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Computational complexity

Computational Complexity studies:

the efficiency of algorithms;

the inherent "difficulty" of problems of practical and/or
theoretical importance.

The time complexity of a problem is the number of
steps that it takes to solve an instance (as a function
of the size of the instance).
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Review of order notation

� ��� � � � ��� ��� � �

iff

�
	 �� � ��  � �
� � ��� � � 	 � �� �

� ��� � � � ��� ��� � �
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�
	 �� � ��  � �
� � ��� �  	 � �� �

� ��� � � � �� ��� � �

iff

� ��� � � � ��� ��� � �
and

� ��� � � � ��� ��� � �

If then has at most rate of growth

If then has at least rate of growth

If then has rate of growth
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Review of order notation

Note that for sufficiently large � :

��� � � � � � � ��� � � � � � � � � � � �

��� � � is interpreted as base-2 logarithm (it does not really
matter, since

��� � � � � �
� �� � � � �
� � � � �

and constants are
ignored as already mentioned).

This is sometimes stated as:

� � ��� � � � � � ��� � � � �� � � � � � � � ��� � � � � �� � � � � � � � �
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Polynomial time algorithms

A polynomial time algorithm or a good algorithm is one
that runs in

� �� ��� � �

time for some polynomial  ��� �
.

A tourist guide through computational complexity – p.5/42



Polynomial time algorithms

A polynomial time algorithm or a good algorithm is one
that runs in

� �� ��� � �

time for some polynomial  ��� �
.

Binary Search: Search a sorted array by repeatedly
dividing the search interval in half

44 1 3 3 6 6 7 8 93 5

Running time is

� � ��� � � �
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Polynomial time algorithms

A polynomial time algorithm or a good algorithm is one
that runs in

� �� ��� � �

time for some polynomial  ��� �
.

Quicksort: An in-place sort algorithm that uses the divide
and conquer paradigm

1 3 3 6 6 7 8 93 54

1 9 3 4 6 3 8 36 57

Quicksort has running time upper-case

� ��� � �

in the worst
case, but it is typically

� ��� ��� � � �

.
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Polynomial time algorithms

A polynomial time algorithm or a good algorithm is one
that runs in

� �� ��� � �

time for some polynomial  ��� �
.

String matching (brute force algorithm): Check whether an
occurrence of the pattern starts there or not

A C T T A G G C CAGText:

A G G C CAGText: A C T T

G A A GPattern:

G A A GPattern:

Searching phase in
� ��! � �

time complexity
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Polynomial time algorithms

A polynomial time algorithm or a good algorithm is one
that runs in

� �� ��� � �

time for some polynomial  ��� �
.

Optimal Alignment: Compute an optimal alignment of

"

and#

.

C

C T T C − − A −T A

− − C C C A T− AC

A CA

− C

S

T

Running time is

� ��! � �
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The Fundamental Question

Do polynomial time algorithms exist for all problems ?

The answer to this question is not known

Is

$ � % $

?

It is one of the great mysteries of modern computer
science
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I can’t find an efficient algorithm . . .
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"Easy" problems

Graph

& � �' � ( �
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"Easy" problems

Is there exist a path between two vertices in

&

?
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"Easy" problems

Finding a shortest path between two vertices in
&
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"Easy" problems

Finding a maximum matching in

&
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"Easy" problems

Finding a minimum weight spanning tree in

&
2

5

4

4
2

1

1

2 45

1

2

243

1 33

3

3

2
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"Easy" problems

Is the directed graph

&

acyclic ?
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"Hard" problems

Graph

& � �' � ( �
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"Hard" problems

Finding a minimum vertex cover in

&
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"Hard" problems

Finding a maximum independent set in

&
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"Hard" problems

Finding a maximum clique in

&
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"Hard" problems

Finding a minimum dominating set in

&
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"Hard" problems

Finding an hamiltonian circuit in

&
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"Hard" problems

Finding an hamiltonian path between two vertices in
&
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"Hard" problems

Finding a minimum coloring of

&
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"polynomial" is a synonym to practical

Size of Largest Problem Instance solvable in 1 Hour
Time complexity With present

computer

With computer

100 times faster

With computer

1000 times faster

) *,+ -. . * + -. . . *,+

) / * / - . * / 0-21 3 * /

) 4 * 4 51 3 5 * 4 - . * 4

6 7 *98 *98 : 31 3 5 *98 : ;1 ; <

0 7 *,= *,= : 51 - ; *,= : 31 6 ;

The effect of improved technology is multiplicative in polynomial-
time algorithms and only additive in exponential-time algorithms.

The situation is much worse than that shown in the table if complex-
ities involve factorials.
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Decision problems

A decision problem is a problem where the answer is
always "YES" or "NO".

An arbitrary problem can always be reduced to a
decision problem.

Complexity theory often makes a distinction between
"YES" answers or "NO" answers.
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Classes P and NP

The class P consists of all those recognition problems
for which a polynomial-time algorithm exists.

For the class NP, we simply require that any "yes" an-
swer is "easily" verifiable. That is, both the encoding
of the answer and the time it takes to check its validity
must be "short", i.e. polynomially bounded. Formally
we say that any "yes" instance of the problem has the
"succinct certificate" property.

NP stands for "Non deterministic Polynomial", because of an al-
ternative (and equivalent) definition based on the notion of non-
deterministic algorithms.
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" P": easy" and " NP": "hard"

This is not always true in practice:

It ignores constant factors. A problem that takes time
>? @A AACB is in P

(in fact, it’s linear time), but is completely intractable in practice. A
problem that takes time

>?D @A A AAFE G

is not in P (in fact, it’s exponential
time), but is very tractable for values ofB up into the thousands.

It ignores the size of the exponents. A problem with timeB @A A A

is in P,
yet intractable. A problem with time

E G H @A A A
is not in P, yet is tractable

forB up into the thousands.

It only considers worst-case times. There might be a problem that
arises in the real world. Most of the time, it can be solved in time n,
but on very rare occasions you’ll see an instance of the problem that
takes time

E G

. This problem might have an average time that is
polynomial, but the worst case is exponential, so the problem
wouldn’t be in P.
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Polynomial time transformation

A decision problem

I� polynomially transforms to an-
other decision problem

I � if, given any instance J� ofI� we can construct a corresponding instance J � of

I �

within polynomial (in

K J� K

) time such that J� is a "yes"
instance of

I� if and only if J � is a "yes" instance of

I �.

Transformation

iff

J -
I - I 6

J 6
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NP-hard and NP-complete problem

A decision problem

I

is NP-hard if all other problems
in NP polynomially transform to

I

.

A decision problem

I

in NP is NP-complete if all other
problems in NP polynomially transform to

I
.

This definition was given by Stephen Cook in 1971.

At first it seems rather surprising that NP-complete
problems should even exist, but in a celebrated theorem
Cook proved that the Boolean satisfiability problem is
NP-complete.

If a problem

I
is NP-complete, then it has a formidable

property: If there is an efficient algorithm for

I

, then
there is an efficient algorithm for every problem is NP.
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Proving NP-complete results

In order to prove that a problem is NP-complete, we must
show two things:

1. That the problem is in NP.

2. That all other problems in NP polynomially transform to
our problem.

In practice, Part 2 is usually carried out by show-
ing that a known NP-complete problem is polynomially
transformable to the problem at hand.
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Dick Karp (1972)

SATISFIABILITY

3-SATISFIABILITY

3DM VERTEX-COVER

HAMILTONIAN-CIRCUIT CLIQUE

3-COLOR

PLANAR-3-COLOR EXACT-COVER

SUBSET-SUM
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LONGEST-COMMON-SUBSEQUENCE (LCS)

LCS

Instance: A set of � strings

"� � " � �L L L � " � over an alpha-
bet and a positive integer

M

.
Question: Is there a string J N O

of length at least

M

that is a subsequence of

"QP for
R � S � � ?
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LONGEST-COMMON-SUBSEQUENCE (LCS)

LCS

Instance: A set of � strings

"� � " � �L L L � " � over an alpha-
bet and a positive integer

M

.
Question: Is there a string J N O

of length at least

M

that is a subsequence of

"QP for
R � S � � ?

"� � T T & & & T # # U T # T & #

" � � T # T # T & # & T T T U T # U &

" � � & T T & U # T U T T # & T & U U

"WV � T & & T U U U T T # & T U & &
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LCS is NP-complete

X +
X 8 X 4

X /
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LCS is NP-complete

X +
X 8 X 4

X /
Consider a vertex Y[Z \ ]

and suppose that Y Z is adjacent to vertices

YZ_^ ` YZ_a `b b b ` YZdc ef @ g fih gb b b g fkj l

Let m be the unique index such that
? n m npo and

fkq g f g fq r @ .

s Z t

adj. vertices that go before uvw xy zYZ^ YZ_a b b b YZd{ YZ

all vertices but uvw xy zY @ b b b YZD @ YZ r @ b b b Y G

|Z t Y @ b b b YZD @ YZ r @ b b b Y Gy z w x

all vertices but uv

YZ YZi{ }^ b b b YZic~ ^ YZcy z w x

adj. vertices that go after uv
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LCS is NP-complete

X +
X 8 X 4

X /

s @ t Y @ Yh Y�� Y[�

| @ t Yh Y� Y[� Y @ Yh Y�� Y[�

sh t Y @ Yh Y @ Y�� Y[�

|h t Y @ Y� Y�� Yh Y��

s � t Y @ Yh Y�� Y @ Yh Y��

|� t Y @ Yh Y�� Y�� Y��

s � t Y @ Y� Y[� Y @ Yh Y��

|� t Y @ Yh Y�� Y��
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LCS is NP-complete

X +
X 8

X /
X 4
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Complexity classes P and NP

The biggest open question in theoretical computer science
concerns the relationship between those two classes:

$ � % $

?

most people think that the answer is probably "no";

some people believe the question may be undecidable
from the currently accepted axioms.

Consensus opnion:

$ � � % $

In essence, the

� t � �

question asks: if positive solutions to a YES/NO

problem can be verified quickly, can the answers also be computed quickly?

A tourist guide through computational complexity – p.21/42



NP map

The suggested map of the NP world:

problems

P = NP = NP-complete

if P = NP

NP-complete

NP

P

if P
��� NP
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Coping with NP-hardness

NP-hard optimization problems can not be efficiently
solved in an exact way unless P � NP.

Classical methods to deal with intractable problems:

Approximation algorithms

Probabilistic algorithms

Special cases

Exponential algorithms

Local search

Heuristics
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Approximation

If we want to solve an NP-hard optimization problem
by means of an efficient (polynomial time) algorithm,
we have to accept that the algorithm does not always
return an optimal solution but rather an approximate
one.

Historically: MULTIPROCESSOR-SCHEDULING and BIN-PACKING

Poor quality of approximation:
Lack in ability to design good approximation
algorithm, or
Structural properties of the problem
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Performance ratio

Given an optimization problem

I

, for any instance J ofI

and for any feasable solution � of J, the performance
ratio of � with respect to J defined as

� � J� � � � � ��

���� � � J� � �

�� � � J � �
�� � � J �

���� � � J� � �

Both in the case of minimization problems and of
maximization problems, the value of the performance ratio� � J� � � is

equal to

R

in the case of an optimal solution;

arbitrary large in case of poor approximate solution.
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�-Approximate algorithm

Given an optimization problem

I

and an approxima-
tion algorithm

���� � for

I

, we say that

�� � � is an �-
approximate algorithm for

I

if, given any input in-
stance J of

I

, the performance ratio of the approxi-
mate solution

���� � � J � is bounded by �, that is:

� � J� �� � � � J � � � �

A

R

-approximate algorithm is an exact algorithm

Any desired performance ratio can be obtained ?
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NPO

NPO: Optimization

The class NPO is the set of all NP optimization problems

The goal of an NPO problem is to find an optimum
solution

minimization or maximization

feasible solutions are short and easy to recognize
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APX

APX: Approximable

The subclass of NPO problems that admit constant-
factor approximation algorithms. (I.e., there is a
polynomial-time algorithm that is guaranteed to find a
solution within a constant factor of the optimum cost.)

Equals the closure of MaxSNP and of MaxNP under
PTAS reduction.

SHORTEST-COMMON-SUPERSTRING

VERTEX-COVER for
�  �

MAX-CUT for

�  �
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PTAS

PTAS: Polynomial-Time Approximation Scheme

The subclass of NPO problems that admit an approxi-
mation scheme in the following sense. For any � � �

,
there is a polynomial-time algorithm that is guaranteed
to find a solution whose cost is within a

R � � factor of
the optimum cost. (However, the exponent of the poly-
nomial might depend strongly on �.)

NEAREST-STRING

TRAVELING-SALESMAN in the Euclidean plane.

MAX-INDEPENDENT-SET for planar graphs
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FPTAS

FPTAS: Fully Polynomial-Time Approximation Scheme

The subclass of NPO problems that admit an approxi-
mation scheme in the following sense. For any � � �

,
there is an algorithm that is guaranteed to find a solu-
tion whose cost is within a

R � � factor of the optimum
cost. Furthermore, the running time of the algorithm is
polynomial in � (the size of the problem) and in

R � �.

MAXIMUM-INTEGER-

�

-CHOICE-KNAPSACK

MINIMUM-MULTIPROCESSOR-SCHEDULING for constant
number of processor
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Inclusions

  $¡ � ¢£ $¡ � ¢ £ � $¤ £ % $ ¥
These inclusions are strict if and only if

$ � � % $

.
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Between APX and NPO

$¡ � ¢£ � $ ¤ £ � �� ¦ � $ ¤ £ � ���§ ¦ � $ ¤ £ ¨© � ¦ � $ ¤ £ % $ ¥

If

$ � � % $

then exp-APX is strictly contained in NPO.

SHORTEST-COMMON-SUPERSEQUENCE

LONGEST-PATH
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Using the compendium

http://www.nada.kth.se/˜viggo/problemlist/compendium.html

LONGEST COMMON SUBSEQUENCE

INSTANCE: Finite alphabet

ª

, finite set R of strings from

ª «

.

SOLUTION: A string ¬  ª «

such that w is a subsequence of each ®  ¯

, i.e. one
can get w by taking away letters from each ®.
MEASURE: Length of the subsequence, i.e.,

° ¬ ° .
GOOD NEWS: Approximable within

± ²´³ µ·¶ ¸ ³ ¹
, where ³ is the length of the shortest

string in

¯

[223].

BAD NEWS: Not approximable within ) + º 8_» ¼
for any ½ ¾ . , where n is the maximum

of

° ¯ °

and

° ª °

[77], [275] and [68].

COMMENT: Transformation from MAX-INDEPENDENT-SET. APX-complete if the size of
the alphabet

ª

is fixed [275] and [89]. Variation in which the objective is to find the
shortest maximal common subsequence (a subsequence that cannot be extended to a
longer common subsequence) is not approximable within

° ¯ ° +¿» ¼

for any ½ ¾ . [170].

Garey and Johnson: SR10
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Approximate the mult alignment problem

1. Find

"� N #

that minimizes

À�Á ÂÄÃ À +
Å � "� � " �

2. Add the remaining strings

" � �L L L � "ÇÆ one at a time to a
multiple alignment that initially contains only

"�

Suppose

"� � " � �L L L "P Ã � has already aligned as" È� � " È � �L L L " ÈP Ã �

Align

" ÈP and

"P to produce

" È È� and

" È� .
Adjust

" È � �L L L � " ÈP Ã � by adding spaces to these
columns where spaces were added to get

" È È� from

" È�

Replace
" È R

by

" È È�
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Analysis of the center star algorithm

TIME ANALYSIS
The preceding algorithm runs in

� �É � ! � �

time where

É
is

the number of sequences and ! is the maximum length.

ERROR ANALYSIS
The preceding algorithm produces an alignment whose SP
value alignment is less than twice that of the optimal SP
value alignment.

�Ê Ë ¥ � J �

�� � � J �
� � �É ¦ R �

É � �

For small value of

Ì
the approximation is significantly better than a factor of

6

.

2 4 6 8 10 12 14 16 18 20 30 40

1 1.5 1.66 1.75 1.8 1.83 1.85 1.87 1.88 1.9 1.93 1.95
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Parameterized complexity

To deal with problems that are NP-hard or worse.

Solutions produced by approximation algorithms or
heuristics are in many cases not satisfying in practice.

Exact algorithms often yield more expressive results.

Restrict the combinatorial explosion of NP-hard prob-
lems to a part of the input, the parameter.

A central area is computational biology where we encounter many
examples of fixed-parameter algorithms.
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Fixed-parameter tractability (FPT)

A problem is fixed-parameter tractable (in FPT) w.r.t pa-
rameter

É

when it has an algorithm with running time

� �É �  ��� �

where

�

is an arbitrary function in
É

and  is a polyno-
mial in the input size � .

�

is exponential or worse.

 may be even linear.

design of efficient algorithms.
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Example

The NP-complete VERTEX-COVER problem is to determine
whether there is a subset of vertices

' È N ' with
É

or fewer
vertices (the parameter) such that each edge in

(
has at

least one of its endpoints in

' È

.

The VERTEX-COVER problem is fixed-parameter
tractable (in FPT).

Solvable in time

� �É � � RL � � ÍÎ Æ É � �

.

Efficiently solvable for small values of

É

.
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Fixed-parameter intractability

Some problems appear to be fixed-parameter in-
tractable.

It is not known whether the CLIQUE problem can be
solved in time

� �É �  ��� �

where

�

might be an arbitrary
fast growing function only depending on

É

.

Unless P � NP the well-founded conjecture is that no
such algorithm exist.

The best known algorithm soling the CLIQUE problem
runs in time

� ��� Ï Æ Ð � �
where 	 is the exponent on the

time bound for multiplying two integer � Ñ � matrices.
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W hierarchy

Hierarchy of W classes

  $¡ £ ÒÓ Ô £ ÒÕ Ô £ L L L Ò $ Ô
Many parameterized problems have been proved to be complete for
W[1] and W[2]

VERTEX-COVER is in FPT

INDEPENDENT-SET is complete for W[1]

DOMINATING-SET is complete for W[2]

The class W[

Ö

] contains the parameterized problems that reduce to
the family of decision circuit of any weft and depth

While no W[

|

] class with
| × Ø

seems to be well populated, there are
several W[

Ö

]-complete problems.
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LONGEST-COMMON-SUBSEQUENCE

B Ù number of sequences

Ú Ù size of the longest common subsequence

parameter unbounded alph. parameterized alph. fixed alph.

B W[

|

]-hard for

| × >

W[
|

]-hard for

| × >

W[1]-complete

Ú

W[2]-hard FPT FPT

B et

Ú

W[1]-complete FPT FPT
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Questions . . .

Why bother proving a problem to be NP-hard?

When to attempt such a proof ?

What are the steps in proving a problem to be
NP-complete?

Does there exist any short-cut for proving NP-hardness?

How to deal with a problem once it is proved to be
NP-hard?

Do I need parameterized complexity ?
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