Algorithmic issues in (co)phylogenetic analysis

blerina sinaimeri

evolution

This is NOT Your Family Tree Great

This is Your Family Tree

This is NOT Evolution

This is Evolution
Mammals

Cattoon by Mathew Botavn of Mucomb, II, vith Kind pemsission of Flocida Citisend for Scienct, Sejt. 2010

Phylogenetic tree

Phylogenetic Tree

Phylogenetic tree

Phylogenetic Tree

Phylogenetic Trees

- rooted / unrooted
- binary / k-ary
- labeled from a set / labeled from a multiset
- unweighted / weighted (branch lengths)
- unordered / ordered

Phylogenetic Trees

- Maximum Parsimony
- Maximum Likelihood method

Maximum Parsimony

Sequence 1 TGC
Sequence 2 TAC
Sequence 3 AGG
Sequence 4 AAG

Find the "best" tree...but what does "best" mean?

Maximum Parsimony

Sequence 1 TGC
Sequence 2 TAC
Sequence 3 AGG
Sequence 4 AAG

Find the "best" tree...but what does "best" mean?

In Maximum Parsimony: Minimize the number of mutations across the edges

Maximum Parsimony

Sequence 1 TGC
Sequence 2 TAC
Sequence 3 AGG
Sequence 4 AAG

Find the "best" tree...but what does "best" mean?

In Maximum Parsimony: Minimize the number of mutations across the edges

Maximum Parsimony

Maximum Parsimony

The problem

- Input : n DNA sequences
- Goal: Find the tree that minimizes the number of mutations along the edges.

Check for every tree?

$$
\text { Possible unrooted trees } \frac{(2 n-5)!}{2^{n-3}(n-3)!}
$$

Maximum Parsimony

The problem

- Input : n DNA sequences
- Goal: Find the tree that minimizes the number of mutations along the edges.

Finding one optimal tree is NP-hard!

Maximum Likelihood

- Given certain rules about how sequences change over time, the best tree should reflect the most likely sequence of evolutionary events.
- maximize the probability that a given tree could have produced the observed data (i.e., the likelihood)

Differences with the parsimonious method

- Use of an explicit evolutionary model
- Allows variable substitution rates for each branch

Comparing Trees

How similar two phylogenetic trees are?

- Robinson-Foulds
- Triplet distance
- Maximum agreement subtree
- Edit distances (SPR, TBR, NNI)

Tree Metrics

SPR (Subtree Prune and Regraft)

The SPR distance (dsPR) is the minimal number of moves that transforms one tree into the other.

NP-hard
3-approximation algorithm

Maximum Agreement Forest

Technical detail

Maximum Agreement Forest

A Forest of T is a disjoint collection of phylogenetic subtrees whose union of leaf sets is Xup.

Maximum Agreement Forest

Maximum Agreement Forest

Maximum Agreement Forest

$m\left(T_{1}, T_{2}\right)=$ size of maximum agreement forest

Theorem. (BS04)
Let T_{1} and T_{2} be two binary phylogenetic X-trees. Then

$$
\operatorname{dspR}_{\mathrm{sPR}}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=\mathrm{m}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)-1
$$

Exercise 1

- Explain the role of ρ in the relation between SPR and MAF. Does the theorem hold without introducing ρ ?

Maximum Agreement Forest

3-approximation algorithm for MAF

coevolution

Symbiosis

Mutualism

Human Microbiota

Parasitism

Gopher

Lice

Interspecific interaction

Plant diversity

Mimicry

Parasitism

Human Microbiota

Mutualism

