Algorithmic issues in (co)phylogenetic analysis

blerina sinaimeri

Motivation

Different systems "coevolve"

- hosts and their parasites or pathogens
- whole organisms and their genes
- geographical areas and the species which inhabit them.
- cultural traditions and populations

Host-Parasite associations

- about 75% of emergent human diseases are zoonoses, that is, they switched hosts from other species into humans
- determine the rates of evolution in hosts and parasite
- determine how long is the association between host and parasite

The instance of the problem

Reconciliation method

Co-phylogeny reconstruction problem

State-of-art: reconciliation method

Two trees and the association function between their leaves.

The mapping function

Selecting the best solution: assign a cost to each of the four types of events and then minimize the total cost.

Modeling the events

The mapping f induces a partition of $V(P)$ into three sets:

- $\Sigma \rightarrow$ co-speciations
- $\Delta \rightarrow$ duplications
- $\Theta \rightarrow$ host-switches

Modeling the events

The mapping f induces a partition of $V(P)$ into three sets:

- $\Sigma \rightarrow$ co-speciations
- $\Delta \rightarrow$ duplications
- $\Theta \rightarrow$ host-switches
- Co-speciation

$\operatorname{lca}\left(f\left(p_{1}\right), f\left(p_{2}\right)\right)=f(p)$ and $f\left(p_{1}\right)$ and $f\left(p_{2}\right)$ are incomparable.

Modeling the events

The mapping f induces a partition of $V(P)$ into three sets:

- $\Sigma \rightarrow$ co-speciations
- $\Delta \rightarrow$ duplications
- $\Theta \rightarrow$ host-switches
- Duplication

Modeling the events

The mapping f induces a partition of $V(P)$ into three sets:

- $\Sigma \rightarrow$ co-speciations
- $\Delta \rightarrow$ duplications
- $\Theta \rightarrow$ host-switches
- Host-switch

Modeling the events

We can define a function $\boldsymbol{\alpha}(f)$ that gives the number losses induced by the mapping f.

- Loss

the edge (p, p_{1}) contributes with 1 loss.

Everything is against us.

Everything is against us.....

Everything is against us.

Everything is against us.....

Finding an optimal reconciliation is NP-hard.

The complexity arises from the difficulty of separating possible from impossible host switches combinations.

Everything is against us.....

Generate all the optimal reconciliations.

- The number of optimal reconciliations increases rapidly even for small trees.
- The size of the trees can be large.

Real data

A sample with hundreds of arthropods and the Wolbachia infecting them. Data from Patricia Simões, collected in Tahiti, Moorea, Raiatea.

Wolbachia in Moorea

Our contribution so far

A polynomial delay algorithm for generating all the optimal reconciliations.

Basic idea:

- Fill a dynamic programming matrix with additional information for the exhaustive traceback.

Problems

- No time-feasible solutions
- Too many time-feasible solutions

Bounded switch problem

k-switch Problem:

Given $H, P, \varphi, \underline{c}$, and an integer k find an optimal reconcilation in which all the host switches have a distance bounded by k.

Bounded switch problem

k-switch Problem:

Given $H, P, \varphi, \underline{\boldsymbol{c}}$, and an integer k find an optimal reconcilation in which all the host switches have a distance bounded by k.

- host-switches only between closely related species.
- No time-feasible solutions \Rightarrow decrease k.
- Too many time-feasible solutions \Rightarrow decrease k maintaining the same optimal cost.

Open Problem

What is the complexity of the k -switch problem in the acyclic case?

Exercise 2

- Given two phylogenetic trees is it possible to find a reconciliation without host-switches? Without duplications?

Current work

Other types of events

- Failure to diverge

- Spread

Open Problems

More realistic models

- the cost values influence the optimal solution
- multiple hosts - multiple parasites (communities)

Sequential speciation

Leaf cutter ants

phylogenetic forests

Sequential speciation

Leaf cutter ants

