Overview

e Introduction

. . — Stri hi
Repeat Analysis on a Genomic Scale oo toss (reminder]

— Repeats

e Repeat finding with suffix trees
— Maximal repeats
— Tandem repeats
— Maximal repeats with bounded gap

Jens Stoye — Degenerate maximal repeats
Technische Fakultat, Universitat Bielefeld, Germany e Bioinformatics tools and applications
— REPuter
— Multiple genome aligner (MGA)
e Conclusion
Pattern matching in biological sequence analysis Requirements for computational tools

Finding known patterns: (exact/approximate)

e Search for homologous proteins e Efficiency: linear in space and time

— assumption: similar sequence — similar structure — similar function o X .
. . o Flexibility: applicable to as many problems as possible
e Mapping of expressed sequence tags (ESTs) onto genomic DNA

— find location of exons/introns and alternative splicing e Statistical assessment of significance of results

e Search for repeats, low complexity regions for further exclusion from analysis
e Visualization
Finding structural patterns: (exact/approximate)

e Ab initio gene prediction (start/stop codons, exons/introns) For routine tasks, even linear time is intolerable — index

e Search for over-/underrepresented subsequences, for example Many indices for massive sequence data use the property that the text is
= unknown promoter binding sites partitioned into words (e.g. natural language, syntactic tags).
— repeats, tandem repeats
— possible DNA methylation sites Genomic data is not divided into obvious “words” .

o Calculation of RNA secondary structure We need an index that allows access to any substring of the text.

S bl
e Sequence assembly — Suffix Tree

Suffix Tree: Definition

e A suffix of a string S of length n ——T

is a substring of .S' that ends at position 7. 1 n

e The suffix tree of S, T'(.S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

123 456

P=ATA

A larger example

Suffix Tree: Definition

e A suffix of a string S of length n ——T

is a substring of S that ends at position n. 1 n

e The suffix tree of S, T'(S), is a rooted tree whose edges are labeled with strings
such that

— all edges leaving a node begin with different characters and
— the paths from the root to the leaves represent all the suffixes of S.
S=TATATS

123456

P=TATT

Suffix tree properties

e T'(S) represents exactly the substrings of S.

e T(S) allows to enumerate these substrings and
their locations in .S in a convenient way.

e This is very useful for many pattern recognition problems, for example:
— exact string matching as part of other applications, e.g. detecting DNA
contamination
— all-pairs suffix-prefix matching, important in fragment assembly
— finding repeats and palindromes, tandem repeats, degenerate repeats
— DNA primer design
— DNA chip design

See also:

— A. Apostolico: The myriad virtues of subword trees, 1985.
— D. Gusfield: Algorithms on strings, trees, and sequences, 1997.

Repeats in biosequence analysis

e DNA of eukaryotes is highly repetitive.
— 30% in human genome?
— 10% introduced by retroviruses?

e Repeat regions are rapidly changing hot spots in evolution.

e Vast literature on repetitive structures and their hypothesized functional and
evolutionary roles: ALUs, SINEs, LINEs, satellites, ...

e Repeats are involved in several biological mechanisms, including genetically
inherited diseases.

— e.g. Huntington's disease

e Repeats tend to confuse sequence analysis programs and hence should be
masked in a preprocessing step.

= Repeats are very important when studying genomic DNA.

Basic definitions

A pair of substrings R = (S[i1, j1], S[ia, j2]) is called a

if Sfi1, j1] = Slia, jo]

if there are k mismatches between S[i1, j1] and S[iz, jo

S I . N D - N

U J 2 J2

if there are k differences (mismatches, insertions,
deletions) between S[i1, j1] and S[ia, jo]

S I > I I I I N

U 1 2 J2

Repeats in the human genome

Repeat Length Distribution

(Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas)

Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

e It is possible to find all

Idea:
. . . ' S=TATATS
e consider string S and its suffix tree 7(.5). 123456

. of S correspond to
internal locations in T'(.S).

e leaf numbers tell us positions where
substrings occur.

Analysis: O(n + z) time with z = |output|, O(n) space

(
(
(
(
(
A (
(

(repeats) in S in linear time.

W NN
Lrosess

A larger example

(8.5) is: (5,2) p: (10,9) s (7.4) si: (7,4)
(82) (7.6)
(8,11) ss: (5.2) (7.3) ss: (6,3)
(52) (4.6)
(5,11) issi: (5,2) (4,3) ssi: (6,3)
(211) (63)
16
Tandem repeats: Definitions
e tandem repeat (square)
w= | « | I] ae Xt
e occurrence of a tandem repeat
(4, |, 2)

SHENN - T - TN
i

e (right-) branching occurrence of a tandem repeat

S T T -
1

e a string w is primitive if and only if w = u” implies k = 1

e a tandem repeat v is primitive if and only if « is primitive

20

Finding maximal exact repeats

6]

Idea:

e For right-maximality (X # Y) (PR

— consider only internal nodes of 7'(5)

— report only pairs of leaves from different subtrees
(or from different leaf-lists)

e For left-maximality (A # B)

A: [3.4,14]
— keep lists for the different left-characters % (e

— report only pairs from different lists

13 14 4 3 2 511 15 7 9

Analysis: O(n + z) time with z = |output|, O(n) space

[5.7,9,11,15]

Tandem repeats: Numbers

o number of occurrences of tandem repeats: O(n?)

AAAAAAAA

—_— } Y(n—2i+1)="1

=Sl

e number of occurrences of primitive tandem repeats: O(nlogn)

ABABBABABBAB... (Fibonacci string)

e number of different strings that occur as tandem repeats: O(n)

AABBCCDD

21

Finding tandem repeats: Overview Basic observation

: . . Lemma:
A. Find all ccurrences of tandem repeats in a string. Any non-branching occurrence of a tandem repeat is the left-rotation of
e Main/Lorentz, 1979/1984 another tandem repeat (i + 1,[,2), starting one position to its right.
e Landau/Schmidt, 1993
Example:

B. Find all occurrences of primitive tandem repeats in a string.

e Crochemore, 1981 ABAABAABBBAY
e Apostolico/Preparata, 1983

,
C. Find all occurrences of primitive tandem arrays in a string.
Here:
Simple and flexible detection of all of these in optimal time using a suffix tree.
(TCS 2002, joint work with Dan Gusfield)
22 23
Suffix trees and tandem repeats Suffix trees and branching tandem repeats

Lemma:
Consider two positions 7 and j of S, 1 <i < j <mn,letl=j—i. Then the
following assertions are equivalent:

Lemma: (folklore)
Consider two positions i and j of S, 1 <i < j<n,letl=j—i. Then the
following assertions are equivalent:

(a) (3,1,2) is an occurrence of a tandem repeat; (a) (4,1,2) is an occurrence of a branching tandem repeat;

(b) 4 and j occur in the same leaf-list of some node v in 7'(S) with depth D(v) =1,

(b) @ and j occur in the same leaf-list of some node v in T'(5) with depth D(v) > I. but do not appear in the same leaf-list of any node with depth greater than .

Example: ABAABAABBBAS
12345678 9101112
——(33,2)
—_—t32

Example: ABAABAABBBAS
123456789101112
4= (9,1,2)

8

24 25

Basic algorithm

Idea:
For each node v of T'(S), test if e = L(v)L(v) is a branching tandem repeat.

Algorithm
All nodes of T'(S) begin unmarked.
Step 1 is repeated until all nodes are marked.

1. Select an unmarked internal node v.
Mark v and execute steps 2a and 2b for node v.
2a. Collect the leaf-list LL(v).

2b. For each leaf i in LL(v), whether the leaf j =i+ D(v) is in LL(v).
If so, test whether S[i] # S[i + 2D(v)]. There is a branching tandem repeat of
length 2D(v) starting at position 7 if and only if both tests return true.

Analysis: O(n?) time, O(n) space

26

Speedup of the basic algorithm

Definitions
e For each node v, v/ denotes the child of v with the largest leaf-list.

e LL'(v) denotes LL(v) — LL(v").

The "Smaller Half" Trick
It is well known that > |LL'(v)] < nlog,n.

v

Any value x can be
in at most log, n leaf-lists LL'.

28

Testing in constant time

Depth-first numbering and look-up table:

ABAABAABBBAS
1234567809101112
371482511109 612

B: 8 2=} 97 W% 9 (7,11)

but: (8,9) not branching
9 2= 107 M g ¢ (7,11)
and: (9,10) is branching
AAB: 3 2= 67 M 9e(1,2)
and: (3,6) is branching

Optimized basic algorithm

Algorithm
All nodes of T'(S) begin unmarked.
Step 1 is repeated until all nodes are marked.

1. Select an unmarked internal node v.
Mark v and execute steps 2a, 2b and 2c for node v.

2a. Collect the list LL'(v) for v.

2b. For each leaf ¢ in LL'(v), test whether leaf j =i+ D(v) is in LL(v), the
leaf-list of v. If so, test whether S[i] # S[i + 2D(v)]. There is a branching
tandem repeat of length 2D(v) starting at position ¢ if and only if both tests
return true.

2c. Do the same test for each leaf j in LL'(v), and i = j — D(v).

Analysis: O(nlogn) time, O(n) space

27

29

Extension 1: Primitive tandem repeats

Remember:
e A string w is primitive if and only if w = u” implies k = 1

e A tandem repeat awv is primitive if and only if « is primitive

Lemma
A string ua is primitive if and only if its left-rotation aw is primitive.

Extension of the Algorithm

Remove marks of the non-primitive branching tandem repeats.
Do the rotation procedure only for the primitive branching tandem repeats.

Analysis: O(nlogn) time, no additional space

30

Tandem repeats in linear time!

Fraenkel & Simpson, 1998:
e The vocabulary of all tandem repeats in S has only O(n) elements.

Idea:
e Mark in T'(S) all end points of tandem repeats.

Analysis: O(n + |output|) time, O(n) space

32

Extension 2: Primitive tandem arrays

Definition
A primitive tandem array is a string w = o* with « primitive, k > 2.

I [e3 I (o3 I « I o I « I « I

Extended Algorithm

For an observed branching occurrence of a primitive tandem repeat (i,[,2) at
node v, successively test for K = 1,2, ... whether leaf j =i — k[is also in the
subtree below v.

Analysis
Right-maximal occurrences of primitive tandem arrays: O(nlogn) time.
All occurrences of primitive tandem arrays: O(nlogn + z) time.

Can be extended further to find only the maximal primitive tandem arrays in
O(nlogn) time.

31

Repeats with bounded gap

Sometimes one wishes to allow between the copies of a repeat a gap of (upper
and/or lower) bounded size.

gap

-

Idea:
e Traverse the suffix tree bottom-up.
e At each vertex v collect the leaf-list LL'(v).

e Qutput only pairs that have the required distance.

Analysis: O(nlogn + |output|) resp. O(n + |output|) time, O(n) space.

34

Finding degenerate repeats

Often, repats in genomic DNA are degenerate, i.e. at some positions more than
one base is possible.

Idea: Filter method (seed and extend)

Algorithm:

1. Search for local exact repeats ().
2. Extend the seeds while allowing up to k errors.

3. If extension is long enough, output repeat.

Analysis: O(n + Ck*) time with E(¢) = O (n?/4%), s minimal seed length.

36

Extension for maximal k-differences repeats

Banded sequence alignment by dynamic programming:

2 J2

I <
I —
I < I < I W < B —> iy
i g1 i Ja I
J "
i \\\\A

Analysis: O(n + Ck*) time with E(¢) = O (n?/4%), s minimal seed length.

38

Extension for maximal k-mismatch repeats

Simple extension and length test:

I - S - - I - - - I - S - < I - - e - I
> 07 > 07

>t7 >0?

>£7 >

Analysis: O(n + Ck) time with E(¢) = O (n?/4%), s minimal seed length.

37

Variation: Palindromic repeats

o One repeat instance must be reverse Watson/Crick complement P~ 1.
e Essentially same problem as computing direct repeats.

o Instead of S use S#S~! (where S~1 is the reverse complement of S).

e // is a unique separator symbol.
o One of the duplicates must be in S and the other in S—1.

o Calculate position in S~ relative to the beginning of S.

39

The REPuter suite of repeat finding programs

WWW.genomes .de

e REPfind: implements several of the described algorithms.

e REPselect: selects interesting repeats from the output of REPfind

(user-defined second filter phase).

e REPuvis: interactive visualization tool to display large amounts of repeat data.

(joint work with Stefan Kurtz, Enno Ohlebusch, Robert Giegerich, Chris Schleiermacher, Jomuna

Choudhuri)

REPuter: An example

42

Forward

T aw ne | en wwm

] (- Ditect Repeats (6063) | nnggg]

_Pyrococcus sbyssi (abyssifia esoim)

[« 4]

43

REPuter: An example

REPuter: An example

File Edit ‘Wiew Help
IS
i~ 1 32364 000000
[Peocccsas syl soes Pt] [F— Dect Repeats fs053) J [oxs gaTc]
— oL

43

REPuter: An example

Edit o

DoUs

-1 32364 000000 b (D =pay 85k

R ew Cne . wmn owm | omw R 2w
| [F - Direct Repeats (s083) I Dats GATC |

s (3 [m]

| Pyrococcus abyssi (pabyssitna exbin

43
REPuter — Application 1: (Approximate) tandem array
i 4 [PR STRTI Ln
bz |Dpabyssipabires, e ban (1765 119 be)
— m— m—
Wi |
o — e — ocm— — — —
Pnﬂmd?ﬁ_ displaying 13790 bases (143519-157309). Zoom=0 0580, BPP=17 2378, Chek af base 148742
Qata Browse!
[¥ine Le Posl Posi Spacer [istance E-Value -
18683 F 9 48725 1090058 1305 Exact 3 de-08 !
16687 F el 48725 1090186 1434 Exact 1 0de-06
18790 F 30 48774 149400 (21 Exact 7 808-07
Annotation Browser
| onject | annotaan |«
.
i'* View Sequence | BLasT [El Tm!ﬂmwunca‘;] | Bl save subsequance] | ciose |
44

REPuter — Application 1: (Approximate) tandem array

REPvis - Repeals Visuahization

File Edit View

< ElEE

32384 000000 bs i (1 265118 bs)

= B

A
ST AR

P
e

\-\5 A “ l\ B £l

Forward

T ww owe | en rew | omam TEIR IO 2l

| Pyrococcus abyssi (pabyssifna ex bin)

| [F - Drectrepeass g083) | [oata GATC]

KRR

-, >[Bw]

REPuter — Application 1: (Approximate) tandem array

Cata Browsel ;
] King Lem Pos1 Pos2 Spacer Distance E-value .
16681 F 29 4825e 1090053 AR Exact I Me-08
16769 F 30 48255 149400 11s Exact 7 60w-07
1678 F 30 48255 148731 506 Exact 7 80e-07
1678 £ n PP 1ARaas 734 - 7 Bean?
Anngtation Browser
I .
.
R — i T
| ae view sequence] | BLast | Tmmemnmca.e] B save Subsequance] Closs f

44

44

REPuter — Application 2: Low copy repeats

[57 REPvis - Repeals Visualization

File Edit View Help ‘
PEEEE]
Forward ——————{=225000.00 bs |D=hs_chr22_TDF fa.maskec bin (3000001 bs
) L -
T

i
| i

! '- i
— S N
Forward + Reverse Complement
I E— I —
20-178 179-338 339-497 495 -656 B97-816 817-97% 976-1134 1135-1293 1294-1453 14541612

he_chrze_TDR.Ma.masked.bin ‘ X - Direct & Palindromic (17001) _J | Data GATC ‘

wt [4] 4] b | | o

(22q11.2 region of human chromosome 22, associated to DiGeorge/Velo-cardio-facial syndrome.)

45

REPuter — Application 3: Unique sequences

@/ E8 REPvis - Repeals Visualization §

File Edit ‘Yiew Help

Delt]ul el

F—————=103388.00 bs ID=conti4_20 bin (1376654 bs)

REPuter — Application 3: Unique sequences

® (1 REPWIS - Repeals Visuanzanon SR (]

File Edit Yiew Help

P ETE

—————4=103398.00 bs ID=ortigh_20 bin (1376654 bs)

- e 128-181 182-235 236-290 201 -344 45-398 T o) 507-560

conigd_20 bin % - Direct & Palindromic (237264) i | Data GATC |

| ¢ 4= b

REPuter: Computation times

i DRSO AR
orerd —

Lk LEET!

1270
205in

LR U R L L B g L] v

<6452 00 b 1D=contid.

(1378654 bs)

genome

[Mbases]

[bases]

size I suffix tree

[sec]

virtual tree
[sec]

E. coli

4.42

150

5.4

1.7

S. cerevisiae

11.50

180

14.8

4.7

D. melanogaster

114.44

700

310.7

444

virtual (suffix) tree = suffix array, enhanced

by functions to simulate suffix

Forward + Reverse Complement

[zoom=18, displaying 86166 bases (1272933-1359153); BPP=107.7073; Click at base 1358836

6

tree functionality — GENalyzer.

46

47

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., 2002).

Algorithm:

1. Find all (multiMEMSs) in the given genomes
(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
i.e. a chain of non-overlapping multiMEMs of maximal weight
where the of a chain is the sum of the lengths of its members.

i -
A

b,

49

Summary: Repeats and suffix trees

Some results: (z is always the output size)

e Find all z maximal repeats in O(n + z) time.

e Find all z maximal palindromic repeats in O(n + z) time.

e Find all z tandem repeats in O(n + z) time.

e Find all z maximal repeats with bounded gap in O(nlogn + z) time.
e Find all z maximal repeats with lower-bounded gap in O(n + z) time.

e Find all degenerate repeats with < k errors in O(n + Ck?) time (¢ = # seeds).

51

Multiple Genome Aligner

Simultaneous comparison of multiple genomes (Hohl et al., 2002).

Algorithm:

1. Find all (multiMEMSs) in the given genomes
(similar to repeats, using the generalized suffix tree).

2. Select from all multiMEMs an optimal set,
i.e. a chain of non-overlapping multiMEMs of maximal weight
where the of a chain is the sum of the lengths of its members.

3. Close the gaps recursively, and finally by a standard alignment procedure.
"7 —

AN T

49

Conclusion

e Repeat finding on a whole genome/whole chromosome basis is possible.
e Suffix trees are a powerful data structure (not only) for repeat finding.

e The flexibility of the data structures allows to find various (related) types of
repeats.

e Repeat finding has several applications, some of which are related to repeats
only at second glance.

52

