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ABSTRACT
Comparison of relative fixation rates of synonymous (silent) and nonsynonymous (amino acid-altering)

mutations provides a means for understanding the mechanisms of molecular sequence evolution. The
nonsynonymous/synonymous rate ratio (v 5 dN/dS) is an important indicator of selective pressure at the
protein level, with v 5 1 meaning neutral mutations, v , 1 purifying selection, and v . 1 diversifying
positive selection. Amino acid sites in a protein are expected to be under different selective pressures and
have different underlying v ratios. We develop models that account for heterogeneous v ratios among
amino acid sites and apply them to phylogenetic analyses of protein-coding DNA sequences. These models
are useful for testing for adaptive molecular evolution and identifying amino acid sites under diversifying
selection. Ten data sets of genes from nuclear, mitochondrial, and viral genomes are analyzed to estimate
the distributions of v among sites. In all data sets analyzed, the selective pressure indicated by the v ratio
is found to be highly heterogeneous among sites. Previously unsuspected Darwinian selection is detected
in several genes in which the average v ratio across sites is ,1, but in which some sites are clearly under
diversifying selection with v . 1. Genes undergoing positive selection include the b-globin gene from
vertebrates, mitochondrial protein-coding genes from hominoids, the hemagglutinin (HA) gene from
human influenza virus A, and HIV-1 env, vif, and pol genes. Tests for the presence of positively selected
sites and their subsequent identification appear quite robust to the specific distributional form assumed
for v and can be achieved using any of several models we implement. However, we encountered difficulties
in estimating the precise distribution of v among sites from real data sets.

COMPARISON of synonymous (silent) and nonsyn- definition of positive selection (adaptive molecular evo-
onymous (amino acid-altering) substitution rates lution) in this article.

provides an important means for studying the mecha- The v ratio has almost always been calculated as an
nisms of DNA sequence evolution (Kimura 1983; Gil- average over all codon (amino acid) sites in the gene
lespie 1991; Ohta 1993). As synonymous mutations are and over the entire evolutionary time that separates the
largely invisible to natural selection (but see Akashi sequences. The criterion that this average v be .1 is a
1995), while nonsynonymous mutations can be under very stringent one for detecting positive selection (e.g.,
strong selective pressure, comparison of the fixation Sharp 1997; Akashi 1999; Crandall et al. 1999). In
rates of these two types of mutations provides a powerful many proteins, a high proportion of amino acids may
tool for understanding the effect of natural selection be largely invariable (with v close to 0) due to strong
on molecular sequence evolution. A measure that has functional constraints. Furthermore, most proteins ap-
featured prominently in such studies is the nonsynony- pear to be under purifying selection most of the time
mous/synonymous substitution rate ratio (v 5 dN/dS), (Li 1997). Adaptive evolution most likely occurs at a
termed the “acceptance rate” by Miyata and Yasunaga few time points and affects a few amino acids. In such
(1980). Here the rates dN and dS are defined as the cases, the v ratio averaged over time and over sites
numbers of nonsynonymous and synonymous substitu- will not be significantly .1 even if adaptive molecular
tions per site, and their ratio v measures the selective evolution has occurred. For example, Endo et al. (1996)
pressure at the protein level. An v . 1 means that used this criterion to perform a database search and
nonsynonymous mutations offer fitness advantages to identified 17 proteins out of 3595 that may have been
the protein (individual) and have higher fixation proba- under positive selection, at a proportion of only 0.47%.
bilities than synonymous mutations. This is our working The scarcity of well-established cases of molecular adap-

tation may be partly due to the lack of power of the
detection methods.
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lineages in a phylogeny) or in functionally distinct re- diversifying selection in several genes for which it was
not previously suspected.gions of the gene. Messier and Stewart (1997) used

inferred ancestral sequences to identify two lineages
in a phylogeny of primates that are probably under

DATA
diversifying selection for the lysozyme gene. Hughes
and Nei (1988) found that the v ratio is .1 in a region Ten data sets of protein-coding genes are analyzed.

Table 1 lists the number of sequences (s) and the se-of the major histocompatibility complex (MHC) that
codes for the antigen recognition site, while it is ,1 in quence length (n) for each data set. The transition/

transversion rate ratio (k), the (average) nonsynony-other regions of the gene. When knowledge of func-
tional domains of the protein is unavailable, or when mous/synonymous rate ratio (v), and the tree length

(sum of all branch lengths) are estimated under theonly a few sites are expected to be undergoing positive
selection, a promising approach is to devise statistical simple model of one v ratio for all sites (Goldman and

Yang 1994, model M0 below). These statistics are listedmodels that allow for heterogeneous v ratios among
sites (Nielsen and Yang 1998). Such models can be to give an indication of the sequence divergence level

and the selective constraint involved in each gene. Moreused to test and identify critical amino acids in a protein
under positive selection. details of the data sets follow.

D1: Mitochondrial protein-coding genes from theNielsen and Yang (1998) implemented a few simple
models that allow for heterogeneous v ratios among hominoids: The 12 protein-coding genes on the H-strand

of the mitochondrial genome are concatenated andsites. One, the “neutral” model, assumes the existence
of two classes of sites: conserved sites, at which nonsyn- analyzed as one data set. All the 12 proteins are trans-

membrane proteins and appear to have similar substitu-onymous mutations are deleterious and removed (v 5
0), and completely neutral sites at which v 5 1. A “selec- tion patterns (Kumar 1996). The seven species are hu-

man, common chimpanzee, pygmy chimpanzee, gorilla,tion” model adds a third class of sites with the underlying
v ratio estimated from the data. These models appear Bornean orangutan, Sumatran orangutan, and com-

mon gibbon. The data are a subset of the data analyzedtoo simple to capture the complexity of the substitution
process of various proteins. In particular, the neutral by Cao et al. (1998), where the GenBank accession num-

bers and references are given. The transition/transver-model does not allow for sites with 0 , v , 1, such as
sites at which nonsynonymous mutations are “slightly sion bias is strong, and the genes appear under strong

purifying selection with v at z0.04.deleterious.” The selection model with one additional
category cannot account for both sites with 0 , v , 1 D2: Vertebrate b-globin genes: The b-globin gene of

17 vertebrate species (human, tarsier, bush baby, hare,and sites with v . 1.
In this article, we implement a number of models rabbit, cow, sheep, pig, elephant seal, rat, mouse, ham-

ster, opossum, duck, chicken, African clawed frog, and(statistical distributions) for heterogeneous v ratios
among sites. We have two major objectives in fitting western clawed frog) were extracted from the EMBL

and GenBank databases. The sequences were alignedthose models. The first is to test for the presence of
positively selected sites (sites with v . 1) and to identify by hand, and the alignment appeared straightforward.

D3: Drosophila adh gene: The data set contains alco-such sites along the gene. We find that this type of
analysis seems insensitive to the exact distribution as- hol dehydrogenase (adh) gene sequences from 23 spe-

cies of Drosophila. The data set was described in Niel-sumed for v. We note that this test of molecular adapta-
tion is still conservative, as it requires that positively sen (1997), where GenBank accession numbers for the

sequences are given. The transition/transversion rateselected sites be under diversifying selection along all
lineages on the phylogeny. If positive selection affects ratio (1.6) is relatively low for this data set.

D4: Flavivirus E-glycoprotein gene: Twenty-two den-only a few lineages, and purifying selection dominates
during the rest of the evolutionary time, our test will gue virus E-glycoprotein gene sequences from the align-

ment published by Zanotto et al. (1996) were used.fail.
Our second objective is to understand what distribu- The original alignment contains 123 sequences from

more divergent groups. The 22 sequences we use aretions best describe the heterogeneous v ratios among
sites in real data. This appears to be a much harder 6, 7, 7, and 2 sequences from the closely related Den

1–4 groups, respectively. The gene appears to be undertask. Nevertheless, the distribution of v is closely related
to the fitness distribution of new mutations, and knowl- strong purifying selection (with an average v ratio of

z0.05).edge of it is important for testing competing population
genetics models of molecular evolution (Kimura 1983; D5: Human influenza virus type A HA gene: The data

set is a subset of the HA1 domain of the hemagglutininGillespie 1991; Ohta 1993).
Ten data sets of genes from nuclear, mitochondrial, (HA) gene of human influenza viruses A analyzed by

Fitch et al. (1997). We selected 28 sequences to repre-and viral genomes are analyzed to examine the fit of
the models and to accumulate empirical knowledge of sent major groups in the original data set. The HA gene

encodes the major surface antigen, which is a target ofthe v distribution among sites. These analyses reveal
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TABLE 1

Basic statistics for data sets analyzed in this article

Data set s n k v S PS

D1: mitochondrial gene from hominoids 7 3331 14.25 0.041 2.79 Y
D2: b-globin gene from vertebrates 17 144 2.07 0.237 7.12 Y
D3: Drosophila alcohol dehydrogenase (adh) gene 23 254 1.58 0.094 4.20 N
D4: flavivirus E-glycoprotein gene 22 490 3.94 0.052 12.36 N
D5: human influenza virus A hemagglutinin (HA) gene 28 329 4.62 0.391 0.85 Y
D6: HIV-1 vif gene 29 192 3.72 0.644 2.88 Y
D7: HIV-1 pol gene 23 947 4.89 0.196 1.18 Y
D8: Japanese encephalitis env gene 23 500 9.52 0.051 2.54 N
D9: tick-borne flavivirus NS-5 gene 18 342 2.25 0.025 26.13 N
D10: HIV-1 env gene V3 region 13 91 2.47 0.901 1.76 Y

s, number of sequences; n, number of codons in the sequence; k, transition/transversion rate ratio (a/b
in the notation of Kimura 1980); v, nonsynonymous/synonymous rate ratio, averaged over sites (dN/dS); S,
tree length, measured by the number of nucleotide substitutions along the tree per codon; PS, positive selection;
Y, yes; N, no.

neutralizing antibodies produced during infection or instantaneous substitution rate from codon i to j at site
vaccination. h (h 5 1, 2, . . . , n) as

D6: HIV-1 vif gene: A total of 29 isolates from subtype
B are used. The HIV-1 vif gene encodes an accessory
protein that is believed to be essential for pathogenic q(h)

ij 5 50, if i and j differ at two or three nucleotide positions,
pj, if i and j differ by one synonymous transversion,
kpj, if i and j differ by one synonymous transition,
v(h)pj, if i and j differ by one nonsynonymous transversion,
v(h)kpj, if i and j differ by one nonsynonymous transition.

infection, but its exact function is not known (e.g., Emer-
man and Malim 1998).

(1)D7: HIV-1 pol gene: A total of 23 isolates from subtype
B are used. The HIV-1 pol gene encodes for three pro-

Parameter k is the transition/transversion rate ratio andteins: the reverse transcriptase responsible for reverse
pj is the equilibrium frequency of codon j. Differenttranscribing the viral RNA into DNA; the polymerase
assumptions can be made concerning pj (Goldman andresponsible for cleaving the pol and gag precursor pro-
Yang 1994; Muse and Gaut 1994; Pedersen et al. 1998);teins into their final products; and the endonuclease
in this article, they are calculated using the products of(integrase) responsible for cleaving the host DNA so
the observed nucleotide frequencies at each of the threethat the HIV DNA can be inserted. All three proteins
codon positions. The transition probability matrix isare essential for virus replication.
calculated as P(t) 5 eQt (Liò and Goldman 1998), whereD8: Japanese encephalitis env gene: Sequences from
time or branch length t is measured by the expected23 isolates are used.
number of nucleotide substitutions per codon, averagedD9: Tick-borne flavivirus NS-5 gene: The data are
over all sites.from Kuno et al. (1998). The sequences are highly diver-

Likelihood calculation under a model of heteroge-gent, and the gene appears to be under strong purifying
neous v ratios among sites: Using one v parameter forselection (with the average v 5 0.025).
each site would lead to too many parameters in the model.D10: HIV-1 env gene V3 region: HIV-1 env gene V3
Instead we use a statistical distribution to account forregion from 13 HIV-1 isolates with a known transmission
heterogeneous v ratios among sites (Nielsen and Yanghistory was published by Leitner et al. (1997).
1998). Suppose we assume K classes of sites in the se-The alignment for the influenza virus HA gene (D5)
quence, with the proportions and v ratios given aswas kindly provided by Walter Fitch and those for data

sets D6–D9 by Edward Holmes.
p0 p1 . . . pK21

v0 v1 . . . vK21 (2)THEORY

We want to calculate the probability of observing dataMarkov model of codon substitution: Suppose there
xh at site h. Note that given the v ratio for the site,are n codons (sites) in the sequence. Let the data at
the conditional probability of the data, P(xh|v), can besite h (h 5 1, 2, . . . , n) be xh; that is, xh is a vector of
calculated for any phylogenetic tree and branch lengthscodons from different sequences at that codon site.
using Felsenstein’s (1981) pruning algorithm (see alsoModels considered in this article allow the dN/dS (v)
Goldman and Yang 1994; Muse and Gaut 1994). Theratio to vary among sites. Let v(h) be the ratio for site

h. The codon substitution model specifies the relative (marginal) probability of the data at the site is then an
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average of the conditional probability over the above tribution for v, say, f(v), can be used in the likelihood
calculation. The sum in Equation 3 will then be replaceddistribution of v:
by an integral. However, we have not found a feasible
way to perform this calculation and instead resort toP(xh) 5 o

K21

k50

pkP(xh|vk). (3)
the use of a discrete distribution as an approximation,
as in Yang (1994). We use K 5 10 categories in theWe assume that the substitution process is independent
discrete distribution, each with probability 1/10, andamong codon sites, and then the log-likelihood is a sum
use the median value of v within each category to repre-over all sites in the sequence
sent the distribution of v ratios within that category.
The p’s and v’s in Equation 2 are then calculated as, 5 o

n

h51

log{P(xh)}. (4)
functions of parameters in the continuous v distribu-
tion. Let F(v) be the cumulative distribution functionAfter maximum-likelihood (ML) estimates of parame-
(CDF) of the v distribution f(v); F(v) 5 ev

0 f(x)dx. Letters are obtained, an empirical Bayes approach can be
F21(·) be the inverse CDF; that is, if p 5 F(v), then v 5used to infer which class the site is most likely from
F21(p). We then have pk 5 1/K and vk 5 F21((2k 1 1)/(Nielsen and Yang 1998). The posterior probability
(2K)) for k 5 0, 1, . . . , K 2 1. The CDF of the vthat site h with data xh is from site class k (i.e., that v(h) 5
distribution can be calculated in a straightforward man-vk) is
ner for all distributions we consider, and we use a linear-
search algorithm to obtain the inverse CDF.P(vk|xh) 5

pkP(xh|vk)
P(xh)

5
pkP(xh|vk)

ojpjP(xh|vj)
. (5)

The probability of the data xh is then approximated
byThe class k that maximizes the posterior probability is

the most likely class for the site. When the v values (vk)
P(xh) 5 #

∞

0
f(v)P(xh|v)dv ≈ 1

K o
K21

k50

P(xh|vk). (6)for some site classes are .1, this approach can be used
to identify sites under positive selection. The posterior

This may be considered a crude way of doing numericalprobabilities corresponding to classes with v . 1 may
integration.be summed up to give a probability P(v . 1) for each

Statistical distributions implemented: The modelssite. Sites at which this probability is larger than a thresh-
considered in this article are summarized in Table 2.old value (say, 50, 95, or 99%) may be identified as
The codes given are as used in the paml program (Yangpotentially under positive selection.

Continuous distributions: In theory, a continuous dis- 1997), which now implements all the models described

TABLE 2

Models of variable v ratios among sites

Model code p Parameters Notes

M0 (one-ratio) 1 v One v ratio for all sites
M1 (neutral) 1 p0 p1 5 1 2 p0, v0 5 0, v1 5 1
M2 (selection) 3 p0, p1, v2 p2 5 1 2 p0 2 p1, v0 5 0, v1 5 1
M3 (discrete) 2K 2 1 p0, p1, . . . , pK22, pK21 5 1 2 p0 2 p1 2 . . . 2 pK22

(K 5 3) v0, v1, . . . , vK21

M4 (freqs) K 2 1 p0, p1, . . . , pK22 The vk are fixed at 0, 1⁄3, 2⁄3, 1, and 3
(K 5 5)

M5 (gamma) 2 a, b From &(a, b)
M6 (2gamma) 4 p0, a0, b0, a1 p0 from &(a0, b0) and p1 5 1 2 p0 from &(a1, a1)
M7 (beta) 2 p, q From @(p, q)
M8 (beta&v) 4 p0, p, q, v p0 from @(p, q) and 1 2 p0 with v
M9 (beta&gamma) 5 p0, p, q, a, b p0 from @(p, q) and 1 2 p0 from &(a, b)
M10 (beta&gamma11) 5 p0, p, q, a, b p0 from @(p, q) and 1 2 p0 from 1 1 &(a, b)
M11 (beta&normal.1) 5 p0, p, q, m, s p0 from @(p, q) and 1 2 p0 from 1(m, s2),

truncated to v . 1
M12 (0&2normal.1) 5 p0, p1, m2, s1, s2 p0 with v0 5 0 and 1 2 p0 from the mixture:

p1 from 1(1, s2
1), and 1 2 p1 from 1(m2, s2

2),
both normals truncated to v . 1

M13 (3normal.0) 6 p0, p1, m2, s0, s1, s2 p0 from 1(0, s2
0), p1 from 1(1, s2

1), and
p2 5 1 2 p0 2 p1 from 1(m2, s2

2),
all normals truncated to v . 1

p, number of parameters in the v distribution.
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here. All models involve the following parameters: M8 (beta&v): This model adds one extra class of sites
to the beta model. A proportion p0 of sites have v drawnbranch lengths in the phylogeny, the transition/trans-

version rate ratio k, and base frequencies at the three from the beta distribution @(p, q), and the remaining
sites (proportion p1 5 1 2 p0) have the same ratio v1.codon positions. These parameters are not listed in Ta-

ble 2. Model 0 (M0) assumes one v for all sites (Gold- This model can be compared with the beta model (M7)
man and Yang 1994). The neutral model (M1) assumes to test for the presence of positive sites using a likeli-
a proportion p0 of conserved sites with v0 5 0 and a hood-ratio test (LRT; see below).
proportion p1 5 1 2 p0 of neutral sites with v1 5 1. The M9 (beta&gamma): This model uses a mixture of @(p,
selection model (M2) adds an additional class of sites q) and &(a, b), in proportions p0 and p1 5 1 2 p0. The
with frequency p2 5 1 2 p0 2 p1 and with v2 estimated CDF of the mixture distribution is an average of the
from the data. M1 and M2 were implemented by Niel- beta and gamma CDFs.
sen and Yang (1998). A number of new models are M10 (beta&gamma11): This model uses a mixture of
implemented in this article to accommodate different a beta and a gamma. However, the gamma is shifted to
shapes of the v distribution that are likely to occur in the right by one unit, so that the gamma distribution
real data. The details follow. accounts for positively selected sites (v . 1) only. A

M3 (discrete): The discrete model uses an uncon- proportion p0 of sites have v from @(p, q) and a propor-
strained discrete distribution to model heterogeneous tion p1 5 1 2 p0 of sites have v 5 1 1 x, where x z
v ratios among sites (Equation 2). The vk values are &(a, b). The CDF of v is thus
arranged in increasing order for unique identification.
The model with K classes involves K 2 1 frequency F(v) 5 5p0FB(v; p, q), if v # 1,

p0 1 p1FG(v 2 1; a, b), if v . 1. (9)parameters and K parameters vk. In this article, K 5 3
classes are used. M11 (beta&normal.1): This model uses a mixture of

M4 (freqs): This model fixes v at several prespecified a beta distribution @(p, q) and a normal distribution
values and estimates the corresponding frequencies for

1(m, s2), which is left-truncated at 1. Like the shifted
the site classes. The model with K classes involves K 2 gamma in model M10, the truncated normal accounts
1 free frequency parameters pk. We use K 5 5, with vk for positively selected sites only. The CDF for the trun-
fixed at 0, 1⁄3, 2⁄3, 1, and 3 for k 5 0, 1, . . . , 4. cated normal is 1 2 F((m 2 v)/s)/F((m 2 1)/s),

M5 (gamma): This model assumes a simple gamma where F(·) is the familiar CDF of 1(0, 1). Therefore
distribution &(a, b) for v among sites. The density the CDF of the mixed distribution is
function is f(v) 5 bae2bvva21/G(a) for v . 0. The CDF,
known as the incomplete gamma function ratio, is

F(v) 5 5p0FB(v;p,q), if v # 1,

p0 1 (1 2 p0)112
F((m2v)/s)
F((m21)/s)2, if v . 1.FG(v; a, b) 5 #

v

0
bae2bxxa21dx/G(a). (7)

(10)This is calculated using the algorithm of Bhattachar-
jee (1970).

M12 (0&2normal.0): This model assumes a propor-
M6 (2gamma): This model uses a mixture of two

tion p0 of sites with v 5 0 and a proportion (1 2 p0) from
gamma distributions, &(a0, b0) and &(a1, b1), in the

a mixture of two normal distributions. This mixture is
proportions p0 and p1 5 1 2 p0. The mean of the second

p1 from 1(1, s2
1), and (1 2 p1) from 1(m2, s2

1), truncated
gamma distribution is fixed at 1 (b1 5 a1), so that the

at v 5 0 to disallow values of v , 0. Consequently, the
model has four parameters. The CDF of the mixture

v distribution for M12 takes value 0 with probability p0,distribution can be calculated from its gamma distribu-
is drawn from a truncated normal distribution centered

tion components.
at v 5 1 with probability (1 2 p0)p1, and is drawn from

M7 (beta): The beta distribution @(p, q) has density
a truncated normal distribution centered at v 5 m2 with
probability (1 2 p0)(1 2 p1). The CDF of the normal

f(v) 5 vp21(1 2 v)q21/B(p, q), 0 # v # 1, (8) 1(m, s2) truncated at 0 is 1 2 F((m 2 v)/s)/F(m/s).
The CDF for the mixture of the two truncated normalwhere B(p, q) is the beta function. The beta distribution
distributions iscan take different shapes (e.g., L, J, U, and inverted-U

shapes) in the interval (0, 1). The CDF of the distribu-
tion, FB(v; p, q), is the incomplete beta function ratio, F(v) 5 1 2 p1F((m1 2 v)/s1)/F(m1/s1)
calculated using the algorithm of Majumder and Bhat-

2 (1 2 p1)F((m2 2 v)/s2)/F(m2/s2). (11)
tacharjee (1973). This model does not allow for posi-
tively selected sites (with v . 1). The following four M13 (3normal.0): This model uses a mixture of three

normal distributions truncated at v 5 0: p0 from 1(0,models (M8–M11) add an extra component, mainly to
account for the possible occurrence of positively se- s2

0), p1 from 1(1, s2
1), and p2 5 1 2 p0 2 p1 from 1(m2,

s2
2). The CDF islected sites.
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tion of parameters or identification of positively selected
sites (see below). The codon frequencies are estimated
using the observed nucleotide frequencies at the three
codon positions, while other parameters are estimated
by numerical maximization of the likelihood function.
Independent computer programs were written by Z.
Yang and R. Nielsen for error checking.

Likelihood-ratio tests to compare models: The LRT
may be used to compare models implemented in this
article. When two models are nested, twice the log-likeli-
hood difference will be compared with a x2 distribution
with the degrees of freedom n equal to the difference
in the number of parameters between the two models.
For example, models M2 (selection) and M3 (discrete)
are more general than M1 (neutral) and can be com-Figure 1.—Discretization of model M6 (2gamma). Parame-
pared with M1. When v2 . 1 in M2 or M3, this becomes ater estimates are taken from the HIV-1 vif gene (data set D6;

see Table 8). The dotted line represents the gamma density test for the presence of positively selected sites. Similarly,
&(0.967, 1.452) and the dashed line represents the gamma M7 (beta) is a special case of models M8 (beta&v),
density &(0.283, 0.283). The thick line is the mixture of the

M9 (beta&gamma), M10 (beta&gamma11), and M11former two in proportions p0 5 0.383 and p1 5 0.617. The
(beta&normal.1). Any of those more general modelsdiscretized version of the model uses 10 site classes, each of
can be compared with M7. When the more generalproportion 10%. The v ratios for the 10 classes are 0.0003,

0.0135, 0.0598, 0.1424, 0.2621, 0.4267, 0.6569, 1.0037, 1.6282, models indicate the presence of sites with v . 1, the
and 3.5598. comparison constitutes an LRT of positive selection. We

note that the null hypothesis in those tests, M1 (neutral)
or M7 (beta), corresponds to fixing one of the parame-

F(v) 5 1 2 p0 3 2F(2v/s0) ters at the boundary of the parameter space of the alter-
native hypothesis; that is, the proportion for the compo-2p1F((m1 2 v)/s1)/F(m1/s1)
nent of positively selected sites (p2 in M2 and M3 and

2p2F((m2 2 v)/s2)/F(m2/s2). (12)
p1 in M8–M11) is set to zero in the null hypothesis. In
such cases, use of the simple x2 distribution is not reli-M13 involves six parameters and can represent a smooth

distribution with as many as three modes. However, the able (Self and Liang 1987), and caution is needed
when the test statistic is close to the critical value.use of many parameters in M13 was found to cause

problems for the optimization algorithm. Although the continuous version of model M8 is
nested within each of the continuous versions of modelsWe use 10 categories (K 5 10) to approximate the

continuous part of the v distribution, so that 11 catego- M9–M11, this is not the case with the discretized versions
used in this article. Those models cannot be comparedries are actually used in models M8 and M12. An exam-

ple is shown in Figure 1, where model M6 (2gamma) using a x2 approximation to the test statistic, although in
theory the null distribution can be generated by Monteis discretized.

The continuous mixture distributions involving the Carlo simulation (Goldman 1993). In comparing those
models, we use the Akaike Information Criterionbeta (M9, M10, and M11) are not smooth at v 5 1.

Furthermore, the discretized versions of those models (Akaike 1974) as a guidance, which stipulates that one
extra parameter should be counted as an improvementmay not be powerful to detect positive selection. Be-

cause we use 10 categories in the discrete distribution, of one log-likelihood unit. However, many of the mix-
ture distributions we implemented (for example, M8–each of proportion 10%, there may not be any category

with v . 1, if the proportion of sites in the data under M13) are found to fit data sets analyzed in this article
about equally well, leaving us with little power to discrim-positive selection is substantially ,10%. In such a case,

the model may not suggest positive selection, even if the inate among different v distributions and also render-
ing formal statistical tests among those models unneces-parameter estimates suggest a component of positively

selected sites (that is, even if p1 . 0). It appears impor- sary.
tant to examine the inferred discrete distribution to
determine whether the model suggests sites under selec-

RESULTS
tion, as is the case with other continuous mixture models
(M5, M6, M12, and M13). Likelihood values and parameter estimates obtained

from different data sets are listed in Tables 3–12. Esti-Phylogenetic tree topologies are obtained by ML
search using simple nucleotide substitution models. For mates of branch lengths are not shown, although their

sum (the tree length) under model M0 is given in Tablethe purpose of this study, minor differences in the phy-
logeny do not make any significant difference in estima- 1. Estimates of the transition/transversion rate ratio (k)
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are quite homogeneous among models in each data set selective pressure indicated by the v ratio is highly vari-
able among sites. For example, the model of one vand thus are not shown in Tables 3–12. For example,

k̂ ranges from 14.3 to 17.0 among the 14 models for ratio for all sites (M0) is rejected by a big margin when
compared with model M3 (discrete), which allows forthe mitochondrial data set (D1), while for the b-globin

genes (D2), k̂ ranges from 2.0 to 2.4. Estimates of branch three classes of sites with different v ratios. The LRT
statistic for this comparison is 2D, 5 2 3 [229690.55lengths and of k from the models of heterogeneous v

among sites (M1–M13) are usually slightly larger than 2 (229967.86)] 5 554.62, much greater than critical
values from a x2 distribution with d.f. 5 4.estimates from the model of one v for all sites (M0).

This is probably due to the insufficient correction for Parameter estimates from models such as M5
(gamma) and M7 (beta) suggest highly skewed L shapesmultiple nonsynonymous substitutions at the same site

by the one-ratio model (M0). for the v distribution, with most amino acids highly
conserved or almost invariable. The strictly neutralOur focus is the distribution of v among sites, and

we are interested in the shape of the v distribution, as model (M1) fits the data worse than the one-ratio model
(M0). The reason appears to be that M1 does not ac-indicated by parameter estimates under different mod-

els and the fit of the models to data measured by their count for sites with positive but very small v ratios. For
similar reasons, M4 (freqs) fits the data poorly, as itlog-likelihood values. We discuss tests for the presence

of positively selected sites and, when such sites exist, does not account for highly conserved sites with 0 ,
v , 1⁄3 (recall that our implementation of this modeltheir identification. In the following, we describe results

obtained from each data set. The general patterns are fixes v at 0, 1⁄3, 2⁄3, 1, and 3). Models M9–M11, which
add a continuous component to the beta distribution,summarized in the discussion.

D1: Mitochondrial protein-coding genes from homi- do not fit the data as well as model M8, which adds a
class of sites with a constant v ratio.noids (Table 3): The mitochondrial genes are highly

conserved. The average v ratio ranges from 0.04 to The discrete model (M3) suggests a small proportion
of sites (p1 5 0.7%) under positive selection, with v2 50.05 among all models except for M1 (neutral) and M4

(freqs), suggesting that a nonsynonymous mutation has 1.43. This model fits the data significantly better than
M0 (one-ratio), as mentioned above, or M1 (neutral).only 4–5% as much chance as a synonymous mutation

of being fixed in the population. Models M1 and M4 Similarly, model M8 (beta&v) suggests a small propor-
tion of sites (p1 5 0.6%) under diversifying selectiondo not fit the data well and gave much larger and prob-

ably unreliable estimates of the average v ratio. The with v1 5 1.46. The LRT statistic for comparing M7

TABLE 3

Likelihood values and parameter estimates for hominoid mitochondrial genes (D1)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 229967.86 0.041 v 5 0.041
M1 (neutral) 230487.41 0.203 p0 5 0.798 (p1 5 0.202)
M2 (selection) 229693.68 0.050 p0 5 0.658, p1 5 0.014 (p2 5 0.328), v2 5 0.109
M3 (discrete) 229690.55 0.050 p0 5 0.811, p1 5 0.182 (p2 5 0.007)

v0 5 0.009, v1 5 0.180, v2 5 1.435
M4 (freqs) 229836.60 0.082 p0 5 0.761, p1 5 0.237, p2 5 0.0, p3 5 0.0 (p4 5 0.001)
M5 (gamma) 229698.84 0.047 a 5 0.204, b 5 3.781
M6 (2gamma) 229696.67 0.047 p0 5 0.382 (p1 5 0.618)

a0 5 36.43, b0 5 800.0, a1 5 b1 5 0.018
M7 (beta) 229699.38 0.047 p 5 0.189, q 5 3.526
M8 (beta&v) 229690.71 0.050 p0 5 0.994 (p1 5 0.006)

p 5 0.219, q 5 4.669, v 5 1.459
M9 (beta&gamma) 229696.89 0.047 p0 5 0.951 (p1 5 0.049)

p 5 0.375, q 5 13.519,
a 5 1.633, b 5 0.032

M10 (beta&gamma11) 229696.89 0.047 p0 5 0.951 (p1 5 0.049),
p 5 0.378, q 5 13.670, a 5 2.354, b 5 4.697

M11 (beta&normal.1) 229696.89 0.047 p0 5 0.951 (p1 5 0.049),
p 5 0.377, q 5 13.660, m 5 2.376, s 5 1.369

M12 (0&2normal.1) 229693.46 0.048 p0 5 0.624, p1 5 0.054,
m2 5 0.085, s1 5 4.912, s2 5 0.001

M13 (3normal.0) 229696.73 0.047 p0 5 0.550, p1 5 0.055 (p2 5 0.395),
m2 5 0.051,
s0 5 0.003, s1 5 1.430, s2 5 0.000
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(beta) and M8 (beta&v) is 2D, 5 2 3 [229690.71 2 The Bayes approach (Equation 5) can be used to
identify sites potentially under diversifying selection.(229699.38)] 5 18.54. The P value for this comparison

is 0.9 3 1024, in comparison with the x2 distribution with Model M3 (discrete) suggested 14 positively selected
sites with P(v . 1) . 0.5, while model M8 (beta&v)d.f. 5 2. M7 is thus rejected in favor of M8. However, the

selection model (M2) does not detect positive selection located only 12, all included in the 14 found by model
M3. If the stricter 95% threshold is used, only 2 sites arein this data set. This is apparently due to the fact that

the strict neutral model (M1) on which it is based is identified: one in ATP6 (with the posterior probabilities
0.96 under M3 and 0.94 under M8) and another in ND5unrealistic, and the extra category added in M2 opti-

mally accounts for deleterious mutations (with v2 5 (with the probabilities 0.98 under M3 and 0.96 under
M8). Overall, although the two models are constructed0.11). Models M10 (beta&gamma11) and M11 (beta&

normal.1) have the same likelihood value and the esti- very differently, they produced very similar results con-
cerning the inference of the positively selected sites.mates of parameters under those models appear to sug-

gest presence (at z0.5%) of sites under positive selec- D2: b-globin genes from vertebrates (Table 4): The
b-globin genes are moderately conserved, with an aver-tion. However, the discretized distributions do not have

any category with v . 1 and do not suggest positive age v ratio between 0.31 and 0.36 among all but the
worst-fitting models. Parameter estimates from modelsselection; neither is the fit of those two models signifi-

cantly better than the beta model (M7); 2D, 5 4.98 such as M5 (gamma), M7 (beta), and M9 (beta&
gamma) suggest that the distribution of v over sites iswith P 5 0.17 with d.f. 5 3. The other continuous distri-

butions, such as M5 (gamma), M6 (2gamma), M12 (0& L-shaped, with most sites highly conserved. Although
better than M0, the strictly neutral model (M1) does2normal.1), and M13 (3normal.1), do not have site

classes with v . 1 either. However, this failure is due not fit the data well. Neither did model M4 (freqs). The
continuous mixture distributions (M8–M13) fit the datato those models’ insistence on having 10% of sites in a

category with v . 1. The small proportion of positively almost equally well.
Parameter estimates and LRTs suggest presence ofselected sites is detected only when the proportion is a

free parameter estimated from the data, that is, under sites under diversifying selection (Table 4). For exam-
ple, the discrete model (M3) indicates z7.9% of sitesmodels M3 (discrete) and M8 (beta&v). In sum, the

models provide consistent evidence for the presence of are under positive selection with v2 5 1.69. M3 fits the
data significantly better than any of models M0 (one-a small proportion of positively selected sites in the

mitochondrial genes. ratio), M1 (neutral), and M2 (selection). Similarly to

TABLE 4

Likelihood values and parameter estimates for vertebrate b-globin gene (D2)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 23815.51 0.237 v 5 0.237
M1 (neutral) 23805.96 0.684 p0 5 0.316 (p1 5 0.684)
M2 (selection) 23691.32 0.266 p0 5 0.281, p1 5 0.142 (p2 5 0.577)

v2 5 0.215
M3 (discrete) 23687.06 0.304 p0 5 0.386, p1 5 0.535 (p2 5 0.079),

v0 5 0.018, v1 5 0.304, v2 5 1.691
M4 (freqs) 23693.42 0.397 p0 5 0.299, p1 5 0.590, p2 5 0.000, p3 5 0.066 (p4 5 0.045)
M5 (gamma) 23690.82 0.326 a 5 0.508, b 5 1.463
M6 (2gamma) 23685.64 0.347 p0 5 0.601 (p0 5 0.399),

a0 5 2.831, b0 5 9.829, a1 5 0.092
M7 (beta) 23697.22 0.269 p 5 0.408, q 5 1.099
M8 (beta&v) 23686.13 0.312 p0 5 0.943 (p1 5 0.057),

p 5 0.572, q 5 2.172, v 5 2.081
M9 (beta&gamma) 23685.65 0.347 p0 5 0.667 (p1 5 0.333),

p 5 1.728, q 5 4.442, a 5 0.054, b 5 0.017
M10 (beta&gamma11) 23686.98 0.358 p0 5 0.950 (p1 5 0.050),

p 5 0.550, q 5 1.878, a 5 2.702, b 5 0.257
M11 (beta&normal.1) 23686.98 0.358 p0 5 0.949 (p1 5 0.051),

p 5 0.551, q 5 1.883, m 5 11.899, s 5 6.236
M12 (0&2normal.1) 23684.86 0.326 p0 5 0.231, p1 5 0.181,

m2 5 0.213, s1 5 1.171, s2 5 0.150
M13 (3normal.0) 23685.65 0.347 p0 5 0.219, p1 5 0.160 (p2 5 0.621),

m2 5 0.205,
s0 5 0.000, s1 5 1.142, s2 5 0.159
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the case of the mitochondrial data set, the selection 48, 50, 54, 67, 74, 85, 114, 123, 124, and 128. This list
is very similar to those obtained using the best tree.model (M2) does not detect positive selection, as the

strict neutral model it is based on does not allow for D3: Drosophila adh gene (Table 5): The average esti-
mate of v is z0.11 for all the best-fitting models. Parame-sites with 0 , v , 1. The beta distribution (M7) is

rejected when compared with any of M8 (beta&v), M9 ter estimates from models such as M5 (gamma) and M7
(beta) suggest that the v distribution has a highly(beta&gamma), M10 (beta&gamma11), or M11 (beta&

normal.1). The LRT statistic is 2D, 5 22.18 between skewed L shape, with most sites highly conserved with
very small v ratios. Model M3 (discrete) fits the dataM7 and M8 (with P 5 0.15 3 1024, d.f. 5 2) and 20.48

between M7 and M10 or M11 (with P 5 0.13 3 1023, significantly better than models M0 (one-ratio), M1
(neutral), or M2 (selection), but none of the modelsd.f. 5 3). The discretized versions of models M9, M10,

and M11 have one category (10%) with an v ratio of suggest presence of positively selected sites. The beta
model (M7) provides a good fit to the data, althoughz1.7. Except for model M2 (selection), all other models

that allow for positively selected sites (M3–M6 and M8– slightly worse than M3 (discrete), and adding an extra
component to the beta (as in models M8–11) leads toM13) do suggest existence of such sites.

Positively selected sites are identified using the Bayes no significant improvement in the log-likelihood score.
Other continuous mixture models (M5, M6, M8, andapproach (Equation 5). The different models give very

similar lists of positively selected sites, although the pos- M12–M13) do not suggest positive selection either.
We note that previous studies (e.g., Hudson et al.terior probabilities vary somewhat among models. The

discrete model (M3) identified more sites under positive 1987) have suggested the operation of balancing selec-
tion at one particular amino acid site at the adh locus inselection than other models. At the 99% level, eight

sites are identified: 7, 42, 48, 50, 54, 67, 85, and 123. Drosophila. Our LRTs, while highlighting the extreme
variation in selective pressure among sites, do not sug-Those sites are also the top eight under model M8

(beta&v); but at the 99% level, M8 located only sites gest existence of sites under diversifying selection. This
may be due to the lack of power of our models to detect7, 50, and 123. To test whether the choice of tree topol-

ogy has any effect, we also used the star phylogeny to balancing selection.
D4: Flavivirus E-glycoprotein gene (Table 6): The av-analyze the data under model M3 (discrete). That analy-

sis identified the following sites at the 99% level: 7, 42, erage estimate of v is z0.06 for all the best-fitting mod-

TABLE 5

Likelihood values and parameter estimates for Drosophila adh gene (D3)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 24779.73 0.094 v 5 0.094
M1 (neutral) 24819.14 0.387 p0 5 0.613
M2 (selection) 24668.55 0.136 p0 5 0.547, p1 5 0.069 (p2 5 0.384)

v2 5 0.175
M3 (discrete) 24662.38 0.114 p0 5 0.513, p1 5 0.354 (p2 5 0.133),

v0 5 0.000, v1 5 0.116, v2 5 0.547
M4 (freqs) 24683.07 0.152 p0 5 0.594, p1 5 0.381, p2 5 0.000, p3 5 0.025 (p4 5 0.000)
M5 (gamma) 24663.78 0.113 a 5 0.271, b 5 2.163
M6 (2gamma) 24662.85 0.111 p0 5 0.402 (p0 5 0.598),

a0 5 5.006, b0 5 34.237, a1 5 0.024
M7 (beta) 24663.82 0.114 p 5 0.225, q 5 1.685
M8 (beta&v) 24663.82 0.114 p0 5 1.000 (p1 5 0.000),

p 5 0.225, q 5 1.686, v 5 0.651
M9 (beta&gamma) 24663.54 0.114 p0 5 0.295 (p1 5 0.705),

p 5 0.008, q 5 4.994,
a 5 0.496, b 5 2.806

M10 (beta&gamma11) 24663.72 0.113 p0 5 0.974 (p1 5 0.026),
p 5 0.251, q 5 2.290, a 5 1.042, b 5 0.690

M11 (beta&normal.1) 24663.72 0.113 p0 5 0.974 (p1 5 0.026),
p 5 0.251, q 5 2.290, m 5 1.631, s 5 0.597

M12 (0&2normal.1) 24664.03 0.111 p0 5 0.455, p1 5 0.065,
m2 5 0.000, s1 5 0.470, s2 5 0.205

M13 (3normal.0) 24662.86 0.111 p0 5 0.456, p1 5 0.054 (p2 5 0.500),
m2 5 0.120,
s0 5 0.000, s1 5 0.266, s2 5 0.080
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TABLE 6

Likelihood values and parameter estimates for flavivirus E-glycoprotein gene (D4)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 29885.19 0.052 v 5 0.052
M1 (neutral) 210417.47 0.549 p0 5 0.451 (p1 5 0.549)
M2 (selection) 29775.62 0.063 p0 5 0.383, p1 5 0.013 (p2 5 0.604), v2 5 0.603
M3 (discrete) 29757.16 0.062 p0 5 0.563, p1 5 0.327 (p2 5 0.109),

v0 5 0.010, v1 5 0.084, v2 5 0.247
M4 (freqs) 29935.94 0.189 p0 5 0.434, p1 5 0.566, p2 5 0.0, p3 5 0.0,

p4 5 0.0
M5 (gamma) 29755.06 0.058 a 5 0.490, b 5 7.885
M6 (2gamma) 29755.06 0.058 p0 5 1.000 (p0 5 0.000),

a0 5 0.491, b0 5 7.890, a1 5 2.007
M7 (beta) 29755.06 0.058 p 5 0.463, q 5 7.110
M8 (beta&v) 29755.05 0.058 p0 5 0.990 (p1 5 0.010),

p 5 0.475, q 5 7.667, v 5 0.336
M9 (beta&gamma) 29755.04 0.058 p0 5 0.986 (p1 5 0.014),

p 5 0.479, q 5 7.883, a 5 0.865, b 5 0.272
M10 (beta&gamma11) 29755.04 0.058 p0 5 0.988 (p1 5 0.012),

p 5 0.479, q 5 7.864, a 5 0.818, b 5 0.683
M11 (beta&normal.1) 29755.04 0.058 p0 5 0.988 (p1 5 0.012),

p 5 0.479, q 5 7.861,
m 5 2.190, s 5 0.950

M12 (0&2normal.1) 29754.90 0.058 p0 5 0.239, p1 5 0.053,
m2 5 0.000, s1 5 0.495, s2 5 0.075

M13 (3normal.0) 29754.68 0.058 p0 5 0.232, p1 5 0.052 (p2 5 0.716),
m2 5 0.000,
s0 5 0.000, s1 5 4.754, s2 5 0.070

els. The v ratios are highly variable among sites and L-shaped, with heavy tails. The beta distribution (M7)
has an interesting U shape, possibly because the modelthe v distribution appears to have a highly skewed L

shape, with most sites highly conserved with very small is forced to attempt to account for sites with v . 1. The
discrete model (M3) fits the data as well as or betterv ratios. The discrete model (M3) fits the data much

better than M0 (one-ratio), M1 (neutral), or M2 (selec- than all other models considered; M8 has nearly as high
a likelihood value, and uses one fewer parameter.tion), but none of the models suggest the existence of

sites under diversifying selection. The beta distribution Models that allow for positively selected sites, that is,
M2 (selection), M3 (discrete), M5 (gamma), M6(M7) fits the data better than M3 (discrete). Since M7

also has three fewer parameters than M3, it is the pre- (2gamma), and M8–M13, all suggest presence of posi-
tively selected sites. For example, the selection modelferred model for this data set. Although models M12

and M13 have marginally higher likelihood values than (M2) suggests z1.1% of sites under positive selection
with v2 5 5.8. Model M3 (discrete) suggests a largeM7, this improvement is not more than expected given

their greater numbers of parameters. Adding an addi- proportion of sites (25.1%) under weak diversifying se-
lection with v1 5 1.28 and a small proportion of sitestional component to the beta model to allow for posi-

tively selected sites (models M8–M11) provides no sig- (0.8%) under strong diversifying selection with v2 5
6.90. Note that the selection model (M2) suggests anificant improvement to the model’s fit to data.

D5: Human influenza A virus HA gene HA1 domain large proportion of neutral sites with v1 5 1, and the
estimates from M2 and M3 are not very different. Both(Table 7): The average v ranges from 0.39 to 0.41

among all models except for M1 (neutral) and M7 models have significantly higher likelihood values than
models M0 and M1, providing strong evidence for adap-(beta), which do not allow for positively selected sites,

fit the data badly, and give smaller estimates of v. The tive evolution. Similarly, M8 (beta&v) suggests z1.3%
of sites under positive selection with v2 5 5.2. The LRTaverage acceptance rate is ,1, indicating that, on aver-

age, purifying selection dominates the evolution of the statistic for comparing M7 (beta) and M8 (beta&v) is
2D, 5 2 3 5.43 5 10.86, .x2

1% 5 9.21 with d.f. 5 2.gene. The one-ratio model (M0) is easily rejected when
compared with all other models, which allow the v ratio Models M10 (beta&gamma11) and M11 (beta&nor-

mal.1) have the same likelihood value, and both mod-to vary among sites. Distributions of v among sites esti-
mated under M5 (gamma) and M6 (2gamma) are els fit the data significantly better than the beta model
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TABLE 7

Likelihood values and parameter estimates for human influenza virus A HA gene (D5)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 23125.61 0.391 v 5 0.391
M1 (neutral) 23083.58 0.342 p0 5 0.658
M2 (selection) 23078.20 0.401 p0 5 0.652, p1 5 0.337 (p2 5 0.011)

v2 5 5.815
M3 (discrete) 23077.73 0.412 p0 5 0.741, p1 5 0.251 (p2 5 0.008),

v0 5 0.049, v1 5 1.284, v2 5 6.898
M4 (freqs) 23078.66 0.396 p0 5 0.593, p1 5 0.134, p2 5 0.000, p3 5 0.234 (p4 5 0.039)
M5 (gamma) 23079.32 0.408 a 5 0.238, b 5 0.516
M6 (2gamma) 23079.29 0.409 p0 5 0.617 (p1 5 0.383)

a0 5 0.130, b0 5 1.142, a1 5 b1 5 0.716
M7 (beta) 23083.63 0.317 p 5 0.011, q 5 0.021
M8 (beta&v) 23078.20 0.383 p0 5 0.987 (p1 5 0.013),

p 5 0.012, q 5 0.024, v 5 5.141
M9 (beta&gamma) 23079.25 0.410 p0 5 0.934 (p1 5 0.066),

p 5 0.133, q 5 0.422, a 5 0.841, b 5 0.085
M10 (beta&gamma11) 23079.25 0.411 p0 5 0.925 (p1 5 0.075),

p 5 0.139, q 5 0.472, a 5 0.258, b 5 0.008
M11 (beta&normal.1) 23079.25 0.411 p0 5 0.924 (p1 5 0.076),

p 5 0.139, q 5 0.473, m 5 1.541, s 5 2.488
M12 (0&2normal.1) 23078.59 0.410 p0 5 0.924, p1 5 0.077,

m2 5 0.877, s1 5 6.792, s2 5 0.180
M13 (3normal.0) 23079.17 0.409 p0 5 0.551, p1 5 0.104 (p2 5 0.345),

m2 5 0.602,
s0 5 0.001, s1 5 2.613, s2 5 0.000

(M7); the test statistic is 2D, 5 2 3 [23079.25 2 data as well as or better than all other models consid-
ered.(23083.63)] 5 8.76, with P 5 0.033 with d.f. 5 3. In

addition to models M9–M11, which have components All models that allow for positively selected sites do
suggest existence of such sites in this gene. For example,specifically designed to allow for positively selected sites,

models M5 (gamma) and M6 (2gamma) also have cate- the selection model (M2) suggests z8.5% of sites under
positive selection with v2 5 4.2. Model M3 (discrete)gories with v . 1 when discretized.

Amino acid sites 135 and 226 are identified to be suggests a large proportion of sites (32.5%) under weak
diversifying selection with v1 5 1.21 and a small propor-under positive selection at the 95% level by all models

that allow for positive selection. Model M3 (discrete) tion of sites (7%) under strong selective pressure with
v2 5 4.0. Both models M2 and M3 have significantlysuggested many more sites because the parameter esti-

mates under this model suggest a large proportion of higher likelihood values than models M0 (one-ratio) or
M1 (neutral). Similarly, M8 (beta&v) suggests that z9%weakly selected sites. At the 50% level, models M5, M6,

and M9–M13 suggested the same 23 positively selected of sites are under positive selection with v 5 3.4. The
LRT statistic for comparing M7 (beta) and M8 (beta&sites: 15, 94, 121, 124, 133, 135, 137, 138, 155, 156, 157,

159, 163, 174, 186, 189, 196, 197, 219, 226, 246, 262, v) is 2D, 5 2 3 [(23370.66) 2 (23400.45)] 5 59.58,
@x2

1% 5 9.21 with d.f. 5 2. LRTs comparing the betaand 273.
D6: HIV-1 vif gene (Table 8): The pattern for this model (M7) with any of models M9 (beta&gamma),

M10 (beta&gamma11), and M11 (beta&normal.1)data set is rather similar to that of the influenza virus
HA gene (D5; see Table 7). The average v ratio over give similar results. In sum, all the models provide con-

sistent and statistically significant evidence for the exis-all sites ranges from 0.6 to 0.9 among models. The one-
ratio model (M0) is easily rejected when compared with tence of positively selected sites in this gene.

We plotted the posterior probability distributions, cal-any of the more-general models that allow for variable
v ratios among sites. Model M1 (neutral) also fits the culated using Equation 5, for sites along the HIV-1 vif

gene. This was done for models M2 (selection), M3data set much better than M0. The gamma (M5) and
double gamma (M6) models suggested L-shaped distri- (discrete), M8 (beta&v), and M9 (beta&gamma), with

results for M3 and M9 shown in Figure 2. Posteriorbutions for v, with heavy tails. The beta model (M7)
suggests a U shape, possibly because the underlying v probabilities under M2 and M3 are very similar, but as

one may expect, many sites included in the neutralratio at some sites is .1. Model M3 (discrete) fits the
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TABLE 8

Likelihood values and parameter estimates for HIV vif gene (D6)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 23499.60 0.644 v 5 0.644
M1 (neutral) 23413.07 0.575 p0 5 0.425 (p1 5 0.575)
M2 (selection) 23377.94 0.870 p0 5 0.404, p1 5 0.511 (p2 5 0.085)

v2 5 4.220
M3 (discrete) 23367.16 0.742 p0 5 0.604, p1 5 0.325 (p2 5 0.070),

v0 5 0.108, v1 5 1.211, v2 5 4.024
M4 (freqs) 23370.93 0.672 p0 5 0.317, p1 5 0.323, p2 5 0.000, p3 5 0.259 (p4 5 0.102)
M5 (gamma) 23369.77 0.774 a 5 0.423, b 5 0.507
M6 (2gamma) 23369.56 0.775 p0 5 0.383 (p1 5 0.617)

a0 5 0.967, b0 5 1.452, a1 5 b1 5 0.283
M7 (beta) 23400.45 0.440 p 5 0.176, q 5 0.223
M8 (beta&v) 23370.66 0.687 p0 5 0.909 (p1 5 0.091),

p 5 0.222, q 5 0.312, v 5 3.385
M9 (beta&gamma) 23369.42 0.766 p0 5 0.248 (p1 5 0.752),

p 5 0.336, q 5 0.270, a 5 0.336, b 5 0.358
M10 (beta&gamma11) 23368.48 0.787 p0 5 0.650, p 5 0.635,

q 5 3.079, a 5 0.258, b 5 0.211
M11 (beta&normal.1) 23369.65 0.760 p0 5 0.818 (p1 5 0.182)

p 5 0.302, q 5 0.591, m 5 0.008, s 5 2.745
M12 (0&2normal.1) 23369.53 0.755 p0 5 0.256, p1 5 0.205,

m2 5 0.000, s1 5 2.911, s2 5 0.789
M13 (3normal.0) 23367.69 0.736 p0 5 0.583, p1 5 0.086 (p2 5 0.331),

m2 5 1.145,
s0 5 0.140, s1 5 4.407, s2 5 0.313

class under M2 are included in the weakly selected class of positively selected sites. Similar to the cases of the
mitochondrial (D1) and b-globin (D2) genes, this fail-under M3 (results not shown). Plots of M8 and M9 are

virtually identical (results not shown). At the 99% level, ure appears to be due to the unrealistic nature of the
neutral null model (M1), which does not account formodel M9 identified 10 positively selected sites (31, 33,

39, 63, 92, 101, 109, 122, 127, and 167). At the same sites with 0 , v , 1. Model M3 (discrete) suggests that
a small proportion of sites (1.9%) are under stronglevel, model M2 identified 5 of the sites only: 31, 39,

122, 127, and 167, while sites 33, 63, 92, 101, and 109 diversifying selection with v2 5 4.7. This model fits
the data significantly better than models M0, M1, andare included at the 95% level. The two models used in

Figure 2, M3 and M9, are constructed very differently, M2. For example, the LRT statistic for the comparison
between M0 and M3 is 2D, 5 2 3 [(29363.57) 2and yet the posterior distributions under the two models

are highly similar. (29619.30)] 5 2 3 255.73 5 511.46, @x2
1% 5 13.27 with

d.f. 5 4. Similarly, model M8 (beta&v) suggests thatD7: HIV-1 pol genes (Table 9): The average v ratio
over all sites ranges from 0.20 to 0.27 among models z2.5% of sites are under strong positive selection with

v 5 4.1. The LRT statistic for comparing M7 (beta)except for M1 (neutral) and M7 (beta), indicating rela-
tively strong purifying selection. The strict neutral and M8 (beta&v) is 2D, 5 2 3 [(29365.88) 2

(29405.74)] 5 2 3 39.86 5 79.72, @x2
1% 5 9.21 withmodel (M1) and the beta model (M7) give lower esti-

mates of the average v ratio, as they do not allow for d.f. 5 2. Models M9–M11 all have the same log-likeli-
hood value, substantially lower than that for M8 (beta&sites with v . 1. M1 fits the data much better than

the one-ratio model (M0), but is much worse than M7 v). Nevertheless, those models are significantly better
than M7 (beta). The discretized versions of models M9–(beta). There are clearly sites with 0 , v , 1. Parameter

estimates under models such as M5 (gamma) and M6 M11 all have a category of sites (10%) with v > 1.8.
Apart from M2, which fits the data relatively poorly, all(2gamma) suggest L-shaped distributions for v, with

heavy tails. The beta model (M7) suggests a U shape, the models that allow for positively selected sites gave
significant evidence for the existence of such sites.and the peak at v 5 1 is probably caused by sites with

v . 1 in the data. The discrete model (M3) fits the data These results provide strong support for adaptive evolu-
tion in the HIV-1 pol gene.as well as or better than all other models considered.

Simpler nested models (M0, M1, and M2) are all re- All models that allow for positive selection (M3–M6
and M8–M13) pinpoint similar sets of amino acid sitesjected when compared with M3.

The selection model (M2) does not suggest presence as targets of diversifying selection. For example, at the
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TABLE 9

Likelihood values and parameter estimates for HIV pol gene (D7)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 29619.30 0.196 v 5 0.196
M1 (neutral) 29450.21 0.280 p0 5 0.719 (p1 5 0.280)
M2 (selection) 29393.56 0.184 p0 5 0.354, p1 5 0.136 (p2 5 0.510)

v2 5 0.093
M3 (discrete) 29363.57 0.253 p0 5 0.838, p1 5 0.142 (p2 5 0.019),

v0 5 0.049, v1 5 0.849, v2 5 4.739
M4 (freqs) 29369.10 0.240 p0 5 0.616, p1 5 0.318, p2 5 0.000, p3 5 0.032 (p4 5 0.034)
M5 (gamma) 29384.32 0.264 a 5 0.169, b 5 0.541
M6 (2gamma) 29378.79 0.269 p0 5 0.422 (p1 5 0.578)

a0 5 2.108, b0 5 10.202, a1 5 b1 5 0.045
M7 (beta) 29405.74 0.188 p 5 0.111, q 5 0.482
M8 (beta&v) 29365.88 0.250 p0 5 0.975 (p1 5 0.025), p 5 0.177, q 5 0.963,

v 5 4.052
M9 (beta&gamma) 29378.79 0.269 p0 5 0.919 (p1 5 0.081),

p 5 0.314, q 5 2.313, a 5 0.286, b 5 0.013
M10 (beta&gamma11) 29378.79 0.269 p0 5 0.947 (p1 5 0.053),

p 5 0.311, q 5 2.216, a 5 1.116, b 5 0.090
M11 (beta&normal.1) 29378.79 0.269 p0 5 0.946 (p1 5 0.054)

p 5 0.312, q 5 2.239, m 5 3.571, s 5 1.360
M12 (0&2normal.1) 29368.00 0.270 p0 5 0.590, p1 5 0.203,

m2 5 0.273, s1 5 2.389, s2 5 0.003
M13 (3normal.0) 29361.37 0.269 p0 5 0.726, p1 5 0.033 (p2 5 0.241),

m2 5 0.000,
s0 5 0.046, s1 5 4.625, s2 5 0.652

99% level, M8 (beta&v) identified the following sites: Model 8 (beta&v) fits the data better (although not
significantly) than M7 (beta). However, the estimated67, 347, 478, 568, 761, and 779, while at the 95% level,

four additional sites are identified by that model (sites v for the additional category of sites is ,1. Furthermore,
the discretized versions of models M9–M13 do not have3, 14, 41, and 379).

Seibert et al. (1995) examined the HIV-1 env, gag, and any category with v . 1.
D9: Tick-borne flavivirus NS-5 gene (Table 11): Thispol genes for positive selection. They used the method of

Nei and Gojobori (1986) to estimate dN and dS and gene is the most conserved among the 10 genes analyzed
in this article. The average v ratio over all sites rangesconcluded that dN . dS for the env gene but dN , dS in

the gag and the pol genes. Our results and those of from 0.02 to 0.03 among models, except for M1 (neu-
tral) and M4 (freqs). The latter two models producedSeibert et al. (1995) may be reconciled by noting that

the tests presented in this article are more powerful larger but unreliable estimates as they fit the data very
poorly. The strict neutral model (M1) fits the data evento detect positive selection than the method used by

Seibert et al. (1995). more poorly than the one-ratio model (M0). Although
the two models have the same number of parametersD8: Japanese encephalitis env gene (Table 10): This

gene is under strong purifying selection, as the average and are not nested, the log-likelihood difference (D, 5
582.48) is huge. Neither the selection (M2) nor discretev ratio over sites is z0.05 for all models except for M1

(neutral) and M4 (freqs). Models M1 and M4 gave much (M3) model indicates presence of positively selected
sites. The beta mixture models (M8–M11) do not fitlarger estimates (0.17 and 0.07, respectively), but these

do not appear reliable because the two models do not the data any better than the simple beta model (M7).
Furthermore, none of the 10 categories in the discretefit the data well. M1 is even poorer than the one-ratio

model (M0). The discrete model (M3) suggests a small distributions used to approximate the continuous beta
mixture models (M9–M11) have an v ratio .1. Modelsproportion (0.3%) of nearly neutral sites with v2 5 1.04,

and there is no evidence for positive selection. Models such as M5 (gamma), M6 (2gamma), and beta (M7) all
suggest highly skewed L-shaped distributions for v. Thesuch as M5 (gamma), M6 (2gamma), and M7 (beta)

suggest highly skewed L-shaped distributions for v, with discrete model (M3) fits the data as well as the best of
other models.most sites under strong selective pressure (with v close

to 0) and with very little probability density for the D10: HIV-1 env gene V3 region (Table 12): The v
ratio averaged over all sites ranges from 0.9 to 1.2 amongregion v . 1. The discrete model (M3) fits the data as

well as or better than all other models considered. models, except for models M1 (neutral) and M7 (beta).
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TABLE 10

Likelihood values and parameter estimates for Japanese encephalitis env gene (D8)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 26886.17 0.051 v 5 0.051
M1 (neutral) 26974.78 0.168 p0 5 0.832 (p1 5 0.168)
M2 (selection) 26848.06 0.055 p0 5 0.658, p1 5 0.014 (p2 5 0.329)

v2 5 0.124
M3 (discrete) 26845.30 0.053 p0 5 0.921, p1 5 0.075 (p2 5 0.003),

v0 5 0.022, v1 5 0.382, v2 5 1.043
M4 (freqs) 26862.14 0.070 p0 5 0.789, p1 5 0.211, p2 5 0.000, p3 5 0.000 (p4 5 0.000)
M5 (gamma) 26848.00 0.054 a 5 0.198, b 5 3.198
M6 (2gamma) 26845.91 0.054 p0 5 0.940 (p1 5 0.060)

a0 5 20.464, b0 5 ∞, a1 5 b1 5 2.019
M7 (beta) 26848.20 0.053 p 5 0.178, q 5 2.883
M8 (beta&v) 26845.38 0.052 p0 5 0.930 (p1 5 0.070), p 5 9.666, q 5 400.3(∞),

v 5 0.438
M9 (beta&gamma) 26846.65 0.054 p0 5 0.950 (p1 5 0.050),

p 5 0.515, q 5 17.574, a 5 30.902, b 5 0.008
M10 (beta&gamma11) 26846.66 0.055 p0 5 0.950 (p1 5 0.050),

p 5 0.521, q 5 17.414, a 5 0.097, b 5 1.100
M11 (beta&normal.1) 26846.67 0.055 p0 5 0.950 (p1 5 0.050)

p 5 0.522, q 5 17.414, m 5 0.457, s 5 1.097
M12 (0&2normal.1) 26845.45 0.053 p0 5 0.334, p1 5 0.054,

m2 5 0.039, s1 5 3.762, s2 5 0.000
M13 (3normal.0) 26848.54 0.055 p0 5 0.915, p1 5 0.000 (p2 5 0.085),

m2 5 0.492
s0 5 0.020, s1 5 29.0(∞), s2 5 0.109

TABLE 11

Likelihood values and parameter estimates for tick-borne flavivirus NS-5 gene (D9)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 29554.63 0.025 v 5 0. 025
M1 (neutral) 210137.11 0.412 p0 5 0.588 (p1 5 0.412)
M2 (selection) 29238.49 0.051 p0 5 0.571, p1 5 0.028 (p2 5 0.401), v2 5 0.058
M3 (discrete) 29187.91 0.031 p0 5 0.645, p1 5 0.259 (p2 5 0.096),

v0 5 0.002, v1 5 0.045, v2 5 0.188
M4 (freqs) 29348.87 0.145 p0 5 0.587, p1 5 0.402, p2 5 0.00, p3 5 0.011 (p4 5 0.0)
M5 (gamma) 29188.67 0.033 a 5 0.212, b 5 5.596
M6 (2gamma) 29187.93 0.033 p0 5 0.499 (p0 5 0.501),

a0 5 0.847, b0 5 21.108, a1 5 0.018
M7 (beta) 29188.80 0.033 p 5 0.203, q 5 5.345
M8 (beta&v) 29188.83 0.037 p0 5 1.000 (p1 5 0.000),

p 5 0.203, q 5 5.345, v 5 40.436
M9 (beta&gamma) 29188.58 0.033 p0 5 0.980 (p1 5 0.020),

p 5 0.220, q 5 7.078, a 5 2.378, b 5 0.006
M10 (beta&gamma11) 29188.58 0.033 p0 5 0.980 (p1 5 0.020),

p 5 0.220, q 5 7.078, a 5 0.008, b 5 1.009
M11 (beta&normal.1) 29188.58 0.033 p0 5 0.980 (p1 5 0.020),

p 5 0.220, q 5 7.078, m 5 0.483, s 5 1.181
M12 (0&2normal.1) 29188.45 0.030 p0 5 0.489, p1 5 0.050,

m2 5 0.000,
s1 5 22.528, s2 5 0.054

M13 (3normal.0) 29187.76 0.032 p0 5 0.650, p1 5 0.052 (p2 5 0.298),
m2 5 0.050,
s0 5 0.002, s1 5 4.062, s2 5 0.000
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TABLE 12

Likelihood values and parameter estimates for HIV-1 env gene V3 region (D10)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 21137.69 0.901 v 5 0.901
M1 (neutral) 21116.33 0.644 p0 5 0.356
M2 (selection) 21106.59 1.212 p0 5 0.316, p1 5 0.502 (p2 5 0.182), v 5 3.898
M3 (discrete) 21105.49 1.173 p0 5 0. 531, p1 5 0.423 (p2 5 0. 046),

v0 5 0.175, v1 5 1.781, v2 5 7.141
M4 (freqs) 21106.43 1.069 p0 5 0.277, p1 5 0.000, p2 5 0.462, p3 5 0.011,

(p4 5 0.249)
M5 (gamma) 21105.97 1.175 a 5 0.557, b 5 0.448
M6 (2gamma) 21105.90 1.169 p0 5 0.763 (p1 5 0.237),

a0 5 0.883, b0 5 0.643, a1 5 0.101
M7 (beta) 21115.40 0.555 p 5 0.148, q 5 0.118
M8 (beta&v) 21106.39 1.119 p0 5 0.799 (p1 5 0.201),

p 5 0.167, q 5 0.149, v 5 3.470
M9 (beta&gamma) 21105.89 1.175 p0 5 0.258 (p1 5 0.742),

p 5 0.005, q 5 0.007, a 5 0.702, b 5 0.459
M10 (beta&gamma11) 21105.88 1.176 p0 5 0.523 (p1 5 0.477),

p 5 0.364, q 5 1.150, a 5 0.458, b 5 0.329
M11 (beta&normal.1) 21105.96 1.165 p0 5 0.694 (p1 5 0.304),

p 5 0.252, q 5 0.337, m 5 0.005, s 5 2.854
M12 (0&2normal.1) 21105.61 1.200 p0 5 0.227, p1 5 0.59,

m2 5 0.392,
s1 5 29 (∞), s2 5 1.328

M13 (3normal.0) 21105.81 1.138 p0 5 0.611, p1 5 0.194 (p2 5 0.195),
m2 5 0.000,
s0 5 1.136, s1 5 3.625, s2 5 0.000

The latter two models give lower and unreliable esti- sites with v z 1. The LRT statistic for comparing M7
(beta) and M8 (beta&v) is 2D, 5 2 3 [(21106.39) 2mates as they do not account for positively selected sites.

This gene region has the highest overall v ratios among (21115.40)] 5 2 3 9.01 5 18.02, with P 5 0.00012
compared with the x2 distribution with d.f. 5 2. Thethe 10 data sets analyzed in this article. The HIV-1 env

gene and in particular the V3 region are well known to beta mixture models (M9–M11) fit the data slightly bet-
ter than M8 (beta&v), and significantly better than thebe under diversifying selection. The strict neutral model

(M1) fits the data much better than the model of one beta model (M7), again suggesting the operation of diver-
sifying selection at some sites.v for all sites (M0). The discrete model (M3) fits the

data about as well as the best of other models consid- All models that allow for sites under positive selection
identified sites 28, 66, and 87 with high posterior proba-ered.

All models that allow for positive selection do suggest bility supports ($99%). Model M12 (0&2normal.1)
included sites 26 and 51 as well at the 99% level. At thea substantial proportion (18–70%) of positively selected

sites. Models such as M5 (gamma) and M6 (2gamma) 95% level, M12 suggested six additional sites: 22, 24,
68, 69, 76, and 83.suggest L-shaped distributions for v with heavy tails.

The beta model (M7) suggests a U shape, as the model
uses the density at v z 1 to account for sites with v .

DISCUSSION
1. Many amino acids are clearly under diversifying selec-
tion. For example, the discrete model (M3) suggests Effects of tree topology: Maximum-likelihood estima-

tion under models in this article relies on the phyloge-z42% of sites are under relatively weak positive selec-
tion with v1 5 1.8 and a further 4.6% of sites are under netic relationship among the sequences. To examine

the effect of the phylogeny on the analysis, we used sixstrong positive selection with v2 5 7.1. Similarly, M8
(beta&v) suggests that z20% of sites are under positive candidate trees to fit all 14 models (M0–M13) to the

vertebrate b-globin genes (D2). The six trees were eitherselection with v1 5 3.5. Note that the differences be-
tween the models may not be as large as they may seem, inferred from the b-globin data or based on conven-

tional wisdom. The best tree according to the one-ratioas we expect it to be difficult to distinguish a small
proportion of strongly selected sites from a large propor- model (M0) was used to obtain results of Table 4. Results

under another tree (the worst of the six trees undertion of weakly selected sites. The beta distribution in
M8 (beta&v) is U-shaped with a high proportion of model M0) are presented for four models (M0, M3, M7,
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TABLE 13

Parameter estimates under an alternative tree for the b-globin gene (D2)

Model code , dN/dS Estimates of parameters

M0 (one-ratio) 23820.81 0.237 v 5 0.237
M3 (discrete) 23688.36 0.305 p0 5 0.391, p1 5 0.533 (p2 5 0.076),

v0 5 0.019, v1 5 0.309, v2 5 1.752
M7 (beta) 23698.74 0.269 p 5 0.404, q 5 1.090
M8 (beta&v) 23687.02 0.312 p0 5 0.944 (p1 5 0.056),

p 5 0.567, q 5 2.152, v 5 2.112

and M8) in Table 13. The estimates under this tree are We also implemented a different discretization
scheme, in which K1 5 6 categories are used for thehighly similar to estimates presented in Table 4. LRTs

of positive selection lead to the same conclusions no region v , 1 and K2 5 4 categories are used for the
region v $ 1. This scheme appears to perform bettermatter which of the two (or six) trees is used. The

inference of sites under positive selection does not seem for data sets with a small proportion of positively selected
sites (such as in D7), but worse when the data do notto be sensitive to the assumed tree topology either. As

mentioned before, use of even the star tree generated contain positively selected sites (such as in D9). When a
large proportion of sites are under diversifying selectionlists of positively selected sites for the vertebrate b-globin

genes that are very similar to those obtained under the (such as in D10), both schemes appear to perform well.
Since the new K1-K2 scheme is not consistently betterbest tree. A similar analysis was performed on the HIV vif

data set using two candidate trees. Parameter estimates, than the old scheme of K 5 10 equal-probability catego-
ries, we have not used it for analysis in this article. FutureLRTs, and posterior probability calculations are all

highly similar between the candidate trees (results not work to devise more efficient approximations to the
integral of Equation 6 is highly desirable and may re-shown). While the correct tree should obviously be used

if it is known, those results suggest that a reasonably store some power to distinguish those continuous distri-
butions we implemented.good phylogeny may be sufficient for estimating param-

eters in the v distribution and for performing LRTs of Models implemented in this article assume that the
selective pressure indicated by the v ratio is identicalpositive selection.

Computational and theoretical problems: Models im- among evolutionary lineages. They also assume that the
nonsynonymous substitution rate is independent of theplemented in this article appear very useful in testing

the existence of positively selected amino acid sites and amino acids being interchanged; that is, at a positively
selected site, all amino acids are assumed to be accept-in identifying such sites when they exist. The different

models also appear to produce consistent and convinc- able and all amino acid changes are assumed to be advan-
tageous. By the criterion we use, a site will be considereding results. However, we encountered numerous practi-

cal problems. The continuous mixture models M9–M13, to be under positive selection only if the nonsynonymous
rate, averaged over all lineages in the phylogeny andand especially the parameter-rich model M13 (3nor-

mal.0), were found to converge to ML estimates very over all possible amino acid-replacement mutations at
the site, is higher than the synonymous rate. Thus LRTsslowly during the iteration. In some data-model combi-

nations, the likelihood value was also found to be sensi- of positive selection implemented in this article are con-
servative. It appears desirable to develop models thattive to the number of categories (K) used in the discrete

approximation. While the likelihood values reported allow the selective pressure to vary both among lineages
and among sites; such models may be much more power-in Tables 3–12 are reliable, parameter estimates under

some models may not be. In some cases, different values ful for detecting adaptive molecular evolution than
those implemented in this article. In this regard, itof the parameters gave virtually the same likelihood

values, and the likelihood surface appears to be nearly should be noted that our models, conservative as they
are, identified positive selection in several genes notflat. Those computational difficulties appear to a large

extent to be caused by our use of the discrete distribu- previously suspected of being under positive selection.
Another assumption made in this article is a constanttions to approximate the continuous ones. Two differ-

ent continuous distributions (or two sets of parameters mutation (synonymous) rate among sites. This assump-
tion may not always be realistic. However, we suggestfor the same continuous distribution) may look very

similar after they are discretized. We note that distin- that synonymous rate variation is unlikely to lead to
false conclusions of adaptive evolution by the methodsguishing statistical distributions is almost always a diffi-

cult task, but the discretization appears to have further of this article. For example, at mutational hot spots, both
synonymous and nonsynonymous rates will be elevated,reduced the power of the method.
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and if nonsynonymous mutations do not offer a selective (discrete) appears much more powerful. Nevertheless,
model M2 does detect positive selection in the threeadvantage, the underlying v ratio at such sites will not

be .1. Similarly, in our formulation, selection at silent other data sets analyzed in this article. It was also found
much more powerful than ad hoc pairwise comparisonssites for translational efficiency, which has been nicely

demonstrated in Drosophila by Akashi (1995, 1999) or sliding window analysis in a recent study of positive
selection in the HIV-1 nef gene (Zanotto et al. 1999).and suggested for mammals and viruses as well, has the

sole effect of changing the codon usage pattern (pj in Thus we suggest that the model be used in real data
analysis, with its limitations borne in mind. ModelsEquation 1). It will not lead to v . 1 if nonsynonymous

mutations do not offer a selective advantage. We note M0–M3 all involve much less computation than other
models implemented in this article and may all be suc-that the v ratio in our models measures the net effect

of selection at the protein level (see Equation 1). Unlike cessfully fitted to the data.
We also recommend LRTs based on the beta nullmany tests of neutrality suggested in population genetics

(see, e.g., Wayne and Simonsen 1998; Fu and Li 1999 model (M7). In particular, comparison between M7
(beta) and M8 (beta&v) appears to provide a powerfulfor reviews), which may be powerful in rejecting strict

neutrality but not so powerful in distinguishing among test of positive selection. Models M9–M11 can also be
compared with M7 to test for positive selection, butdifferent forms of natural selection, the LRTs described

in this article aim to detect molecular adaptation. those models detect selection only if a substantial pro-
portion of positively selected sites exist in the gene. TheyHow many genes are under positive selection? Our

analysis demonstrated existence of sites under diversify- often suffer from convergence problems and seldom fit
the data better than M8 despite their use of an addi-ing selection in 6 out of the 10 genes analyzed. The

HIV-1 env gene (data set D10) is one of the best-known tional parameter. In using models M9–M11 as well as
other continuous distribution models not based on theexamples of adaptive evolution (e.g., Holmes et al. 1995;

Mindell 1996; Yamaguchi and Gojobori 1997); the beta distribution (M5, M6, M12, and M13), it is impor-
tant to examine the discrete distributions to see whetherselective pressure is presumably the surveillance of the

host immune system. Previous analysis (Fitch et al. there is any category with v . 1. Although we did find
data sets for which M12 and M13 gave good fits, M121997) also suggested positive selection in the human

influenza virus HA gene (data set D5). Besides those often caused serious convergence problems and M13
was even worse and hardly usable.two genes, our analysis also detected adaptive evolution

in the HIV-1 vif and pol genes (data sets D6 and D7) Data and program availability and program perfor-
mance: The sequence alignments, the phylogeneticand in the mitochondrial (D1) and b-globin (D2) genes.

The v ratios averaged over all sites are !1 in those trees used, and extensive lists of positively selected sites
and their posterior probabilities inferred under differ-data sets, and our models inferred adaptive molecular

evolution in spite of this overwhelming effect of purify- ent models will be made available at the anonymous ftp
site (ftp://abacus.gene.ucl.ac.uk/pub/YNGP2000/).ing selection. The 10 genes analyzed in this article are

not a random sample of genes in various organisms. Models developed in this article are implemented in the
codeml program in the paml program package (YangHowever, it appears likely that molecular adaptation

happens much more often than has been recognized. 1997), which is distributed at the web site http://abacus.
gene.ucl.ac.uk/software/paml.html.We hope that our inference of sites under diversifying

selection may prompt further lab-based investigation on We thank Eddie Holmes and Walter Fitch for providing some of
the structure and function of the proteins to identify the data sets analyzed in this article. We thank Joe Bielawski and

Simon Whelan for discussions and Daniel Haydon and two anonymousthe selective agents.
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Liò, P., and N. Goldman, 1998 Models of molecular evolution and
phylogeny. Genome Res. 8: 1223–1244. Communicating editor: W. Stephan


