Algorithmic issues in (co)phylogenetic analysis

blerina sinaimeri

evolution

Cartoon by Matthew Bonnan of Macomb, IL, with kind pennission of Florida Citizens for Science, Sept. 2010

Phylogenetic tree

Phylogenetic Tree

Phylogenetic tree

Phylogenetic Tree

Phylogenetic Trees

- rooted / unrooted
- binary / k-ary
- labeled from a set / labeled from a multiset
- unweighted / weighted (branch lengths)
- unordered / ordered

Phylogenetic Trees

- Maximum Parsimony
- Maximum Likelihood method

- Sequence 1 **TGC**
- Sequence 2 **TAC**
- Sequence 3 AGG
- Sequence 4 AAG

Find the "**best**" tree...but what does "best" mean?

- Sequence 1 **TGC**
- Sequence 2 **TAC**
- Sequence 3 AGG
- Sequence 4 AAG

Find the "**best**" tree...but what does "best" mean?

In Maximum Parsimony: Minimize the number of mutations across the edges

- Sequence 1 TGC
- Sequence 2 **TAC**
- Sequence 3 AGG
- Sequence 4 AAG

Find the "**best**" tree...but what does "best" mean?

In Maximum Parsimony: Minimize the number of mutations across the edges

- Sequence 1 TGC
- Sequence 2 **TAC**
- Sequence 3 AGG
- Sequence 4 AAG

Find the "**best**" tree...but what does "best" mean?

In Maximum Parsimony: Minimize the number of mutations across the edges

The problem

- Input : **n** DNA sequences
- Goal: Find the tree that minimizes the number of mutations along the edges.

Check for every tree? Possible unrooted trees $\frac{(2n-5)!}{2^{n-3} (n-3)!}$

The problem

- Input : **n** DNA sequences
- Goal: Find the tree that minimizes the number of mutations along the edges.

Finding one optimal tree is NP-hard!

Maximum Likelihood

- Given certain rules about how sequences change over time, the best tree should reflect the most likely sequence of evolutionary events.
- maximize the probability that a given tree could have produced the observed data (i.e., the likelihood)

Differences with the parsimonious method

- Use of an explicit evolutionary model
- Allows variable substitution rates for each branch

Comparing Trees

How similar two phylogenetic trees are?

- Robinson-Foulds
- Triplet distance

. . .

- Maximum agreement subtree
- Edit distances (SPR, TBR, NNI)

Tree Metrics

SPR (Subtree Prune and Regraft)

The SPR distance (d_{SPR}) is the minimal number of moves that transforms one tree into the other.

NP-hard 3-approximation algorithm

Technical detail

A Forest of T is a disjoint collection of phylogenetic subtrees whose union of leaf sets is Xup.

 $m(T_1,T_2)$ = size of maximum agreement forest

Theorem. (BS04)

Let T₁ and T₂ be two binary phylogenetic X-trees. Then

 $d_{SPR}(T_1,T_2) = m(T_1,T_2)-1$

Exercise 1

 Explain the role of ρ in the relation between SPR and MAF. Does the theorem hold without introducing ρ?

3-approximation algorithm for MAF

coevolution

Symbiosis

Mutualism

Parasitism

Human Microbiota

Gopher

Lice

Interspecific interaction

Plant diversity

Parasitism

Human Microbiota

Mutualism