Open Problems

Problem 1. In the Shortest Superstring Problem (SSP), we are given a set $S = \{s_1, \ldots, s_n\}$ of string over a finite alphabet Σ and we have to find a shortest string s that contains all the s_i as substrings. This problem is NP-hard, so assuming $P \neq NP$, the best one can hope for, in terms of polynomial algorithms, is approximation. A natural greedy procedure is the following: Pick two strings s_i, s_j with largest overlap from S (breaking ties arbitrarily) and replace them with their merge. The algorithm stops when there is only one string left and, obviously, this string is a superstring of all the s_i.

Considering the set of $\{ab^k, b^k, c, b^k+1\}$, we can see that the Greedy Algorithm cannot have an approximation factor better than 2. However, resolving the following conjecture due to Blum et al. [2] is a long standing and very important open problem.

Conjecture 1. The Greedy Algorithm has approximation factor 2.

For more information and some other problems related to it see for example [10, 5].

Problem 2. Given any two rooted binary X-trees T_1 and T_2, we consider the root of both T_1, T_2 as a vertex ρ at the end of a pendant edge incident to the original root. Furthermore, ρ is also considered as part of the label set of T_1, T_2. We give now the definition of an agreement forest as reported in [4]:

Definition 1. An agreement forest F of two rooted binary phylogenetic X-trees T, T' is a collection of trees $\{T_\rho, T_1, \ldots, T_k\}$ such that for all $i \in \{\rho, 1, \ldots, k\}$ T_i is a rooted subtree with vertex set L_i such that:

- The label sets L_ρ, L_1, \ldots, L_k partition $X + \rho$ and in particular $\rho \in L_\rho$
- For all $i \in \{\rho, 1, \ldots, k\}$, $T_i = T|L_i = T'|L_i$
- The trees in $\{T(L_i) : i \in \{\rho, 1, \ldots, k\}\}$ and $\{T'(L_i) : i \in \{\rho, 1, \ldots, k\}\}$ are vertex disjoint subtrees of T and T', respectively.
The maximum agreement forest of two phylogenetic trees T, T', is an agreement forest having the minimum number of components. Finding the maximum agreement forest for two trees is NP-hard [4] and various 3-approximation algorithms have been proposed (see for example [11, 3, 13]). Very recently in [12] the authors proposed a 2-approximation algorithm for the MAF problem.

Is it possible to find a simpler 2-approximation algorithm or even better to improve the factor 2?

Problem 3. In the problem of *reconciling* phylogenetic trees of hosts and their symbionts we are given a host tree H, a symbiont tree P, a mapping of the leaves of P to the leaves of H (that reflects current knowledge on which existing symbiont inhabit which hosts) and a cost vector $c = \langle c_c, c_d, c_s, c_l \rangle$ defining the cost of each of the four types of events that we can recover (i.e. cospeciation, duplication, host-switch and loss). We can then obtain a parsimonious solution by minimising the total cost of the mapping. Additionally, if timing information is not available or may be insufficiently reliable to be used with enough confidence, the reconciliation problem is NP-hard (see for example [8, 6, 14]).

In [7] it is defined the *k*-bounded-reconciliation problem: Given H, P, ϕ, c find the reconciliation of minimum cost for which all host-switches are at a distance at most k (note that k is not part of the input). Recall that for a reconciliation γ, the distance of a host-switch is defined as follows: For an edge (p, p') in the symbiont tree P, for which p is associated to a host-switch, let $h = \gamma(p)$ and $h' = \gamma(p')$. The *distance* of this host-switch is given as the distance in number of edges of the unique path between h and h'. If k is not part of the input the question remains whether the problem can be solved in polynomial time.

The problem can be solved trivially in polynomial time for $k = 2$ and remains open for any $k \geq 3$.

References

the subtree distance between phylogenies, Journal of Discrete Algorithms,

ATSP, Maximal Compression, Maximal Cycle Cover, and Shortest Cyclic

[7] B. Donati, C. Baudet, B. Sinaimeri, P. Crescenzi and M-F. Sagot, EUCA-
LYPT: Efficient tree reconciliation enumerator, Journal of Algorithms for
Molecular Biology (AMB) 10(3), 2015.

An efficient algorithm for gene/species trees parsimonious reconciliation with
losses, duplications and transfers. In Proceedings of the 8th annual RECOMB
Satellite Workshop on Comparative Genomics (RECOMB-CG 2010), Volume

153–169.

[10] Haim Kaplan, Nira Shafrir, The greedy algorithm for shortest superstrings,

[11] Estela Maris Rodrigues, Marie-France Sagot, Yoshiko Wakabayashi: The max-
imum agreement forest problem: Approximation algorithms and computa-

2-Approximation Algorithm for Maximum Agreement Forest. ICALP 2016:
70:1-70:14

(2009).