.

N’est plus employée en phylogénie.

Est encore utilisée pour des problèmes de classification nécessitant
de travailler sur des matrices de distances de grande taille.
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Distances Neighbor Joining

Algorithme I

1 Initialisation à partir d’une topologie en étoile telle que :
Branches biv reliées à un nœud central v .
Expression des valeurs de dij à partir des longueurs de branches :

dij = biv + bjv (i 6= j )

Longueur de l’arbre déduite :

S0 =

n∑

i=1

biv =
1

n − 1

∑

i<j

dij

b1v

b2v
b3v

b4v
b5v

b6v

1

2 3

4

56

v

nj-1

d24d14

1 2 3 4

3

4

5

6

d15

d16

d13

d35

d46d26 d36

d25

d12

d34

d23

d45

5

2

d56
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Distances Neighbor Joining

Algorithme II

2 Identification de la paire (i , j ) qui, une fois agglomérée, minimise
la longueur de l’arbre Sij :

Création d’un nœud u connectant i et j .
Création d’une branche interne buv connectant u et v .
Dans ce cas, expression de Sij comme :

Sij = biu + bju + buv + Sk

= dij + buv + Sk

avec Sk la longueur de l’arbre en étoile contenant les n − 2 UTO
restantes.

b1v

b2v
b3v

b4v
b5v

b6v

1

2 3

4

56

v
b1u

b2u b3v

b4v

b5v
b6v

buv1

2 3

4

56

u v

nj-2
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Distances Neighbor Joining

Algorithme III

3 Sachant que :

Sk =
∑

k 6=i ,j

bkv =
1

n − 3

∑

k 6=i ,j ;k<l

dkl

et que :

buv =
1

2(n − 2)


∑

k 6=i ,j

(dik + djk )− (n − 2)dij − 2Sk




on déduit l’expression de Sij :

Sij =
1

2
dij +

1

2(n − 2)

∑

k 6=i ,j

(dik + djk ) +
1

n − 2

∑

k 6=i ,j ;k<l

dkl
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Distances Neighbor Joining

Algorithme IV

4 Une fois la paire (i , j ) identifiée, recalcul des longueurs de
branches biu et bju au moyen de Fitch-Margoliash :

biu =
1

2


dij +

1

n − 2

∑

k 6=i ,j

dik −
1

n − 2

∑

k 6=i ,j

djk




et :

bju =
1

2


dij +

1

n − 2

∑

k 6=i ,j

djk −
1

n − 2

∑

k 6=i ,j

dik




5 Recalcul de la matrice D en remplaçant les lignes correspondant à
i et j par la paire (i , j ), telle que :

dij ,k =
1

2
(dik + djk − dij )
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Distances Neighbor Joining

Exemple d’utilisation I

Initialisation à partir d’une topologie en étoile de longueur
S0 = 0.432.

Calcul de l’ensemble des valeurs de Sij possibles :

Identification de la paire (O,B) comme étant celle minimisant Sij :

njex-1

Sij

H C G

G

O

B

O

C 0.423

0.426

0.437

0.413

0.428

0.439

0.439

0.441

0.439 0.438

H

C

GO

B
u
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Distances Neighbor Joining

Exemple d’utilisation II

Calcul des longueurs de branches conduisant à u et calcul de la
longueur de la branche interne buv :

bOu = 0.0955, bBu = 0.1238 et buv = 0.0392

Nouvelles valeurs de D et arbre obtenu :

njex-2

H C G

C

G

O,B

O,B

H 0

0

0

0

0.092

0.106

0.082

0.111

0.096 0.094

D = (dij)

0.025

O

B

H

C

G

u v
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Distances Neighbor Joining

Exemple d’utilisation III

Calcul de l’ensemble des nouvelles valeurs de Sij possibles :

Identification de la paire (H,C) comme étant celle minimisant Sij :

H C G

C

G

O,B

0.191

0.193

0.191

0.195

0.193 0.195

0.025

O

B

H

C

G

njex-3

Sij

Calcul des longueurs de branches conduisant à u et calcul de la
longueur de la branche interne buv :

bHu = 0.0413, bCu = 0.0505 et buv = 0.006
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Distances Neighbor Joining

Exemple d’utilisation IV

Nouvelles valeurs de D et arbre obtenu :

H,C G O,B

H,C

G

O,B

0

0

0

0.062

0.043 0.094

0.025

njex-4

O

B

H
C

G

D = (dij) u
v

Calcul de la longueur de la branche conduisant à {G} en utilisant
Fitch-Margoliash, soit :

(0.0623 + 0.0936− 0.0432)/2 = 0.0564
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Distances Neighbor Joining

Avantages et limitations

Méthode consistante.

À chaque itération, les longueurs de branches calculées sont une
estimation de celles obtenues aux moindres carrés.

Rapide, même avec des milliers d’UTO :

Implémentation originale par Saitou et Nei (1987) avec une
complexité en O(n5).
Amélioration de Studier et Keppler (1988) réduisant la complexité
en O(n3).
Dernière amélioration par Gascuel (1997) minimisant la variance de
D à chaque recalcul de la matrice.

L’arbre obtenu est une bonne approximation de l’arbre du
minimum d’évolution.
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Vraisemblance

Plan

1 Concepts généraux

2 Modèles

3 Distances

4 Maximum de vraisemblance

5 Tests

6 Approche bayésienne

7 Annexes
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Vraisemblance Introduction

Maximum de vraisemblance

Bases mathématiques développées dans les années 1920 par R.A.
Fisher :

Génération d’estimateurs applicables à des cas plus complexes que
ceux traités jusqu’alors en statistiques.

Première application à la phylogénie moléculaire par Neyman
(1971).

Élargissement par Kashyap et Subas (1974) puis par Felsenstein
(1981).

Permet d’inférer des états de caractères ancestraux.

Nécessite en théorie l’exploration de l’ensemble des topologies
possibles.
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Vraisemblance Introduction

Distribution discrète

La fonction de vraisemblance d’une hypothèse H est définie par :

L(H ) = P(D |H )

soit la probabilité d’observer les données D sous l’hypothèse H .

Maintenant, si D se décompose en ` observations indépendantes
D (i) (1 ≤ i ≤ `), alors :

L(H ) = P(D (1)|H )× P(D (2)|H )× · · · × P(D (`)|H )

=
∏̀

i=1

L(i)(H ) =
∏̀

i=1

P(D (i)|H )

Soit, sous forme logarithmique :

ln L(H ) =
∑̀

i=1

ln L(i)(H ) =
∑̀

i=1

lnP(D (i)|H )
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Vraisemblance Introduction

Distribution continue

Expression sous la forme d’une fonction de densité.

Soit x = (x1, x2, x3, . . . , x`) un échantillon provenant d’une
distribution de paramètres θ = (θ1, θ2, . . . , θk ) inconnus.

Dans ce cas, la fonction de vraisemblance associée est telle que :

L(θ) = f (x|θ) = f (x1|θ)× f (x2|θ)× · · · × f (x`|θ)

=
∏̀

i=1

f (xi |θ)

Soit, sous forme logarithmique :

ln L(θ) =
∑̀

i=1

ln f (xi |θ)
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Vraisemblance Introduction

Caractéristiques

Maximiser la vraisemblance consiste à :

Trouver un ensemble d’estimations des paramètres θ̂ de façon à ce
que que f (x|θ̂) soit maximisée.
La fonction de vraisemblance f (x|θ) n’est pas une fonction de
densité de probabilité et, la plupart du temps :

∫
f (x|θ)dθ 6= 1

Les estimations au maximum de vraisemblance sont :

Non biaisées (E(θ̂) = θ).
Consistantes (l’estimation converge vers la vraie valeur quand
`→∞).
De variance minimale.
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Vraisemblance Introduction

Notations pour la phylogénie

En phylogénie moléculaire, les données sont représentées par un
ensemble de séquences alignées S :

Chaque site dans l’alignement est désignée par le terme S (i)

(1 ≤ i ≤ `).
Par ailleurs, le vecteur des paramètres est θ = (τ, t,ϑ, α), avec :

τ la topologie de l’arbre.
t le vecteur des longueurs de branches.
ϑ le vecteur des paramètres du modèle d’évolution utilisé.
α le paramètre de forme de la loi Gamma, le cas échéant.

On en déduit l’expression de la vraisemblance de S , étant donné θ :

L(θ) = P(S |θ) =
∏̀

i=1

P
(

S (i)|τ, t,ϑ, α
)
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Vraisemblance Estimation d’une distance

Modèle de Jukes et Cantor

Le calcul de la divergence observée entre deux séquences au moyen
du modèle de Jukes et Cantor est donnée par (cf. Diapo. 56) :

p = 3pij (t) =
3

4
− 3

4
e−4t/3 (i 6= j )

Soit ` le nombre de sites dans l’alignement et n le nombre de sites
pour lesquels il y a une substitution entre les deux séquences :

Dans ce cas, la fonction de vraisemblance pour t est donnée par la
loi binomiale B(`, p) telle que :

L(t) = f (p|t) =

(
`

n

)
pn(1− p)`−n

=
`!

n!(`− n)!

(
3

4
− 3

4
e−4t/3

)n (
1

4
+

3

4
e−4t/3

)`−n
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Vraisemblance Estimation d’une distance

Simplification des calculs

Le coefficient binomial
(
`
n

)
étant une constante, il peut être omis

pour effectuer les calculs :

La vraisemblance obtenue change, mais le maximum sera toujours
obtenu pour la même valeur de t .

Passage en logarithmes pour éviter les dérives numériques du fait
que les valeurs attendues sont très faibles :

ln L(t) ∝ n ln

(
3

4
− 3

4
e−4t/3

)
+ (`− n) ln

(
1

4
+

3

4
e−4t/3

)

Variation des valeurs de d sur l’intervalle [0.001, 2], réaliste du
point de vue évolutif.
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Vraisemblance Estimation d’une distance

Application numérique

Paire Homme-Gorille du jeu
de données de Brown et al.
(1982) :

` = 896
n = 89

Calcul direct de la distance :

t ' 0.1066

Estimation au maximum de
vraisemblance :

max[ln(L(t)] ' −289.95
soit t ' 0.1066 0.001 0.005 0.050 0.500-7

00
-6
00

-5
00

-4
00

-3
00

Distance évolutive (t )

ln
 L
(t
)
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Vraisemblance Estimation d’une distance

Modèles à plus d’un paramètre

Utilisation d’une loi multinomiale M(`, fij ) :

L(t) =

(
`

nij

)∏

i ,j

[fij (t)]nij

avec nij le nombre de sites (i , j ) et fij (t) la probabilité d’avoir au
temps t un site (i , j ) dans l’alignement.

Sous l’hypothèse de réversibilité du processus markovien, on a :

fij (t) = πipij (t)

Simplifications possibles du fait que plusieurs valeurs de fij (t)
peuvent être associées à une même probabilité de transition.
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Vraisemblance Vraisemblance à un site

Arbre à quatre UTO

Soit un arbre à quatre UTO
de topologie τ et dont les
longueurs de branches sont
fixées.

U1, U2, U3 et U4 représentent
les feuilles de l’arbre.

V1, V2 et V3 représentent les
nœuds internes.

Les états de caractères cor-
respondants sont dénotés par
u1, u2, u3, u4, v1, v2,
v3 ∈ {A,C,T,G}.

ml-calcul

u2

u1

t1
t2

t3
t4

u3

t5 t6v1

u4

V1

v2
v3

V2
V3

U1

U2 U3

U4

t

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 152 / 270



Vraisemblance Vraisemblance à un site

Fonction de vraisemblance

La vraisemblance à un site S (i) de l’alignement est telle que :

L(i)(θ) = P
(

S (i)|τ, t,ϑ
)

= P(u1, u2, u3, u4, v1, v2, v3|τ, t,ϑ)

Or les états ancestraux v1, v2 et v3 sont inconnus :

Nécessité de prendre en compte tous les scénarios évolutifs possibles
à chaque nœud interne de l’arbre.
L’expression de la vraisemblance s’écrit alors comme :

L(i)(θ) =
∑

v1

∑

v2

∑

v3

P(v1)P(v2|v1, t5)P(v3|v1, t6)P(u1|v2, t1)

× P(u2|v2, t2)P(u3|v3, t3)P(u4|v3, t4)
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Vraisemblance Vraisemblance à un site

Calcul de la vraisemblance

La détermination de la vraisemblance totale nécessite le calcul de
L(i)(θ) pour chacun des ` sites.

Le calcul des probabilités conditionnelles P(x |y , t) se fait par
l’intermédiaire des modèles probabilistes vus précédemment.

Sous l’hypothèse que le processus markovien modélisant l’évolution
des séquences est à l’état stationnaire, on a :

P(v1) = πv1

la valeur de πv1 étant estimée par la fréquence de l’état de ca-
ractère v1 dans S .
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Vraisemblance Exemple de calcul

Exemple de calcul

Données :

Site de l’alignement tel
que : u1 = C, u2 = T,
u3 = A, u4 = A.

Vecteur des paramètres θ :

Topologie τ racinée en V1.
Vecteur t des longueurs de
branches tel que : t1 = 0.5,
t2 = 0.4, t3 = t6 = 0.3,
t4 = t5 = 0.2
Modèle de Jukes et Cantor
à un paramètre :

– Fréquences à l’équilibre
πi = 1/4 ∀i .

ml-exemple

u2 = T

u1 = C

t1 = 0.5

u3 = A

v1

u4 = A

V1

v2
v3

V2
V3

U1

U2 U3

U4

t t2 = 0.4

t6 = 0.3

t4 = 0.2

t5 = 0.2

t3 = 0.3
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Vraisemblance Exemple de calcul

Probabilités de substitution

Calcul des probabilités de substitution i → j associées à une
branche de longueur t au moyen de la relation :

pij (t) =
1

4
− 1

4
e−4t/3 (i 6= j )

De la même façon, les probabilités de conservation sont :

pii(t) = 1− 3pij (t) =
1

4
+

3

4
e−4t/3

Exemples :

pAT(t1) = pAT(0.5) = 0.12
pTT(t2) = pTT(0.4) = 0.69
pGT(t3) = pGT(t6) = pGT(0.3) = 0.08
pGA(t4) = pGA(t5) = pGA(0.2) = 0.06
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Vraisemblance Exemple de calcul

Matrices de substitution

On en déduit les matrices de substitution P(t) associées aux
différentes longueurs de branches :

Valeurs utilisées pour calculer les probabilités conditionnelles
P(x |y , t) :

P(0.5) =


0.64 0.12 0.12 0.12
0.12 0.64 0.12 0.12
0.12 0.12 0.64 0.12
0.12 0.12 0.12 0.64

 P(0.4) =


0.69 0.10 0.10 0.10
0.10 0.69 0.10 0.10
0.10 0.10 0.69 0.10
0.10 0.10 0.10 0.69



P(0.3) =


0.75 0.08 0.08 0.08
0.08 0.75 0.08 0.08
0.08 0.08 0.75 0.08
0.08 0.08 0.08 0.75

 P(0.2) =


0.82 0.06 0.06 0.06
0.06 0.82 0.06 0.06
0.06 0.06 0.82 0.06
0.06 0.06 0.06 0.82


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Vraisemblance Exemple de calcul

Calcul d’une valeur

On se place dans le cas où v1 = v2 = v3 = A :

Calcul de :

P(v1 = A)P(v2 = A|v1 = A, t5 = 0.2)P(v3 = A|v1 = A, t6 = 0.3)

× P(u1 = C|v2 = A, t1 = 0.5)P(u2 = T|v2 = A, t2 = 0.4)

× P(u3 = A|v3 = A, t3 = 0.3)P(u4 = A|v3 = A, t4 = 0.2)

Soit, avec une écriture simplifiée :

P(A)P(A|A, 0.2)P(A|A, 0.3)P(C|A, 0.5)P(T|A, 0.4)

× P(A|A, 0.3)P(A|A, 0.2)

= πApAA(0.2)pAA(0.3)pCA(0.5)pTA(0.4)pAA(0.3)pAA(0.2)

= 0.25× 0.82× 0.75× 0.12× 0.10× 0.75× 0.82

= 0.001134675
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Vraisemblance Exemple de calcul

Calcul de toutes les combinaisons (I)

v1 v2 v3 Vraisemblance v1 v2 v3 Vraisemblance
A A A 1.134675× 10−3 C A A 8.856× 10−6

A A C 9.4464× 10−7 C A C 6.48× 10−7

A A T 9.4464× 10−7 C A T 6.912× 10−8

A A G 9.4464× 10−7 C A G 6.912× 10−8

A C A 4.428× 10−4 C C A 6.45504× 10−4

A C C 3.6864× 10−7 C C C 4.7232× 10−5

A C T 3.6864× 10−7 C C T 5.03808× 10−6

A C G 3.6864× 10−7 C C G 5.03808× 10−6

A T A 5.728725× 10−4 C T A 6.11064× 10−5

A T C 4.76928× 10−7 C T C 4.4712× 10−6

A T T 4.76928× 10−7 C T T 4.76928× 10−7

A T G 4.76928× 10−7 C T G 4.76928× 10−7

A G A 8.3025× 10−5 C G A 8.856× 10−6

A G C 6.912× 10−8 C G C 6.48× 10−7

A G T 6.912× 10−8 C G T 6.912× 10−8

A G G 6.912× 10−8 C G G 6.912× 10−8
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Vraisemblance Exemple de calcul

Calcul de toutes les combinaisons (II)

v1 v2 v3 Vraisemblance v1 v2 v3 Vraisemblance
T A A 8.856× 10−6 G A A 8.856× 10−6

T A C 6.912× 10−8 G A C 6.912× 10−8

T A T 6.48× 10−7 G A T 6.912× 10−8

T A G 6.912× 10−8 G A G 6.48× 10−7

T C A 4.7232× 10−5 G C A 4.7232× 10−5

T C C 3.6864× 10−7 G C C 3.6864× 10−7

T C T 3.456× 10−6 G C T 3.6864× 10−7

T C G 3.6864× 10−7 G C G 3.456× 10−6

T T A 8.351208× 10−4 G T A 6.11064× 10−5

T T C 6.518016× 10−6 G T C 4.76928× 10−7

T T T 6.11064× 10−5 G T T 4.76928× 10−7

T T G 6.518016× 10−6 G T G 4.4712× 10−6

T G A 8.856× 10−6 G G A 1.21032× 10−4

T G C 6.912× 10−8 G G C 9.4464× 10−7

T G T 6.48× 10−7 G G T 9.4464× 10−7

T G G 6.912× 10−8 G G G 8.856× 10−6

Sommation de tous les termes : L(i)(θ) = 0.004267
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Vraisemblance L’élagage de Felsenstein

Ensemble des scénarios possibles

ml-scenario

……

u2

u1

t1
t2 t3

t4

u3

t5 t6

A
C

A

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

t1
t2 t3

t4

u3

t5 t6

A
A

A

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

t1
t2 t3

t4

u3

t5 t6

A
A

T

U1

U2 U3 u4

U4

V1
V2

V3

u2

u1

t1
t2 t3

t4

u3

t5 t6

A
T

A

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

t1
t2 t3

t4

u3

t5 t6

A
C

T

U1

U2 U3 u4

U4

V1
V2

V3

u2

u1

t1
t2 t3

t4

u3

t5 t6

A
G

A

U1

U2 U3 u4

U4

V1

V2
V3

u2

u1

t1
t2 t3

t4

u3

t5 t6

G
G

G

U1

U2 U3 u4

U4

V1

V2
V3

43 = 64 scénarios pour chaque site S(i)
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Vraisemblance L’élagage de Felsenstein

Nombre de termes de la fonction

Le nombre de termes de la fonction de vraisemblance crôıt de
façon exponentielle avec le nombre d’UTO :

Complexité en O(`cn−1) pour le calcul de L(θ) :
– Avec c = 4 (séquences nucléotidiques) ou c = 20 (séquences

protéiques).

Expression rapidement incalculable.

Simplifications possibles, du fait que les mêmes valeurs sont
recalculées de nombreuses fois :

ml-recalculs

u2
u1

t1
t2 t3

t4

u3

t5 t6

A
A

A

U1

U2 U3 u4

U4

V1
V2

V3

u2
u1

t1
t2 t3

t4

u3

t5 t6

A
T

A

U1

U2 U3 u4

U4

V1
V2

V3

u1

t1

U1 u2

t2 t3
t4

u3

t5 t6

A
C

A

U2 U3 u4

U4

V1
V2

V3

u1

t1

U1 u2

t2 t3
t4

u3

t5 t6

A
G

A

U2 U3 u4

U4

V1
V2

V3
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Vraisemblance L’élagage de Felsenstein

Algorithme d’élagage

Felsenstein (1981) a proposé une méthode dite d’élagage, per-
mettant de réduire très fortement la complexité des calculs :

Modification de la fonction de vraisemblance en décalant les
sommations le plus à droite possible :

L(i)(θ) =
∑

v1

P(v1)

[∑

v2

P(v2|v1, t5)P(u1|v2, t1)P(u2|v2, t2)

]

×
[∑

v3

P(v3|v1, t6)P(u3|v3, t3)P(u4|v3, t4)

]

Approche fondée sur le calcul de vraisemblances conditionnelles (ou

partielles) L
(i)
K (k) à chaque nœud K de l’arbre :

– Probabilités d’observer les données aux feuilles du sous-arbre raciné
par K , sachant l’état de caractère k à ce nœud.

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 163 / 270



Vraisemblance L’élagage de Felsenstein

Vraisemblances partielles d’une feuille

Dans le cas de séquences nucléotidiques, si K correspond à une
feuille quelconque de l’arbre, alors :

L
(i)
K (k) = 1 pour l’un des quatre états de caractère et L

(i)
K (k) = 0

pour les trois autres (k ∈ {A,C,T,G}).
Par exemple, si le nucléotide C est observé à la feuille U1, alors le
vecteur des vraisemblances partielles correspondant est :

L
(i)
U1

=
(

L
(i)
U1

(A),L
(i)
U1

(C),L
(i)
U1

(T),L
(i)
U1

(G)
)

= (0, 1, 0, 0)

Cette représentation permet de prendre en compte les ambigüıtés
pouvant exister à certaines positions :

– Pour une pyrimidine, le vecteur sera égal à (0, 1, 1, 0).
– Pour un gap, il sera égal à (1, 1, 1, 1).
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Vraisemblance L’élagage de Felsenstein

Vraisemblance partielle d’un nœud

Si K correspond à un nœud, alors :

L
(i)
K (k) =

∑

l

P(l |k , tl )L(i)
L (l)×

∑

m

P(m|k , tm)L
(i)
M (m)

avec L et M les deux nœuds fils de K , tl la longueur de la branche
reliant K à L et tm la longueur de la branche reliant K à M .

En partant des feuilles, le calcul est réitéré jusqu’à atteindre la
racine V1 de l’arbre.

À la racine, le vecteur des vraisemblances partielles obtenu permet
de déterminer :

L(i)(θ) =
∑

v1

πv1L
(i)
V1

(v1)
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Vraisemblance L’élagage de Felsenstein

Calcul à un nœud

ml-cond

Calcul de la vraisemblance partielle LK(A)

tl tm

k

L M

A TC G

l A TC G

LL(G)LL(T)LL(C)LL(A)

mA TC G

LM(G)LM(T)LM(C)LM(A)

LK(G)LK(T)LK(C)LK(A)

K

LL LM

LK
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Vraisemblance L’élagage de Felsenstein

Complexité de l’algorithme

Aucune influence de la position de la racine sous l’hypothèse de
réversibilité du processus markovien.

Pour un site, c vraisemblances partielles sont déterminées pour
chacun des n − 1 nœuds de la topologie racinée :

Chacun de ces calculs implique le produit de deux termes, chaque
terme étant le résultat d’une somme de c produits :
Complexité en O(`nc2) pour le calcul de L(θ) :

– Avec c = 4 (séquences nucléotidiques) ou c = 20 (séquences
protéiques).

Gains de temps possibles au moyen de certaines astuces :

Identification des sites identiques dans l’alignement afin d’éviter le
recalcul de la même valeur.
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Vraisemblance Exemple de calcul

Vraisemblances partielles aux feuilles

Sachant que u1 = C, u2 = T, u3 = A, u4 = A, les vecteurs de
vraisemblances partielles aux feuilles sont donc tels que :

L
(i)
U1

=
(

L
(i)
U1

(A),L
(i)
U1

(C),L
(i)
U1

(T),L
(i)
U1

(G)
)

= (0, 1, 0, 0)

L
(i)
U2

=
(

L
(i)
U2

(A),L
(i)
U2

(C),L
(i)
U2

(T),L
(i)
U2

(G)
)

= (0, 0, 1, 0)

L
(i)
U3

=
(

L
(i)
U3

(A),L
(i)
U3

(C),L
(i)
U3

(T),L
(i)
U3

(G)
)

= (1, 0, 0, 0)

L
(i)
U4

=
(

L
(i)
U4

(A),L
(i)
U4

(C),L
(i)
U4

(T),L
(i)
U4

(G)
)

= (1, 0, 0, 0)
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Vraisemblance Exemple de calcul

Vraisemblances partielles aux feuilles

Initialisation du calcul de L(i)(θ) aux feuilles :

ml-4uto-1

t1= 0.5

t2 = 0.4

t3 = 0.3

t4 = 0.2

t5 = 0.2 t6 = 0.3

LV2

LV1

0010

0100
0001

0001

0.0120.0830.0640.012
LV3

LU1

LU2
LU3

LU4

0.0050.0050.0050.615

0.0096 0.00317 0.00394 0.00052
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Vraisemblance Exemple de calcul

Vraisemblances partielles au nœud V2

Calcul de L
(i)
V2

(A) :

L
(i)
V2

(A) =
[
pAA(0.5)L

(i)
U1

(A) + pAC(0.5)L
(i)
U1

(C) + pAT(0.5)L
(i)
U1

(T) + pAG(0.5)L
(i)
U1

(G)
]

×
[
pAA(0.4)L

(i)
U2

(A) + pAC(0.4)L
(i)
U2

(C) + pAT(0.4)L
(i)
U2

(T) + pAG(0.4)L
(i)
U2

(G)
]

=
[
0 + pAC(0.5)L

(i)
U1

(C) + 0 + 0
]
×

[
0 + 0 + pAT(0.4)L

(i)
U2

(T) + 0
]

= 0.12× 1× 0.10× 1 = 0.012

Calcul de L
(i)
V2

(C) :

L
(i)
V2

(C) =
[
pCA(0.5)L

(i)
U1

(A) + pCC(0.5)L
(i)
U1

(C) + pCT(0.5)L
(i)
U1

(T) + pCG(0.5)L
(i)
U1

(G)
]

×
[
pCA(0.4)L

(i)
U2

(A) + pCC(0.4)L
(i)
U2

(C) + pCT(0.4)L
(i)
U2

(T) + pCG(0.4)L
(i)
U2

(G)
]

=
[
0 + pCC(0.5)L

(i)
U1

(C) + 0 + 0
]
×

[
0 + 0 + pCT(0.4)L

(i)
U2

(T) + 0
]

= 0.64× 1× 0.10× 1 = 0.064
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Vraisemblance Exemple de calcul

Vraisemblances partielles au nœud V2

Calcul de L
(i)
V2

(T) :

L
(i)
V2

(T) =
[
pTA(0.5)L

(i)
U1

(A) + pTC(0.5)L
(i)
U1

(C) + pTT(0.5)L
(i)
U1

(T) + pTG(0.5)L
(i)
U1

(G)
]

×
[
pTA(0.4)L

(i)
U2

(A) + pTC(0.4)L
(i)
U2

(C) + pTT(0.4)L
(i)
U2

(T) + pTG(0.4)L
(i)
U2

(G)
]

=
[
0 + pTC(0.5)L

(i)
U1

(C) + 0 + 0
]
×

[
0 + 0 + pTT(0.4)L

(i)
U2

(T) + 0
]

= 0.12× 1× 0.69× 1 = 0.0828

Calcul de L
(i)
V2

(G) :

L
(i)
V2

(C) =
[
pGA(0.5)L

(i)
U1

(A) + pGC(0.5)L
(i)
U1

(C) + pGT(0.5)L
(i)
U1

(T) + pGG(0.5)L
(i)
U1

(G)
]

×
[
pGA(0.4)L

(i)
U2

(A) + pGC(0.4)L
(i)
U2

(C) + pGT(0.4)L
(i)
U2

(T) + pGG(0.4)L
(i)
U2

(G)
]

=
[
0 + pGC(0.5)L

(i)
U1

(C) + 0 + 0
]
×

[
0 + 0 + pGT(0.4)L

(i)
U2

(T) + 0
]

= 0.12× 1× 0.10× 1 = 0.012
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Vraisemblance Exemple de calcul

Vraisemblances partielles au nœud V2

Construction du vecteur des vraisemblances partielles L
(i)
V2

:

ml-4uto-2

t1= 0.5

t2 = 0.4

t3 = 0.3

t4 = 0.2

t5 = 0.2 t6 = 0.3

LV2

LV1

0010

0100
0001

0001

0.0120.0830.0640.012
LV3

LU1

LU2
LU3

LU4

0.0050.0050.0050.615

0.0096 0.00317 0.00394 0.00052
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Vraisemblance Exemple de calcul

Vraisemblances partielles au nœud V3

Calcul de L
(i)
V3

(A) :

L
(i)
V3

(A) =
[
pAA(0.3)L

(i)
U3

(A) + pAC(0.3)L
(i)
U3

(C) + pAT(0.3)L
(i)
U3

(T) + pAG(0.3)L
(i)
U3

(G)
]

×
[
pAA(0.2)L

(i)
U4

(A) + pAC(0.2)L
(i)
U4

(C) + pAT(0.2)L
(i)
U4

(T) + pAG(0.2)L
(i)
U4

(G)
]

=
[
pAA(0.3)L

(i)
U3

(A) + 0 + 0 + 0
]
×

[
pAA(0.2)L

(i)
U4

(A) + 0 + 0 + 0
]

= 0.75× 1× 0.82× 1 = 0.615

Calcul de L
(i)
V3

(C) :

L
(i)
V3

(C) =
[
pCA(0.3)L

(i)
U3

(A) + pCC(0.3)L
(i)
U3

(C) + pCT(0.3)L
(i)
U3

(T) + pCG(0.3)L
(i)
U3

(G)
]

×
[
pCA(0.2)L

(i)
U4

(A) + pCC(0.2)L
(i)
U4

(C) + pCT(0.2)L
(i)
U4

(T) + pCG(0.2)L
(i)
U4

(G)
]

=
[
pCA(0.3)L

(i)
U3

(A) + 0 + 0 + 0
]
×

[
pCA(0.2)L

(i)
U4

(A) + 0 + 0 + 0
]

= 0.08× 1× 0.06× 1 = 0.048
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Vraisemblance Exemple de calcul

Vraisemblances partielles au nœud V3

Calcul de L
(i)
V3

(T) :

L
(i)
V3

(T) =
[
pTA(0.3)L

(i)
U3

(A) + pTC(0.3)L
(i)
U3

(C) + pTT(0.3)L
(i)
U3

(T) + pTG(0.3)L
(i)
U3

(G)
]

×
[
pTA(0.2)L

(i)
U4

(A) + pTC(0.2)L
(i)
U4

(C) + pTT(0.2)L
(i)
U4

(T) + pTG(0.2)L
(i)
U4

(G)
]

=
[
pTA(0.3)L

(i)
U3

+ 0 + 0 + 0
]
×

[
pTA(0.2)L

(i)
U4

+ 0 + 0 + 0
]

= 0.08× 1× 0.06× 1 = 0.048

Calcul de L
(i)
V3

(G) :

L
(i)
V3

(C) =
[
pGA(0.3)L

(i)
U3

(A) + pGC(0.3)L
(i)
U3

(C) + pGT(0.3)L
(i)
U3

(T) + pGG(0.3)L
(i)
U3

(G)
]

×
[
pGA(0.2)L

(i)
U4

(A) + pGC(0.2)L
(i)
U4

(C) + pGT(0.2)L
(i)
U4

(T) + pGG(0.2)L
(i)
U4

(G)
]

=
[
[pGA(0.3)L

(i)
U3

+ 0 + 0 + 0
]
×

[
pGA(0.2)L

(i)
U4

+ 0 + 0 + 0
]

= 0.08× 1× 0.06× 1 = 0.048
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Vraisemblance Exemple de calcul

Vraisemblances partielles au nœud V3

Construction du vecteur des vraisemblances partielles L
(i)
V3

:

ml-4uto-3

t1= 0.5

t2 = 0.4

t3 = 0.3

t4 = 0.2

t5 = 0.2 t6 = 0.3

LV2

LV1

0010

0100
0001

0001

0.0120.0830.0640.012
LV3

LU1

LU2
LU3

LU4

0.0050.0050.0050.615

0.0096 0.00317 0.00394 0.00052
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Vraisemblance Exemple de calcul

Vraisemblances partielles à la racine V1

Calcul de L
(i)
V1

(A) :

L
(i)
V1

(A) =
[
pAA(0.2)L

(i)
V2

(A) + pAC(0.2)L
(i)
V2

(C) + pAT(0.2)L
(i)
V2

(T) + pAG(0.2)L
(i)
V2

(G)
]

×
[
pAA(0.3)L

(i)
V3

(A) + pAC(0.3)L
(i)
V3

(C) + pAT(0.3)L
(i)
V3

(T) + pAG(0.3)L
(i)
V3

(G)
]

= [0.82× 0.012 + 0.06× 0.064 + 0.06× 0.0828 + 0.06× 0.012]

× [0.75× 0.615 + 0.08× 0.0048 + 0.08× 0.0048 + 0.08× 0.0048]

= 0.008956

Calcul de L
(i)
V1

(C) :

L
(i)
V1

(C) =
[
pCA(0.2)L

(i)
V2

(A) + pCC(0.2)L
(i)
V2

(C) + pCT(0.2)L
(i)
V2

(T) + pCG(0.2)L
(i)
V2

(G)
]

×
[
pCA(0.3)L

(i)
V3

(A) + pCC(0.3)L
(i)
V3

(C) + pCT(0.3)L
(i)
V3

(T) + pCG(0.3)L
(i)
V3

(G)
]

= [0.06× 0.012 + 0.82× 0.064 + 0.06× 0.0828 + 0.06× 0.012]

× [0.08× 0.615 + 0.75× 0.0048 + 0.08× 0.0048 + 0.08× 0.0048]

= 0.003155
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Vraisemblance Exemple de calcul

Vraisemblances partielles à la racine V1

Calcul de L
(i)
V1

(T) :

L
(i)
V1

(T) =
[
pTA(0.2)L

(i)
V2

(A) + pTC(0.2)L
(i)
V2

(C) + pTT(0.2)L
(i)
V2

(T) + pTG(0.2)L
(i)
V2

(G)
]

×
[
pTA(0.3)L

(i)
V3

(A) + pTC(0.3)L
(i)
V3

(C) + pTT(0.3)L
(i)
V3

(T) + pTG(0.3)L
(i)
V3

(G)
]

= [0.06× 0.012 + 0.06× 0.064 + 0.82× 0.0828 + 0.06× 0.012]

× [0.08× 0.615 + 0.08× 0.0048 + 0.75× 0.0048 + 0.08× 0.0048]

= 0.00392

Calcul de L
(i)
V1

(G) :

L
(i)
V1

(C) =
[
pGA(0.2)L

(i)
V2

(A) + pGC(0.2)L
(i)
V2

(C) + pGT(0.2)L
(i)
V2

(T) + pGG(0.2)L
(i)
V2

(G)
]

×
[
pGA(0.3)L

(i)
V3

(A) + pGC(0.3)L
(i)
V3

(C) + pGT(0.3)L
(i)
V3

(T) + pGG(0.3)L
(i)
V3

(G)
]

= [0.06× 0.012 + 0.06× 0.064 + 0.06× 0.0828 + 0.82× 0.012]

× [0.08× 0.615 + 0.08× 0.0048 + 0.08× 0.0048 + 0.75× 0.0048]

= 0.001038
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Vraisemblance Exemple de calcul

Vraisemblances partielles à la racine V1

Construction du vecteur des vraisemblances partielles L
(i)
V1

:

ml-4uto-4

t1= 0.5

t2 = 0.4

t3 = 0.3

t4 = 0.2

t5 = 0.2 t6 = 0.3

LV2

LV1

0010

0100
0001

0001

0.0120.0830.0640.012
LV3

LU1

LU2
LU3

LU4

0.0050.0050.0050.615

0.00896 0.00317 0.00392 0.00104
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Vraisemblance Exemple de calcul

Calcul de la vraisemblance au site S (i)

À partir du vecteur des vraisemblances partielles à la racine, on
déduit la valeur de L(i)(θ) :

L(i)(θ) =
∑

v1

πv1L
(i)
V1

(v1)

= πAL
(i)
V1

(A) + πCL
(i)
V1

(C) + πTL
(i)
V1

(T) + πGL
(i)
V1

(G)

=
1

4
(0.008956 + 0.003155 + 0.00392 + 0.001038)

= 0.004267

Soit, sous forme logarithmique :

ln L(i)(θ) = ln(0.004267) ' −5.4568

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 172 / 270



Vraisemblance Vraisemblance d’un arbre

Procédure générale

En théorie, nécessité d’explorer l’ensemble des topologies et des
combinaisons de longueurs de branches :

Impossible du fait de la croissance très rapide du nombre de
topologies et du caractère continu des longueurs de branches.

En pratique :

Exploration de l’espace des topologies via les heuristiques vues
précédemment.
Optimisation branche par branche pour déterminer les longueurs
maximisant la vraisemblance.

Pour une topologie et un ensemble de longueurs de branches
données :

Calcul des valeurs de vraisemblances par site L(i)(θ) :

– Calcul de la vraisemblance globale ln L(θ) =
∑

i ln L(i)(θ).
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Vraisemblance Avantages et limitations

Avantages et limitations

Méthode la mieux justifiée du point de vue théorique (si vous êtes
fréquentiste).

Donne de meilleurs résultats que la parcimonie ou les méthodes de
distances dans la plupart des cas.

Consistante si l’on utilise le bon modèle.

Coûteuse en temps de calcul (surtout si bootstrap).

Impossibilité d’explorer l’ensemble des topologies lorsque n ≥ 12 :

L’emploi d’heuristiques fait que l’on est pas sûr d’avoir l’arbre le
plus vraisemblable.

Risques de surparamétrisation avec les modèles trop complexes :

Tests pour sélectionner le modèle permettant d’obtenir le meilleur
compromis vraisemblance/nb. de paramètres (LRT, AIC, BIC).
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Vraisemblance Avantages et limitations

Performances en simulation

Génération aléatoire de 5000
arbres à 40 UTO :

Variation des longueurs de
branches.

Construction des séquences
d’ADN correspondantes :

Modèle de Kimura à deux
paramètres.

Qualité des reconstructions
obtenues :

Distance topologique entre
l’arbre vrai (connu) et
l’arbre reconstruit.
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Vraisemblance Exemple

Phylogénie des Hominöıdes

Sélection du modèle HKY+Γ après un test BIC.

Racinement avec la séquence du Gibbon.

500 réplicats de bootstrap.

Homme

Chimpanzé

0.043

0.057

Gorille

63

0.017

0.059

Orang-outan

100
0.063

0.116

Gibbon

0.021

0.145

0.02

ml-tree
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Vraisemblance Exemple

Vraisemblances des topologies

B = Gibbon, H = Homme, C = Chimpanzé, G = Gorille, O = Orang-outan 

H 

B 

C 
G 

O -2626.49 

H 

C 

B 
G 

O -2621.67 

H 

G 

B 
C 

O -2627.07 

H 

O 

B 
C 

G -2627.59 

B 

G 

H 
C 

O -2626.87 

H 

B 

G 
C 

O -2627.567 

H 

G 

C 
B 

O -2618.20 

H 

O 

G 
B 

C -2627.44 

C 

G 

H 
B 

O -2618.40 

H 

B 

O 
C 

G -2627.56 

H 

C 

O 
B 

G -2621.67 

H 

G 

O 
B 

C -2627.05 

H 

O 

C 
B 

G -2626.87 

O 

G 

H 
B 

C -2626.32 

H 

C 

G 
B 

O -2614.41 

ml-brown 
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Tests

Plan

1 Concepts généraux

2 Modèles

3 Distances

4 Maximum de vraisemblance

5 Tests

6 Approche bayésienne

7 Annexes
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Tests Bootstrap

Le bootstrap

Bases mathématiques éta-
blies par Efron (1979) :

Construction d’intervalles
de confiance.
Mesure de la précision
d’une estimation.

Adaptation à la phylogénie
par Felsenstein (1985) :

Méthode aujourd’hui la
plus couramment utilisée.
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Tests Bootstrap

Principe général

Soit un échantillon x = (x1, x2, . . . , x`) de ` observations tirées
d’une distribution F , de paramètre θ inconnu :

Soit F̂ la distribution observée dans cet échantillon :

– Estimation de θ à partir de F̂ .

Mesure de l’intervalle de confiance de l’estimation précédente au
moyen du bootstrap :

Tirage de B échantillons x∗ = (x∗1 , x
∗
2 , . . . , x

∗
` ) à partir de F̂ .

Chaque x∗ est construit par ` tirages avec remise dans x et
constitue ce que l’on appelle un réplicat de bootstrap.
I (θ) à 95% obtenu en retirant les 2.5% de valeurs les plus hautes et
les 2.5% de valeurs les plus basses.
Nécessité que B et ` soient grands et que les observations de x
soient i.i.d.
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Tests Bootstrap

Moyenne d’une distribution

Construction d’une distribution F par le mélange de deux lois
normales :

N (7, 1) pour 60% des effectifs et N (14, 1) pour 40% des effectifs :

– Moyenne de la distribution : θ = 9.822.

Tirage de ` = 150 individus dans F pour construire F̂ :

Moyenne estimée : θ̂ = 9.956.
Mesure de la validité de cette estimation par bootstrap :

5 10 15 20
F

D
en

si
té

θ = 9.822
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Tests Bootstrap

Moyenne d’une distribution

Construction d’une distribution F par le mélange de deux lois
normales :

N (7, 1) pour 60% des effectifs et N (14, 1) pour 40% des effectifs :

– Moyenne de la distribution : θ = 9.822.

Tirage de ` = 150 individus dans F pour construire F̂ :

Moyenne estimée : θ̂ = 9.956.

Mesure de la validité de cette estimation par bootstrap :

5 10 15 20
F

D
en

si
té

θ = 9.822

F̂
5 10 15 20

θ̂ = 9.956
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Tests Bootstrap

Moyenne d’une distribution

Construction d’une distribution F par le mélange de deux lois
normales :

N (7, 1) pour 60% des effectifs et N (14, 1) pour 40% des effectifs :

– Moyenne de la distribution : θ = 9.822.

Tirage de ` = 150 individus dans F pour construire F̂ :

Moyenne estimée : θ̂ = 9.956.
Mesure de la validité de cette estimation par bootstrap :

5 10 15 20
F

D
en

si
té

θ = 9.822

F̂
5 10 15 20

θ̂ = 9.956

5 10 15 20

θ̂ = 9.622
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Tests Bootstrap

Moyenne d’une distribution

Construction d’une distribution F par le mélange de deux lois
normales :

N (7, 1) pour 60% des effectifs et N (14, 1) pour 40% des effectifs :

– Moyenne de la distribution : θ = 9.822.

Tirage de ` = 150 individus dans F pour construire F̂ :

Moyenne estimée : θ̂ = 9.956.
Mesure de la validité de cette estimation par bootstrap :

5 10 15 20
F

D
en

si
té

θ = 9.822

F̂
5 10 15 20

θ̂ = 9.956

5 10 15 20

θ̂ = 9.831
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Tests Bootstrap

Moyenne d’une distribution

Construction d’une distribution F par le mélange de deux lois
normales :

N (7, 1) pour 60% des effectifs et N (14, 1) pour 40% des effectifs :

– Moyenne de la distribution : θ = 9.822.

Tirage de ` = 150 individus dans F pour construire F̂ :

Moyenne estimée : θ̂ = 9.956.
Mesure de la validité de cette estimation par bootstrap :

5 10 15 20
F

D
en

si
té

θ = 9.822

F̂
5 10 15 20

θ̂ = 9.956

5 10 15 20

θ̂ = 10.239
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Tests Bootstrap

Moyenne d’une distribution

Construction d’une distribution F par le mélange de deux lois
normales :

N (7, 1) pour 60% des effectifs et N (14, 1) pour 40% des effectifs :

– Moyenne de la distribution : θ = 9.822.

Tirage de ` = 150 individus dans F pour construire F̂ :

Moyenne estimée : θ̂ = 9.956.
Mesure de la validité de cette estimation par bootstrap :

5 10 15 20
F

D
en

si
té

θ = 9.822

F̂
5 10 15 20

θ̂ = 9.956

5 10 15 20

θ̂ = 9.543
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Tests Bootstrap

Application à la phylogénie

1                                 ℓ
ACGTACATAGTATAGCG…TCTAGTGGTACCGTATG
AGGTACATAGTATGG-G…TATACTGGTACCGTATG
ACGTAAAT-GTATAGAG…TCTAATGGTAC-GTATG
ACGTACATGGTATAGCG…ACTACTGGTACCGTATG

Alignement de départ

1                                 ℓ
GATCAGTCATGTATAGG…TCTAGTGGTACGTATAT
TGAGAGTCATGTATGGT…GTATACTGGTACGTAAT
TGAC-GTAATGTATAGG…TCTAATGGTACTGTAAT
TGACGGTCATGTATAGG…ACTACTGGTACGTATAT

B alignements rééchantillonnés

B fois
(B ≥ 500)

Échantillonnage aléatoire
avec remise de ℓ sites

Construction
de B arbres

Construction
de l’arbre

Pour chaque branche interne
% des arbres « artificiels »

contenant cette même branche

Arbre obtenu
E

A

B

C

D

90 %

70 %

B arbres « artificiels »

bs-phylo

�

�

�

�
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Tests Bootstrap

Limitations et usage

Ne permet pas de déterminer si un arbre est vrai ou faux :

Un arbre faux peut avoir des branches soutenues par de fortes
valeurs de bootstrap.

Non-indépendance des observations (sites) :

Surestimation des scores faibles et sous-estimation des scores forts.

En théorie, seuil en fonction d’un risque d’erreur fixé a priori :

En pratique, valeurs fluctuantes suivant les utilisateurs.
Seuils communément admis :

– 100% : robustesse maximale.
– 95-99% : très fort soutien par les données.
– 90-94% : fort soutien par les données.
– 80-89% : soutien modéré par les données.
– < 80% : pas de soutien.
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Tests Bootstrap

Un exemple classique

0,1

Coelomata Ecdysozoa

100

C. elegans

D. melanogaster

H. sapiens
96

96
100

100

100

100

100

100C. neoformans

U. maydis

S. pombe

S. cerevisiae

M. brevicollis

M. ovata
H. magnipapillataCnidaria

Choanoflagellata

Fungi

0,1

coel-ecdy
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Tests Test de vraisemblance

Approximate Likelihood Ratio Test (aLRT)

Alternative à l’utilisation du bootstrap, très coûteux en temps de
calcul dans le cas du maximum de vraisemblance.

Calcul de la statistique :

Soit τ1 la topologie présentant la vraisemblance maximale L(τ1).
Soit τ2 la topologie présentant la deuxième vraisemblance maximale
L(τ2) :

– Obtention par réarrangement NNI autour de la branche d’intérêt bk .
– Fixation des autres paramètres (t,ϑ, α).

Le rapport des vraisemblances est donné par :

Λk = 2 ln

[
L(τ1)

L(τ2)

]
= 2 [ln L(τ1)− ln L(τ2)]

Calcul du test :

Λk ∼
1

2

[
χ2(0) + χ2(1)

]

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 185 / 270



Tests Choix d’un modèle

Likelihood Ratio Test (LRT)

Soient M0 et M1 deux modèles caractérisés par leurs vecteurs de
paramètres ϑ0 et ϑ1 tels que k0 = dim(ϑ0) et k1 = dim(ϑ1) :

M0 doit être imbriqué dans M1 (k0 < k1).

Le rapport des vraisemblances est donné par :

Λ = 2 ln

[
L(ϑ1)

L(ϑ0)

]
= 2[ln L(ϑ1)− ln L(ϑ0)]

avec L(ϑ0) et L(ϑ1) les vraisemblances associés à M0 et M1.

Pour le calcul du test proprement dit, on considère que
Λ ∼ χ2(k1 − k0).
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Tests Choix d’un modèle

Arbre de décision du LRT

lrt

JC
+!
+I

JC
+!JC JC
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Tests Choix d’un modèle

Akaike Information Criterion (AIC)

Test AIC standard :

AIC = −2 ln L(ϑ) + 2k

avec k = dim(ϑ) le nombre de paramètres du modèle.

Test AICc, incluant une correction par la taille de l’échantillon :

AICc = AIC +
2k(k + 1)

`− k − 1

avec ` la longueur de l’alignement.

Dans les deux cas, sélection du modèle présentant la plus faible
valeur au test.
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Tests Choix d’un modèle

Bayesian Information Criterion (BIC)

Test BIC standard :

BIC = −2 ln L(ϑ) + k ln `

Comme dans le cas de l’AIC, sélection du modèle présentant la
plus faible valeur au test.

Approximation du test de comparaison de modèles utilisant les
Facteurs de Bayes (cf. cours sur l’inférence bayésienne) :

2 ln BF10 ≈ BIC1 − BIC0
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Tests Comparaison de topologies

Nécessité d’utilisation

Différents jeux de données peuvent retourner différents arbres.

Différentes méthodes peuvent retourner différents arbres.

Une même méthode peut retourner différents arbres.

Les différences observées sont-elles significatives ?

… … 
τ1 

A 
B 

C 
D 

E 
F 

topcomp 

τj 

A 
B 

C 
D 
E 

F 
τJ 

A 
B 
C 

D 
E 

F 

 Utilisation de tests de vraisemblance 
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Tests Comparaison de topologies

Tests courants

Kishino et Hasegawa (KH – Kishino et Hasegawa, 1989).

Shimodaira et Hasegawa (SH – Shimodaira et Hasegawa, 1999).

Expected Likelihood Weight (ELW – Strimmer et Rambaut, 2001).

Approximately Unbiased (AU – Shimodaira, 2002).
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Tests Comparaison de topologies

Test de Kishino et Hasegawa

Soit S un alignement de séquences de longueur ` et L(θ1) et L(θ2)
les vraisemblances de deux arbres obtenus à partir de S .

On pose Y1 = ln L(θ1) et Y2 = ln L(θ2) et ∆ = Y1 −Y2.

Le test KH consiste à tester si ∆ est significativement différent de
zéro, ce qui revient à la formulation :

H0 : E(∆) = 0

H1 : E(∆) 6= 0

Le problème est que la distribution de ∆ n’est pas connue :

Estimation de la variance de ∆ au moyen de différentes méthodes.
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Tests Comparaison de topologies

Approche classique (I)

Soit y
(i)
1 = ln L(i)(θ1) et y

(i)
2 = ln L(i)(θ2), dans ce cas les valeurs

de Y1 et Y2 sont telles que :

Y1 =
∑̀

i=1

y
(i)
1 et Y2 =

∑̀

i=1

y
(i)
2

Soit δ(i) = y
(i)
1 − y

(i)
2 , la différence des valeurs de vraisemblance

par site, dans ce cas :

∆ = Y1 −Y2 =
∑̀

i=1

δ(i)
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Tests Comparaison de topologies

Approche classique (II)

La moyenne des différences des valeurs de vraisemblances est donc
égale à :

δ̄ =
1

`

∑̀

i=1

δ(i) =
∆

`

Estimation de la variance de ∆ par :

V(∆) = V
(
δ(i)
)

=
1

`− 1

∑̀

i=1

(
δ(i) − δ̄

)2

Utilisation de cette estimation pour réaliser un test bilatéral sous
l’hypothèse que ∆ ∼ N (0,V(∆)).
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Tests Comparaison de topologies

Schéma général
kh

-o
ri 
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Tests Comparaison de topologies

Approche par bootstrap (I)

Réalisation de B rééchantillonnages des sites de S par une ap-
proche de type bootstrap.

Calcul, pour chaque réplicat k (1 ≤ k ≤ B), des vraisemblances
approchées Y ′1(k) et Y ′2(k) associées aux topologies τ1 et τ2 :

Utilisation des valeurs de vraisemblances par sites provenant de S
pour effectuer ce calcul.

Calcul pour chaque réplicat de ∆′(k) = Y ′1(k) −Y ′2(k).

La moyenne des valeurs de ∆′(k) est telle que :

∆̄′ =
1

B

B∑

k=1

∆′(k)
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Tests Comparaison de topologies

Approche par bootstrap (II)

Calcul des valeurs de ∆′(k) centrées par la moyenne :

∆̃′(k) = ∆′(k) − ∆̄′

Estimation de la variance de ∆ par celle de ∆̃′(k).

Utilisation de cette variance pour réaliser un test bilatéral sous

l’hypothèse que ∆ ∼ N
(

0,V
(

∆̃′(k)

))
.

Une autre possibilité est la comparaison directe de ∆ avec la
distribution des ∆̃′(k).

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 197 / 270



Tests Comparaison de topologies

Schéma général

kh-rell 
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Tests Comparaison de topologies

Limitations

Test limité à la comparaison de deux topologies :

Pas de correction pour les tests multiples.

Les arbres testés doivent être choisis indépendamment des don-
nées utilisées pour réaliser le test :

Indispensable pour justifier l’hypothèse nulle sous laquelle E(∆) = 0.
Le choix ne peut donc pas se faire sur la base de la vraisemblance.

A malheureusement été fréquemment utilisé en violation de ces
deux conditions !

Les autres méthodes (SH, AU, ELW) utilisent un principe simi-
laire mais corrigent ces défauts.
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Tests Exemple

Phylogénie des Hominöıdes

j τj Yj ∆ KH SH ELW AU

1 ((H,B),(G,O),C) −2626.486 12.074 0.0050 0.0150 0.0013 0.0620
2 ((H,B),(C,O),G) −2627.563 13.150 0.0150 0.0190 0.0019 0.0100
3 ((H,B),(C,G),O) −2627.563 13.150 0.0150 0.0190 0.0019 0.0068
4 ((H,C),(G,O),B) −2621.668 7.256 0.0490 0.1560 0.0270 0.0414
5 ((H,C),(B,O),G) −2614.413 0.000 0.8390 1.0000 0.7224 0.9490
6 ((H,C),(B,G),O) −2621.668 7.256 0.0500 0.1570 0.0270 0.0399
7 ((H,G),(C,O),B) −2627.071 12.659 0.0220 0.0270 0.0040 0.0449
8 ((H,G),(B,O),C) −2618.205 3.793 0.1610 0.4250 0.1187 0.2531
9 ((H,G),(B,C),O) −2627.051 12.639 0.0220 0.0260 0.0043 0.0512

10 ((H,O),(C,G),B) −2627.590 13.177 0.0130 0.0160 0.0017 0.0193
11 ((H,O),(B,C),G) −2627.441 13.029 0.0170 0.0210 0.0025 0.0516
12 ((H,O),(B,G),C) −2626.874 12.461 0.0080 0.0140 0.0010 0.0174
13 ((B,G),(C,O),H) −2626.874 12.461 0.0080 0.0140 0.0010 0.0150
14 ((C,G),(B,O),H) −2618.401 3.989 0.1470 0.4090 0.0833 0.0536
15 ((O,G),(B,C),H) −2626.316 11.904 0.0070 0.0160 0.0019 0.0763

SH, ELW, AU : tests multiples ; KH : test simple entre τ5 et chacune des topologies τj
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Approche bayésienne

Plan

1 Concepts généraux

2 Modèles

3 Distances

4 Maximum de vraisemblance

5 Tests

6 Approche bayésienne

7 Annexes

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 201 / 270



Approche bayésienne Introduction

Historique

Théorème de Bayes établi au
XVIIIe siècle :

Utilisation courante en
probabilités.

Introduction récente en
phylogénie moléculaire :

Yang et Rannala (1996).

Détermination analytique des
probabilités postérieures fré-
quemment impossible :

Utilisation d’appro-
ximations numériques.

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to
Philosophical Transactions (1683-1775).

www.jstor.org
®
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Approche bayésienne Introduction

Théorème de Bayes

Une définition classique des probabilités conditionnelles est que :

P(A ∩ B) = P(B)P(A|B) = P(A)P(B |A)

En divisant les deux termes de l’équation précédente par P(B) on
obtient la formulation la plus simple du théorème de Bayes, soit :

P(A|B) =
P(A)P(B |A)

P(B)

avec :

P(A|B), la probabilité a posteriori (ou postérieure) de A sachant B .
P(A), la probabilité a priori de A.
P(B |A), la vraisemblance de A.
P(B), la probabilité marginale de B ou constante de normalisation.
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Approche bayésienne Introduction

Généralisation

Étant donné que :

P(B) = P(A ∩ B) + P(Ā ∩ B) = P(A)P(B |A) + P(Ā)P(B |Ā)

on déduit :

P(A|B) =
P(A)P(B |A)

P(A)P(B |A) + P(Ā)P(B |Ā)

Ce qui peut se généraliser sous la forme :

P(Ai |B) =
P(Ai)P(B |Ai)∑
j P(Aj )P(B |Aj )

pour tout élément du s.c.e. {Ai}, avec i un des éléments de
l’ensemble des valeurs possibles de j .
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Approche bayésienne Introduction

Un exemple classique

Quelle est la probabilité d’avoir des faux positifs lors d’un test de
diagnostic ?

Soit un test de dépistage d’une maladie quelconque :

Si un patient a contracté la maladie, le test est positif dans 99% des
cas.
Si un patient est sain, le test est négatif dans 95% des cas.
On estime que la fréquence de la maladie dans la population est de
1‰.

Quelle est la probabilité qu’un individu testé positif soit effecti-
vement atteint ?
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Approche bayésienne Introduction

Résolution

Dans cet exemple, la probabilité a priori est égale à la fréquence
de la maladie dans la population, soit P(A) = 0.001 :

On en déduit P(Ā) = 1− P(A) = 0.999.

Par ailleurs, la probabilité que le test soit positif si le patient est
malade est P(B |A) = 0.99.

Enfin, la probabilité que le test soit négatif si le patient est sain est
P(B̄ |Ā) = 0.95 :

On en déduit P(B |Ā) = 1− P(B̄ |Ā) = 0.05.

On en déduit la probabilité P(A|B) qu’un individu soit malade si
le test est positif :

P(A|B) =
0.001× 0.99

0.001× 0.99 + 0.999× 0.05
' 0.019
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Approche bayésienne Introduction

Remarques sur le résultat

Bien que le test précédent soit apparemment précis, la probabilité
d’avoir des faux positifs est très importante (98.1%) :

Problème lié au fait que la probabilité a priori est faible.
Cas fréquent pour les tests de diagnostic :

– Utilisation de plusieurs tests réalisés de façon séquentielle.

Dans cet exemple, détermination de l’a priori à partir de la
fréquence de la pathologie dans la population :

L’utilisation du théorème de Bayes ne souffre pas de discussion.

Dans de nombreux cas, les probabilités a priori ne peuvent pas
être facilement estimées :

Utilisation de valeurs représentant l’appréciation subjective de la
personne effectuant l’analyse.
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Approche bayésienne Introduction

Notation en statistiques

En statistiques, le s.c.e. {Ai} correspond à un ensemble d’hypo-
thèses, alors que B correspond aux données observées.

Dans ce cas, écriture du théorème de Bayes sous la forme :

P(Hi |D) =
P(Hi)P(D |Hi)∑
j P(Hj )P(D |Hj )

avec P(Hi |D), la probabilité conditionnelle d’une hypo-
thèse Hi sous les données D .

Les différentes hypothèses pouvant correspondre à différentes
valeurs pour un paramètre θ, avec H1 : θ = θ1, H2 : θ = θ2, etc.

Dans le cas où le modèle utilisé comprend plus d’un paramètre, θ
correspond alors au vecteur θ des dits paramètres.
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Approche bayésienne Introduction

Données continues

Expression sous la forme de fonctions de densités quand les
hypothèses concernent des paramètres continus :

f (θ|x) =
f (θ)f (x|θ)

f (x)
=

f (θ)f (x|θ)∫
f (x|θ)f (θ)dθ

La constante de normalisation f (x) est obtenue en intégrant la
vraisemblance sur la distribution a priori de θ :

Permet d’avoir
∫

f (θ|x) = 1.
Si θ correspond à un vecteur comprenant de nombreux paramètres :

– Pas de solution analytique au calcul de cette intégrale.
– Calcul de la probabilité postérieure au moyen d’approximations

numériques telles que les Châınes de Markov avec technique de
Monte-Carlo (MCMC).

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 209 / 270



Approche bayésienne Introduction

Interprétation des résultats

Le résultat d’une analyse statistique bayésienne est représenté par
la distribution des probabilités postérieures.

Utilisation de valeurs ponctuelles pour faciliter l’interprétation :

Moyenne :

E(θ|x) =

∫
θ f (θ|x)dθ

Médiane.
Maximum a posteriori :

– Conceptuellement similaire au maximum de vraisemblance.

Détermination d’un intervalle de crédibilité [a, b] au seuil α tel
que : ∫ b

a
f (θ|x)dθ = 1− α
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Approche bayésienne Introduction

Distributions a priori

Conjuguées :

Un a priori est dit conjugué si f (θ) et f (θ|x) appartiennent à la
même famille de distributions.
Permettent de simplifier les calculs (pas de résolution d’intégrales
complexes).

Non informatives ou vagues :
f (θ) est non informative si son impact sur f (θ|x) est faible :

– Prédominance de la vraisemblance.

Utilisées quand aucune information préalable n’est disponible sur
les variations du paramètre.

Informatives :

f (θ) est informative si son impact sur f (θ|x) est fort.
Cas de l’analyse bayésienne séquentielle :

– A posteriori d’une étude précédente utilisé comme a priori pour
l’étude courante.
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Approche bayésienne Introduction

Critiques de l’a priori

Depuis le XVIIIe siècle, les critiques du bayésien portent
essentiellement sur l’a priori.

Résultats différents en fonction d’un a priori donné :

Rejet par les statisticiens « classiques » de la notion de probabilité
subjective.

Existence d’une école « objective » prônant l’utilisation d’a priori
les moins informatifs possibles :

Distributions uniformes.
Loi a priori de Jeffreys (1961).
Loi de référence de Bernardo (1979).
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Approche bayésienne MCMC

Principe des MCMC

En analyse bayésienne, impossibilité de déterminer la constante de
normalisation si le nombre de paramètres est élevé :

Impossibilité de calculer directement la probabilité postérieure.

Utilisation d’une châıne de Markov suivant une marche guidée
dans l’espace multidimensionnel des paramètres :

À la stationnarité, convergence vers les valeurs attendues des
probabilités postérieures.
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Approche bayésienne MCMC

Analogie du randonneur

Soit un randonneur se déplaçant sur une surface plane délimitée en
faisant des pas de longueur variable :

Amplitude maximale fixée au préalable.
Chaque pas est effectué en choisissant aléatoirement une direction
quelconque.
Rebond si un pas conduit à l’extérieur.

Au bout d’un certain temps, exploration de l’intégralité de la
surface :

mcwalk

100 pas 1000 pas 10000 pas

100 pas 1000 pas 10000 pas
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Approche bayésienne MCMC

Exploration de reliefs

Introduction de deux règles supplémentaires :
Si la direction prise par le randonneur le conduit vers une position
plus élevée, il le fait toujours.
Si au contraire cette direction est descendante, possibilité de choix :

– Calcul de r = h∗/h, avec h∗ la hauteur atteinte en cas de descente
et h la hauteur actuelle.

– Tirage de u ∼ U(0, 1).
– Si u < r , le randonneur descend, sinon il reste où il est.

Visite préférentielle des points situés en altitude :

mcwalk

100 pas 1000 pas 10000 pas

100 pas 1000 pas 10000 pas
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Approche bayésienne MCMC

Problèmes rencontrés

Nécessité d’éliminer les premiers pas – qui constituent ce que l’on
appelle communément la zone d’approche ou burn-in :

Démarrage du trajet en un point sélectionné aléatoirement, point
pouvant être situé à une distance importante des reliefs.

Évitement des maxima locaux :
Nécessité d’avoir un nombre de pas suffisamment élevé :

– Pas toujours suffisant si les pics sont éloignés les uns des autres.

Lancement de plusieurs châınes ayant des points de départ
différents :

– Poursuite de l’exploration jusqu’à convergence des résultats entre les
différentes châınes.
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Approche bayésienne MCMC

Algorithme de Metropolis-Hastings

1 Soit θi , le vecteur des paramètres caractérisant l’état de la châıne
de Markov au temps i .

2 Soit θ∗ le vecteur des paramètres caractérisant un état candidat
pour constituer le maillon suivant de la châıne.

3 Calcul de la probabilité d’acceptation r , telle que :

r = min

[
1,

f (θ∗|x)

f (θi |x)

]
= min

[
1,

f (θ∗)f (x|θ∗)
f (θi)f (x|θi)

]

4 Si r = 1, alors θi+1 = θ∗.
5 Si r < 1, tirage de u ∼ U(0, 1) :

Si u < r alors θi+1 = θ∗, sinon θi+1 = θi .

6 Retour à l’étape 1.
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Approche bayésienne MCMC

Caractéristiques

Le calcul de r n’implique pas de connâıtre f (x).

Initialisation avec un ensemble de paramètres θ choisis aléatoi-
rement.

La construction de θ∗ se fait en faisant varier de façon aléatoire les
paramètres :

Utilisation d’algorithmes générant ce que l’on appelle des
propositions :

– Distributions uniformes de type U(−w/2,w/2), avec w l’amplitude
maximale autorisée pour la variation des paramètres.

– Distributions normales de type N (µ, σ2).

La séquence des états visités forme une châıne de Markov :

Estimation de la probabilité postérieure par la fréquence à laquelle
les états sont visités une fois la stationnarité atteinte.
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Approche bayésienne MCMC

Fréquence d’acceptation

Proportion du nombre de propositions acceptées dans la châıne.

Ne doit être ni trop grande ni trop petite.

Valeurs optimales :

≈ 50% si θ ne comprend qu’un seul paramètre.
≈ 26% si θ comprend plusieurs paramètres.

Valeurs recommandées :

20-70% si θ ne comprend qu’un seul paramètre.
15-40% si θ comprend plusieurs paramètres.
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Approche bayésienne MCMC

Couplage de Metropolis des MCMC

Piégeage possible de la châıne en cas de maximum local.

Utilisation de plusieurs châınes au lieu d’une :

Couplage de Metropolis des MCMC (MCMCMC ou MC3).
Parmi toutes les châınes lancées seules les châınes dites « froides »
(faible amplitude des pas) ont besoin de converger :

– Utilisation de châınes « chaudes » pour permettre une exploration
plus vaste de l’espace des paramètres.

Tests à intervalles réguliers pour faire passer une châıne froide dans
une région explorée par une des châınes chaudes :

r = min

[
1,
πi(θj )πj (θi)

πi(θi)πj (θj )

]

où i et j correspondent aux états de deux châınes de Markov pour
lesquelles la possibilité d’échange est testée.
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Approche bayésienne MCMC

Application au problème du randonneur

mc3walk

100 pas 1000 pas 10000 pas
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Approche bayésienne MCMC

Détermination de la convergence

Quand faut-il interrompre une MCMC ?

A-t-on atteint la distribution stationnaire de la châıne ?

Outils disponibles :

Inspection visuelle du graphe montrant les déplacements dans
l’espace des paramètres.
Étude de la variation des valeurs de vraisemblance :

– Pas de tendances particulières attendues à la stationnarité.

Mesure de l’autocorrélation des valeurs successives des paramètres :

– Absence d’autocorrélation si convergence.

Tests statistiques :

– Test de Gelman et Rubin (1992), ou Potential Scale Reduction
Factor (PSRF) dans MrBayes.
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Approche bayésienne Estimation d’une distance

Probabilité a priori

Estimation par approche bayésienne de la distance évolutive entre
deux séquences d’ADN sous le modèle de Jukes et Cantor.

Calcul de la probabilité a priori :

Choix d’une distribution exponentielle :

f (t) =
1

µ
e−t/µ

avec µ la moyenne de cette distribution et t la distance évolutive :

– La probabilité d’obtenir des distances importantes tend rapidement
vers 0.

D’autres choix sont possibles :

– Distribution uniforme.

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 223 / 270



Approche bayésienne Estimation d’une distance

Vraisemblance

Le calcul de la divergence observée entre deux séquences au moyen
du modèle de Jukes et Cantor est donnée par (cf. Diapo. 56) :

p = 3pij (t) =
3

4
− 3

4
e−4t/3 (i 6= j )

Soit ` le nombre de sites dans l’alignement et n le nombre de sites
pour lesquels il y a une substitution entre les deux séquences :

Dans ce cas, la fonction de vraisemblance pour t est donnée par la
distribution binomiale B(`, p) telle que :

L(t) = f (p|t) =

(
`

n

)
pn(1− p)`−n

=
`!

n!(`− n)!

(
3

4
− 3

4
e−4t/3

)n (
1

4
+

3

4
e−4t/3

)`−n
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Approche bayésienne Estimation d’une distance

Probabilité postérieure

Probabilité postérieure, sans la constante de normalisation :

f (t |p) ∝ f (t)f (p|t)

∝ 1

µ
e−t/µ

(
3

4
− 3

4
e−4t/3

)n (1

4
+

3

4
e−4t/3

)`−n

Le coefficient binomial étant lui aussi une constante, il peut être
omis de cette expression.

Valeur de la constante de normalisation donnée par :

f (p) =

∫ ∞

0
f (t)f (p|t)dt

Solution analytique ou intégration numérique.
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Approche bayésienne Estimation d’une distance

Application numérique

Paire Homme-Gorille du jeu
de données de Brown et al.
(1982) :

` = 896
n = 89

Moyenne de la distribution a
priori fixée à µ = 0.2.

Estimation au maximum de
vraisemblance :

t ' 0.1066

Estimation bayésienne via la
moyenne :

E(t |p) ' 0.1072
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Approche bayésienne Estimation d’une distance

Approximation par MCMC

Calcul de la probabilité d’acceptation :

r = min

[
1,

f (t∗)f (p|t∗)
f (ti)f (p|ti)

]

Choix des propositions pour t :

Distribution uniforme, centrée sur la valeur actuelle et ayant une
largeur égale à w :

t∗ = |ti + u|, avec u ∼ U(−w/2,w/2)

Choix de différentes valeurs pour l’amplitude (w) et la distance
(t0) utilisées pour initialiser la châıne de Markov :

Valeurs variables pour w (0.01 et 1) et valeur fixe pour t0 (0.2).
Valeur fixe pour w (0.1) et valeurs variables pour t0 (0.01, 0.5 et 1).
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Approche bayésienne Estimation d’une distance

Convergence des châınes
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Estimations de la distance

Paramètres choisis : µ = 0.2, w = 0.1 et t0 = 0.5.

Élimination de la zone d’approche (400 premières itérations).

Échantillonnage de 1000 itérations prélevées à intervalles réguliers
dans une châıne :

Utilisation de la moyenne des valeurs pour l’estimation.

Estimations obtenues après :

1400 itérations : E(t |p) = 0.1073± 5.18× 10−4

10000 itérations : E(t |p) = 0.1072± 7.03× 10−4

100000 itérations : E(t |p) = 0.1071± 7.23× 10−4

avec, dans chaque cas, un intervalle de crédibilité à 95%.

Variations stochastiques autour de la valeur obtenue par calcul
direct.
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Notations pour la phylogénie

En phylogénie moléculaire, les données sont représentées par un
ensemble de séquences alignées S .
Par ailleurs, le vecteur des paramètres est θ = (τ, t,ϑ, α), avec :

τ la topologie de l’arbre.
t le vecteur des longueurs de branches.
ϑ le vecteur des paramètres du modèle d’évolution utilisé.
α le paramètre de forme de la loi Gamma, le cas échéant.

Le formule permettant de déterminer la probabilité postérieure est
donc égale à :

f (τ, t,ϑ, α|S ) =
f (τ, t,ϑ, α)f (S |τ, t,ϑ, α)

f (S )

avec :

f (S ) =
∑

τ

∫

t

∫

ϑ

∫

α
f (S |τ, t,ϑ, α)f (t)f (ϑ)f (α)dtdϑdα
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Choix possibles pour les a priori

Topologies :

Distribution uniforme U(N ).

Longueurs des branches :

Distribution uniforme U(0, 10).
Distribution exponentielle E(0.1).

Paramètres du modèle d’évolution :

Distributions de Dirichlet plates D(1, 1, 1, 1) pour les échangeabilités
et les fréquences à l’équilibre.

Paramètre α de la loi Gamma :

Distribution exponentielle E(1).
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Facteur de Bayes

Défini comme étant le rapport des vraisemblances marginales
associées aux modèles M0 et M1 comparés, soit :

BF10 =
f (x|M1)

f (x|M0)
=

∫
f (ϑ1|M1)f (x|ϑ1,M1)dϑ1∫
f (ϑ0|M0)f (x|ϑ0,M0)dϑ0

Si H0 = M0, alors interprétation en utilisant l’échelle de Kass et
Raftery (1995) :

log(BF) BF Évidence
< 0 < 1 Négative

0 – 0.5 1 – 3.2 Faible
0.5 – 1 3.2 – 10 Substancielle
1 – 2 10 – 100 Forte
> 2 > 100 Décisive
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Procédure générale

algobayes

Initialisation :
valeurs aléatoires pour t, t, J et a�

�

�

Proposition pour t (+t)

Propositions pour J

Propositions pour t Proposition pour a

Echantillonnage d’un arbre

k itérations

Stationnarité

Consensus majoritaire (t)
Valeurs moyennes (t)*

PP des bipartitions
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Approche bayésienne Exemple

Phylogénie des Hominöıdes

Sélection du modèle HKY+Γ après un test BIC.

Utilisation de MrBayes pour reconstruire la phylogénie :

Valeurs par défaut des probabilités a priori.
Deux châınes froides partant de points de départ différents.
Trois châınes chaudes lancées en parallèle de chaque châıne froide.
Test de Gelman et Rubin pour déterminer si convergence.
Arrêt après 10000 itérations et fréquence d’échantillonnage de
1/10 :

– Jeu de données de petite taille.
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Approche bayésienne Exemple

Convergence des châınes
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Approche bayésienne Exemple

Arbre obtenu

Construction par consensus majoritaire à 50% sur les itérations
échantillonnées hors burn-in.

Racinement avec la séquence du Gibbon.

Longueurs des branches avec intervalles de crédibilité à 95%.

Homme

Chimpanzé

0.055
±7.8!10-4

0.073
±9.2!10-4

Gorille

0.036
±9.2!10-4

0.070
±1.1!10-3

Orang-outan

0.134
±2.5!10-3

0.254
±3.8!10-3

Gibbon
0.388
±5.3!10-3

0.05

1.0

0.98

baytree
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Approche bayésienne Avantages et limitations

Avantages et limitations

Meilleur comportement que le maximum de vraisemblance avec
des modèles comprenant de nombreux paramètres :

Intégration des paramètres de nuisance.

Temps de calcul biens plus longs :

Avec les MC3, de nombreuses châınes sont lancées en parallèle.
Nécessité d’atteindre la distribution stationnaire pour les châınes
froides :

– Diminution du nombre d’itérations pour raccourcir les temps de
calcul.

Pas de nécessité d’effectuer du rééchantillonnage de type
bootstrap :

Utilisation des valeurs de probabilités postérieures des clades :

– Valeurs directement interprétables en termes de probabilités.

Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 237 / 270



Approche bayésienne Avantages et limitations

Bootstrap et probabilités postérieures

Construction de six phylogé-
nies (Douady et al., 2003) :

Vraisemblance et bayésien.

Comparaison entre valeurs de
bootstrap (BP) et :

Probabilités postérieures
(PP) des clades.
Bootstrap des probabilités
postérieures (BPP).

Valeurs des PP systématique-
ment plus élevées que celles
des BP.
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Annexes

Plan

1 Concepts généraux

2 Modèles

3 Distances

4 Maximum de vraisemblance

5 Tests

6 Approche bayésienne

7 Annexes
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Annexes Notations

Notations mathématiques

A : objet non mathématique (e.g., nucléotide, UTO).

a : définition d’une variable.

e : constante ou opérateur.

A : définition d’une variable ou d’un ensemble (hors ensembles
numériques).

A : matrice ou vecteur (ligne ou colonne).

a : vecteur (ligne ou colonne).

B : distribution (e.g., Binomiale, Gamma).

P : terme mathématique usuel (e.g., probabilité, variance) ou
ensemble numérique (e.g., entiers naturels, réels).
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Annexes Notations

Codes IUPAC pour les nucléotides

Code Signification Compl.

A A T/U

C C G

G G C

T/U T/U A

M A/C K

R A/G Y

S C/G S

W A/T/U W

Y C/T/U R

K G/T/U M

V A/C/G B

H A/C/T/U D

D A/G/T/U H

B C/G/T/U V

N A/C/G/T/U N
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Annexes Calcul matriciel

Matrices et vecteurs

Une matrice m × n est un tableau à m lignes et n colonnes :

On note A = (aij ) (1 ≤ i ≤ m et 1 ≤ j ≤ n) la matrice dont aij est
l’élément de la i ème ligne et de la j ème colonne :

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




Un vecteur colonne est une matrice m × 1 tandis qu’un vecteur
ligne est une matrice 1× n :

On note v = (vi) (1 ≤ i ≤ m) un vecteur colonne et v = (vj )
(1 ≤ j ≤ n) un vecteur ligne.
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Annexes Calcul matriciel

Opérations sur les matrices I

Transposition d’une matrice :

Soit A = (aij ) une matrice m × n.
La transposée de A est une matrice n ×m, notée AT = (aT

ij ) et

d’élément général aT
ij = aji .

Somme de deux matrices :

Soient A = (aij ) et B = (bij ) deux matrices m × n.
La somme de A et B, notée A + B, est la matrice C = (cij ),
d’élément général cij = aij + bij .

Produit d’une matrice par un scalaire :

Soit A = (aij ) une matrice m × n et soit r un scalaire.
La multiplication de A et de r , notée rA, est la matrice B = (bij ),
d’élément général bij = raij .
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Annexes Calcul matriciel

Opérations sur les matrices II

Produit de deux matrices :

Soit A = (aij ) une matrice m × n et B = (bij ) une matrice n × p.
Le produit de A et B, noté AB, est la matrice C = (cij ), de
dimensions m × p et d’élément général :

cij =

n∑

k=1

aikbkj

La multiplication de A et B n’est possible que si le nombre de
colonnes de A est égal au nombre de lignes de B.
Si A et B sont deux matrices carrées (cf. Diapo. 245) alors les
produits AB et BA ont un sens mais, en général, AB 6= BA.
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Annexes Calcul matriciel

Matrices carrées

Une matrice carrée A = (aij ) (1 ≤ i ≤ n et 1 ≤ j ≤ n) est une
matrice ayant le même nombre de lignes et de colonnes :

Une matrice carrée n × n est dite d’ordre n.

Une matrice carrée A est dite symétrique si A = AT.

Une matrice carrée A est dite diagonale si elle vérifie que
aij = 0, ∀i 6= j :

Utilisation de la notation A = diag(ak ) (1 ≤ k ≤ n).

La matrice identité In est la matrice carrée d’ordre n ayant des 1
sur sa diagonale et des 0 partout ailleurs :

Elément neutre pour la multiplication : AIn = InA = A.

La trace d’une matrice carrée A est égale à la somme de ses
éléments diagonaux : trace(A) =

∑
i=j aij .
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Annexes Calcul matriciel

Déterminant d’une matrice

Fonction qui associe à une matrice carrée un nombre réel :

Si det(A) = 0 : matrice singulière.
Si det(A) 6= 0 : matrice régulière.

Nombreuses méthodes de calcul :

Formule de Leibnitz.
Méthode des cofacteurs.
Pivot de Gauss.

Cas d’une matrice carrée d’ordre 2 :

A =

(
a11 a12

a21 a22

)
⇒ det(A) = a11a22 − a21a12
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Annexes Calcul matriciel

Méthode des cofacteurs

Soit A une matrice carrée d’ordre n.

Le cofacteur cij du terme aij de cette matrice est défini comme :

cij = (−1)i+j det(Aij )

avec det(Aij ) le déterminant de la sous-matrice Aij obtenue en
éliminant la i ème ligne et la j ème colonne de A.

Dans ce cas, le déterminant de A est égal à :

det(A) =

n∑

j=1

aij cij

avec i fixé à l’une des n valeurs possibles.
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Annexes Calcul matriciel

Inverse d’une matrice

L’inverse d’une matrice carrée A d’ordre n est la matrice carrée
A−1 de même ordre qui vérifie AA−1 = A−1A = In .

Seules les matrices dont le déterminant est non nul sont inversibles.

Calcul par la méthode des cofacteurs :

Soit A une matrice carrée d’ordre n et soit C = (cij ) la matrice de
l’ensemble des cofacteurs de A, dans ce cas :

A−1 =
1

det(A)
CT

Si A et B sont deux matrices inversibles de même ordre alors :

Le produit AB est inversible et son inverse est tel que :

(AB)−1 = B−1A−1
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Annexes Calcul matriciel

Valeurs propres et vecteurs propres

Soit A une matrice carrée d’ordre n, dans ce cas λk (1 ≤ k ≤ n)
est une valeur propre et uk un vecteur propre de A si :

Auk = λkuk

Si une matrice d’ordre n admet n valeurs propres distinctes, alors
est elle dite diagonalisable et peut s’écrire sous la forme :

A = UΛU−1

avec U la matrice contenant en colonnes les vecteurs propres de A
et Λ = diag(λk ) la matrice diagonale des valeurs propres.
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Annexes Calcul matriciel

Quelques propriétés

Toute matrice symétrique est diagonalisable.

La trace d’une matrice diagonalisable est égale à la somme de ses
valeurs propres :

trace(A) =

n∑

k=1

λk = trace(Λ)

Le déterminant d’une matrice diagonalisable est égal au produit de
ses valeurs propres :

det(A) =
n∏

k=1

λk = det(Λ)
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Annexes Calcul matriciel

Simplification des calculs I

Soit A une matrice carrée d’ordre n, diagonalisable :

Puissance de A :

Am = AA . . .A︸ ︷︷ ︸
m facteurs

= UΛU−1UΛU−1 . . .UΛU−1
︸ ︷︷ ︸

m facteurs

= UΛmU−1

avec :

Λm =




λm1 0 · · · 0
0 λm2 · · · 0
...

...
. . .

...
0 0 · · · λmn



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Annexes Calcul matriciel

Simplification des calculs II

Logarithme de A :

ln(A) = U ln(Λ)U−1 avec ln(Λ) =




lnλ1 0 · · · 0
0 lnλ2 · · · 0
...

...
. . .

...
0 0 · · · lnλn




Exponentielle de A :

eA = UeΛU−1 avec eΛ =




eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
. . .

...
0 0 · · · eλn




Guy Perrière (BBE) Phylogénie moléculaire 15-17 mai 2018 252 / 270



Annexes Distributions

Variables aléatoires discrètes

Les valeurs prises par les variables sont discrètes.

Leur loi est complètement déterminée par P(X = x ) pour tout
x ∈ Ω, avec : ∑

x∈Ω

P(X = x ) = 1

La fonction de répartition F de X est définie par :

F (x ) = P(X ≤ x )

La moyenne et la variance sont définies par :

E(X ) =
∑

x∈Ω

x P(X = x ) et V(X ) =
∑

x∈Ω

[x − E(X )]2P(X = x )
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Annexes Distributions

Distribution Binomiale

Écriture sous la forme B(n, p), avec n ∈ N et p ∈ [0, 1] les deux
paramètres de la loi.

Loi de probabilité :

P(X = x ) =

(
n

x

)
px (1− p)n−x

=
n!

x !(n − x )!
px (1− p)n−x

avec Ω = [0,n].

Moyenne et variance :

E(X ) = np et V(X ) = np(1− p)
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Annexes Distributions

Exemples numériques
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Annexes Distributions

Distribution Multinomiale

Écriture sous la forme M(n, p1, . . . , pm), avec n ∈ N et pi ∈ [0, 1]
(i = {1, . . . ,m}) les paramètres de la loi.

Loi de probabilité :

P(X1 = x1, . . . ,Xm = xm) = n!

m∏

i=1

pxi
i

xi !

avec Ω = [0,n], sachant que
∑

i xi = n et
∑

i pi = 1.

Moyenne et variance de chaque v.a. :

E(Xi) = npi et V(Xi) = npi(1− pi)
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Annexes Distributions

Distribution de Poisson

Écriture sous la forme P(λ), avec λ ∈ R+∗ le paramètre de la loi.

Loi de probabilité :

P(X = x ) =
λx e−λ

x !

avec Ω = N.

Moyenne et variance :

E(X ) = V(X ) = λ
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Annexes Distributions

Exemples numériques
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Annexes Distributions

Variables aléatoires continues

Les valeurs prises par les variables appartiennent à des ensembles
continus :

La probabilité d’un point est nulle.
Raisonnement en termes d’intervalles :

P(a ≤ X ≤ b) =

∫ b

a

f (x )dx a, b ∈ Ω2

La loi d’une variable continue est définie par sa densité de
probabilité f ou par sa fonction de répartition F :

∫

Ω
f (x )dx = 1 et F (x ) = P(X ≤ x )

La moyenne et la variance sont définies par :

E(X ) =

∫

Ω
x f (x )dx et V(X ) =

∫

Ω
[x − E(X )]2f (x )dx
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Annexes Distributions

Distribution Normale

Écriture sous la forme N (µ, σ2), avec µ ∈ R et σ2 ∈ R+∗ les deux
paramètres de la loi.

Loi de probabilité :

f (x ) =
1

σ
√

2π
exp

{
−(x − µ)2

2σ2

}

avec Ω = R.

Moyenne et variance :

E(X ) = µ et V(X ) = σ2
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Annexes Distributions

Exemples numériques
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Annexes Distributions

Distribution Exponentielle

Écriture sous la forme E(λ), avec λ ∈ R+∗ le paramètre de la loi.

Loi de probabilité :
f (x ) = λe−λx

avec Ω = R+.

Moyenne et variance :

E(X ) =
1

λ
et V(X ) =

1

λ2
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Annexes Distributions

Exemples numériques
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Annexes Distributions

Distribution Gamma

Écriture sous la forme G(α, β), avec α ∈ R+∗ et β ∈ R+∗ les
paramètres de la loi.

Loi de probabilité :

f (x ) =
xα−1e−x/β

Γ(α)βα
avec Γ(α) =

∫ ∞

0
e−t tα−1dt

avec Ω = R+.

Moyenne et variance :

E(X ) = αβ et V(X ) = αβ2
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Annexes Distributions

Exemples numériques
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Annexes Distributions

Distribution du χ2

Écriture sous la forme χ2(k) ou χ2
k , avec k ∈ N∗ le nombre de

d.d.l. de la distribution.

Loi de probabilité :

f (x ) =
x k/2−1e−x/2

2k/2Γ(k/2)

avec Ω = R+.

Moyenne et variance :

E(X ) = k et V(X ) = 2k
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Annexes Distributions

Exemples numériques
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Annexes Distributions

Distribution Uniforme

Écriture sous la forme U(a, b), avec a, b ∈ R2 (a < b) les
paramètres de la loi.

Loi de probabilité :

f (x ) =
1

b − a
∀x ∈ [a, b]

avec Ω = [a, b].

Moyenne et variance :

E(X ) =
a + b

2
et V(X ) =

(b − a)2

12
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Annexes Distributions

Exemples numériques
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Annexes Lectures et Programmes

Lectures conseillées

En français :

Perrière G. et Brochier-Armanet C. (2010) Concepts et Méthodes en
Phylogénie Moléculaire. Springer-Verlag, Paris.

En anglais :

Felsenstein J. (2002) Inferring Phylogenies. Sinauer Associates,
Sunderland.
Graur D. et Li W.H. (2000) Fundamentals of Molecular Evolution.
Sinauer Associates, Sunderland.
Nei M. et Kumar S. (2000) Molecular Evolution and Phylogenetics.
Oxford University Press, New York.
Yang Z. (2006) Computational Molecular Evolution. Oxford
University Press, New York.
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