
blerina sinaimeri

introduction to (de novo) assembly

The central dogma of molecular
biology

Gene Expression

From DNA to RNA to proteins in
eucaryotes

From DNA to proteins in eucaryotes RNA-splicing in eucaryotes

Alternative splicing (AS) in RNA

Why sequencing?

Perfect Word

+

AACGGTAACTGAAC
GTACGTACTACGTA
CGTACCATGAACGG
TAACTGAACGTACG
TACTACGTACGTAC
CATGAACGGTAACT
GAACGTACGTACTA
CGTACGTACCATG

Reality

• Cannot sequence full length DNA

• But we can sequence short fragments of it

?

1 2

3 4 5

DNA sequencing

r the new tech ew technology

DNA sequencing

the univer ver

makes a n thre

r the new techology

DNA sequencing

Billions of short reads

AACGGTAACTGAACGTACGTACTACGTACGTACCATG

AACGGTAACTGAACGTACGTACTACGTACGTACCATG
AACGGTAACTGAACGTACGTACTACGTACGTACCATG

Billions of short reads

AACGGTAACTGAACGTACGTACTACGTACGTACCATG…..

AACGGTAACTGAACGTACGTACTACGTACGTACCATG…..
AACGGTAACTGAACGTACGTACTACGTACGTACCATG…..

ACTGAAC

C
TAC

G
TAC

CTACGTAC

CTACGTAC

ACTGAAC

ACTGAAC

ACTGAAC

ACTGAACCTACGTAC

CTACGTAC

ACTGAAC

ACTGAAC
ACTGAAC

CTACGTAC AACGGTAACTGAACGTACGTACTACGTACGTACCATG

?

Next Generation Sequencing

RNA-seq

Why RNA-sequencing?

• Which region of the genome is transcribed

• Variability (AS events) of the mRNAs of the same gene

• Expression level of the mRNAs

• All genome positions are covered many times.

• The coverage is the number of reads covering a fixed position.

coverage

Some terminology
• read - a 100-250 long word that comes out of a NGS machine

• coverage - the average number of reads (or inserts) that cover a position in the
target DNA piece

• shotgun sequencing - the process of obtaining many reads from random
locations in DNA, to detect overlaps and assemble

• mate pair - a pair of reads from two ends of the same insert fragment (we know
approx. distance)

• contig - a contiguous sequence formed by several overlapping reads with no gaps

• consensus sequence - sequence derived from the multiple alignment of reads in
a contig

de novo assembly vs
referenced-based mapping

+

de novo assembly

Methods

• greedy assembly

• Overlap-layout-consensus

• de bruijn graphs

• strings graphs

• Find all overlaps between reads

• Build a graph

• Simplify the graph (sequencing
errors)

• Traverse a graph to produce a
consensus.

Basic ideaDifferent approaches

Modelling and assembling NGS
data (I)

• Given a set of strings each

is part of an unknown string reconstruct the original

string

Modelling and assembling NGS
data (I)

• Given a set of strings each

is part of an unknown string reconstruct the original

string

• Shortest superstring problem (SSP)

• Given a set of strings find a minimum length string

such that every is a substring of

Shortest Superstring Problem
• Shortest superstring problem (SSP)

• Given a set of strings find a minimum length string

such that every is a substring of

Exercise 1

• SSP is NP-hard. (Garey and Johnson 1979)

SSP: Greedy Algorithm (I)
Algorithm

• Overlap ov(s; t) of two strings s , t is the longest string y such, that s = xy
and t = yz for some non-empty x , z .

• Prefix pr(s; t) of s w.r.t. t be the string x in the previous definition.

• s = pr(s; t)ov(s; t). Notice that pr(s; t)t is the shortest string containing s and
t in that order. This string is usually called a merge of s and t.

• Greedy approach: We pick two strings si sj with largest overlap from R
(breaking ties arbitrarily) and replace them with their merge. Stop when there
is only one string left.

SSP: Greedy Algorithm (II)
Algorithm

• Greedy approach: We pick two strings si sj with largest overlap
from R (breaking ties arbitrarily) and replace them with their
merge. Stop when there is only one string left.

• How good is this algorithm? Can it have an approximation
factor better than two?

Approximation algorithm
• A minimization problem is a problem where we want to find a solution

with minimum value.

• An algorithm for a minimization problem is called a ρ-approximation
algorithm, for some ρ > 1, if the algorithm produces for any input I a
solution whose value is at most ρ·opt(I).

• A maximization problem is a problem where we want to find a solution
with maximum value.

• An algorithm for a maximization problem is called a ρ-approximation
algorithm, for some ρ < 1, if the algorithm produces for any input I a
solution whose value isat least ρ · opt(I). The factor ρ is called the
approximation factor (or the approximation ratio) of the algorithm.

SSP: Greedy Algorithm (II)
Algorithm

• Greedy approach: We pick two strings si sj with largest overlap
from R (breaking ties arbitrarily) and replace them with their
merge. Stop when there is only one string left.

• How good is this algorithm? Can it have an approximation
factor better than two?

SSP: Greedy Algorithm (II)
Algorithm

• Greedy approach: We pick two strings si sj with largest overlap
from R (breaking ties arbitrarily) and replace them with their
merge. Stop when there is only one string left.

• How good is this algorithm? Can it have an approximation
factor better than two?

The Greedy Conjecture [Blum et al. 1991]: The Greedy
Algorithm has approximation factor 2.

SSP: Greedy Algorithm (II)
Algorithm

• Greedy approach: We pick two strings si sj with largest overlap
from R (breaking ties arbitrarily) and replace them with their
merge. Stop when there is only one string left.

• How good is this algorithm? Can it have an approximation
factor better than two?

Exercise 2

• What is the best approximation value that you can prove for the
greedy algorithm?

• Minimality : requiring the superstring to be of minimal
length, although motivated by parsimony, is in the best case
questionable due to repeats.

SSP: Problems (III)

• Local choices : in the true solution, the genome from which
the reads were generated, several suffix-prefix read overlaps
are not locally optimal.

Modelling and assembling NGS data (II)
Overlap-Layout-Consensus

• Overlap : Build the overlap graph
(find potentially overlapping reads)

• Layout : merge reads into contigs
and simplify the graph.

• Consensus : Derive the DNA
sequence and correct read errors

Building the overlap graph

• Given a set of reads the overlap
graph is a complete weighted directed graph such that:

• and

• length of the maximal suffix of u that is equal to
a prefix of v

Definition (Overlap Graph)

Building the overlap graph

• Given a set of reads the overlap
graph is a complete weighted directed graph such that:

• and

• length of the maximal suffix of u that is equal to
a prefix of v

Definition (Overlap Graph)

In a more general definition a small number of mismatches is
allowed for the suffix-prefix overlap. (Use DP to find the optimal
overlap alignment)

Finding the optimal overlap
alignment

• Overlap: suffix of X matches a prefix of Y

• We want to allow mismatches between X and Y.
X : CTCGGCCCTGG - -
Y : - - CGACCCTAGTT

D[i,j]= min {
D[i-1,j]+score(X[i-1],-),
D[i, j-1] + score(-,Y[j-1]),
D[i-1, j-1] + score(X[i-1],Y[j-1])

}

- A C T G
- 8 8 8 8 8
A 8 0 4 4 2
C 8 4 0 2 4
T 8 4 2 0 4
G 8 2 4 4 0

score(a,b)

Finding the optimal overlap
alignment

• Overlap: suffix of X matches a prefix of Y

• We want to allow mismatches between X and Y.
X : CTCGGCCCTGG - -
Y : - - CGACCCTAGTT

- C G A C C C T A G T T
- 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
C 0
T 0
C 0
G 0
G 0
C 0
C 0
C 0
T 0
A 0
G 0

D[i,j]= min {
D[i-1,j]+score(X[i-1],-),
D[i, j-1] + score(-,Y[j-1]),
D[i-1, j-1] + score(X[i-1],Y[j-1])

}

- A C T G
- 8 8 8 8 8
A 8 0 4 4 2
C 8 4 0 2 4
T 8 4 2 0 4
G 8 2 4 4 0

score(a,b) Suffix of X

Prefix of Y

Finding the optimal overlap
alignment

• Overlap: suffix of X matches a prefix of Y

• We want to allow mismatches between X and Y.
X : CTCGGCCCTGG - -
Y : - - CGACCCTAGTT

- C G A C C C T A G T T
- 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
C 0
T 0
C 0
G 0
G 0
C 0
C 0
C 0
T ∞
A ∞
G ∞

D[i,j]= min {
D[i-1,j]+score(X[i-1],-),
D[i, j-1] + score(-,Y[j-1]),
D[i-1, j-1] + score(X[i-1],Y[j-1])

}

- A C T G
- 8 8 8 8 8
A 8 0 4 4 2
C 8 4 0 2 4
T 8 4 2 0 4
G 8 2 4 4 0

score(a,b) Suffix of X

Prefix of Y

Asking for a
suffix of length

at least 4

Layout

• Graph simplification

• remove all arcs that have weights below a
given threshold.

• remove from the graph all the edges that are
transitively inferable. (String graph)

Consensus
• Find a constrained walk of minimum length in the graph

• We define a selection function s that classifies the arcs:

• optional : no constraint

• required : present at leat once

• exact : present exactly once

• Selection function is defined using A-statistics (Meyers et al. 2000)

Overlap-Layout-Consensus
and

Hamiltonian Path

• Given a selection function s , a string graph G find an s-walk.

Finding a minimum s-walk is NP-hard from a reduction
from Hamiltonian path (Medvedev et.al. 2007)

• Many assemblers use heuristics however for shorter reads
and much deeper coverages, the overlap computation step
is a computational bottleneck.

Finding overlaps

• For N reads of length L we need:

• O(N2) comparisons

• each comparison O(L2) alignment

Given N reads…
Where N ~ 100

million…

We need to use a
linear-time algorithm

Modelling and assembling NGS data (III)
de Bruijn graph

Given a set of reads R and an integer k we

define the de Bruijn graph B(R,k)

• Vertices are substrings of length k (k-mers)

• Arcs are k-1 suffix-prefix overlaps that
appear as a substring in R.

R={ACTGAT,TCTGAG}, k=3

ACT

TGA

GAT

TCT GAG

Example

CTG

De Bruijn graph

ACT

TGA

GAT

TCT GAG

CTG

de Bruijn graph

Given a set of reads R and an integer k we

define the de Bruijn graph B(R,k)

• Vertices are substrings of length k (k-mers)

• Arcs are k-1 suffix-prefix overlaps that
appear as a substring in R.

R={ACTGAT,TCTGAG}, k=3

ExampleDe Bruijn graph

de Bruijn graph vs overlap
graph

• If all the reads of R have length exactly k + 1, the line graph of Gk(R) is exactly the overlap
graph of R with the arcs of weight zero removed.

• In a de Bruijn graph there is a loss of information with regard to the overlap graph: in de
Bruijn graphs we do not have the information that two k-mers came from the same read.

• As a consequence there are walks in the de Bruijn graph that are not read

coherent (not entirely covered by reads).

Problem: Find an Eulerian path (visit each arc of the graph once).

• Finding an Eulerian path is polynomial but it may be not “read coherent”.

• A graph may have an exponential number of Eulerian paths.

Computing a de Bruijn graph

• Given a read set R, we can build a de Bruijn graph Gk(R) using a hash table to

store all (k +1)-mers present in R.

• As each insertion and membership query in the hash table takes O(1)

(expected) time, the de Bruijn graph can be built in time linear in the size of R,

i.e.

We can compute a de Bruijn graph for a set of reads in
linear time in the size of the reads.

de Bruijn graph

• Sparse Graph: out and in degree ≤ 4

de Bruijn graph : Theory

de Bruijn graph

• Sparse Graph: out and in degree ≤ 4

de Bruijn graph : Reality

de Bruijn graph : Theory

de Bruijn graph

• Sparse Graph: out and in degree ≤ 4

de Bruijn graph : Reality

de Bruijn graph : Theory

What creates the
complexity?

repeats challenge in assembly

