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Abstract

Constraint-based approaches recently brought new insight into our understanding of metabolism.
By making very simple assumptions such as that the system is at steady-state and some reactions are
irreversible, and without requiring kinetic parameters, general properties of the system can be derived. A
central concept in this methodology is the notion of an elementary mode (EM for short). The computation
of EMs still forms a limiting step in metabolic studies and several algorithms have been proposed to
address this problem leading to increasingly faster methods. However, although a theoretical upper
bound on the number of elementary modes that a network may possess has been established, surprisingly,
the complexity of this problem has never been systematically studied.

In this paper, we give a systematic overview of the complexity of optimisation problems related to
modes. We first establish results regarding network consistency. Most consistency problems are easy,
i.e., they can be solved in polynomial time. We then establish the complexity of finding and counting
elementary modes. We show in particular that finding one elementary mode is easy but that this task
becomes hard when a specific EM (i.e. an EM containing some specified reactions) is sought. We
then show that counting the number of elementary modes is fP-complete. We emphasize that the easy
problems can be solved using currently existing software packages.

We then analyse the complexity of a closely related task which is the computation of so-called min-
imum reaction cut sets and we show that this problem is hard. We then present two positive results
which both allow to avoid computing EMs as a prior to the computation of reaction cuts. The first one
is a polynomial approximation algorithm for finding a minimum reaction cut set. The second one is a
test for verifying whether a set of reactions constitutes a reaction cut; this test can be readily included in
existing algorithms to improve their performance. Finally, we discuss the complexity of other cut-related
problems.

1 Introduction

Metabolism is usually defined as the union of two processes: anabolism (synthesis of molecules through the
use of energy and reducing power) and catabolism (degradation of molecules yielding energy and reducing
power). From a modeller’s perspective, metabolism can be seen as a network of interconnected reactions,
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each reaction corresponding to the transformation of metabolites into other metabolites. This network can
then be studied either from a structural perspective, or from a dynamic perspective.

Studying the dynamics of metabolic networks is usually performed using models based on differential
equations whereas structural analyses are mainly based on graph-related formalisms or, as far as metabolism
is concerned, on a constraint-based modelling. The latter term is commonly employed in the bioinformatics
community following two papers by Palsson (2000) and Covert and Palsson (2003). In the constraint-
based framework, the network may still be modelled as an edge-labelled hypergraph, but several types of
constraints (stoichiometric, thermodynamic and in some cases regulatory) are added to restrict the possible
fluxes through the network. The choice of a particular model heavily depends on the type of question one
wishes to address (structural or dynamic) but also on the type of data that is available (qualitative or
quantitative). Another type of criterion that may be taken into account is the computational cost of a given
analysis, and therefore its scalability to large datasets (such as genome-scale metabolic networks).

In a constraint-based approach, only admissible flux distributions are of interest. An admissible flux
distribution corresponds to a set of reactions, which, when taken together in given proportions, perform the
transformation of available substrates into removable products with the special property that all intermediate
compounds are balanced (steady-state assumption) and irreversible reactions are taken in the appropriate
direction (thermodynamic constraint). Such an admissible flux distribution is called a mode.

Even though each mode is potentially interesting, not all of them are generally considered. Classically,
two major sub-problems have been introduced. The first one is known as flux balance analysis. It consists
in searching for a mode that optimises a given objective function. Examples of objective functions include
biomass (usually represented as a pseudo-reaction of the network, in general determined from experimental
data) or ATP production. This optimisation problem has several applications (Edwards et al., 2001; Fong
and Palsson, 2004) and can be solved using linear programming (LP).

The second sub-problem is the one we discuss in this paper. In the case where no particular function
is to be optimised, all modes are equally interesting. A sensible strategy is then to try to find a set that
could generate them all. Such a generating set has been proposed and called the set of elementary modes
(Schuster and Hilgetag, 1994), EM for short. Intuitively, an elementary mode is a special mode that has the
property of not containing any other mode.

Elementary modes have been said to represent a formalised definition of a biological pathway. Indeed, a
biological interpretation can be given to such flux vectors: a mode is a set of enzymes that operate together
at steady state (Schuster et al., 2000) and a mode is elementary when the removal of one enzyme causes it
to fail.

The related concept of extreme pathway has also been introduced in the field (Schilling et al., 2000).
Extreme pathways are actually a subset of elementary modes. Both notions coincide in the case where all
exchange reactions (reactions connecting some metabolite with the surrounding of the model) are irreversible.
For a detailed comparison of both approaches, see Klamt and Stelling (2003).

As outlined by Schuster et al. (2002b), the concept of minimal T-invariant used in Petri Nets is also
closely related to the concept of elementary mode. Both notions coincide in the case where all reactions are
irreversible. For completeness sake, we can also mention that the extreme currents defined by Clarke (1981)
also coincide with elementary modes in the irreversible case. Unlike extreme pathways and elementary modes,
minimal T-invariants and extreme currents have only been defined in the case of a network of irreversible
reactions. Clearly, there are links between the algorithms for enumerating elementary modes and the ones
for minimal T-invariants since, as we shall see, they all boil down to enumerating the extreme rays of a
convex cone. We will not discuss the techniques in detail here. Interested readers may refer to (Colom and
Silva, 1991) for algorithms for enumerating minimal T-invariants and to Schuster et al. (2002a); Urbanczik
and Wagner (2005); Gagneur and Klamt (2004) for enumerating elementary modes. More generally, the
usefulness of Petri-Net approaches to the study of metabolic pathways is presented in (Voss et al., 2003).

Another concept we study here is closely related to the notion of elementary mode. This is the concept
of a reaction cut set, recently introduced by Klamt and Gilles (2004). In order to avoid any confusion with
other types of cuts in graphs or hypergraphs that may be found in the literature (see e.g. (Seymour, 1977)),
we explicitly choose here to use the term reaction cut. An elementary mode may be seen as a set of reactions
that, when used together, perform a given task while a minimal reaction cut set is a set of reactions one needs
to inhibit to prevent a given task, also called target reaction, from being performed. As mentioned by Klamt
(2006), the task to be silenced can be a combination of reactions. Reaction cut sets have been operationally



defined as corresponding to a set of reactions whose deletion from the network stops each elementary mode
that contains the target reaction(s).

The main contribution of this paper is in giving a systematic overview of the complexity of optimisation
problems related to modes. We first establish results regarding network consistency (Section 2.1). Most
consistency problems can be solved in polynomial time (are easy). Most, if not all, of these results have been
stated before in the literature. It is in fact easy to formulate these problems as LP-problems, which has the
side advantage that computer packages are available to solve them.

We then establish the complexity of finding and enumerating elementary modes (Sections 3.1 and 3.2).
We show in particular that finding one elementary mode is easy but that this task becomes hard when a
specific EM (i.e. an EM containing some specified reactions) is sought. We also examine a number of EM
related problems and establish their complexity. We emphasize that the easy problems can be solved by
existing software.

We then analyse the computational complexity of problems concerning reaction cuts. We prove that
finding a minimum reaction cut set, one that contains a minimum number of reactions, is hard (Sections 4.1)
We then present two positive results which both allow to avoid to compute EMs as a prior to the computation
of reaction cuts. The first one (Section 4.2) is a polynomial approximation algorithm for finding a minimum
cut set. The second one (Section 4.3 using a result of Section 4.1) is a test for verifying if a set of reactions
constitutes a reaction cut; this test could be readily included in existing algorithms for enumerating minimal
reaction cuts to improve their performance.

2 Modes

In the following, we define more precisely several objects, classically used in constraint-based modelling of
metabolic networks.

The stoichiometric matrix S of a network is a matrix with n rows and m columns, n being the number
of internal metabolites and m the number of reactions. Entry S(i, j) of the matrix takes value k if reaction
j produces k units of metabolite 7, in which we say i is output of reaction j, and —k if reaction j consumes
k units of metabolite ¢, in which case we say that 4 is input of reaction j; otherwise, S(i,7) takes value 0.
The value k corresponds to the stoichiometric coeflicient of metabolite ¢ in reaction j. The stoichiometric
matrix summarises the structure of the metabolic network.

The set of reactions is partitioned into two subsets: Rev and Irrev, the set of, respectively, reversible
and irreversible reactions.

A mode is a flux vector v € R™ such that:

1. Su=0
2. v; > 0Vj e Irrev

In the work of Klamt et al. (2005) it is already observed that standard linear algebra teaches us how to check
that Sv = 0 in order to decide if v > 0 is a mode.

We introduce the support of the solution v, denoted by R(v) = {j | v; # 0}, i.e., the set of reactions
participating (with non-zero flux) in v.

An elementary mode is a non-trivial flux vector v # 0 that satisfies conditions 1 and 2 and

3. there is no non-trivial flux vector w # 0 satisfying conditions 1 and 2 such that : R(w) C R(v).

Modes and elementary modes can be given a geometrical interpretation. Indeed, the set of vectors
{v > 0| Sv = 0} defines a convex polyhedral cone in the flux space. When all reactions are irreversible,
the elementary modes exactly correspond to the extreme rays of this cone. An extreme ray is a ray of the
cone that can not be expressed as a convex combination of other rays of the cone. We refer the reader to
(Schuster and Hilgetag, 1994) for the earliest known proof, which relies on basic linear algebra.

Lemma 1. If all reactions are irreversible, then the set of EMs corresponds one-to-one to the set of extreme
rays of the cone {v > 0| Sv = 0}.



Gagneur and Klamt (2004) observed that when some reactions are reversible, one can define a pointed
cone in a higher dimensional space by representing each reversible reaction by two irreversible reactions,
in the obvious way: suppose the reaction r is represented in S by the column s, then we add the column
so = —s, to S, yielding ST, and require both v, and v4 to be non-negative. The matrix ST has extreme
rays that consist of those of S and the vectors v with v, = v~ = 1 and v; = 0 otherwise, corresponding to
length-2 cycles consisting of the two reaction making up for a reversible reaction. We can easily detect and
simply ignore these length-2 cycles. A consequence of this observation is that we can analyse the complexity
and propose algorithms in the irreversible case without loss of generality.

In the other extreme case in which all reactions are reversible (Irrev = )), an elementary mode corre-
sponds to a minimally dependent set of columns of the stoichiometric matrix. Hence the elementary modes
are exactly the circuits of a linear matroid (for definitions of matroids and circuits we refer to (Oxley, 1992)
or (Schrijver, 2003)).

From now on we assume that all reactions are irreversible unless explicitly stated otherwise.

2.1 Consistency of the stoichiometric matrix

One of the applications of constraint-based modelling is in checking the consistency of reconstructed metabolic
networks (Schuster et al., 2000). A network is said to be consistent if all its reactions belong to at least
some mode, or equivalently, in terms of Petri-net terminology, if the network is covered by T-invariants
(Heiner and Koch, 2004). When a network is consistent, we say equivalently that its stoichiometric matrix
is consistent: the stoichiometric matrix S is consistent if Sv = 0 has a solution v; > 0 Vj, or equivalently,
each reaction is part of some mode (elementary mode).

We give an overview of some problems related to the consistency of stoichiometric matrices. If a matrix
S is not consistent, this may indicate a case of incomplete modelling of the metabolic network. In that sense,
detecting inconsistency is a valuable tool for finding deficiencies in the metabolic network description.

In the following theorems we explicitly state that the problems can be solved using LP. Since the LP-
formulations have a size that is bounded by a polynomial function of the stoichiometric matrix, we implicitly
state that these problems are easy (in P). We chose for stating solvability through LP to emphasize that
they are not only theoretically tractable but that in fact off-the-shelf computer packages can be used to solve
the problems.

Theorem 2. Given a stoichiometric matrixz S, checking the consistency of S can be done using LP.

Proof. Consider the following LP, where we insert a bound on the sum of the values of the v;’s to avoid
unboundedness of the problem.

max z
st. v;>2zVj
Sv=0
Zj Uj <1
S is consistent if the optimal value is strictly positive, otherwise it is not. O

In case of inconsistency, it is also easy to find a consistent submatrix containing a maximum number of
reactions.

Theorem 3. Given a stoichiometric matriz S, detecting a minimum number of reactions to be deleted to
make S consistent can be done using LP.

Proof. For each reaction h, solve the LP

max Uh
s.t. Sv=0
Zj v; <1
v>0



If for reaction h, the optimal value is strictly positive, then h is part of some mode, and one such a mode
is given by the optimal solution. Otherwise there is no mode in which reaction h appears and it must be
deleted to make S consistent. This is a safe operation: since h belongs to no mode, eliminating A will not
eliminate any existing mode. For the same reason, the order of elimination is indifferent. O

Unfortunately, a problem complementary to the previous one is hard.

Theorem 4. Given a stoichiometric matriz S, and some other set of reactions represented by a stoichiomet-
ric matriz S’, find a subset of reactions of S' of minimum cardinality such that the corresponding submatriz
added to S yields a consistent matrix is NP-hard.

This is of practical interest as in general, when a stoichiometric matrix is not consistent, it is because
some enzymes, and therefore some reactions, were not detected as present due to the lack of a strong enough
similarity with the enzymes in a known network, usually that of Escherichia coli, from which the one for a
newly sequenced organism was inferred.

Proof. Taking for S an empty matrix and for S’ the stoichiometric matrix of the network, the problem is a
special case of finding an elementary mode with a minimum number of reactions in its support. NP-hardness
of the latter problem will be established in Theorem 7. O

2.2 Difference between hypergraph and stoichiometric matrix

The stoichiometric matrix enables to represent the structure of a metabolic network. In some cases, partic-
ularly for visualisation, hypergraphs may also be used. A hypergraph representation of a metabolic network
can be done as follows: metabolites are represented as nodes and there is a (directed) hyperedge for each
reaction going from its substrates to its products. In fact, this hypergraph can on its turn be represented by
its vertex-edge incidence matrix, which is very similar to the stoichiometric matrix; the former matrix has
a 1 at each entry where the latter has a positive integer, a —1 where the latter has a negative integer, and
their 0 entries coincide.

The hypergraph description does not take into account all parameters of the stoichiometric matrix as
can be seen by the following toy example in which two different networks are presented having the same
hypergraph description.

Network 1 Network 2

External input: a,b External input: a,b
External output: f External output: f
Reaction 1: a+b — c+d Reaction 1: a+b — c+2d
Reaction 2: ¢+ d — f Reaction 2: ¢+ 3d — f

Observe that the first network is consistent while the second one is not. Therefore, consistency of a network
cannot be checked using a hypergraph (regardless of the stoichiometry).

3 Elementary modes

As mentioned above in Section 2, we may see an elementary mode as an extreme ray of the cone {v > 0 |
Sv = 0}. The solution methods for the easy problems related to finding EMs rely on this equivalence. It
is consistent with the observation in (Gagneur and Klamt, 2004) that an elementary mode is characterised
completely by its set of reactions, i.e., given S and the support R(v) of an elementary mode v, up to scalar
multiplication, v is uniquely determined. In this section, we assume consistency of the stoichiometric matrices
of the problem instances we consider.

3.1 Finding elementary modes

Surprisingly few results have been established on the complexity of problems concerning detection, counting
and enumeration of elementary modes. In their paper, Klamt and Stelling (2002) mainly focus on finding
an upper bound on the number of elementary modes.



In fact, as mentioned in (Fukuda and Prodon, 1996), the complexity of the general problem, given
a description of a cone (or polytope) in terms of its facets (inequalities), find a description in terms of
(enumerate all) its extreme rays (vertices), as a function of the length of the output (number of rays or
vertices) is a long-standing open question in computational geometry.

In this section, we show some difficult aspects of computing elementary modes. In particular, we try to
show where the hardness comes from when enumerating elementary modes. We show that the following tasks
are easy: finding an EM and finding an EM that contains one specified reaction. However, the following
task is hard: finding an EM that contains a specified set of reactions.

As observed already in (Klamt et al., 2005), standard linear algebra teaches us how to check that Sv =10
in order to decide if v > 0 is a mode. It is also easy to decide if a given mode v > 0 is an elementary mode
by calculating the rank of the submatrix of S consisting of the reaction in the support of v. If this is equal
to the rank of S minus 1 the vector v represents an elementary mode (Klamt et al., 2005). But also finding
some EM is easy.

Theorem 5. Given a stoichiometric matriz S, an elementary mode can be found in polynomial time.

Proof. We “slice” the cone {v > 0 [ Sv =0} by the inequality > ;v; <1 and solve the LP:

max Uh
s.t. Sv=0 (1)
20 <1
v > 0.

In case of a consistent matrix, there is an optimal solution which is a non-all-0 vertex of the polytope
{fv=0]Sv=073,v; <1} satisfying the inequality >~ ;v; < 1 with equality. Let v} be the optimal
solution value.

Using interior point methods for finding an optimal solution, does not necessarily yield a vertex of the
polytope. However, if a vertex is not found the objective function is set equal to the optimal value, v), = v},
and is added as a constraint. As an auxiliary objective, maximization of one of the decision variables (other
than wvy,) is chosen. In this way, iteratively applying an interior point method, in each such iteration the
dimension of the optimal solution set is diminished by at least one. Thus, after a number of iterations less
than the number of variables a vertex will be obtained, and we conclude that an elementary mode can be
found in polynomial time. O

Of course, we can use also any simplex method-based LP-package for solving LP (1), since, though being
worst-case not a polynomial time method, it is very fast in practice. Moreover, it has the advantage that it
will always produce directly a non-all-0 vertex of the polytope as an optimal solution.

The optimal solution of the LP in the proof of the lemma gives an elementary mode that contains reaction
h. In general, it is easy to detect if there exists a mode whose support contains a given set of reactions 17y,
and does not contain any of the reactions of another set Toyr: simply add the restrictions:

v; =0Vj € Tour (2)
to LP (1), replace the first restriction of LP (1) by:
Vj >z Vj eTrn,

and check if the optimal solution is positive or 0.
The existence of an elementary mode with the same properties for any set 77 is NP-complete in general,
which may (partly) explain the difficulties we encounter in enumerating elementary modes.

Theorem 6. Given a stoichiometric matriz S, sets of reactions Tin and Toyr, deciding if an elementary
mode v exists that has positive value in all its coordinates corresponding to Trn, and has value O in all its
coordinates corresponding to the set Toyr is

(i) solvable in polynomial time if |Tin| =1,

(i) NP-complete in the general case.



Figure 1: Graphical illustration of the HC reduction.

Proof. We start by observing that this decision problem is in NP because, if we give a flux vector as certificate,
we can check in polynomial time if it is an elementary mode with the desired properties. We observe also
that set Toyr has no influence on the complexity of the problem. Indeed, we just need to delete from S the
columns corresponding to the reactions in Toyr and solve the problem on the reduced matrix. If |T;n| =1
the proof follows from selecting h in the LP (1) as the only reaction in Ty .

NP-completeness in the general case is proved by a reduction from DIRECTED HAMILTONIAN CIRCUIT.
A Hamiltonian circuit of an directed graph is a circuit (loop) that visits each node of the graph exactly
once. Deciding if a (directed) graph contains a Hamiltonian Circuit is a well known NP-complete problem.
The intuition behind the proof is to build, in polynomial time, from a general instance of the DIRECTED
HAMILTONIAN CIRCUIT problem, a specific instance of our problem, that is a network, with the following
characteristic: each elementary mode in the network that contains all reactions in Tjy corresponds to a
Hamiltonian circuit in the graph and vice versa. A solution to our problem therefore provides a solution to
the DIRECTED HAMILTONIAN CIRCUIT problem.

Given a directed graph G that is a general instance of the DIRECTED HAMILTONIAN CIRCUIT problem,
for each vertex u in G, create two compounds w1, us and create a reaction from u; to us. For each edge
(u, w) of G, create a reaction from us to wy (see Figure 1). Let H be this network that can be built in linear
time from G. The corresponding stoichiometric matrix is simply the {—1,0,+1} incidence matrix of this
directed bipartite graph. Choose Ty to be the set of all reactions corresponding to (derived from) vertices
in G and Toyr = 0.

Notice that any circuit C in H corresponds to an elementary mode. Just set all values for the reactions
corresponding to the arcs on C equal to 1 and the rest to 0 gives a mode. It is clear that no subset of the
arcs can give rise to a mode, hence it must be an elementary mode. Notice also that because of the absence
of outputs in this network any mode in H has to contain a circuit in its support. But a circuit is, in fact,
the support of an elementary mode and therefore any elementary mode must be a single circuit of H. Since
circuits in H and G have a one-to-one correspondence, any elementary mode corresponds to a circuit in G
and vice versa.

In particular there is a one-to-one correspondence between elementary modes of H that contain all of
Trn and circuits in G that contain all vertices of G, i.e., Hamilton Circuits. O

As we have seen, the problem is easy if |Trn| = 1. We can observe that it becomes trivial when
|Trn| > rank(S) + 1. Indeed, according to Lemma 4 in (Schuster et al., 2002a), no elementary mode can
have as many non-zero elements as that. This leaves an interesting and rather fundamental open problem:

Open problem: What is the complexity of the problem if |T7y| = k for any fixed k,1 < k < rank(S) + 1.

In fact, we conjecture that it is hard already if [T x| = 2.

Theorem 7. Given a matriz S and a number k, deciding the existence of an elementary mode with at most
k reactions in its support is NP-complete.



Figure 2: Graphical illustration of the 3DM reduction.

Proof. Clearly this decision problem is in NP because, if we give a flux vector as certificate, we can check
in polynomial time if it is an elementary mode with at most k reactions in its support. The proof of the
hardness is a reduction from the NP-complete 3-DIMENSIONAL MATCHING problem (3DM) (see (Garey and
Johnson, 1979)): Given a set of elements X = {x1,...,23,} partitioned into three sets of n elements each,
and given a collection of 3-element-subsets S = {S,...,S,} each subset containing exactly one element
from each set of the partition, does there exist a subcollection of S of n subsets that covers all elements of
X7

The reduction is depicted in Figure 2. For each element and each 3-element set of the 3DM instance, a
compound vertex is created. The first reaction is an input reaction that has as output all elements of the
3DM instance, the grey vertices in Figure 2; i.e., the first column of the stoichiometric matrix has 1-entries
at all element compounds and 0 at all element set compounds. For each 3-element set of the 3DM instance a
reaction is created with input the compounds corresponding to the three elements of the set and output the
compound corresponding to the 3-element set, the s;-nodes in Figure 2; i.e., a column in the stoichiometric
matrix with —1-entries at the three element compounds, 1 at the element set compound and 0’s elsewhere.
For each 3-element set there is also an output reaction that has the 3-element set compound as its only
input. Finally we choose k = 2n + 1.

The vector of reactions which has a 1 at the positions of the first reaction and the two reactions corre-
sponding to each 3-element set of any 3-dimensional matching and 0’s elsewhere, clearly forms an EM with
2n + 1 reactions in its support. On the other hand, any mode must contain the first reaction. Hence, any
EM must have a positive value in the first position, and therefore has as output exactly one copy of each
element, all of which must have the same value. For every 3-element-set-reaction that we choose, we have
to add the corresponding output reaction. Thus to cover all 3n element from the first reaction, we have
to choose exactly n reactions that correspond to 3-element sets. Such a set of reactions corresponds to a
3-dimensional matching. O

This theorem shows that finding the shortest elementary mode (the one with a minimum number of
reactions) is NP-hard. Note that in the theorem, k is considered to be part of the input. For fixed values of
k, the problem is trivially solvable in polynomial time by complete enumeration. In practice, enumerating
elementary modes with at most k reactions may therefore be possible for small values of k. To the best of
our knowledge, there is no current application of short elementary modes, but it should become interesting if
size were considered as a relevant criterion to classify elementary modes. Short elementary modes may also
be seen as good seeds for a motif detection algorithm such as in (Lacroix et al., 2006): two (or more) short
EMs that represent connected sets of equivalent chemical transformations (equivalent enzymatic functions)
may help to understand how metabolism evolved. In any case, Theorem 7 is also interesting in itself for the
further insight it provides in the hardness of elementary mode computations.

As a final example to illustrate the intricacies in detecting elementary modes, we define the notion of a
simple elementary mode as an elementary mode v such that Vj v; € {0,1}. The reduction in the proof of
Theorem 7 shows that it is hard to find simple elementary modes. Though it is unlikely that any biological
relevance will ever be found for the notion of simple elementary mode, the result shows again the subtlety
of EM computations, even more so, since the hardness can be extended to any fixed interval of integers.



Corollary 8. Given a matriz S, deciding the existence of a simple elementary mode is NP-complete.

3.2 Counting elementary modes

System biologists are interested in enumerating all elementary modes of a metabolic network. Before turning
to that problem, we show that merely counting elementary modes is hard. In their work, Klamt and Stelling

(2002) show that the number of elementary modes can be bounded by ( ) , but they did not give the

m
n+1
complexity of computing the exact number.

Counting elementary modes is essentially a problem of counting the rays of a polyhedral cone, which in
its turn is equivalent to a problem of counting vertices of a polytope, which is known to be §P-complete
(Dyer, 1983)! in general.

gP is a complexity class of counting problems associated with decisions problems in NP, for instance,
counting the number of hamiltonian circuits in a graph is in §P. Since if we can count objects, we can decide
the existence of at least one of them, a counting problem in P must be at least as hard as the corresponding
decision problem in NP. Like the class NP also P has complete problems; the hardest problems within
the class. Solving any of the #P-complete problems in polynomial time would prove that any problem in
gP can be solved in polynomial time, and therefore P=NP. For precise definitions, we refer the reader to
(Papadimitriou, 1994).

Not surprisingly, given its connection with the extreme rays of a convex cone, counting elementary modes
turns out to be also f{P-complete.

Theorem 9. Given a matrix S counting the number of elementary modes is §P-complete.

Proof. The proof follows by a reduction from the fP-hard problem COUNTING PERFECT MATCHINGS IN A
BIPARTITE GRAPH (Valiant, 1979). A bipartite graph G is a graph whose set of nodes may be divided into
two sets V7 and V5 such that every edge in G links a node in V; to one in Vo. A perfect matching in a
bipartite graph is a set of edges such that no two of them share a common node (in either V; or V52) and
all nodes in V; and V4 are covered (by exactly one edge). Given a bipartite graph G = (U, V, E) with two
color classes U and V, each of size n, we construct the following hypergraph H. First, we create an input
compound vertex s, which we connect with one hyperedge to all vertices in U, and direct this hyperedge
from s into U. We direct all edges of E from U to V. Finally, we create an output compound vertex ¢ which
we connect with one hyperedge to all vertices of V', and direct this hyperedge from V into ¢. This relates in
the obvious way to a {—1,0, 4+1}-stoichiometric matrix. It is easy to see that an EM corresponds one-to-one
to a perfect matching in G. O

3.3 Enumerating elementary modes

Listing all feasible solutions of a combinatorial problem is a fundamental problem in combinatorics. Typical
cases of interest that have been considered in the literature are enumerating the spanning trees of a graph,
enumerating the vertices and the facets of a convex polyhedron or an arrangement of hyperplanes given by
a system of linear inequalities.

Since the number of feasible solutions to be enumerated may be exponential in the size of the input
description the efficiency of an enumeration algorithm is measured in both the input and output sizes (see
e.g., (Lawler et al., 1980)). Namely, an enumeration problem is said to be solvable in polynomial total
time if the output can be generated in time polynomial in the input and output size. Usually the stricter
requirement of polynomial delay is required. In this case we require that, given a feasible set of solutions .5,
the time required for generating a new feasible solution (not in S) is polynomial in the input size. Clearly,
if an enumeration problem can be solved with polynomial delay then it is also solvable in polynomial total
time.

In case all reactions are reversible, an elementary mode corresponds to a minimally dependent set of
columns of the stoichiometric matrix. Hence the elementary modes are exactly the circuits of a linear
matroid (for definitions of matroids and circuits we refer to (Oxley, 1992) or (Schrijver, 2003)). In (Boros
et al., 2003) it has been shown how to enumerate circuits of matroids with polynomial delay, i.e., the time

Hn fact, (Dyer, 1983) only claims NP-hardness, but the proof establishes #P-completeness.



needed between the consecutive generation of any two circuits is polynomial in the number of elements in the
ground set of the matroid; in our case the number of reactions, columns of the stoichiometric matrix. As a
result, circuits of a matroid, hence elementary modes of a completely reversible network, can be enumerated
in time polynomial in their number. In fact, the modes of the cone form a linear subspace.

Theorem 10. In case all reactions in a metabolic network are reversible, the elementary modes can be
enumerated with polynomial delay.

The enumeration task becomes dramatically more difficult if the reactions are irreversible. In this case,
the modes of the network form a cone, and the elementary modes are the rays of the cone.

Open question: Can elementary modes be enumerated with polynomial delay if Irrev # ().

Indeed, this touches a basic open problem in computational geometry (see e.g. (Fukuda and Prodon, 1996)):
given a polyhedral description of a cone, can the rays be enumerated with polynomial delay, or the even the
weaker question whether the description in terms of its rays can be found in time polynomial in the number
of rays. The enumeration methods proposed in the literature are all based on the double description method
introduced in (Fukuda and Prodon, 1996). The fastest one at this moment is by Terzer and Stelling (2006).

4 Reaction cuts

In this section, we focus on Reaction Cut Sets. The notion of minimal cut sets in a metabolic network
represented as a hypergraph was first introduced by Klamt and Gilles (2004). The motivation is to study
so-called “failure modes” that render the functioning of a given target reaction 7° impossible. A minimal
cut set is a set of reactions that must be cut (removed) in order to prevent a flux through the target reaction
r°. Operationally, this has been defined as a set of reactions whose deletion from the network stops each
elementary mode that contains r°.

Before proceeding we mention that the notion of s, t-cut of a hypergraph, i.e., a cut that separates nodes
s and ¢, has been proposed and studied for directed hypergraphs. In (Gallo et al., 1998) it has been observed
that finding s, t-cuts in unweighted directed hypergraphs can be done in polynomial time if all hyperdges
are defined by a subset of input nodes and a single destination node; in the context of metabolic networks
this would model the situation in which each reaction is irreversible and produces a single metabolite. We
also refer to (Ausiello et al., 2001) for a survey of related results on directed hypergraphs.

In what follows, we study two problems: finding a reaction cut of minimum cardinality, which we call MIN
ReacTION CUT, and enumerating all minimal reaction cuts. We prove that MIN REACTION CUT cannot
be approximated within any constant approximation ratio unless P=NP. Building on results obtained in the
previous section, we propose an approximation algorithm of ratio A corresponding to the maximum number
of reactions in an elementary mode in S including the target reaction. The algorithm runs in polynomial
time as it does not require enumeration of all elementary modes containing the target reaction to be cut.

We then notice how as a consequence of Theorem 11 an easy improvement over existing algorithms for
enumerating all minimal reaction sets can be obtained. The improvement affects not the number of candidate
sets that needs to be checked, this is the same for both, but the efficiency of each check that is thereby greatly
improved. Indeed, the approach in (Klamt and Gilles, 2004) requires computing all elementary modes in
order to check, for each candidate set, whether it represents a minimal set cutting all possible routes for
producing the target reaction. Using Theorem 11, this check can be done for each set directly.

4.1 Finding minimal reaction cuts

The first basic problem about reaction cuts is recognising them.

Theorem 11. Given a stoichiometric matrix S, some target reaction r°, and a subset F of reactions,
deciding if F' is a reaction cut of v° can be done using LP.
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Proof. Consider the following LP:

max Vyeo
s.t. Sv=0
v;=0Vjer
Zj v; <1

v; >0Vj¢ Fure.
The optimal solution value is positive if and only if F' is not a reaction cut of r°. O
Finding the optimal cut is a lot more difficult.
Theorem 12. MIN REACTION CUT is NP-hard.

Proof. We prove NP-completeness of the decision version of MIN REACTION CUT. By the previous theorem
this problem is in NP. Completeness is proved through a reduction from HITTING SET (see (Ausiello et al.,
1999)): Given a set of elements X = {z1,...,x,}, a collection of subsets S = {S1,...,S,}, and an integer
K, does there exist a subset Y C X of at most k elements such that S;(Y 0 Vi=1,...,m.

For each element z; and for each set S;, we create a compound vertex, which we also denote by x;
and S;, respectively. To facilitate the exposition we create three additional compounds s, ¢t and t'. s
and t' are considered as external compounds and we create the reaction (1¢ — 1t') as the target reaction
r°. For each z, we create a reaction (1s — 1z;). Similarly, for each S;, we create a (1S5; — 1t). For
each set S; = {x;,,...,2;, }, we create a reaction with multiple input compounds 1z;,, ..., lz;, and output
compound 15;. Thus, the stoichiometric matrix contains only entries with value —1,0, or +1, and we
suppress the coefficient 1 in the description of reactions from here on. We select for the decision version of
MIN REACTION CUT the same integer K as in the HITTING SET instance.

To each set S; = {x;,,...,x;, } corresponds an elementary mode consisting of the reactions (s —
iy )yeoos (8 = @), (Tiyy ooy, — Si),(S;i — t),(t — t'). Indeed, it is easy to check that the vector
that assigns a 1 to each of these reactions and a 0 otherwise is indeed a mode. Removing any reaction from
this set gives a submatrix which does not have any mode.

Moreover, suppose that some mode would contain reactions corresponding to two sets, that is, v(S; —
t) =a; >0, v(S; —t) =a; >0and v(S; — t) =0Vl ¢ {i,7} . Then this mode should also have
v(@iy, ..., — S;) = a; and v(xy,,..., x5 — S;) = a;, and also v(t — t') = a; + a; and v(s — x¢) = q;
Vo, € (S:\S;), v(s = z¢) = a; Vzy € (S;\5:), v(s — x¢) = a; +a; Vo, € (S;NS;), and v(s — x¢) =0
otherwise. Hence this is the linear combination of two elementary modes of the above type, and therefore by
itself not an elementary mode. Clearly, the same reasoning holds if a mode were to correspond to more than
two sets. If we suppose the existence of an elementary mode containing k set nodes, with 2 < k < m, we
can similarly show that it can be written as a linear combination of the k corresponding elementary modes
of the above type.

Thus, the elementary modes corresponding to the sets of S are exactly all the elementary modes, and
from each of them some reaction must be selected in the reaction cut. Selecting (s — ) cuts all the
elementary modes whose corresponding set contains xy. This immediately implies that given a hitting set
of size at most K, the reactions from s to the z’s of this hitting set cut all elementary modes and therefore
forms a reaction cut of size at most K.

On the other hand, any reaction (z;,,...,x;, — S;) or (S; — t) reaction in a reaction cut can be replaced
by one reaction (s — z;) (with z; € 5;), giving another reaction cut. Thus for any reaction cut of size at
most K there exists a reaction cut of the same size consisting only of reactions of type (s — x;), hence
corresponding to a hitting set of size at most K. O

The above reduction yields a one-to-one correspondence between minimal reaction cuts of size K and
hitting sets of size K. Therefore it is approximation preserving (see for a precise definition of an approx-
imation preserving reduction e.g. (Ausiello et al., 1999)). Because of its equivalence to SET COVER in
which elements have to be covered by sets, no polynomial time algorithm for HITTING SET can have approx-
imation ratio o(logn) unless P=NP (Raz and Safra, 1997), with n the number of elements. The following
inapproximability result follows directly.
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Theorem 13. Any polynomial time approrimation algorithm for MIN REACTION CUT cannot have approx-
imation ratio o(logn), with n the number of reactions, unless P=NP. O

4.2 Approximation algorithm for finding a minimum reaction cut

On the positive side, we design an approximation algorithm for finding minimum reaction cuts, even for a
weighted version of the problem. We assume that a weight function w associates to each reaction r a positive
weight w(r). Given a stoichiometric matrix S and a weight function w, we are interested in finding a reaction
cut F* of minimum total weight.

The algorithm consists of two phases: in the first phase, a set F' of reactions is constructed by starting
from the empty set and adding reactions until a reaction cut of the target reaction r° is obtained. The set F'
is not necessarily a minimal reaction cut. In the second phase, minimality is obtained by removing reactions
from F. The algorithm Reaction Cut (RC) is described below.

Given a stoichiometric matrix S and a set of reactions F, we denote by Sg the stoichiometric matrix
obtained from S by removing the columns corresponding to all reactions in F'; with a slight abuse of notation,
we denote the sum of the weights of reactions in a set G by w(G).

Algorithm RC (Reaction Cut)

input:
a stoichiometric matrix S, a weight function w, a reaction r° to be cut;
phase 1
F = 0;
while F' is not a reaction cut of r°
do begin
let C' be the set of reactions defining an elementary mode in Sg that includes r°
let @ = min,cc w(r)
for each reaction r in C
do begin
w(r) =w(r) —w
if w(r) =0 then F = F | J{r}
end
end
phase 2
let r1,72,..., 7, be the reaction in F

for j =1to k do
if ' —r; is a reaction cut of r° then F' = F' —r;
output: F

For the performance analysis of the solution found by the algorithm we exploit the local ratio technique,
a general technique for proving performance ratios of approximation algorithms devised in (Bar-Noy et al.,
2001). Translated into terms of weighted reaction cut, it is based on decomposing the weight function
associated to each reaction.

Lemma 14. Let S be a stoichiometric matriz, and let F*, F{ and F5 be the minimum reaction cuts of r°
with respect to three different weight functions w, wy and we, respectively, such that w(r) = wq(r) + wa(r)
for each reaction r. Then

w(F) > wi (FY) + wa(Fy)

Proof.
w(F") = wi(F7) +wa(F7) 2 wi (FT) + wa(Fy)
O

The local ratio technique has been applied to a number of combinatorial optimisation problems arising
in several areas (scheduling, graph, packing, etc.). Inspired by (Demetrescu and Finocchi, 2003), we prove
the following theorem.
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Theorem 15. Given a stoichiometric matriz S and a target reaction r°, Algorithm REACTION CUT runs
in polynomial time and returns a reaction cut F' of r° such that w(F) < Mw(F™*), where F* is the minimum
reaction cut of r° and X is the maximum number of reactions in an elementary mode in S including r°.

Proof. Assume that S contains n reactions. In Phase 1, the algorithm performs the test of checking whether
a set of reactions is a reaction cut of x at most n times. It also computes an elementary mode including
reaction x for n times at most. Analogously, Phase 2 of the algorithm performs at most n times the test of
deciding whether a set is a reaction cut of z. Therefore by Theorems 6(i) and 11, the algorithm requires to
solve O(n) linear programming problems whose size is linear in n and m; it follows that the running time of
the algorithm is polynomial.

The proof of the approximation bound proceeds by induction on the number of reactions, with the basis
of a stoichiometric matrix of only 1 reaction clearly being true. Suppose it is true for n reactions and consider
a stoichiometric matrix S with n + 1 reactions. Let F' be the reaction cut set returned by RC.

Let C; be the elementary mode detected in the first iteration of the while loop in Phase 1 and § =
minec, w(r).

We define two new weight functions wy and ws:

wy(r) = Jif r belongs to Cy and wi (1) = 0 otherwise
wa(r) = w(r)—w(r).

Let F}* and F3 be minimum reaction cut sets under weight functions w; and wq, respectively. Since w(r) >
wi (1) > 0, we have 0 < wq(r) < w(r) and, therefore, the conditions of Lemma 14 apply.

Claim 1. wi(F) < Awy (FY)

Observe that wi (F}) = §, because for cutting elementary mode Cy, one reaction is sufficient and necessary,
while for any other elementary mode, a reaction with weight 0 can be selected in the reaction cut. Moreover,
the weight of w;(F) < md, where m denotes the number of reactions in C}, because all the reactions not
belonging to C; have cost 0. This together with m < X\ proves the claim.

Claim 2. wq(F) < Awa(Fy)
Let F} be the set of reactions selected after the first iteration of the while loop in Phase 1. Notice that in
fact Fy contains one reaction with weight ¢ only that cuts Cy. Let Fy = F'\ Fy, which is, by definition of the
algorithm, the RC solution for the problem with stoichiometric matrix Sz, obtained by deleting the columns
of reaction set Fy from S and weight function ws. Let Fj be the optimal solution to the latter problem.
Since wq(Fy) = 0, any reaction cut for Sp, w.r.t. we can be supplemented to a reaction cut for S w.r.t.
we, by adding F; at no extra cost, if necessary. In particular, wo(F) = wq(F1) + we(F2) = we(Fy), and
wo(Fy) = wa(F3). Application of the induction hypothesis to the performance of RC to Sp, with weight
function wy proves that wq(Fy) < Awa(Fy) and therefore wq(F') < Aws(Fy).

Both claims together with Lemma 14 yields:
w(F) = w1 (F) + w2 (F) < Mwy (FY) + dwa (Fy) < Mw(F™).
O

Note that A can be linear in the number of reactions; it follows that in the worst case the bound
provided by the theorem is linear. This leaves open the problem of finding an algorithm with logarithmic
approximation ratio.

We finally observe that the above result can easily be extended to the case when more than one reaction
should be cut. Given S, assume we are interested in finding a cut of reactions 1, o, .. .; two problems arise:
we might be interested in either the problem of cutting all reactions x1, 2, ... or in cutting at least one.

The result of Theorem 15 can easily be extended to both problems above, by adding compounds and
reactions to the stoichiometric matrix. Namely, if we are interested in cutting all reactions in x1,z9,... we
may add one compound y to the output of each reaction x;, ¢ = 1,2,... and add a new reaction 7 that
transforms y in an output z. Clearly, cutting 7 requires to cut each reaction in z1,xs,.... Note that the
above transformation might not be feasible because it is not mass balanced; however a slight modification
ensures the mass balance and feasibility properties. A similar transformation applies to the problem in which
we are interested in cutting at least one reaction in z1, o, ...
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4.3 Enumerating reaction cuts

Beyond the question of finding a reaction cut, or a minimum reaction cut, the question of enumerating all
reaction cuts may also be interesting. As for modes, one can concentrate on minimal sets (Klamt and Gilles,
2004).

Minimality refers to reaction cuts from which no reaction can be removed without destroying the cutting
property. Klamt and Gilles (2004) propose an algorithm based on enumerating all possible subsets of reactions
starting from singleton sets, then all pair sets, then all triples, and so on. For each candidate set F', they
propose to test whether all elementary modes are cut by F'. Clearly this test is theoretically, and many times
also practically, very inefficient. We propose as an alternative to use Theorem 11.

It remains an intriguing open problem if we can do essentially better in case of irreversible reactions.
In case all reactions are reversible, a minimal reaction cut is a co-basis of the linear matroid constituted
by the columns of the stoichiometric matrix. Bases of matroids, and therefore co-bases of matroids can be
enumerated with polynomial delay (Khachiyan et al., 2005).

5 Conclusion

Elementary modes and minimal reaction cuts are common tools in metabolic network analysis. Their compu-
tation is not trivial and poses computational challenges. Several algorithms have been proposed for solving
these problems but no systematic complexity analysis had been carried out.

We show here that some problems, like checking the consistency of a network, finding one elementary
mode or checking that a set of reactions constitutes a cut, are easy problems and we emphasise that “easy”
also means that they can readily be solved using existing LP software. It also implies that many problems
in flux balance analysis can be done using LP software.

We also prove the hardness of central problems like finding an elementary mode containing a specified
set of reactions, counting elementary modes or finding a minimum reaction cut.

Furthermore, we propose an approximation algorithm for computing the minimum reaction cut as well
as an improvement for enumerating minimal cut sets. Both results are based on the idea of avoiding to
compute the elementary modes for obtaining the reaction cuts.

One may argue that a reaction cut that disables too many elementary modes is not desirable. As an
alternative one may therefore be interested in finding a reaction cut which cuts the target reaction but leaves
as many elementary modes intact as possible or a reaction cut that leaves some prespecified set of reactions
intact. Almost every variation of the minimum reaction cut that emerges in this way is NP-hard.

At present, pathway analysis is still confronted with a problem of scalability to genome-wide models.
This paper provides a basis on the complexity of the underlying computational tasks. Such an analysis
should help in deciding which tasks can be tackled.
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