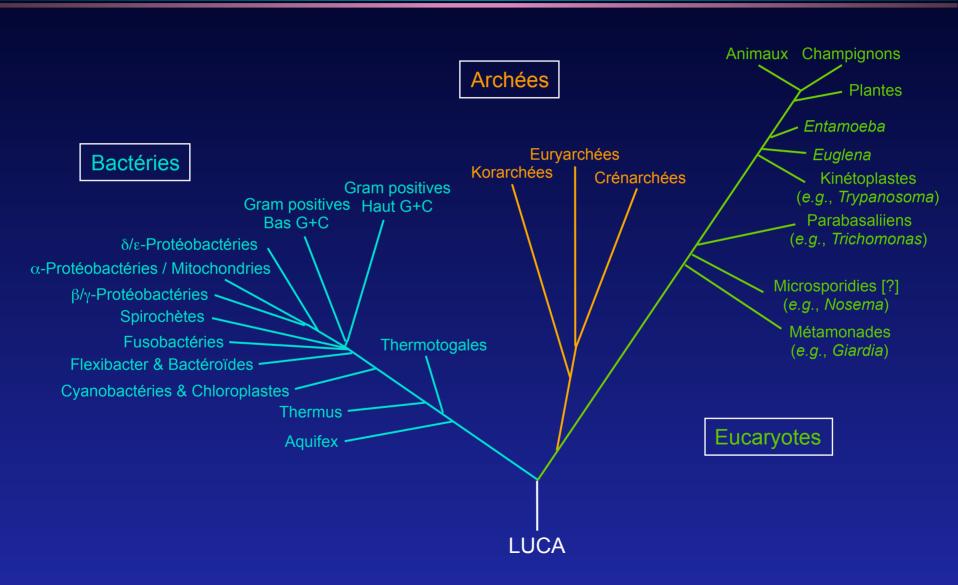
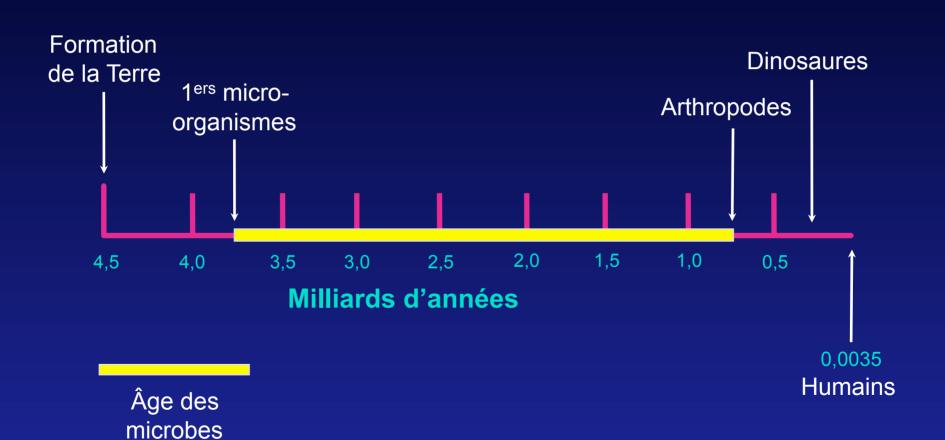
Organisation et fluidité des génomes bactériens

Guy Perrière

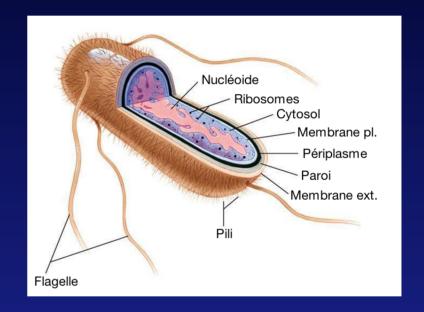
Pôle Rhône-Alpes de Bioinformatique Laboratoire de Biométrie et Biologie Évolutive UMR CNRS 5558

http://pbil.univ-lyon1.fr/members/perriere/cours/MSBM





Les trois domaines du vivant

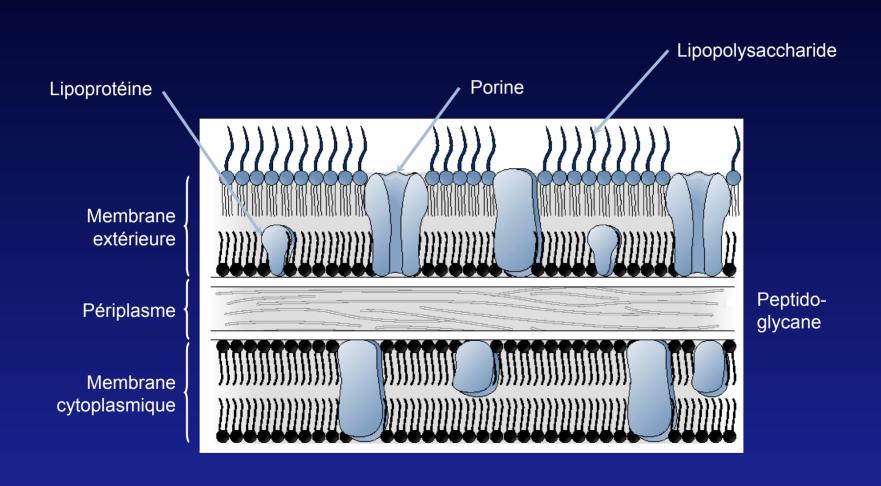


Histoire de la vie sur Terre

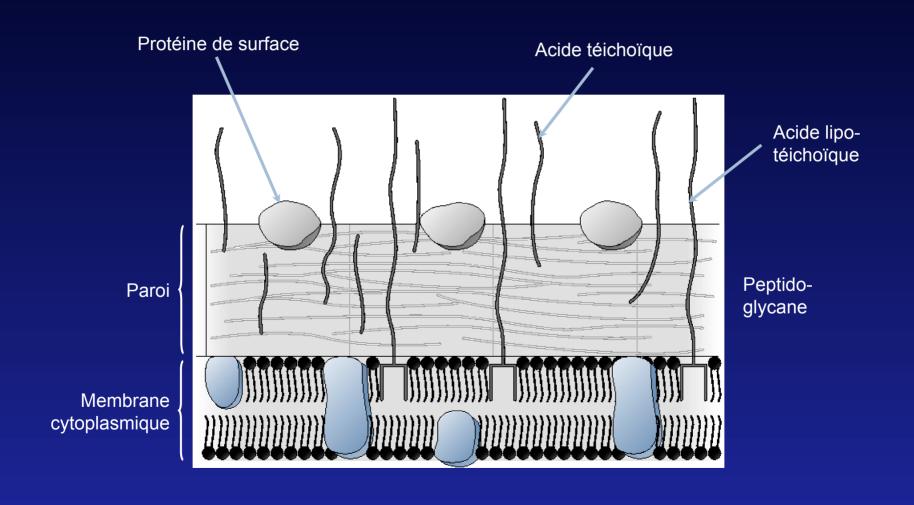
Les procaryotes

- Comprennent les bactéries et les archées :
 - Organisation générale comparable :
 - Organismes unicellulaires dépourvus de noyau.
 - Différences au niveau :
 - Des mécanismes de réplication et de traduction.
 - Des phospholipides de la membrane plasmique.

Structure générale d'une cellule procaryote


Comment les classer

- Critères morphologiques inopérants.
- Pendant longtemps, utilisation de critères biochimiques:
 - Coloration (Gram positives et Gram négatives).
 - Fonctions biochimiques (principe des galeries Api).
- Depuis 1977, utilisation des données de séquences.

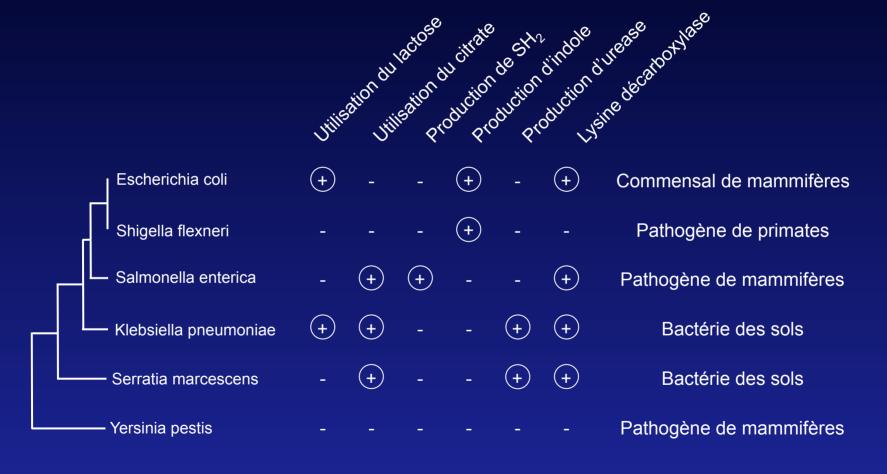

La paroi bactérienne

- La plupart des bactéries possèdent une paroi :
 - Structure de type peptidoglycane (polymère de glucides et d'acides aminés):
 - Organisation différente chez les Gram positives et les Gram négatives.
 - Exceptions:
 - Certaines bactéries du genre Mycoplasma:
 - ✓ Membrane plasmique renforcée.
 - ✓ Vivent dans un mileu où la pression osmotique est faible (hôte).

Paroi des Gram négatives

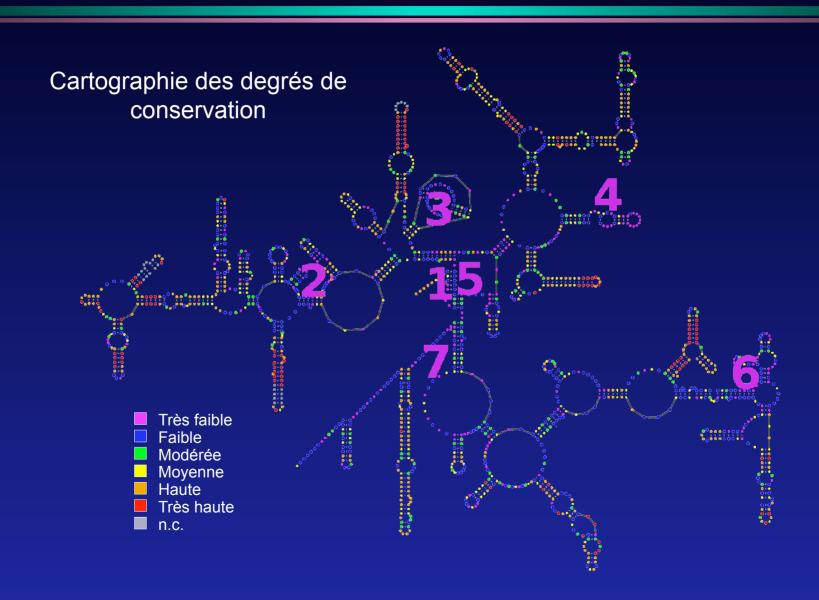
Paroi des Gram positives

Diversité métabolique


- Animaux, plantes et champignons n'utilisent qu'une seule voie pour récupérer le carbone et produire de l'ATP.
- Bactéries et archées utilisent plusieurs voies métaboliques différentes :
 - Sources de carbone organiques ou inorganiques.
 - Production d'ATP par photosynthèse ou par oxydation de composés organiques ou inorganiques :
 - Augmentation de la quantité d'ATP produite en fonction de la différence d'énergie libre (ΔG) entre le donneur et l'accepteur d'electrons.

Donneurs et accepteurs

Donneur	Accepteur	Produit	Catégorie
H ₂ ou composés organiques	SO ₄ ²⁻	SH ₂	Réducteurs de sulfate
H_2	CO ₂	CH ₄	Méthanogènes
CH ₄	O_2	CO ₂	Méthanotrophes
S_2 ou SH_2	O_2	SO ₄ ²⁻	Bactéries sulfureuses
Composés organiques	Fe ³⁺	Fe ²⁺	Réducteurs de fer
NH ₃	O_2	NO ₂ -	Nitrifieurs
Composés organiques	NO ₃ -	N ₂ O, NO or N ₂	Dénitrifieurs (ou réduc- teurs de nitrate)
NO ₂ -	O_2	NO ₃ -	Nitrosifieurs


Bactéries et archées peuvent utiliser différents types de donneurs et d'accepteurs d'electrons

Fonctions et classification

Ochman et al. (2000)

Interêt de l'ARNr 16S

Principaux taxons bactériens

Division	Subdivision	Genres représentatifs		
Protéobactéries	α-Protéobactéries β-Protéobactéries δ-Protéobactéries ε-Protéobactéries γ-Protéobactéries	Agrobacterium, Rickettsia Neisseria, Ralstonia Myxobacterium Helicobacter, Campylobacter Escherichia, Buchnera, Pseudomonas		
Gram positives	Haut G+C Bas G+C	Actinomyces, Streptomyces, Mycobacterium Bacillus, Clostridium, Mycoplasma		
Cyanobactéries et apparentées		Nostoc, Synechocystis		
Spirochète et apparentées	Spirochètes Leptospiras	Treponema, Borrelia Leptonema, Leptospira		
Bactéries vertes sulfureuses		Chlorobium, Chloroherpeton		
Bactéroïdes, Cytophagales et Flavobactéries	Bactéroïdes Flavobactéries	Bacteroides, Fusobacterium Cytophaga, Flavobacterium		
Planctomycètes et apparentées	Groupe des Planctomycètes Groupe des Thermophiles	Planctomyces, Pasteuria, Pirellula Isosphaera		
Chlamydiales		Chlamydia		
Micrococcus radiorésistants et apparentées	Deinococcales Groupe des Thermophiles	Deinococcus Thermus		
Bactéries vertes non sulfureuses	Groupe des Chloroflexus Groupe des Thermomicrobium	Chloroflexus, Herpetosiphon Thermomicrobium		
Aquificales et Thermotogales	Aquificales Thermotogales	Aquifex, Hydrogenobacter Thermotoga, Geotoga, Thermopallium		

Bactéries pathogènes

Espèce	Division	Tissus affectés	Maladie
Chlamydia trachomatis	Chlamydiales	Canal uro-génital, yeux	Infection du tractus génital
Clostridium botulinum	Gram positives	Système nerveux, tractus gastro-intestinal	Botulisme
Clostridium tetani	Gram positives	Système nerveux	Tétanos
Haemophilus influenzae	Protéobactéries	Conduit auditif, système nerveux	Infections de l'oreille, méningites
Mycobacterium tuberculosis	Gram positives	Tractus respiratoire	Tuberculose
Neisseria gonorrhoeae	Protéobactéries	Canal uro-génital	Gonorrhée
Propionibacterium acnes	Gram positives	Peau	Acné
Pseudomonas aeruginosa	Protéobactéries	Canal uro-génital, yeux, conduit auditif	Infections du tractus urinaire, des yeux et de l'oreille
Salmonella enteritidis	Protéobactéries	Tractus gastro-intestinal	Intoxication alimentaire
Streptococcus pneumoniae	Gram positives	Tractus respiratoire	Pneumonie
Streptococcus pyogenes	Gram positives	Tractus respiratoire	Scarlatine
Treponema pallidum	Spirochètes	Canal uro-génital	Syphillis
Vibrio parahaemolyticus	Protéobactéries	Tractus gastro-intestinal	Intoxication alimentaire
Yersinia pastis	Protéobactéries	Lymphe et sang	Peste

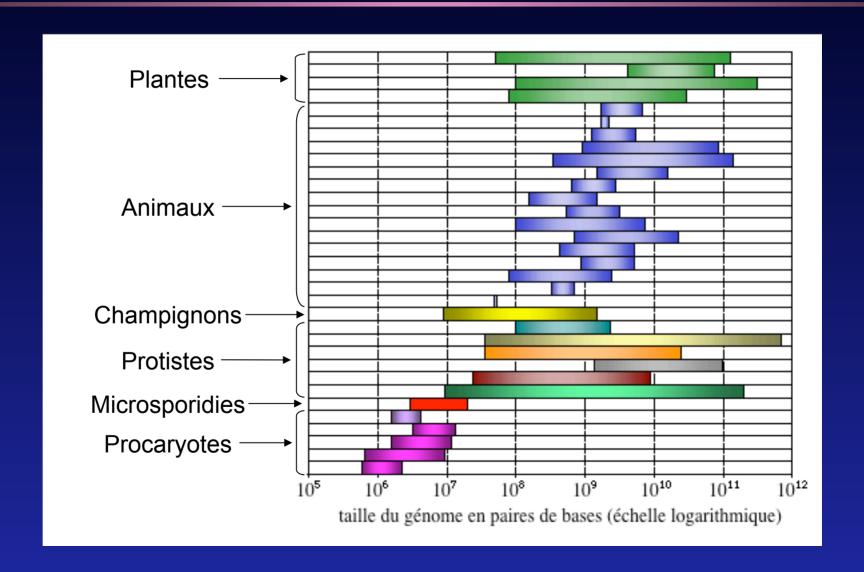
La découverte des archées

- Avant 1977, considérées comme des bactéries.
- Proposition d'un nouveau domaine du vivant par Woese et Fox (1977).
- Les données moléculaires (ARNr 16S/18S) justifient la séparation.
- Confirmation par de nombreuses études au niveau génomique et/ou biochimique.
- Longtemps supposées ne vivre que dans des milieux extrêmes (température, salinité, pH...)

Paroi des archées

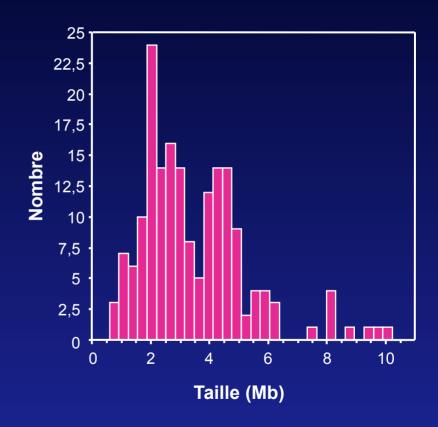
- Structure particulière de la paroi :
 - Pas de peptidoglycane.
 - Diglycérides-phosphates membranaires spécifiques :
 - L-Glycérol-3-phosphate au lieu de D-Glycérol.
 - Isoprènes au lieu d'acides gras.
 - Liaisons avec le glycérol de type ether au lieu d'ester.

Archées Bactéries

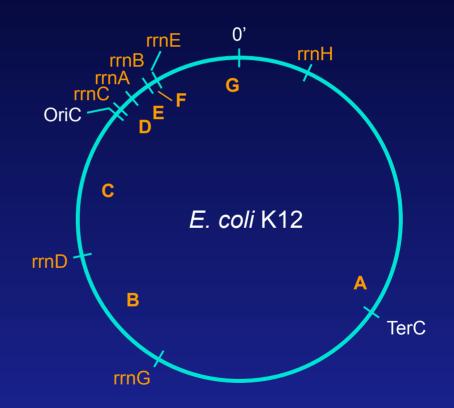

Principaux taxons archéens

Division	Subdivision	Genres représentatifs
Crénarchées	Thermoprotéales Sulfolobales Désulfurococcales Cénarchéales Caldisphérales	Thermoproteus, Pyrobaculum, Thermofilum Sulfolobus, Acidianus Aeropyrum, Desulfurococcus Cenarchaeum Caldisphaera
Euryarchées	Méthanobactériales Méthanococcales Halobactériales Thermoplasmatales Thermococcales Archaéoglobales Méthanopyrales Méthanomicrobiales Méthanosarcinales	Methanobacterium, Methanothermobacter Methanococcus, Methanothermococcus Halobacterium, Halococcus Thermoplasma, Ferroplasma Pyrococcus, Thermococcus Archaeoglobus Methanopyrus Methanogenium Methanosarcina, Methanococcoides
Thaumarchées [?]		Cenarchaeum
Nanoarchées [?]		Nanoarchaeum
Korarchées [?]		Candidatus

Archées pathogènes?


- Aucune archée pathogène (humain ou animal) décrite à ce jour.
- De nombreuses archées méthanogènes sont des commensaux des mammifères.
- Certaines d'entre elles possèdent des homologues de gènes impliqués dans la pathogénicité chez les bactéries :
 - Systèmes de sécrétion.
 - Synthèse de toxines.

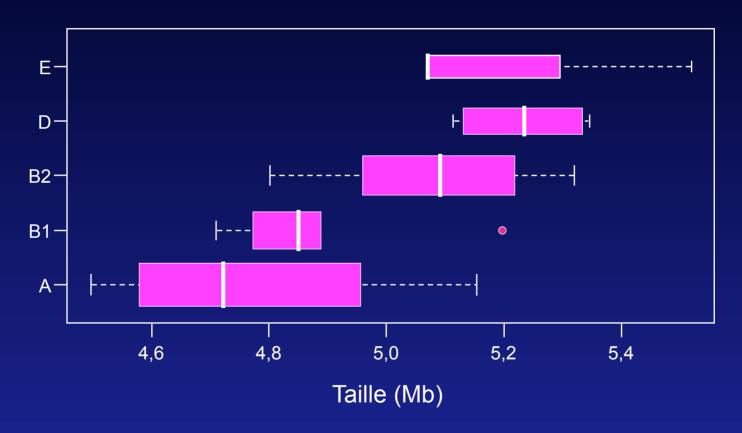
Taille des génomes


Génomes bactériens

- La variabilité de la taille est grande :
 - Le plus petit : *Carsonella ruddii* (0,16 Mb).
 - Le plus grand : *Sorangium cellulosum* (13,0 Mb).
- Parasites et symbiotes ont un génome plus petit que les bactéries cultivables :
 - Perte de nombreux gènes liés à des voies de biosynthèse.

Polymorphisme de la taille

- Étudié chez Escherichia coli :
 - Variation entre 4,5 Mb et 5,5 Mb pour les différentes souches.
 - Étude à l'aide de l'enzyme I-*Ceu*I spécifique des gènes *rrn*.
 - Équidistance entre TerC et OriC de chaque côté du chromosome.



Résultats

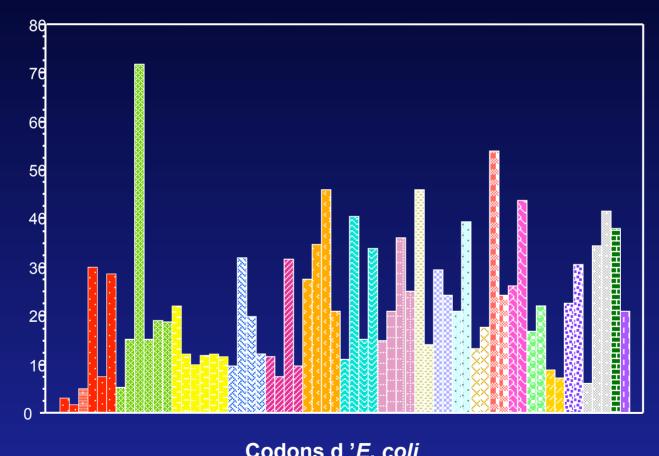
Groupe	Souche	Hôte (sexe)	Localisation	А	В	С	D	Е	F	G
А	ECOR4	Humain (F)	lowa	2585	707	527	90	166	38	608
Α	ECOR5	Humain (F)	Iowa	2940	743	515	90	128	38	699
Α	ECOR11	Humain (F)	Suède	2750	824	556	90	128	38	735
Α	ECOR13	Humain (F)	Suède	2485	680	515	90	128	38	639
Α	ECOR14	Humain (F)	Suède	2645	735	608	90	128	38	707
Α	ECOR15	Humain (F)	Suède	2690	735	575	90	138	38	639
Α	ECOR18	Macaque	Washington	2510	699	515	90	122	38	608
Α	ECOR19	Macaque	Washington	2480	699	527	90	122	38	639
Α	ECOR20	Bœuf	Bali	2505	654	480	90	122	38	608
Α	ECOR21	Bœuf	Bali	2505	654	480	90	122	38	608
Α	ECOR23	Eléphant	Washington	2675	807	532	90	138	38	680
B1	ECOR27	Girafe	Washington	2600	707	515	90	143	38	616
B1	ECOR28	Humain (F)	lowa	2620	743	527	94	128	38	639
B1	ECOR29	Rat kangourou	Nevada	2610	787	527	94	138	38	639
B1	ECOR34	Chien	Massachusetts	2500	790	515	94	138	38	680
B1	ECOR58	Lion	Washington	2700	743	515	94	136	38	639
B1	ECOR68	Girafe	Washington	2745	843	532	94	138	38	807
B1	ECOR71	Humain (F)	Suède	2650	771	547	90	138	38	654
B1	ECOR72	Humain (F)	Suède	2635	771	532	94	138	38	680
B2	ECOR51	Humain (enfant)	Massachusetts	2750	810	550	112	138	38	810
D	ECOR39	Humain (F)	Suède	2780	787	581	104	143	38	713
D	ECOR40	Humain (F)	Suède	2845	807	616	104	143	43	787
E	ECOR31	Léopard	Washington	2775	743	547	94	138	38	735
E	ECOR37	Marmouset	Washington	3100	787	581	94	175	38	743
E	ECOR42	Humain (M)	Massachusetts	2735	743	616	94	143	38	699

Taille des fragments (A-G) en kb

Variations par sérogroupe

Distributions de tailles au sein des cinq sérogroupes d'E. coli

Le code génétique standard


II	U	С	Α	G	III
	UUU Phe F	UCU Ser S	UAU Tyr Y	UGU Cys C	Ū
u	UUC Phe F	UCC Ser S	UAC Tyr Y	UGC Cys C	С
	UUA Leu L	UCA Ser S	UAA Stop	UGA Stop	A
	UUG Leu L	UCG Ser S	UAG Stop	UGG Trp W	G
	CUU Leu L	CCU Pro P	CAU His H	CGU Arg R	υ
С	CUC Leu L	CCC Pro P	CAC His H	CGC Arg R	С
	CUA Leu L	CCA Pro P	CAA Gln Q	CGA Arg R	A
	CUG Leu L	CCG Pro P	CAG Gln Q	CGG Arg R	G
	AUU Ile I	ACU Thr T	AAU Asn N	AGU Ser S	Ū
Α	AUC Ile I	ACC Thr T	AAC Asn N	AGC Ser S	С
 ^	AUA Ile I	ACA Thr T	AAA Lys K	AGA Arg R	A
	AUG Met M	ACG Thr T	AAG Lys K	AGG Arg R	G
	GUU Val V	GCU Ala A	GAU Asp D	GGU Gly G	U
G	GUC Val V	GCC Ala A	GAC Asp D	GGC Gly G	С
	GUA Val V	GCA Ala A	GAA Glu E	GGA Gly G	A
	GUG Val V	GCG Ala A	GAG Glu E	GGG Gly G	G

Biais au niveau d'un gène

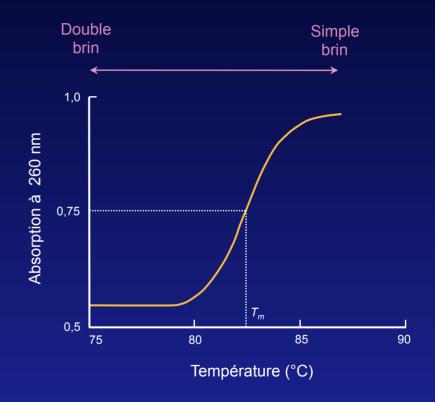
```
UUU Phe
               UCU Ser
                               UAU Tyr
                                              UGU Cys
          6
                         5
                                         4
                                         12
UUC Phe
          10
               UCC Ser
                               UAC Tyr
                                              UGC Cys
                                                        3
UUA Leu
          8
                               UAA Ter
                                              UGA Ter
               UCA Ser
                         8
                                                        *
UUG Leu
          6
               UCG Ser
                         10
                               UAG Ter
                                              UGG Trp
                                                        12
                               CAU His
CUU Leu
               CCU Pro
                                         2
                                              CGU Arq
                               CAC His
                                         3
                                              CGC Arq
CUC Leu
               CCC Pro
                                                        6
                               CAA Gln
CUA Leu
               CCA Pro
                         4
                                              CGA Arq
                                                        6
CUG Leu
               CCG Pro
                         3
                               CAG Gln
                                         9
                                              CGG Arg
                                                        3
               ACU Thr
AUU Ile
                         11
                                         2
                                              AGU Ser
                               AAU Asn
                                                        4
               ACC Thr
                               AAC Asn
                                        15
AUC Ile
          8
                         5
                                              AGC Ser
                                                        3
AUA Ile
               ACA Thr
                               AAA Lys
                                        5
                                                        3
                                              AGA Arg
AUG Met
               ACG Thr
                         6
                               AAG Lys
                                         9
                                              AGG Arg
                                                        4
                                              GGU Gly
                                                        15
GUU Val
          8
               GCU Ala
                         6
                               GAU Asp
                                         8
GUC Val
                         12
                                         5
                                              GGC Gly
               GCC Ala
                               GAC Asp
                                                        6
                               GAA Glu
GUA Val
               GCA Ala
                                         5
                                              GGA Gly
                                                        2
GUG Val
               GCG Ala
                         10
                               GAG Glu
                                         12
                                              GGG Gly
                                                        5
```

Protéine A du phage MS2 (Fiers *et al.*, 1975)

Biais au niveau d'un génome

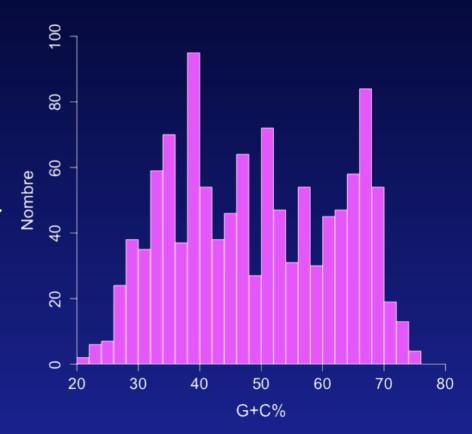
Fréquence (x 1000)

Gln Arg His Leu Glu Asp Pro Tyr Cys Phe lle Met

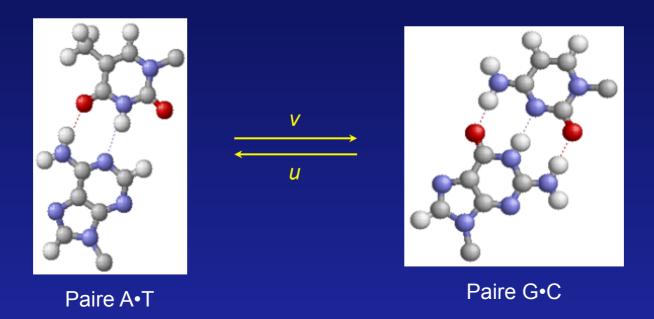

Codons d'E. coli

Facteurs connus

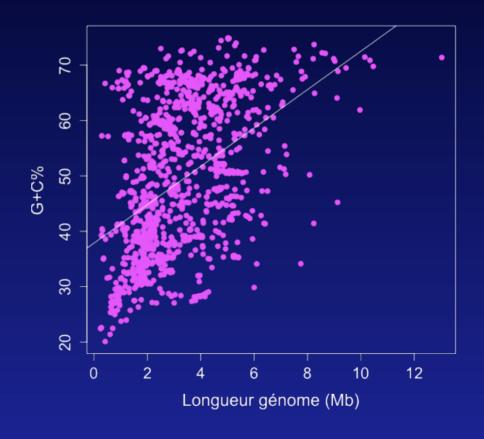
- Les facteurs influençant la composition en codons chez les bactéries sont multiples :
 - Contenu global en G+C du génome.
 - Sélection traductionnelle.
 - Localisation sur l'un ou l'autre des deux brins du chromosome.
 - Distance à l'origine de réplication.
 - Transferts horizontaux.


Contenu global en G+C

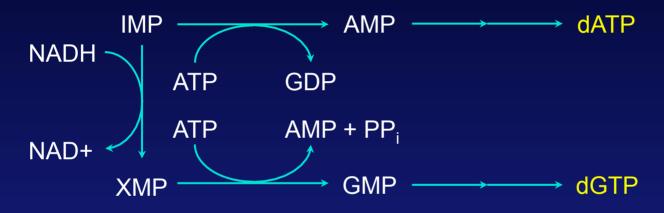
- Calculé en pourcentage de bases G+C :
 - Constitue une des premières mesures moléculaires appliquée à la systématique.
- Méthodes de dénaturation par la chaleur :
 - Mesure de la variation de l'absorption UV en fonction de la température.
 - La valeur du T_m est linéairement proportionnelle au G+C% de l'organisme.


Distribution

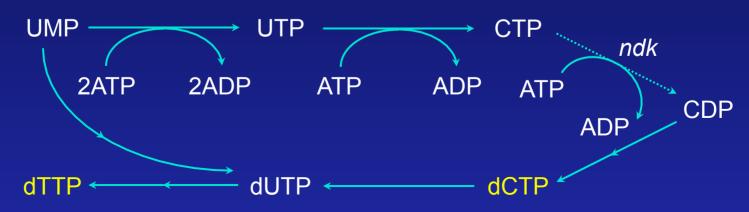
- Mesure faite sur 1160 bactéries.
- Minimum : Buchnera aphidicola (20%).
- Maximum : *Micrococ-cus luteus* (77%).
- Variations de 5 % et 10 % au sein d'une espèce et d'un genre.


Source de la variation

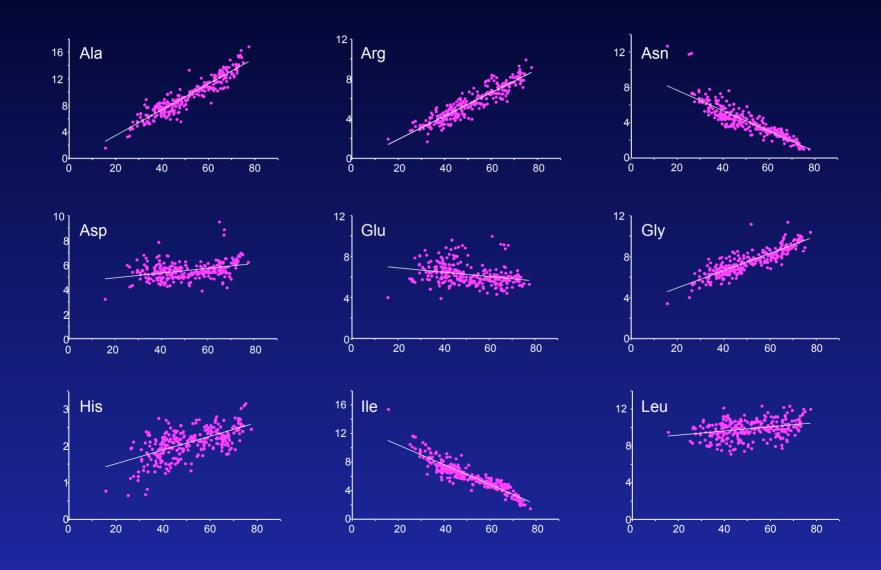
- Différences de pression de mutation entre les paires A•T et G•C.
- Le ratio u/v est différent d'une espèce à l'autre :
 - Distribution observée chez les bactéries.

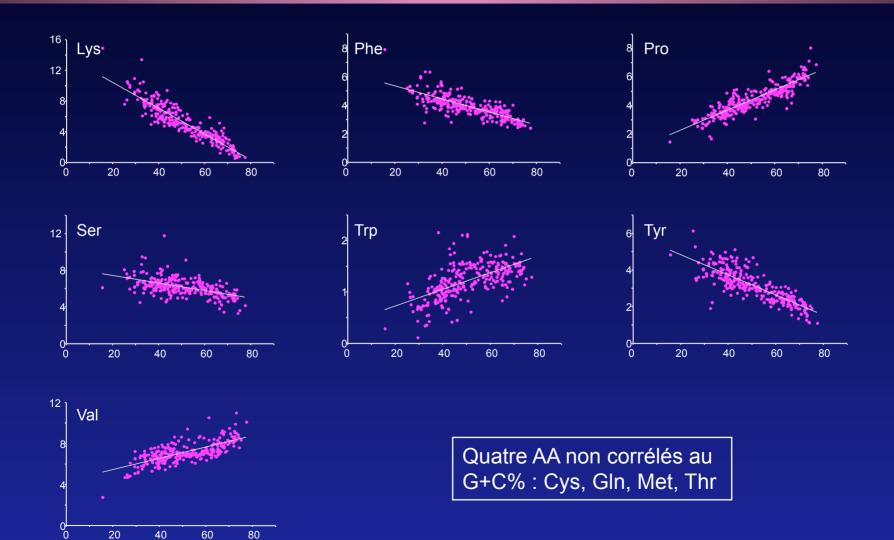

G+C et taille des génomes

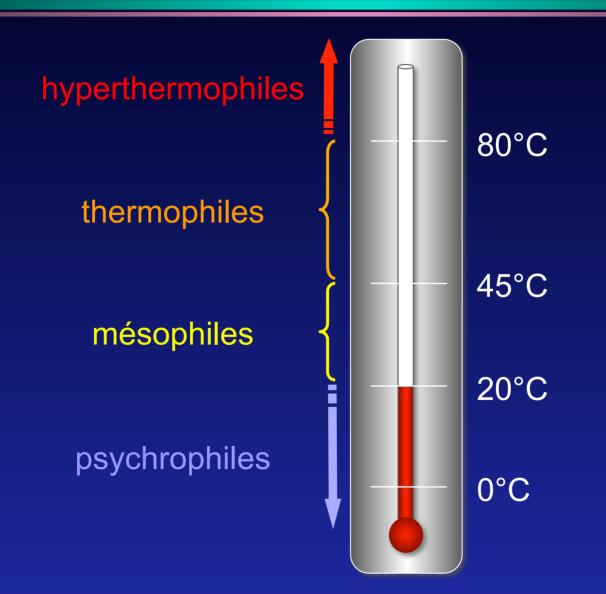
- Corrélation taille génome vs. G+C%.
- Génomes de parasites et de symbiotes :
 - Perte d'au moins un mécanisme de réparation :
 - Dérive mutationnelle vers A+T.
 - Accessibilité plus réduite aux dNTP « coûteux ».

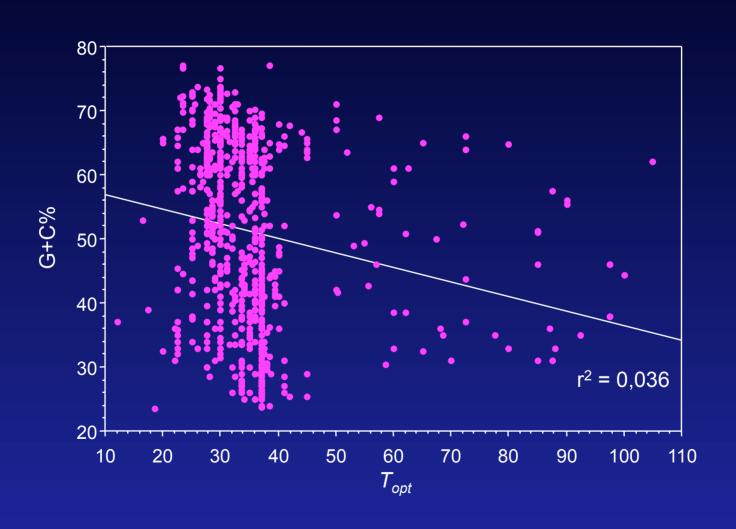


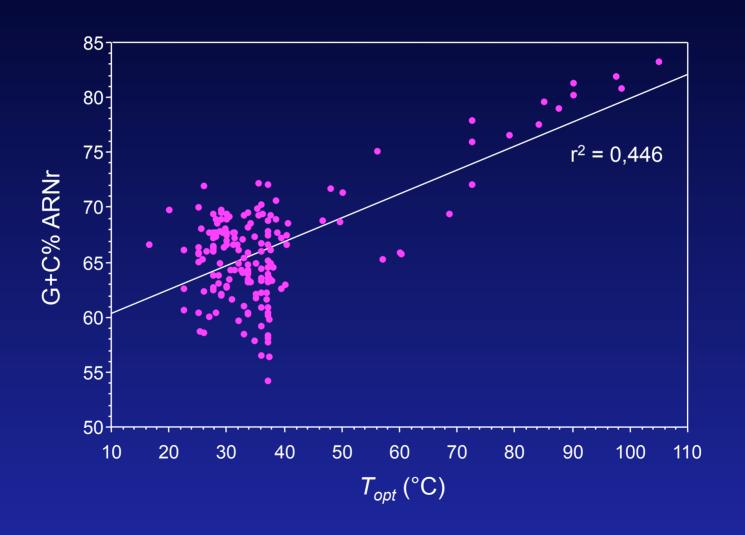
Biosynthèse des dNTP

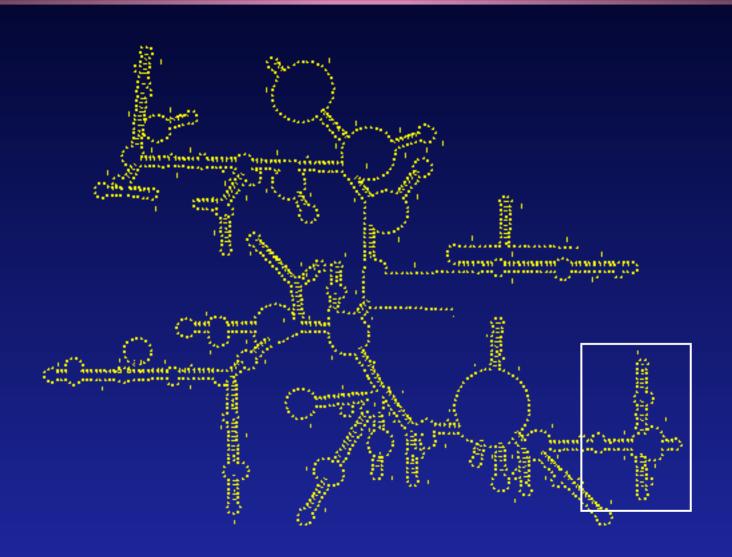

Purines:

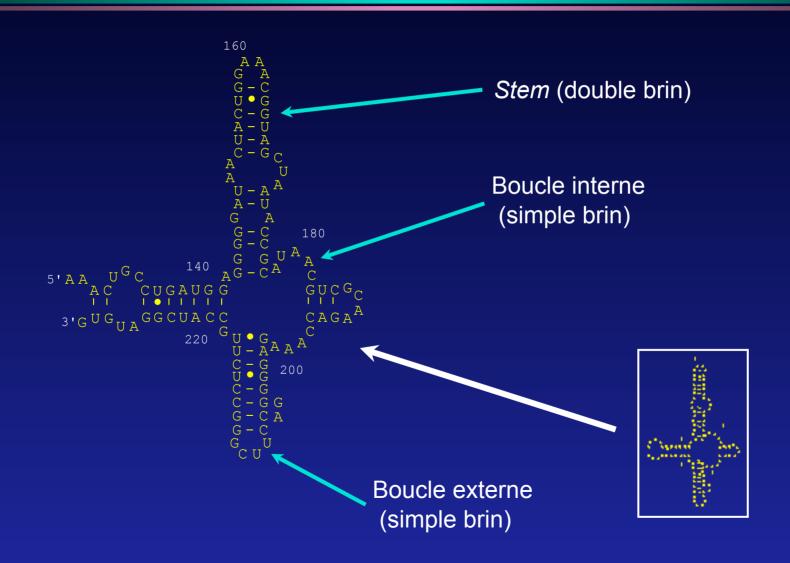

Pyrimidines:


G+C et contenu en AA

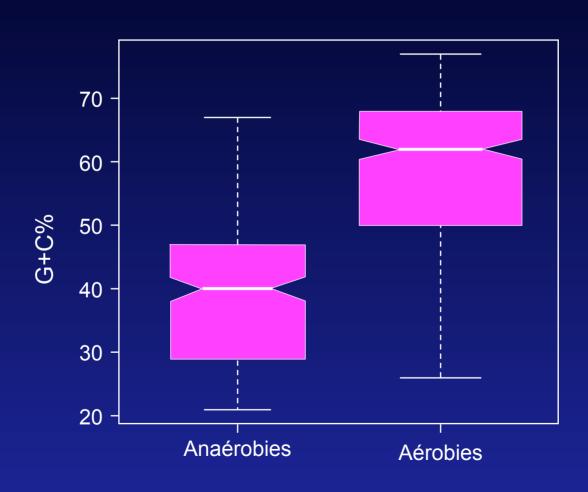

G+C global et contenu en AA


Température de croissance


Pas de lien G+C% / Topt


Relation G+C% ARNr / Topt

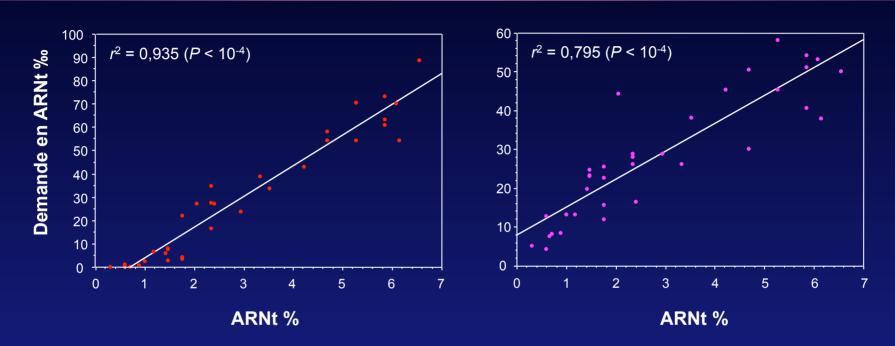
Structure de l'ARNr 16S


Structure de l'ARNr 16S

Le biais hyperthermophile

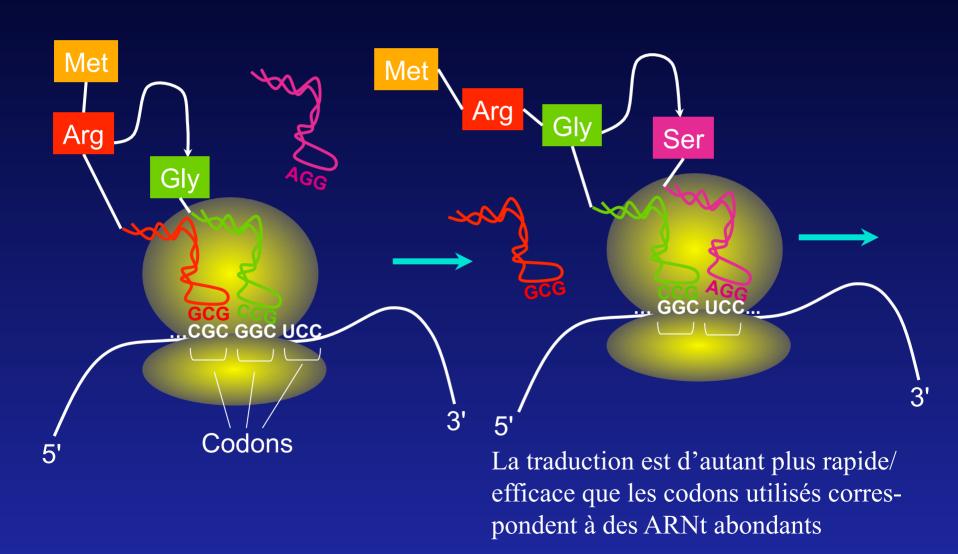
- La structure secondaire des ARNr est indispensable à leur fonction.
- Les régions appariées sont d'autant plus stables qu'elles sont riches en G+C :
 - Trois liaisons H au lieu de deux.
 - Enrichissement en G+C chez tous les organismes hyperthermophiles :
 - Existence d'un biais de composition en bases uniquement au niveau des structures de l'ARNr.

Relation G+C% / aérobiose

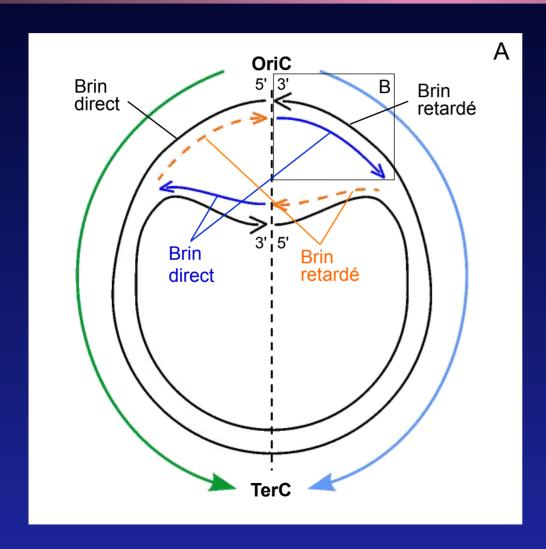


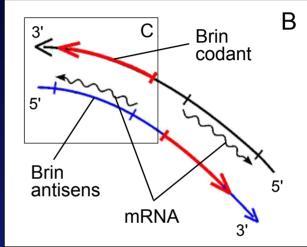
Fréquences des ARNt

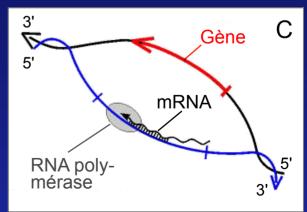
AA	Codon	Anti- codon	ARNt %	AA	Codon	Anti- codon	ARNt %
Arg	CGH CGG AGR	ICG idem idem	5.25 0.64 0.70	Val Lys	GUY GUD AAR	GAC UAC UUU	2.33 6.12 5.83
Leu	CUY CUA CUG UUR	GAG idem CAG AAA	1.75 0.58 5.83 1.46	Asn Gln	AAY CAA CAG	QUU UUG CUG	3.50 1.75 2.33
Ser	UCY UCD AGY	GGA UGA GCU	2.39 1.46 1.46	His Glu Asp	CAY GAR GAY	QUG UUC QUC	2.335.254.67
Thr	ACY ACR	GGU UGU	4.67 1.40	Tyr Cys	UAY UGY	QUA GCA	2.92 1.17
Pro	CCY CCR	GGG UGG	0.99 3.32	Phe lle	UUY AUY	GAA GAU	2.04 5.83
Ala	GCY GCD	GGC UGC	4.20 6.06	Met	AUA AUG	NAU CAU	0.29 1.75
Gly	GGY GGA GGG	GCC UCC CCC	6.53 0.88 0.58	Trp	UGG	CCA	1.75

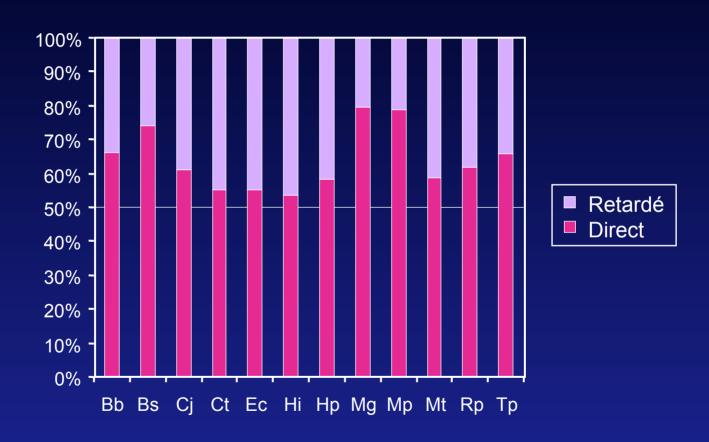

 $Q = Quosine, I = Inosine, R = {A, G}, Y = {C, U}, D = {A, G, U}, H = {A, C, U}$

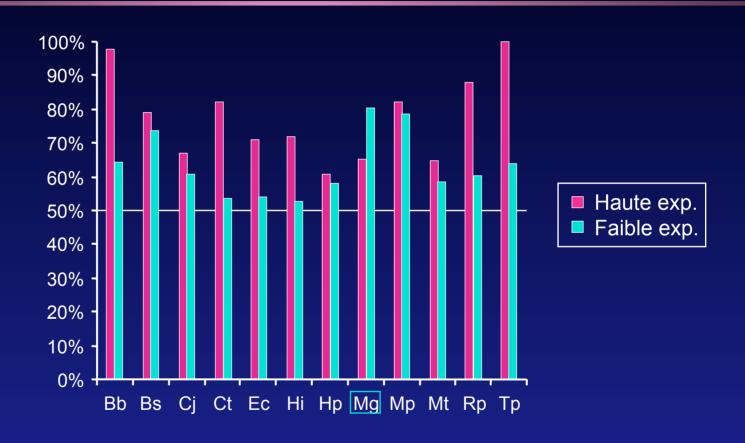
Demande en ARNt



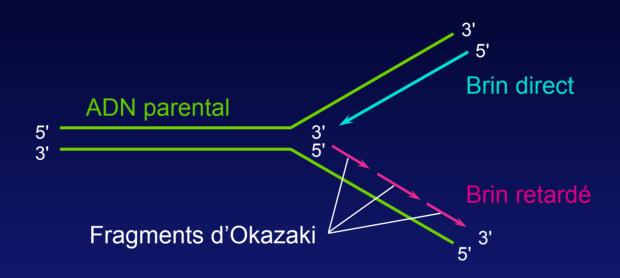

- La demande au niveau des gènes et la fréquence relative en ARNt sont corrélées positivement :
 - Cette corrélation est d'autant plus forte que les gènes sont hautement exprimés.


Sélection traductionnelle

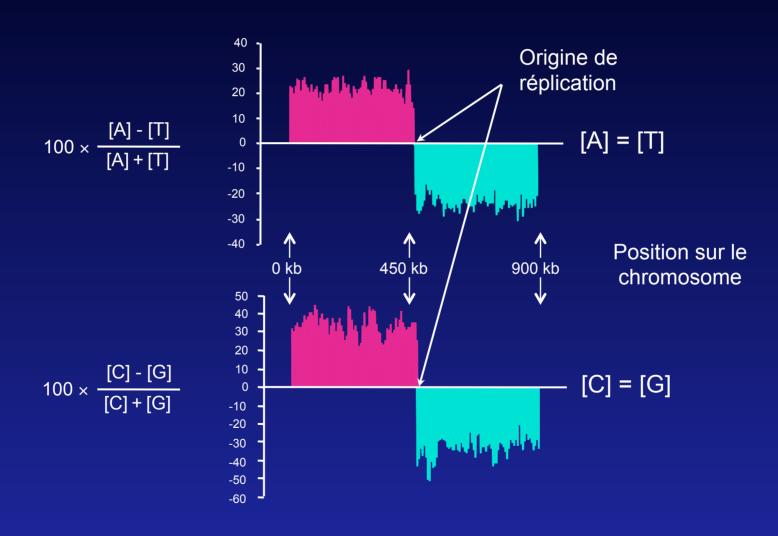

Réplication et transcription



Distribution des gènes


Les gènes sont plus souvent localisés sur le brin direct

Localisation et expression


Le biais est plus fort pour les gènes hautement exprimés

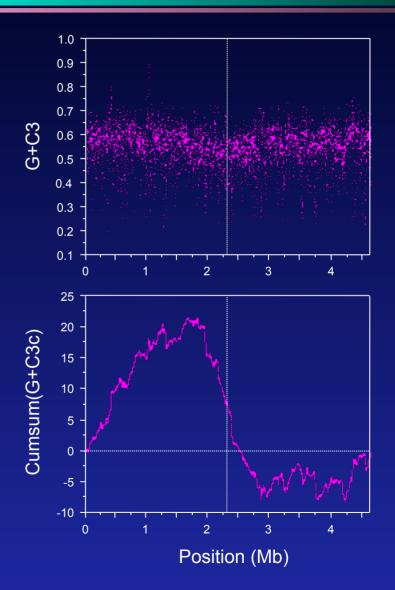
Différence entre les deux brins

- Le brin direct et le brin retardé sont répliqués de façon différente :
 - Il existe une asymétrie de composition en base entre les deux brins chez la plupart des bactéries.
 - Cette asymétrie est très marquée chez certaines espèces.

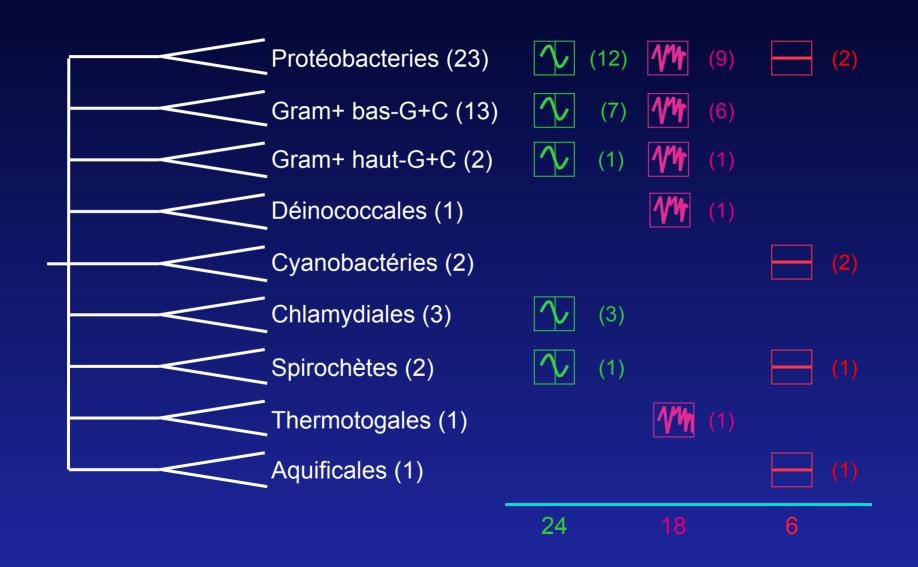
Asymétrie chez B. burgdorferi

Origine du biais

- Mutations spontanées C → U par déamination des cytosines.
- Phénomène plus fréquent dans l'ADN simple brin (accessibilité au solvant):
 - Le brin direct se retrouve fréquemment non apparié du fait du mécanisme de réplication :
 - Enrichissement concomittant en Thymine après réparation.

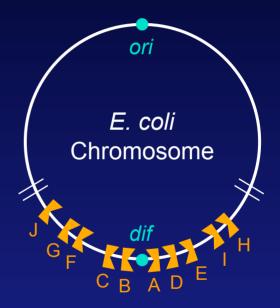

Contenu en G+C3

- Contenu en G+C3 d'un gène :
 - Pourcentage en bases G+C en position III des codons :
 - Valeur brute (G+C3).
 - Centrage par la moyenne (G+C3c).
 - La position III est le plus souvent conservatrice en cas de mutation ponctuelle :
 - Pas de changement de l'acide aminé codé dans 62,5 % des cas (composition uniforme).
 - La plasticité joue essentiellement sur cette position.


Effet de la localisation

La variation des valeurs « brutes » du G+C3 le long du chromosome d'*E. coli* n'est pas significative

L'utilisation des valeurs centrées / cumulées (G+C3c) révèle une structuration du génome



Répartition phylogénétique

Le terminus d'E. coli

- La région du terminus contient dix sites *ter* (A-J):
 - Combinaison à la protéine Tus :
 - Inhibition de l'action des hélicases de manière polaire.
 - Les deux fourches de réplication se rejoignent au niveau du site *dif*.
 - Résolution des dimères.

Localisation et polarité des dix sites *ter* d'*E. coli*

Réparation des lésions

- Quand le complexe atteint une lésion, la réplication s'arrête :
 - Recul de la fourche.
 - Formation d'une jonction de Holliday sous l'action des hélicases RecG et PriA :
 - Réparation par recombinaison homologue.
- Dans la région du terminus, les complexes ter/Tus inhibent l'action des hélicases!
 - Réparation par le mécanisme de translétion.

La translétion

- Réalisée par l'intermédiaire des polymérases SOS (polIII et polIV).
- Introduction systématique de dAMP (*A-rule*) aux sites abasiques.
- Enrichissement en A+T de régions n'utilisant pas la réparation par recombinaison :
 - Cas des séquences au voisinage du terminus de réplication.

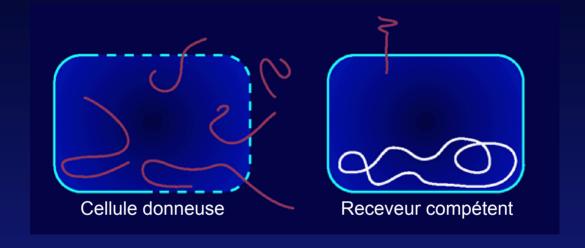
```
5'A-G-C-C-T3'
3'T-C-G-G-A5'
          Délétion
5'A-G-C-C-T3'
3'T-C- -G-A5'
5'A-G-C-C-T3'
3'T-C-A-G-A5'
5'A-G-T-C-T3'
3'T-C-A-G-A5'
```

Transferts horizontaux

- Se définissent comme étant le passage direct de l'ADN d'un génome à un autre.
- Semblent toucher l'ensemble des organismes vivants.
- La plupart des études ont été réalisées chez les bactéries :
 - Raisons historiques (Griffith, 1928).
 - Motivations d'ordre médical et économique :
 - Acuisition de pathogénicité et/ou de résistances.

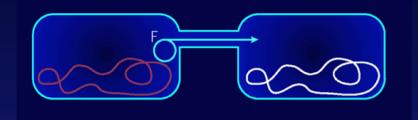
Conditions nécessaires

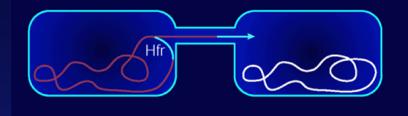
- Proximité entre le donneur et l'accepteur.
- Stabilité de l'ADN dans l'environnement :
 - Utilisation d'un vecteur de transmission.
- Capture par l'hôte suivi d'une insertion.
- Maintient de l'ADN incorporé :
 - Avantage sélectif procuré.


Protections / limitations

- Instabilité de l'ADN internalisé.
- Systèmes de restriction / modification.
- Incompatibilité compositionnelle (G+C, composition en codons).
- Pas de régions recombinantes suffisamment longues.

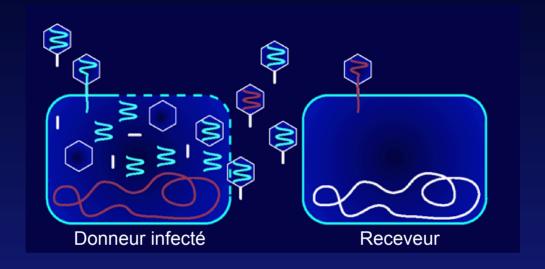
Cas connus


- Gènes plasmidiques de résistance aux antibiotiques et aux toxines.
- Séquences d'insertion (IS).
- Ilôts de pathogénicité.
- Plasmide Ti d'Agrobacterium tumefasciens.
- Phages et pseudo-phages.
- Transfert depuis des génomes d'organites (mitochondrie, chloroplaste) vers le noyau.


La transformation

- Capture par la cellule de fragments d'ADN nu présents dans le milieu.
- La transformation naturelle est restreinte à certaines espèces bactériennes « compétentes » :
 - Présence des gènes $com \approx 10$.

La conjugaison

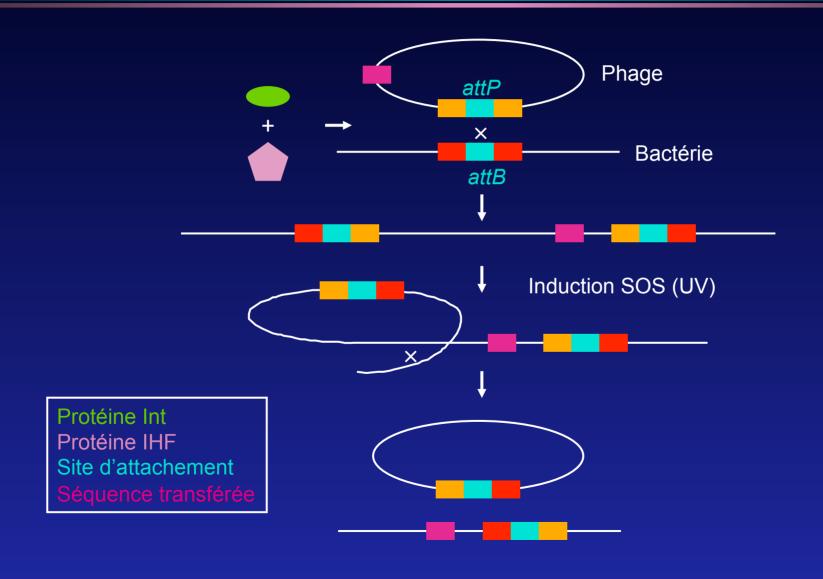


Évènement fréquent

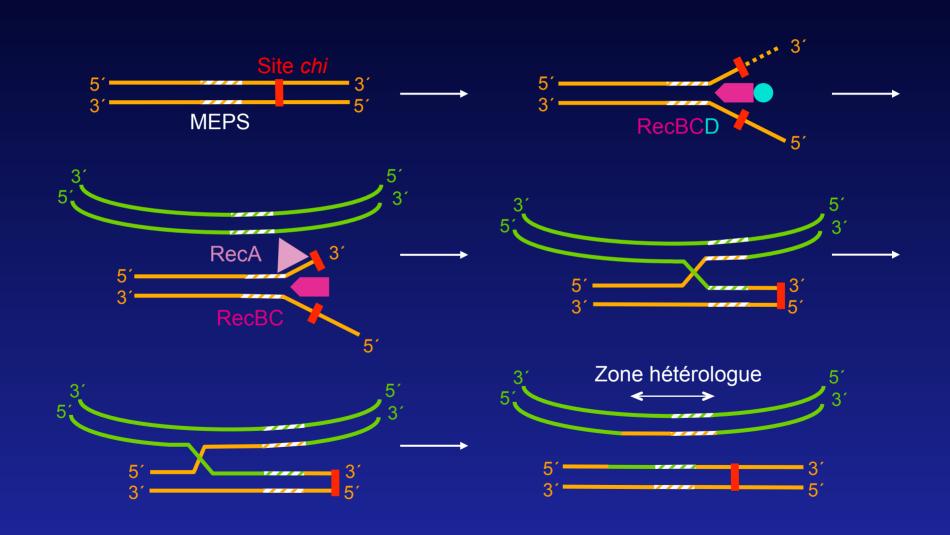
Évènement rare

- Transfert par l'intermédiaire d'un plasmide conjugatif (*e.g.*, le plasmide *F* chez *E. coli*).
- La conjugaison serait le mécanisme le plus courant d'échange d'ADN entre organismes distants.

La transduction



- Transfert d'ADN par l'intermédiaire de bactériophages.
- Implique généralement des bactéries appartenant à des espèces proches (spécificité d'hôte):
 - Certains phages $(e.g., \mu)$ possèdent un large spectre.


Intégration des séquences

- L'intégration des fragments exogènes est rendue possible par différents mécanismes :
 - Recombinaison site-spécifique.
 - Recombinaison générale homologue :
 - Recombinaison réciproque.
 - Recombinaison non réciproque.
- Contribution à la divergence des génomes :
 - Chez *E. coli*, effet 50 fois plus important que la mutagenèse.

Recombinaison site-spécifique

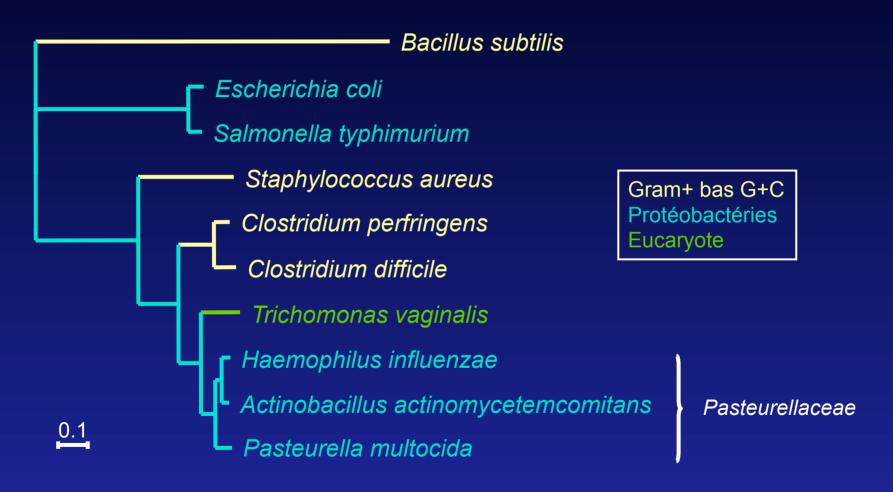
Recombinaison réciproque

Les zones MEPS

- Zones homologues minimales nécessaire à l'amorçage de la recombinaison (*Minimum Efficient Processing Segment*):
 - Doivent présenter une forte similarité entre l'ADN endogène et exogène.
 - Longueur dépendante des mécanismes de réparation des mésappariements existant chez l'hôte :
 - $-E.\ coli: 23-27\ pb.$
 - -B. *subtilis* : ≈ 70 pb.

Rôle des sites chi

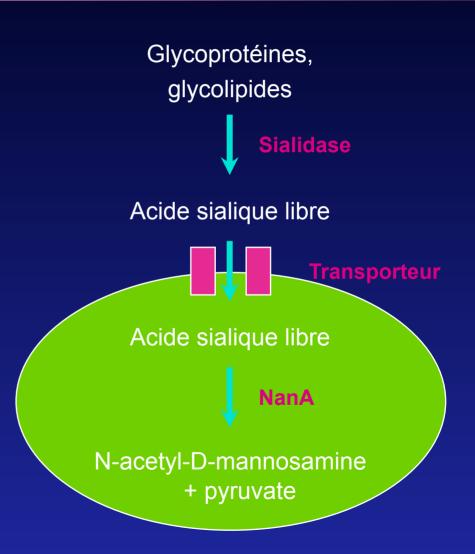
- Séquences d'ADN courtes (10 pb) stimulant la recombinaison.
- Permettent le démarrage de la recherche des zones MEPS par la protéine RecA.
- Une région comprenant une zone MEPS et un site *chi* peut recombiner.
- Leur présence peut permettre de confirmer l'existence d'un transfert horizontal.
- Connus dans un petit nombre d'espèces.

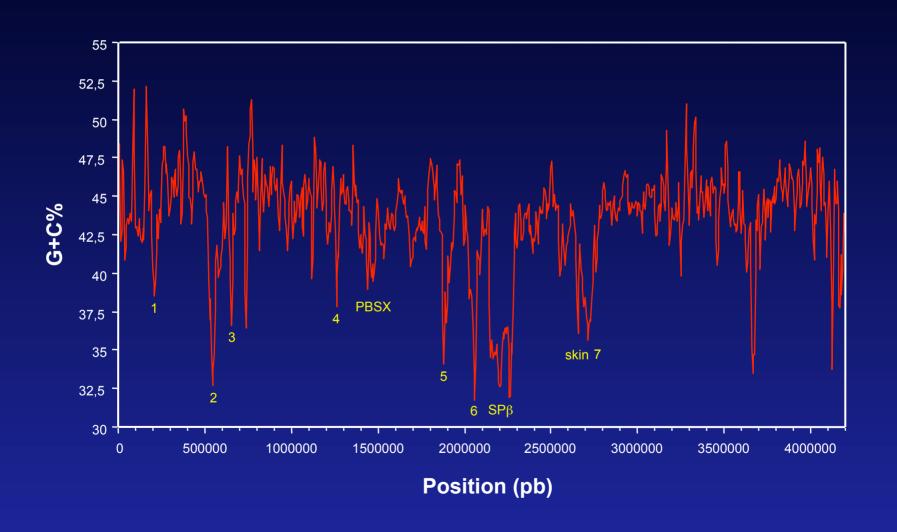

Transferts et pathogénicité

- Transposons :
 - Gènes de l'entérotoxine ST d'*E. coli*.
- Prophages:
 - Toxines de l'*E. coli* entéro-hémorragique.
 - Gènes de la toxine diphtérique ou du choléra.
 - Toxines botuliniques.
- Plasmides:
 - Shigella, Salmonella, Yersinia.
- Ilôts de pathogénicité :
 - E. coli uropathogène, S. typhimurium, Yersinia, H. pylori, V. cholerae.

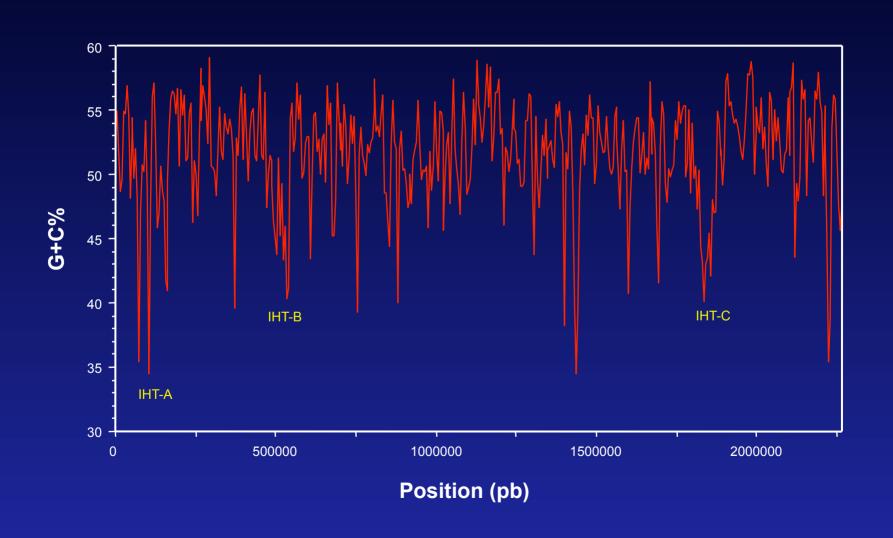
Méthodes de détection

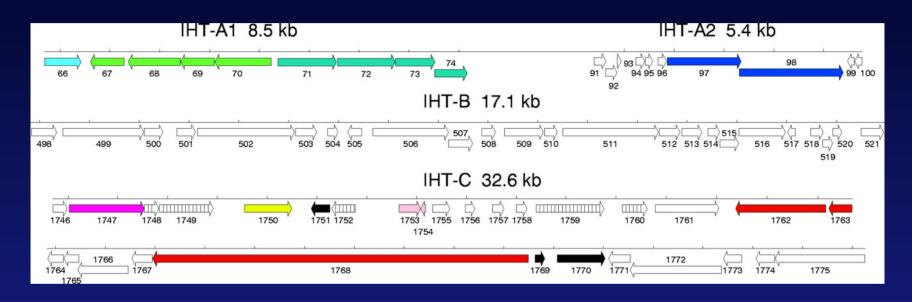
- Plus grande similitude des séquences avec un organisme distant qu'avec un organisme proche du point de vue taxonomique.
- Composition en nucléotides des gènes ou des génomes :
 - Une région transférée présentera des valeurs significativement différentes de celle des régions « natives » :
 - Nécessité de prendre en compte les facteurs non liés aux transferts intervenant dans la plasticité des génomes.


Transfert bactérie-eucaryote


Phylogénie de la *N*-acetylneuraminate lyase (NanA)

NanA et pathogénicité?


- Chez les Pasteurellacées :
 - Parasitage des muqueuses des animaux :
 - Proxilité physique entre *T.* vaginalis et les bactéries
 considérées.
- T. vaginalis connue pour sa capacité à phagocyter les bactéries.
- Transfert responsable de l'acquisition de la pathogénicité?


Profil en G+C chez B. subtilis

Profil chez N. meningitidis

Les ilôts de N. meningitidis

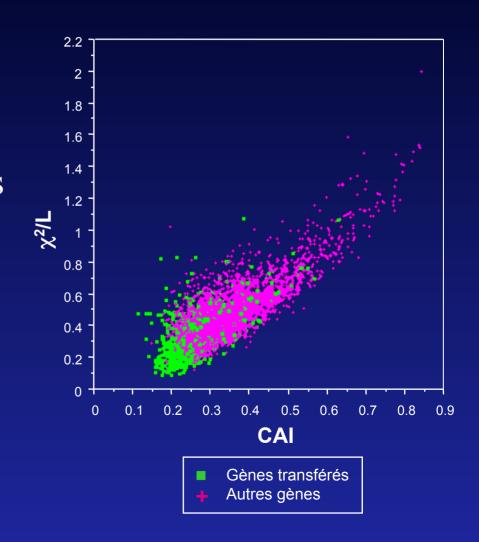
IHT-A1

66 : adénine rRNA méthylase, 67-70 : protéines de biosynthèse de la capsule, 71-74 : protéines d'exportation de la

capsule

IHT-A2

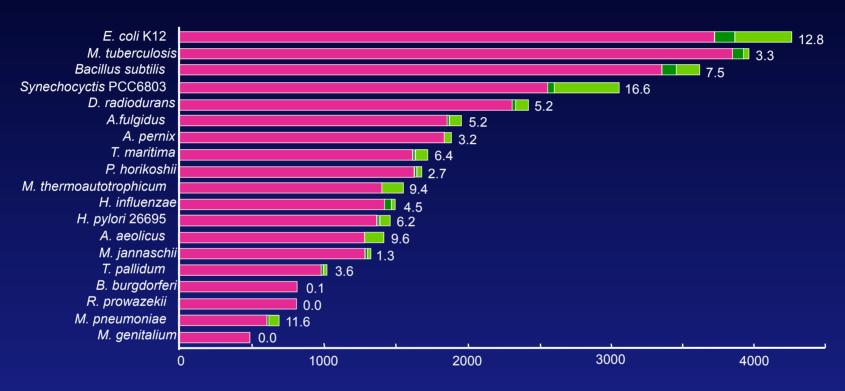
97 : protéine de sécrétion, 98 :


transporteur ABC

IHT-C

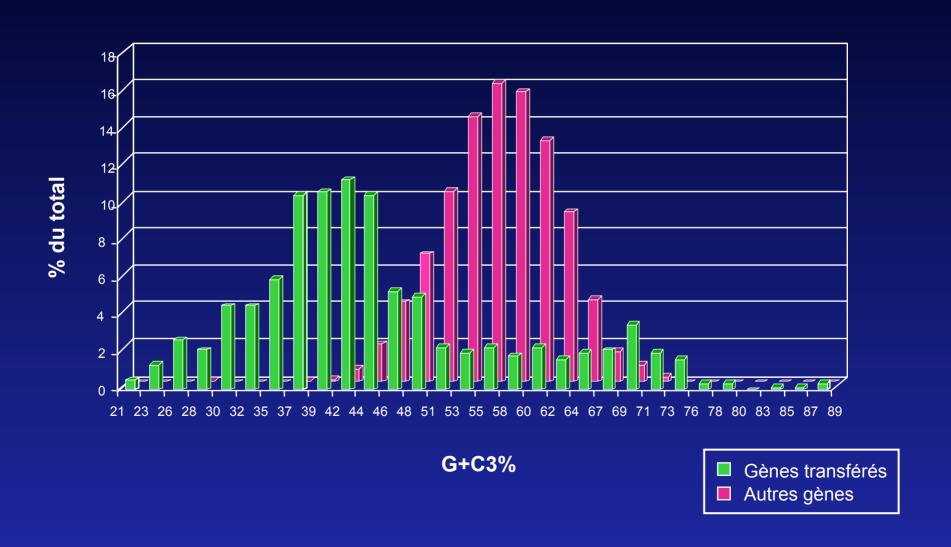
1747 : protéine TspB, 1750 : PivNM-2, 1751, 1769-70 : transposases, 1753-54 : protéines de phages, 1762-63, 1768 : toxines ou assimilées

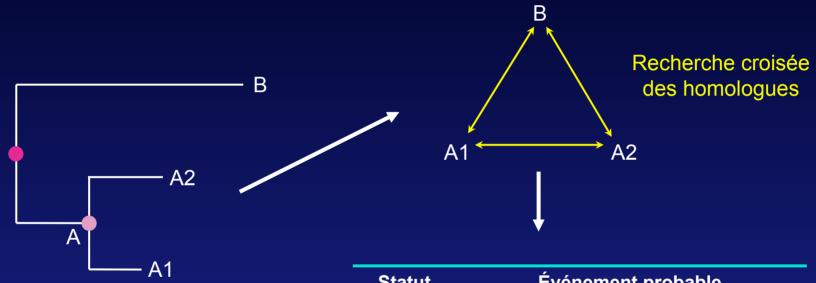
Lawrence et Ochman (1998)


- Utilisation d'indices compositionnels (en particulier χ^2).
- Proximité de structures impliqués dans les transferts :
 - Élements transposables (séquences IS).
 - Régions recombinantes (sites *chi*).

Résultats chez E. coli

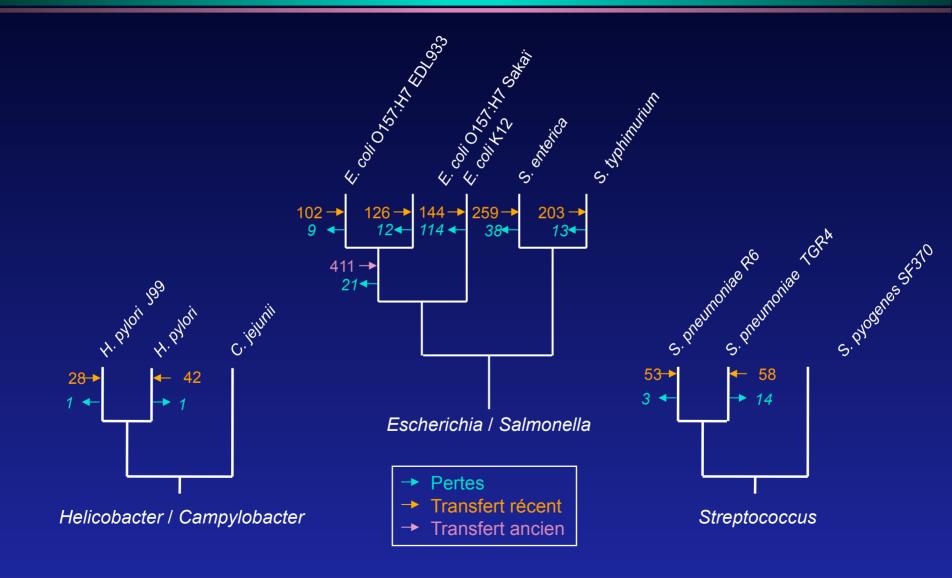
- 755 gènes sur 4286 (17,6 %) sont prédits comme transférés chez *E. coli*.
- 67 % des séquences IS du génome sont associées à ces gènes :
 - Ces séquences IS constituent fréquemment des frontières entre zones endogènes et exogènes.
- 36 % des gènes détectés se situent au voisinage du terminus de réplication (24 % du chromomosome).


Autres espèces

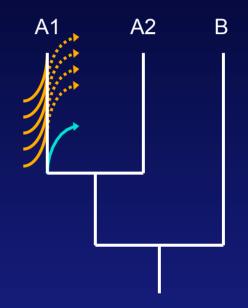

Séquences codantes (kb)

- Gènes « natifs » présents dans le génome
 - Gènes transférés associés à des éléments mobiles
- Gènes transférés non associés à des éléments mobiles

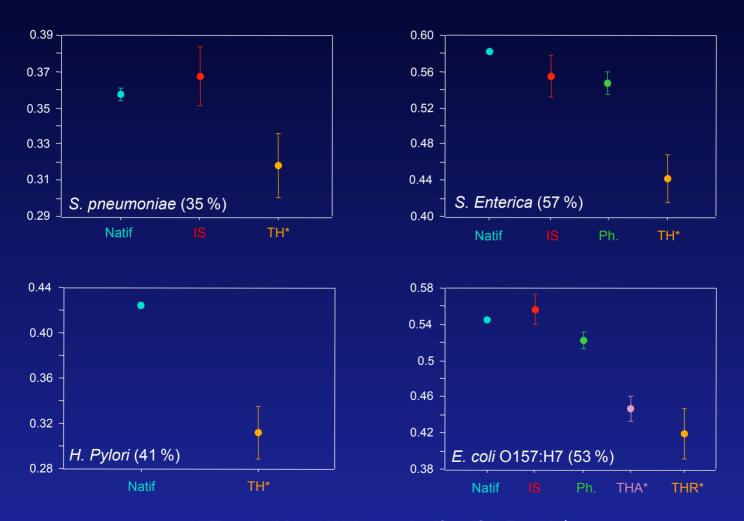
G+C3 des gènes


Approche comparative

- Divergence A/B (T_{AB})
- Divergence A1/A2 (T₁₂)


Statut	Événement probable
+A1 -A2 -B	Importation dans A1 après T ₁₂
+A1 +A2 -B	Importation dans A après T _{AB}
	ou délétion dans B
+A1 -A2 +B	Délétion dans A2 après T ₁₂
+A1 +A2 +B	Aucun événement
-A1 +A2 +B	Délétion dans A1 après T ₁₂
-A1 +A2 -B	Importation dans A2 après T ₁₂
-A1 -A2 +B	Délétion dans A après T _{AB}

Analyses effectuées


Gains et pertes

- Nb. d'acquisitions systématiquement supérieur au nb. de pertes :
 - Augmentation de la taille des génomes :
 - Cas des deux *E. coli*O157:H7 pathogènes.
 - Il existe un *turnover* rapide des gènes transférés:
 - Délétion peu de temps après transfert.

- → Pertes observées
- → Transferts récents

Contenu en G+C3

* Test de Mann-Whitney significatif à $P < 10^{-4}$

Hypothèses possibles

- Biais dans les séquences reconnues par les systèmes de restriction :
 - Celles-ci apparaissent comme étant globalement riches en G+C (70 % dans REBASE).
- Biais au niveau des vecteurs impliqués dans les transferts (phages et éléments IS)?
- Les transferts horizontaux, un sous-produit des besoins en Adénine des bactéries?

Compétition métabolique

- Parmi les ribonucléosides triphosphates,
 l'ATP est le plus abondant :
 - Au cœur de toutes les voies métaboliques :
 - Besoins importants en Adénine.
- Les recepteurs membranaires codés par les gènes *com* ont une affinité plus grande pour l'ADN riche en Adénine :
 - La transformation, un mécanisme visant à récupérer l'Adénine dans le milieu?