enumeration algorithms

Arnaud Mary
October 7, 2015
For a problem A and an instance X of A we denote by $A(X)$ the set of solutions of A on X.
For a problem A and an instance X of A we denote by $A(X)$ the set of solutions of A on X.

- Decision problem: decide whether $A(X) = \emptyset$

- Optimisation problem: find $y \in A(X)$ with optimal cost $\omega(y)$ for a given cost function ω

- Counting problem: compute $|A(X)|$

- Enumeration problem: Output $A(X)$
For a problem A and an instance X of A we denote by $A(X)$ the set of solutions of A on X.

- Decision problem: decide whether $A(X) = \emptyset$
- Optimisation problem: find $y \in A(X)$ with optimal cost $\omega(y)$ for a given cost function ω
For a problem A and an instance X of A we denote by $A(X)$ the set of solutions of A on X.

- Decision problem: decide whether $A(X) = \emptyset$
- Optimisation problem: find $y \in A(X)$ with optimal cost $\omega(y)$ for a given cost function ω
- Counting problem: compute $|A(X)|$
For a problem A and an instance X of A we denote by $A(X)$ the set of solutions of A on X.

- Decision problem: decide whether $A(X) = \emptyset$
- Optimisation problem: find $y \in A(X)$ with optimal cost $\omega(y)$ for a given cost function ω
- Counting problem: compute $|A(X)|$
- Enumeration problem: Output $A(X)$
A clique C of a graph is said to be maximal if it is not included in any other clique.
A clique C of a graph is said to be maximal if it is not included in any other clique.

Problem: Maximal Cliques Enumeration

Input: A graph G

Output: All maximal cliques of G
example
example
example
• The number of outputs of an enumeration problem may be exponential in the size of the input.
The number of outputs of an enumeration problem may be exponential in the size of the input.

For instance: the number of maximal cliques of a graph can be exponential on n (a graph can have $3^{n/3}$ maximal cliques).
• The number of outputs of an enumeration problem may be exponential in the size of the input.
• For instance: the number of maximal cliques of a graph can be exponential on n (a graph can have $3^{n/3}$ maximal cliques)
• We cannot hope to have an algorithm whose running time is polynomial in the input (you need at least one operation per output).
• What is an efficient enumeration algorithm?
• What is an efficient enumeration algorithm?
• How to define tractability for enumeration problems?
• What is an efficient enumeration algorithm?
• How to define tractability for enumeration problems?
• How to measure the complexity of an enumeration algorithm.
two schools
Two points of view

Input sensitive

- The complexity is measured in term of the input size only.

Output sensitive

- For most of problems the complexity are exponential.
- We then can talk about "polynomial" algorithm even if the number of solutions can be exponentially large in the input size.
Two points of view

Input sensitive

- The complexity is measured in term of the input size only.
- For most of problems the complexity are exponential.

Output sensitive
Two points of view

Input sensitive

- The complexity is measured in term of the input size only.
- For most of problems the complexity are exponential.

Output sensitive

- The complexity is measured in term of the input size and the output size.
Two points of view

Input sensitive

- The complexity is measured in term of the input size only.
- For most of problems the complexity are exponential.

Output sensitive

- The complexity is measured in term of the input size and the output size.
- We then can talk about "polynomial" algorithm even if the number of solutions can be exponentially large in the input size.
Two schools

Two points of view

Input sensitive

- The goal is to find an exponential algorithm with the smallest complexity

Output sensitive

Typical example is to find an algorithm of complexity αn with α as small as possible (usually smaller than 2)

- We try to find an algorithm polynomial in the input size and output size
 - Ideally we want a complexity linear in the output size.
Two points of view

Input sensitive

- The goal is to find an exponential algorithm with the smallest complexity
- Typical example is to find an algorithm of complexity α^n with alpha as small as possible (usually smaller than 2)

Output sensitive
Two points of view

Input sensitive
- The goal is to find an exponential algorithm with the smallest complexity
- Typical example is to find an algorithm of complexity α^n with alpha as small as possible (usually smaller than 2)

Output sensitive
- We try to find an algorithm polynomial in the input size and output size
Two points of view

Input sensitive
- The goal is to find an exponential algorithm with the smallest complexity
- Typical example is to find an algorithm of complexity α^n with alpha as small as possible (usually smaller than 2)

Output sensitive
- We try to find an algorithm polynomial in the input size and output size
- Ideally, we want a complexity linear in the output size.
Exemple

Input sensitive
Given a graph G with n vertices, there exists an algorithm that enumerates all maximal cliques in $O \left(3^{\frac{n}{3}} \right) \sim O(1.442^n)$.

Output sensitive
Exemple

Input sensitive
Given a graph G with n vertices, there exists an algorithm that enumerates all maximal cliques in $O(3^{\frac{n}{3}}) \sim O(1.442^n)$.

Output sensitive
Given a graph G with n vertices, there exists an algorithm that enumerates all maximal cliques in $O(n^3|C|)$ where $|C|$ denotes the number of maximal cliques of G.
Pros

- We know in advance the running time of the algorithm.

Cons

- We don't know the relative efficiency of the algorithm. Is it far from optimal or not?
- The complexity measure depends on the number of solutions that one instance can have.
- We don't know the behavior of the algorithm on instances with few solutions.
Input sensitive

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• We know in advance the running time of the algorithm.</td>
<td>• We don't know the relative efficiency of the algorithm. Is it far to be optimal or not?</td>
</tr>
<tr>
<td>• The complexity of the algorithm gives a combinatorial bound on the number of possible solutions</td>
<td>• The complexity measure depends on the number of solutions that one instance can have.</td>
</tr>
<tr>
<td></td>
<td>• We don't know the behavior of the algorithm on instances with few solutions.</td>
</tr>
<tr>
<td>Pros</td>
<td>Cons</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>• We know in advance the running time of the algorithm.</td>
<td>• We don't know the relative efficiency of the algorithm. Is it far from optimal or not?</td>
</tr>
<tr>
<td>• The complexity of the algorithm gives a combinatorial bound on the number of possible solutions</td>
<td>• The complexity measure depends on the number of solutions that one instance can have.</td>
</tr>
<tr>
<td>• The algorithm gives an exact exponential algorithm for the optimisation problem</td>
<td>• We don't know the behavior of the algorithm on instances with few solutions.</td>
</tr>
</tbody>
</table>
Input sensitive

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• We know in advance the running time of the algorithm.</td>
<td>• We don’t know the relative efficiency of the algorithm. Is it far to be optimal or not?</td>
</tr>
<tr>
<td>• The complexity of the algorithm gives a combinatorial bound on the number of possible solutions</td>
<td></td>
</tr>
<tr>
<td>• The algorithm gives an exact exponential algorithm for the optimisation problem</td>
<td></td>
</tr>
<tr>
<td>Pros</td>
<td>Cons</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>• We know in advance the running time of the algorithm.</td>
<td>• We don’t know the relative efficiency of the algorithm. Is it far to be optimal or not?</td>
</tr>
<tr>
<td>• The complexity of the algorithm gives a combinatorial bound on the number of possible solutions</td>
<td>• The complexity measure depends on the number of solutions that one instance can have.</td>
</tr>
<tr>
<td>• The algorithm gives an exact exponential algorithm for the optimisation problem</td>
<td></td>
</tr>
</tbody>
</table>
Input sensitive

Pros
- We know in advance the running time of the algorithm.
- The complexity of the algorithm gives a combinatorial bound on the number of possible solutions.
- The algorithm gives an exact exponential algorithm for the optimisation problem.

Cons
- We don’t know the relative efficiency of the algorithm. Is it far to be optimal or not?
- The complexity measure depends on the number of solutions that one instance can have.
- We don’t know the behavior of the algorithm on instances with few solutions.
<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>The efficiency does not depend on the problem.</td>
<td>We don’t know in advance how many times the algorithm will run.</td>
</tr>
<tr>
<td></td>
<td>Doesn’t give any information on the maximal number of solutions an instance can have.</td>
</tr>
</tbody>
</table>
Output sensitive

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The efficiency does not depend on the problem.</td>
<td></td>
</tr>
<tr>
<td>• We can see if an algorithm is far from the (theoretical) optimal complexity.</td>
<td></td>
</tr>
</tbody>
</table>
Output sensitive

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The efficiency does not depend on the problem.</td>
<td></td>
</tr>
<tr>
<td>• We can see if an algorithm is far from the (theoretical) optimal complexity.</td>
<td></td>
</tr>
<tr>
<td>• We can classify enumeration problems by their output sensitive complexity.</td>
<td></td>
</tr>
</tbody>
</table>
Output sensitive

Pros
- The efficiency does not depend on the problem.
- We can see if an algorithm is far from the (theoretical) optimal complexity.
- We can classify enumeration problems by their output sensitive complexity.

Cons
- We don’t know in advance how many times the algorithm will run.
Output sensitive

Pros
- The efficiency does not depend on the problem.
- We can see if an algorithm is far from the (theoretical) optimal complexity.
- We can classify enumeration problems by their output sensitive complexity.

Cons
- We don’t know in advance how many times the algorithm will run.
- Doesn’t give any information on the maximal number of solutions an instance can have.
input sensitive enumeration
input sensitive algorithm

Comes from exact exponential algorithm community

Methods used:

- Branch and reduce algorithm
- Measure and conquer algorithm
- Classical dynamic programming algorithm.
A branch and reduce algorithm is a recursive algorithm that divides the instance in some smaller instances based on a set of rules. There are two kinds of rules:

- **Reduction rules**: They just reduce the size of the instance. They are usually based on easy observations.
- **Branching rules**: The rules that effectively divide the problem in smaller sub-problems.
Enumeration of maximal independent sets of a graph G of maximum degree 2

- S: The current set of vertices taken in the solution.
- F: The set of "free vertices"; the vertices that are allowed to be taken in the solution.
Enumeration of maximal independent sets of a graph G of maximum degree 2

- S: The current set of vertices taken in the solution.
- F: The set of "free vertices"; the vertices that are allowed to be taken in the solution.

Reduction Rules:

- If F contains a degree 0 vertex, then add it to S and remove it from F
Enumeration of maximal independent sets of a graph G of maximum degree 2

Branching Rules:

- If F contains a degree 1 vertex u with neighbour v, then branch in the following ways:
 - Add u to S and remove u and v from F.
 - Add v to S and remove u, v and all neighbours of v from F.
Enumeration of maximal independent sets of a graph G of maximum degree 2

Branching Rules:

- If F contains a degree 2 vertex u with neighbour v, w, then branch in the following ways:
 - Add u to S and remove u, v and w from F.
 - Add v to S and remove u, v and all neighbours of v from F.
 - Add w to S and remove u, w and all neighbours of w from F.
To determine the complexity of the previous algorithm, let us analyse its recursion tree.
To determine the complexity of the previous algorithm, let us analyse its recursion tree.

We want to determine the number of leaves of the tree.
To determine the complexity of the previous algorithm, let us analyse its recursion tree.

We want to determine the number of leaves of the tree.

In each internal node of the tree we count the number of sub-problems we create and how the size of these sub-problems decreases.
branching vectors

Branching Rules:

- If F contains a degree 1 vertex u with neighbour v, then branch in the following ways:
 - Add u to S and remove u and v from F. $|F|$ decreases by 2
 - Add v to S and remove u, v and all neighbours of v from F. $|F|$ decreases by 2

We branch in two sub-problems each whose sizes decrease by 2. It is described by the Branching vector $(2, 2)$
Branching Rules:

- If F contains a degree 2 vertex u with neighbour v, w, then branch in the following ways:
 - Add u to S and remove u, v and w from F. $|F|$ decreases by 3
 - Add v to S and remove u, v and all neighbours of v from F. $|F|$ decreases by 3
 - Add w to S and remove u, w and all neighbours of w from F. $|F|$ decreases by 3

We branch in three sub-problems each whose sizes decrease by 3.

Branching vector: $(3, 3, 3)$
example of tree with branching vector $(3, 3)$

Figure 1: Tree with branching vector $(3, 3)$ at each node
How many leaves has this tree?
How many leaves has this tree?
Satisfies the recurrence $T(n) = T(n - 3) + T(n - 3)$
How many leaves has this tree?
Satisfies the recurrence $T(n) = T(n - 3) + T(n - 3)$
$T(n) = 2^{n/3} \sim 1.259^n$
Question: What is the number of leaves of a tree with a given branching vector \((x_1, x_2, \ldots, x_k)\)
Question: What is the number of leaves of a tree with a given branching vector \((x_1, x_2, ..., x_k)\)?

The number of leaves \(T(n)\) is the solution of the recurrence

\[
T(n) = T(n - x_1) + T(n - x_2) + ... + T(n - x_k)
\]
Question: What is the number of leaves of a tree with a given branching vector \((x_1, x_2, \ldots, x_k)\)?

The number of leaves \(T(n)\) is the solution of the recurrence

\[
T(n) = T(n - x_1) + T(n - x_2) + \ldots + T(n - x_k)
\]

Theorem

A tree with branching vector \((x_1, x_2, \ldots, x_k)\) has \(\alpha^n\) leaves where \(\alpha\) is the unique real positive solution of the equation:

\[
x^n = x^{n-x_1} + x^{n-x_2} + \ldots + x^{n-x_k}
\]
Theorem

A tree with branching vector \((x_1, x_2, \ldots, x_k)\) has \(\alpha^n\) leaves where \(\alpha\) is the unique real positive solution of the equation:

\[x^n = x^{n-x_1} + x^{n-x_2} + \ldots + x^{n-x_k} \]

\(\alpha\) is called the branching factor of the branching vector \((x_1, x_2, \ldots, x_k)\)
First Branching Rule:

- If F contains a degree 1 vertex u with neighbour v, then branch in the following ways:
 - Add u to S and remove u and v from F. $|F|$ decreases by 2
 - Add v to S and remove u, v and all neighbours of v from F. $|F|$ decreases by 2

Branching vector: $(2, 2)$

Branching factor of $(2, 2)$: $\sqrt{2} \approx 1.414$
Second Branching Rule:

- If F contains a degree 2 vertex u with neighbour v, w, then branch in the following ways:
 - Add u to S and remove u, v and w from F. $|F|$ decreases by 3
 - Add v to S and remove u, v and all neighbours of v from F. $|F|$ decreases by 3
 - Add w to S and remove u, w and all neighbours of w from F. $|F|$ decreases by 3

Branching vector: $(3, 3, 3)$
Branching factor of $(3, 3, 3)$: $\sqrt[3]{3} \sim 1.442$
To estimate the number of leaves $T(n)$ of the recursion tree (and then the complexity of the algorithm), we keep the worst branching factor
To estimate the number of leaves $T(n)$ of the recursion tree (and then the complexity of the algorithm), we keep the worst branching factor

- Branching vector: $(2, 2)$ with branching factor $\sqrt{2} \sim 1.414$
- Branching vector: $(3, 3, 3)$ with branching factor $\sqrt[3]{3} \sim 1.442$
To estimate the number of leaves $T(n)$ of the recursion tree (and then the complexity of the algorithm), we keep the worst branching factor

- Branching vector: $(2, 2)$ with branching factor $\sqrt{2} \sim 1.414$
- Branching vector: $(3, 3, 3)$ with branching factor $\sqrt[3]{3} \sim 1.442$

$$T(n) \leq \left(\sqrt[3]{3}\right)^n = 3^{n/3} \sim 1.442^n$$
Problem: Exact 3-Sat enumeration

Input: A 3-CNF formula with m clauses and n variables

Output: All satisfying assignments of variables with exactly one true literal per clause
Problem: Exact 3-Sat enumeration

Input: A 3-CNF formula with m clauses and n variables

Output: All satisfying assignments of variables with exactly one true literal per clause

Try to find an algorithm to solve this problem.
output sensitive enumeration
Total-Polynomial algorithm
Here the goal is to find algorithms whose complexity in term of input and output size is small.
Here the goal is to find algorithms whose complexity in term of input and output size is small.

Definition

An enumeration algorithm is said to be **total-polynomial** (or **output-polynomial**) if its running time is

\[\text{poly}(m + n) \]

where \(\text{poly} \) is a polynomial, \(n \) is the size of the input and \(m \) is the size of the output.
Definition

We call TOTALP the class of enumeration problems that admit a total-polynomial algorithm.
We call \textbf{TOTALP} the class of enumeration problems that admit a total-polynomial algorithm.

How to prove that a problem is not in \textbf{TOTALP}?
To a given enumeration problem A, one can associate a decision problem called the DecisionEnumeration problem.
To a given enumeration problem A, one can associate a decision problem called the **DecisionEnumeration** problem.

DecisionEnumeration problem

input: A set of solutions $S := \{s_1, \ldots, s_k\}$

Question: Is S the set of all solution?
To a given enumeration problem A, one can associate a decision problem called the **DecisionEnumeration** problem.

DecisionEnumeration problem

input: A set of solutions $S := \{s_1, ..., s_k\}$

Question: Is S the set of all solution?

Theorem

Let A be enumeration problem. If the **DecisionEnumeration** problem associated to A is NP-hard, then $P \not\in \text{TotalP}$ unless $P = NP$.
proof

- Assume that there exists a polynomial \(P \) such that \(A \) can be solved in \(P(n + m) \). And let \(S := \{s_1, ..., s_k\} \) be a set of solutions.
proof

- Assume that there exists a polynomial P such that A can be solved in $P(n + m)$. And let $S := \{s_1, ..., s_k\}$ be a set of solutions.
- Run the algorithm for $P(n, k) + 1$ times.
• Assume that there exists a polynomial P such that A can be solved in $P(n + m)$. And let $S := \{s_1, \ldots, s_k\}$ be a set of solutions.

• Run the algorithm for $P(n, k) + 1$ times.

• If the algorithm stops during this period, answer "Yes" to the question, all solutions are in S.
proof

• Assume that there exists a polynomial P such that A can be solved in $P(n + m)$. And let $S := \{s_1, \ldots, s_k\}$ be a set of solutions.

• Run the algorithm for $P(n, k) + 1$ times.

• If the algorithm stops during this period, answer "Yes" to the question, all solutions are in S.

• Otherwise, stop it and answer "No".
Theorem

Let A be enumeration problem. If the DecisionEnumeration problem associated to A is NP-hard, then $P \not\in \text{TotalP}$ unless $P = NP$.

By abuse of terminology, we say sometimes that an enumeration problem is NP-hard when its associated DecisionEnumeration problem is so.
tractability?

Is the TOTALP notion a good definition of tractable enumeration problems?
Is the \textsc{TotalP} notion a good definition of tractable enumeration problems?

Issue:
We may wait long time before the output of the first solution. They may all be given at the end of the algorithm.
Is the TOTALP notion a good definition of tractable enumeration problems?

Issue:
We may wait long time before the output of the first solution. They may all be given at the end of the algorithm.

Can we refine the class TOTALP to solve this issue?
Incremental-Polynomial algorithm
An **incremental-polynomial** algorithm is a special case of total-polynomial algorithm.

Definition

An enumeration algorithm is said to be **incremental-polynomial** if the delay between the output of the k^{th} solution and the $(k+1)^{th}$ solution is bounded by $\text{poly}(n + k)$ where poly is a polynomial and n is the input size.
Definition

We call **IncP** the class of enumeration problems that admit a incremental-polynomial algorithm.
Definition
We call \(\text{IncP} \) the class of enumeration problems that admit a incremental-polynomial algorithm.

Proposition
\(\text{IncP} \subseteq \text{TotalP} \)
proof of the proposition

- If \(A \) is an incremental-polynomial algorithm, there exists a polynomial \(P \) such that the delay between the output of the \(k^{th} \) solution and the \((k + 1)^{th}\) solution is bounded by \(P(n + k) \)

- If \(m \) is the total number of solutions, the total running time of the algorithm is

\[
\sum_{i=1}^{m} P(n + i) \leq mP(n + m)
\]

which is polynomial in \(n + m \)
The classes IncP and TotalP are well separated
The classes InCP and TotalP are well separated
Some problems are known to be in TotalP but not in InCP.
The classes Incp and TotalP are well separated
Some problems are known to be in TotalP but not in Incp.

Proposition

Unless $P = NP$, $\text{Incp} \subsetneq \text{TotalP}$ ($\text{Incp} \neq \text{TotalP}$).
A classical way to obtain an incremental-polynomial algorithm is to be able to solve a slightly different version of the **DecisionEnumeration** problem.
A classical way to obtain an incremental-polynomial algorithm is to be able to solve a slightly different version of the $\text{DecisionEnumeration}$ problem.

NewSolution problem

- **input:** A set of solutions $\{s_1, \ldots, s_k\}$
- **output:** “No” if $\{s_1, \ldots, s_k\}$ contains all solutions
 A new solution $s \notin \{s_1, \ldots, s_k\}$ otherwise
To obtain a incremental-polynomial algorithm, one can apply successively the \texttt{NewSolution} problem by adding the new solution found at each step to the set of already generated solutions until the answer is ”No”.
To obtain a incremental-polynomial algorithm, one can apply successively the \texttt{NewSolution} problem by adding the new solution found at each step to the set of already generated solutions until the answer is ”No”.

Proposition

Let A be an enumeration problem. Then $A \in \text{IncP}$ if and only if the \texttt{NewSolution} problem associated to A is polynomial.
To obtain a incremental-polynomial algorithm, one can apply successively the \textsc{NewSolution} problem by adding the new solution found at each step to the set of already generated solutions until the answer is "No".

\textbf{Proposition}

Let A be an enumeration problem. Then $A \in \text{IncP}$ if and only if the \textsc{NewSolution} problem associated to A is polynomial.

\textbf{Proof:} Left as exercise.
Let G be a graph and let T be a spanning tree of G. The fundamental cycle of T with respect to an edge $e \in E(G) \setminus E(T)$, is the unique simple cycle $F(T, e)$ of $T \cup \{e\}$.
Let G be a graph and let T be a spanning tree of G. The fundamental cycle of T with respect to an edge $e \in E(G) \setminus E(T)$, is the unique simple cycle $F(T, e)$ of $T \cup \{e\}$.

Let us denote by $F(T)$ the set of fundamental cycles of T.

Let G be a graph and let T be a spanning tree of G. The fundamental cycle of T with respect to an edge $e \in E(G) \setminus E(T)$, is the unique simple cycle $F(T, e)$ of $T \cup \{e\}$.

Let us denote by $F(T)$ the set of fundamental cycles of T.

Proposition

A set \mathcal{T} is the set of the spanning trees of a graph G, if and only if for all $T \in \mathcal{T}$ and for all edge $e \notin T$, the tree $(T \cup \{e\}) \setminus \{y\}$ belongs to \mathcal{T} for all $y \in F(T, e)$.

Let G be a graph, T one of its spanning tree and let $F(T)$ be the set of fundamental cycles of T.

Algorithm:

- output $F(T)$
- $S = F(T)$
- While $\exists C_1, C_2 \in S$, $C_1 \cap C_2 \neq \emptyset$ and $C_1 \Delta C_2 \notin S$:
 - output $C_1 \Delta C_2$
 - Add $C_1 \Delta C_2$ to S
Let G be a graph, T one of its spanning tree and let $F(T)$ be the set of fundamental cycles of T.

Algorithm:

- output $F(T)$
- $S = F(T)$
- While $\exists C_1, C_2 \in S$, $C_1 \cap C_2 \neq \emptyset$ and $C_1 \Delta C_2 \notin S$:
 - output $C_1 \Delta C_2$
 - Add $C_1 \Delta C_2$ to S

1. Does this algorithm enumerate all cycles of the graph?
Let G be a graph, T one of its spanning tree and let $F(T)$ be the set of fundamental cycles of T.

Algorithm:

- output $F(T)$
- $S = F(T)$
- While $\exists C_1, C_2 \in S$, $C_1 \cap C_2 \neq \emptyset$ and $C_1 \Delta C_2 \notin S$:
 - output $C_1 \Delta C_2$
 - Add $C_1 \Delta C_2$ to S

1. Does this algorithm enumerate all cycles of the graph?
2. Prove or disprove it.
Let G be a graph, T one of its spanning tree and let $F(T)$ be the set of fundamental cycles of T.

Algorithm:

- output $F(T)$
- $S = F(T)$
- While $\exists C_1, C_2 \in S$, $C_1 \cap C_2 \neq \emptyset$ and $C_1 \Delta C_2 \notin S$:
 - output $C_1 \Delta C_2$
 - Add $C_1 \Delta C_2$ to S

1. Does this algorithm enumerate all cycles of the graph?
2. Prove or disprove it.
3. Is it total-polynomial? Incremental-polynomial?
A hypergraph $\mathcal{H} := (V, \mathcal{E})$ is a set family \mathcal{E} on a ground set V.

An open problem

A transversal (or hitting set) of \mathcal{H} is a subset T of V that intersects every $E \in \mathcal{E}$. It is minimal if it does not contain any other transversal.
• A hypergraph $\mathcal{H} := (V, \mathcal{E})$ is a set family \mathcal{E} on a ground set V.

• A transversal (or hitting set) of \mathcal{H} is a subset T of V that intersects every $E \in \mathcal{E}$. It is minimal, if it does not contain any other transversal.
- A hypergraph $\mathcal{H} := (V, \mathcal{E})$ is a set family \mathcal{E} on a ground set V.
- A transversal (or hitting set) of \mathcal{H} is a subset T of V that intersects every $E \in \mathcal{E}$. It is minimal, if it does not contain any other transversal.
an open problem

- A hypergraph $\mathcal{H} := (V, \mathcal{E})$ is a set family \mathcal{E} on a ground set V.
- A transversal (or hitting set) of \mathcal{H} is a subset T of V that intersects every $E \in \mathcal{E}$. It is minimal, if it does not contain any other transversal.

Transversal Decision Enumeration problem

input: A hypergraph \mathcal{H} and a set of minimal transversals of \mathcal{H} $S := \{T_1, \ldots, T_k\}$

Question: Is S the set of all minimal transversals of \mathcal{H}?
Transversal **Decision Enumeration** problem

input: A hypergraph \mathcal{H} and a set of minimal transversals of \mathcal{H}

$S := \{T_1, ..., T_k\}$

Question: Is S the set of all minimal transversals of \mathcal{H}?

The complexity of the above problem is open.
Transversal Decision Enumeration problem

input: A hypergraph \mathcal{H} and a set of minimal transversals of \mathcal{H}

$S := \{T_1, ..., T_k\}$

Question: Is S the set of all minimal transversals of \mathcal{H}?

The complexity of the above problem is open.

But we know that the NewSolution problem is quasi-polynomial

(there is an algorithm of complexity $N^{\log N}$ where $N = k + |\mathcal{H}|$)
Therefore:

- The minimal transversal of a hypergraph can be enumerated in incremental quasi-polynomial time.
- Unless every NP-complete problem can be solved in quasi-polynomial time, the transversal \textsc{DecisionEnumeration} problem is not NP-complete.
- Open: Is the transversal \textsc{DecisionEnumeration/NewSolution} problem polynomial?
example of problems in INCP

The enumeration of

- Spanning trees
- (Simple) Cycles
- (maximal) Paths, induced paths...
- (maximal/maximum) matching
- maximal Independent sets
- maximal cliques/bicliques
- minimal vertex covers
- minimal feedback vertex/arc set
- ...

The enumeration of

- Minimal dicut of an oriented graph.
- Vertices of a polyhedron given by a set of inequalities.
- Maximal elements of an independent system given by an oracle.
- Any problem for which the (classical) decision problem is NP-hard.
- ...

The enumeration of

- Maximal stable sets of a hypergraph.
- All satisfying assignments of a monotone CNF.
- Minimal dominating sets of a graph.
- Minimal subsets that are not included in any set from a given family of sets.
- ...
Polynomial delay algorithm
Issues of the Incremental algorithms:

- The delay between two consecutive solutions is increasing as more solutions are outputted.
- The space used by the algorithm is usually exponential in the input size.
A **polynomial delay** algorithm is an enumeration algorithm such that the delay between two consecutive outputs is bounded by $\text{poly}(n)$ where poly is a polynomial and n is the input size.
Supergraph method
A common way to obtain polynomial algorithms is the so called supergraph method.

Idea:

- Make small modifications on solutions to obtain new ones.
- Prove that all solutions can be obtained in this way starting from a special solution (or set of solutions).
- Try to avoid redundancy (output several times the same solution) using only polynomial space.
Let S be the set of solutions of a given enumeration problem.

The supergraph method consists on defining a transition function $t : S \rightarrow 2^S$.

It defines the arcs of an oriented graph with vertex set S.

![Diagram showing the supergraph method with vertices $S_1, S_2, S_3, S_4, S_5, S_6$ and transition function $t(S_1)$]
Let S be the set of solutions of a given enumeration problem. The supergraph method consists on defining a transition function $t : S \rightarrow 2^S$. This function defines the arcs of an oriented graph with vertex set S.

$$
\begin{array}{c}
S \\
\bullet \\
\bullet \\
\bullet \\
S_0 \\
\bullet \\
\end{array}
$$
Let S be the set of solutions of a given enumeration problem.

The supergraph method consists on defining a transition function $t : S \rightarrow 2^S$.

This function defines the arcs of an oriented graph with vertex set S.
Assuming that the transition function is such that every solution is accessible from the starting solution, we would like to explore the graph (for instance with a DFS or a BFS) to find all solutions.
For a spanning tree T of a graph G, we define the following transition function:

$$t(T) := \{(T \cup \{e\}) \setminus \{e'\} : e \notin T, e' \in F(T, e)\}$$
Issues:

- When you explore a graph, you have to store the set of already visited vertices.
- Here the number of vertices of a supergraph corresponds to the number of solutions which is huge in general.
Solution:

- Restrict the transition function so that it defines an arborescence.
- The goal is to define a parent-child relation between solutions so that each solution will be “produced” only by its father.
To define an arborescence, we usually use the reverse search method.

- Define a total ordering over solutions.
- The father $P(S')$ of a solution S is defined as the smallest solution S' such that $S \in t(S')$

Then we restrict the transition function t to t':

$$t'(T) := \{T' \in t(T) : P(T') = T\}$$
• Consider an ordering over the edges of $G : (e_1, \ldots, e_k)$.

• The ordering over spanning trees is given by the lexicographic order.

• The father $P(T)$ of a spanning tree T is the spanning tree $(T \cup \{e\}) \setminus \{e'\}$ where e is smallest edge that does not belong to T and e' is the largest edge of $F(T, e)$.
We call the algorithm with the starting solution S_0.

ReverseSearch(S):

- Output S
- For all $S' \in t(S)$
 - If $P(S') = S$
 - **ReverseSearch(S')**
Backtracking method
Here we assume that the solutions of the problem are subsets of a ground set E.

Steps

- The solutions corresponds to leaves of the tree.
Here we assume that the solutions of the problem are subsets of a ground set E.

Steps

- The solutions corresponds to leaves of the tree.
- Each level i corresponds to the choice of the selection of e_i in the solution.
Here we assume that the solutions of the problem are subsets of a ground set E.

Steps

- The solutions correspond to leaves of the tree.
- Each level i corresponds to the choice of the selection of e_i in the solution.
- All the solutions in the left tree contain e_i and the ones of the right tree do not contain e_i.
To use the backtracking method, we need to be able to solve the following problem.

Extension problem

Input: Two sets $X, Y \subseteq E$

Question: Is there a solution S such that $X \subseteq S$ and $Y \cap S = \emptyset$?

If the extension problem is polynomial, then the enumeration problem can be solved with polynomial delay.
BacktrackAlgorithm(i, X, Y):

- if $i = n$:
 - output X
- if there is a solution S such that $(X \cup \{e_i\}) \subseteq S$ and $Y \cap S = \emptyset$:
 - BacktrackAlgorithm$(i + 1, X \cup \{e_i\}, Y)$
- if there is a solution S such that $X \subseteq S$ and $(Y \cup \{e_i\}) \cap S = \emptyset$:
 - BacktrackAlgorithm$(i + 1, X, Y \cup \{e_i\})$
Why the previous algorithm enumerates all solutions with polynomial delay (Assuming that the extension problem is polynomial)?

Is the Extension problem is polynomial for spanning trees?

Is it polynomial for the cycles of a graph?