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– Degenerate maximal repeats

• Bioinformatics tools and applications

– REPuter
– Multiple genome aligner (MGA)

• Conclusion
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Pattern matching in biological sequence analysis

Finding known patterns: (exact/approximate)

• Search for homologous proteins
– assumption: similar sequence → similar structure → similar function

• Mapping of expressed sequence tags (ESTs) onto genomic DNA
– find location of exons/introns and alternative splicing

• Search for repeats, low complexity regions for further exclusion from analysis

Finding structural patterns: (exact/approximate)

• Ab initio gene prediction (start/stop codons, exons/introns)

• Search for over-/underrepresented subsequences, for example
– unknown promoter binding sites

– repeats, tandem repeats

– possible DNA methylation sites

• Calculation of RNA secondary structure

• Sequence assembly
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Requirements for computational tools

• Efficiency: linear in space and time

• Flexibility: applicable to as many problems as possible

• Statistical assessment of significance of results

• Visualization

For routine tasks, even linear time is intolerable → index

Many indices for massive sequence data use the property that the text is
partitioned into words (e.g. natural language, syntactic tags).

Genomic data is not divided into obvious “words”.

We need an index that allows access to any substring of the text.

→ Suffix Tree
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Suffix Tree: Definition

• A suffix of a string S of length n
is a substring of S that ends at position n. 1 n

• The suffix tree of S, T (S), is a rooted tree whose edges are labeled with strings
such that

– all edges leaving a node begin with different characters and
– the paths from the root to the leaves represent all the suffixes of S.
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Suffix Tree: Definition

• A suffix of a string S of length n
is a substring of S that ends at position n. 1 n

• The suffix tree of S, T (S), is a rooted tree whose edges are labeled with strings
such that

– all edges leaving a node begin with different characters and
– the paths from the root to the leaves represent all the suffixes of S.
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A larger example
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Suffix tree properties

• T (S) represents exactly the substrings of S.

• T (S) allows to enumerate these substrings and
their locations in S in a convenient way.

• This is very useful for many pattern recognition problems, for example:

– exact string matching as part of other applications, e.g. detecting DNA
contamination

– all-pairs suffix-prefix matching, important in fragment assembly
– finding repeats and palindromes, tandem repeats, degenerate repeats
– DNA primer design
– DNA chip design
– ...

See also:

– A. Apostolico: The myriad virtues of subword trees, 1985.
– D. Gusfield: Algorithms on strings, trees, and sequences, 1997.
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Repeats in biosequence analysis

• DNA of eukaryotes is highly repetitive.

– 30% in human genome?
– 10% introduced by retroviruses?

• Repeat regions are rapidly changing hot spots in evolution.

• Vast literature on repetitive structures and their hypothesized functional and
evolutionary roles: ALUs, SINEs, LINEs, satellites, ...

• Repeats are involved in several biological mechanisms, including genetically
inherited diseases.

– e.g. Huntington’s disease

• Repeats tend to confuse sequence analysis programs and hence should be
masked in a preprocessing step.

⇒ Repeats are very important when studying genomic DNA.
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Repeats in the human genome

(Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas)
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Basic definitions

A pair of substrings R = (S[i1, j1], S[i2, j2]) is called a repeat.

→ exact repeat if S[i1, j1] = S[i2, j2]

S

j1 i2 j2i1

→ k-mismatch repeat if there are k mismatches between S[i1, j1] and S[i2, j2]

S

i1 j1 i2 j2

XA YB

→ k-differences repeat if there are k differences (mismatches, insertions,
deletions) between S[i1, j1] and S[i2, j2]

S

i1 j1 i2 j2

AD B I
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Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

• It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

• consider string S and its suffix tree T (S).

• repeated substrings of S correspond to
internal locations in T (S).

• leaf numbers tell us positions where
substrings occur.
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A larger example
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Finding maximal exact repeats

YXA B

Idea:

• For right-maximality (X 6= Y)

– consider only internal nodes of T (S)
– report only pairs of leaves from different subtrees

(or from different leaf-lists)
4 3 213 14 5 971511

[5,7,9,11,15][2,3,4,13,14]

• For left-maximality (A 6= B)

– keep lists for the different left-characters
– report only pairs from different lists

B: [7,9,11]

A: [5,15]

B: [2,13]

A: [3,4,14]

Analysis: O(n + z) time with z = |output|, O(n) space
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Tandem repeats: Definitions

• tandem repeat (square)

αw = α ∈ Σ+α

• occurrence of a tandem repeat

S α α

i

(i, |α|, 2)

• (right-) branching occurrence of a tandem repeat

S α α

i

xaa x 6= a

• a string w is primitive if and only if w = uk implies k = 1

• a tandem repeat αα is primitive if and only if α is primitive
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Tandem repeats: Numbers

• number of occurrences of tandem repeats: O(n2)

A A A A A A A A . . .
}

n∑

i=1

(n − 2i + 1) = n
2

4

• number of occurrences of primitive tandem repeats: O(n log n)

A B A B B A B A B B A B . . . (Fibonacci string)

• number of different strings that occur as tandem repeats: O(n)

A A B B C C D D . . .
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Finding tandem repeats: Overview

A. Find all ccurrences of tandem repeats in a string.

• Main/Lorentz, 1979/1984
• Landau/Schmidt, 1993

B. Find all occurrences of primitive tandem repeats in a string.

• Crochemore, 1981
• Apostolico/Preparata, 1983

C. Find all occurrences of primitive tandem arrays in a string.

Here:
Simple and flexible detection of all of these in optimal time using a suffix tree.
(TCS 2002, joint work with Dan Gusfield)
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Basic observation

Lemma:
Any non-branching occurrence (i, l, 2) of a tandem repeat is the left-rotation of
another tandem repeat (i + 1, l, 2), starting one position to its right.

Example:

A B A A B A A B B B A $
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Suffix trees and tandem repeats

Lemma: (folklore)
Consider two positions i and j of S, 1 ≤ i < j ≤ n, let l = j − i. Then the
following assertions are equivalent:

(a) (i, l, 2) is an occurrence of a tandem repeat;

(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v) ≥ l.

Example: ABBBAAAABA
1 2 3 4 5 6 7 8 9 10 11

$
12

B

11

1

8910

5

2

7

4

6

12

3

A

$

A

A

A
B

B

B

A

$

A

A

B

B

B

A

$

B

B

B

A

$

B

A

A

B

B

$

$

A

B

B

B
A
A

B

B

$

A

A

$

B

B
B

A

B

A

B
B

$

B

$

A

$

$

A

B[1,3,4,6,7,11]

[1,4,7]

[2,5,8,9,10]

[2,5]

[8,9]

[2,5,10]

[1,4]

[3,6](3,3,2)

AAB(2,3,2)

BAA

24

Suffix trees and branching tandem repeats

Lemma:
Consider two positions i and j of S, 1 ≤ i < j ≤ n, let l = j − i. Then the
following assertions are equivalent:

(a) (i, l, 2) is an occurrence of a branching tandem repeat;

(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v) = l,
but do not appear in the same leaf-list of any node with depth greater than l.
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Basic algorithm

Idea:
For each node v of T (S), test if αα = L(v)L(v) is a branching tandem repeat.

Algorithm
All nodes of T (S) begin unmarked.
Step 1 is repeated until all nodes are marked.

1. Select an unmarked internal node v.
Mark v and execute steps 2a and 2b for node v.

2a. Collect the leaf-list LL(v).

2b. For each leaf i in LL(v), test whether the leaf j = i + D(v) is in LL(v).
If so, test whether S[i] 6= S[i + 2D(v)]. There is a branching tandem repeat of
length 2D(v) starting at position i if and only if both tests return true.

Analysis: O(n2) time, O(n) space
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Testing in constant time

Depth-first numbering and look-up table:
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Speedup of the basic algorithm

Definitions

• For each node v, v′ denotes the child of v with the largest leaf-list.

• LL′(v) denotes LL(v) − LL(v′).

The “Smaller Half” Trick
It is well known that

∑

v

|LL′(v)| ≤ n log2 n.

[. . . . . . . . . , x, . . . . . . . . .]

[. . . , x, . . .]

[. . . . . . , x, . . . . . .]

Any value x can be

in at most log2 n leaf-lists LL
′.
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Optimized basic algorithm

Algorithm
All nodes of T (S) begin unmarked.
Step 1 is repeated until all nodes are marked.

1. Select an unmarked internal node v.
Mark v and execute steps 2a, 2b and 2c for node v.

2a. Collect the list LL′(v) for v.

2b. For each leaf i in LL′(v), test whether leaf j = i + D(v) is in LL(v), the
leaf-list of v. If so, test whether S[i] 6= S[i + 2D(v)]. There is a branching
tandem repeat of length 2D(v) starting at position i if and only if both tests
return true.

2c. Do the same test for each leaf j in LL′(v), and i = j − D(v).

Analysis: O(n log n) time, O(n) space
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Extension 1: Primitive tandem repeats

Remember:

• A string w is primitive if and only if w = uk implies k = 1

• A tandem repeat αα is primitive if and only if α is primitive

Lemma

A string ua is primitive if and only if its left-rotation au is primitive.

Extension of the Algorithm

Remove marks of the non-primitive branching tandem repeats.
Do the rotation procedure only for the primitive branching tandem repeats.

Analysis: O(n log n) time, no additional space
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Extension 2: Primitive tandem arrays

Definition

A primitive tandem array is a string w = αk with α primitive, k ≥ 2.

α α ααα α

Extended Algorithm

For an observed branching occurrence of a primitive tandem repeat (i, l, 2) at
node v, successively test for k = 1, 2, . . . whether leaf j = i − kl is also in the
subtree below v.

Analysis

Right-maximal occurrences of primitive tandem arrays: O(n log n) time.
All occurrences of primitive tandem arrays: O(n log n + z) time.

Can be extended further to find only the maximal primitive tandem arrays in
O(n log n) time.
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Tandem repeats in linear time!

Fraenkel & Simpson, 1998:

• The vocabulary of all tandem repeats in S has only O(n) elements.

Idea:

• Mark in T (S) all end points of tandem repeats.
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Analysis: O(n + |output|) time, O(n) space
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Repeats with bounded gap

Sometimes one wishes to allow between the copies of a repeat a gap of (upper
and/or lower) bounded size.

α α

gap

Idea:

• Traverse the suffix tree bottom-up.

• At each vertex v collect the leaf-list LL′(v).

• Output only pairs that have the required distance.

Analysis: O(n log n + |output|) resp. O(n + |output|) time, O(n) space.
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Finding degenerate repeats

Often, repats in genomic DNA are degenerate, i.e. at some positions more than
one base is possible.

Idea: Filter method (seed and extend)

︸ ︷︷ ︸

ss
︸ ︷︷ ︸

s ≥
⌊

`
k+1

⌋

︷ ︸︸ ︷

≥ `
︷ ︸︸ ︷

≥ `

C –A G

Algorithm:

1. Search for local exact repeats (seeds).

2. Extend the seeds while allowing up to k errors.

3. If extension is long enough, output repeat.

Analysis: O(n + ζk3) time with E(ζ) = O
(
n2/4s

)
, s minimal seed length.
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Extension for maximal k-mismatch repeats

Simple extension and length test:

××××× × × ×× × × ×

≥ ` ?

≥ ` ?
︸ ︷︷ ︸

≥ ` ?
︸ ︷︷ ︸ ︸ ︷︷ ︸

≥ ` ?
︸ ︷︷ ︸

≥ ` ?
︸ ︷︷ ︸

≥ ` ?
︸ ︷︷ ︸

Analysis: O(n + ζk) time with E(ζ) = O
(
n2/4s

)
, s minimal seed length.
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Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

× ×
i1 j1

××
j2i2

×
i1

j1
×

× ×
i2 j2

+

++

+

Analysis: O(n + ζk3) time with E(ζ) = O
(
n2/4s

)
, s minimal seed length.
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Variation: Palindromic repeats

P

P

P−1

• One repeat instance must be reverse Watson/Crick complement P−1.

• Essentially same problem as computing direct repeats.

• Instead of S use S#S−1 (where S−1 is the reverse complement of S).

S

P

S−1

#

P−1 P P−1

• # is a unique separator symbol.

• One of the duplicates must be in S and the other in S−1.

• Calculate position in S−1 relative to the beginning of S.
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The REPuter suite of repeat finding programs

www.genomes.de

• REPfind: implements several of the described algorithms.

• REPselect: selects interesting repeats from the output of REPfind
(user-defined second filter phase).

• REPvis: interactive visualization tool to display large amounts of repeat data.

(joint work with Stefan Kurtz, Enno Ohlebusch, Robert Giegerich, Chris Schleiermacher, Jomuna

Choudhuri)
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REPuter: An example
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REPuter: An example

43

REPuter: An example
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REPuter: An example
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REPuter – Application 1: (Approximate) tandem array
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REPuter – Application 1: (Approximate) tandem array
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REPuter – Application 1: (Approximate) tandem array
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REPuter – Application 2: Low copy repeats

(22q11.2 region of human chromosome 22, associated to DiGeorge/Velo-cardio-facial syndrome.)
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REPuter – Application 3: Unique sequences
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REPuter – Application 3: Unique sequences
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REPuter: Computation times

genome size
[Mbases]

l

[bases]
suffix tree

[sec]
virtual tree

[sec]

E. coli 4.42 150 5.4 1.7

S. cerevisiae 11.50 180 14.8 4.7

D. melanogaster 114.44 700 310.7 44.4

virtual (suffix) tree = suffix array, enhanced by functions to simulate suffix
tree functionality → GENalyzer.
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Höhl et al., 2002).

Algorithm:

1. Find all maximal multiple exact matches (multiMEMs) in the given genomes
(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
i.e. a chain of non-overlapping multiMEMs of maximal weight
where the weight of a chain is the sum of the lengths of its members.

G3

G2

G1

G2

G1
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Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Höhl et al., 2002).

Algorithm:

1. Find all maximal multiple exact matches (multiMEMs) in the given genomes
(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
i.e. a chain of non-overlapping multiMEMs of maximal weight
where the weight of a chain is the sum of the lengths of its members.

3. Close the gaps recursively, and finally by a standard alignment procedure.

G3

G2

G1
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Summary: Repeats and suffix trees

Some results: (z is always the output size)

• Find all z maximal repeats in O(n + z) time.

• Find all z maximal palindromic repeats in O(n + z) time.

• Find all z tandem repeats in O(n + z) time.

• Find all z maximal repeats with bounded gap in O(n log n + z) time.

• Find all z maximal repeats with lower-bounded gap in O(n + z) time.

• Find all degenerate repeats with ≤ k errors in O(n + ζk3) time (ζ = # seeds).
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Conclusion

• Repeat finding on a whole genome/whole chromosome basis is possible.

• Suffix trees are a powerful data structure (not only) for repeat finding.

• The flexibility of the data structures allows to find various (related) types of
repeats.

• Repeat finding has several applications, some of which are related to repeats
only at second glance.
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