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Abstract. We introduce a new data structure, called MiGaL for “Mul-
tiple Graph Layers”, that is composed of various graphs linked together
by relations of abstraction/refinement. The new structure is useful for
representing information that can be described at different levels of ab-
straction, each level corresponding to a graph. We then propose an al-
gorithm for comparing two MiGaLs. The algorithm performs a step-by-
step comparison starting with the most “abstract” level. The result of
the comparison at a given step is communicated to the next step using
a special colouring scheme. MiGaLs represent a very natural model for
comparing RNA secondary structures that may be seen at different levels
of detail, going from the sequence of nucleotides, single or paired with
another to participate in a helix, to the network of multiple loops that
is believed to represent the most conserved part of RNAs having simi-
lar function. We therefore show how to use MiGaLs to very efficiently
compare two RNAs of any size at different levels of detail simultaneously.
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1 Introduction

We introduce in this paper a new data structure, called MiGaL for “Multiple
Graph Layers”, that is composed of various graphs linked together by relations of
abstraction/refinement. The new structure is useful for representing information
that can be described at different levels of abstraction, each level corresponding
to a graph. Similar structures have already been used for modelling a spatial
environment [4, 5] or plant architectures [8, 6]. It could also be used for analysing
web pages or source codes. MiGaL is a more general structure in that it can model
graphs besides trees, and edges can be added between the different layers.

After giving a formal presentation of the MiGaL structure, we propose an
algorithm for comparing two MiGaLs. The algorithm performs a step-by-step



comparison starting with the most “abstract” level. The result of the comparison
at a given step is communicated to the next step using a special colouring scheme.

We then present an application of MiGaL to the analysis of RNA secondary
structures. RNAs have different functions in a cell, these being strongly related
to the spatial fold adopted by the molecule. It is therefore meaningful to compare
such folds in order to infer or understand function. For RNAs, the comparison
is usually done by considering the secondary structure which, in the case of
RNAs, provides a planar view of the fold. A secondary structure may be seen at
different levels of detail, going from the sequence of nucleotides, single or paired
with another to participate in a helix, to the network of multiple loops that is
believed to correspond the most conserved part of RNAs having similar function.

MiGaLs represent therefore a natural way of modelling such secondary struc-
tures. To perform the comparison at each different level, an edit distance algo-
rithm is applied to trees that are rooted and ordered (reflecting the orientation
of the RNA molecule). We use for this the algorithm particularly adapted to
RNAs that was introduced in a recent work by Allali et al. [1]. In this paper, we
show how to optimise it using the colouring scheme of the algorithm for compar-
ing two MiGaLs introduced earlier in the paper in order to compare RNAs at
different levels of detail simultaneously. We show that our method leads to quite
satisfying results when applied to the analysis of RNA secondary structures.
Furthermore, we show that this new algorithm for comparing RNAs allows to
address the scattering effect problem mentioned in the literature [1]. Finally, the
divide strategy used as the different levels are considered in turn allows also to
very efficiently compare RNAs of any size.

2 Multiple Graph Layers

We present in this section the MiGaL data structure. After a formal definition,
we provide an algorithm to compare such structures.

2.1 Definition

From now on, we adopt the following notations. Given a set S, we denote by |S|
its cardinality. Let G(V, E) be a graph with vertex set V (G) = {v1, . . . , v|V (G)|}
and edge set E(G) = {e1, . . . , e|E(G)|}.

We start by defining the new data structure. It can be described as a layered
sequence of graphs, with each graph linked to its neighbours by two applica-
tions, one of which corresponds to an abstraction from the previous graph, the
other a refinement leading to the next graph. The formal definition of the MultI-
GrAphLayers data structure is as follows.

Definition 1 (Definition of a MiGaL). A MiGaL structure M(G, R) of size
|M | is defined as a layered sequence G = G1, . . . , G|M| of |M | graphs and a
sequence R = α1, . . . , α|M|−1 of |M | − 1 applications called refinements. Each
refinement αi is an application from V (Gi) to P(V (Gi+1)), that is, each vertex in



V (Gi) has a subset of V (Gi+1) as image. The inverse application of αi, denoted
by βi, is a surjection called an abstraction that maps every vertex in V (Gi+1)
to a vertex of V (Gi). In addition, M(G, R) satisfies the three conditions:

1. For each vertex v ∈ V (Gi), the subgraph induced by αi(v) is connected and
not empty.

2. For each edge (u, v) ∈ E(Gi), there exists at least one vertex of αi(u) con-
nected to a vertex of αi(v).

3. For each pair of unconnected vertices u, v ∈ V (Gi), there is no edge between
a vertex of αi(u) and a vertex of αi(v).

Fig. 1. Example of a MiGaL structure of size three defined by three graphs and two
refinements.

Figure 1 illustrates this definition. From now on, we refer to the first graph
of a MiGaL as the top graph and to the last one as the bottom graph.

This structure is clearly useful to encode data at different levels of detail. A
comparable data structure called Multihierarchical Graph has been used in [4, 5]
to represent the environment (towns, buildings, rooms, . . . ) and drive robots in
space. Godin et al. in [8, 6] use a similar structure, that they call quotiented trees,
to model and study plants. As compared to the latter, MiGaLs can represent
graphs and not just trees, and contrary to Multihierarchical Graphs, MiGaLs
can have edges between nodes belonging to different layers.

2.2 Top-Down comparison algorithm

In this section, we present an algorithm to compare two MiGaLs. The algorithm
performs a top-down traversal of the structure. We assume both MiGaLs have
the same number of layers, and compare them layer by layer starting with the
graph at the top. The result of the comparison at a given layer is transmitted
to the next layer by colouring vertices and edges of the graph and using the
refinement application. We then compare the two graphs of the next layer taking



into account such colouring. The process continues until the last layer is reached
(bottom graph).

This approach assumes the existence of an algorithm allowing to compare
two graphs of a same layer. This algorithm clearly depends on the data that
is modelled using a MiGaL. In what follows, we consider a black box that is
able to produce an extended mapping between two graphs where by an extended
mapping is meant the following:

Definition 2 (Extended mapping). Given two graphs G1 and G2, we define
an extended mapping M between them as a set of couples of vertex sets of the
two graphs: M = {(S1, S2)/S1 ⊂ V (G1) and S2 ⊂ V (G2)} such that for all
(S1, S2) ∈ M:

– S1 is a connected component of G1

– S2 is a connected component of G2

– ∀(S′
1, S

′
2) ∈ M, S1 ∩ S′

1 = ∅ or S2 ∩ S′
2 = ∅

We define a colour-partitioned graph G with vertex set V (G) as a graph
fitted with an application CG : S ⊂ V (G) → N+ which gives a colour to each
vertex of S ⊂ V (G) such that subgraphs defined by vertices of the same colour
are connected. For convenience, uncoloured vertices are given the colour 0. The
vertices with colour 0 are therefore elements of V (G) \ S.

We now extend the definition of an extended mapping to colour-partitioned
graphs as follows.

Definition 3 (Colour-constrained extended mapping). Given two colour-
partitioned graphs G1 and G2, a colour constrained extended mapping M be-
tween them is defined as an extended mapping which further satisfies the follow-
ing conditions:

– ∀(S1, S2) ∈ M, every vertex of S1 has the same colour c and every vertex of
S2 also has this colour c.

– There is no vertex of G1 or G2 coloured with 0 that is involved in M.

Now that we have defined a mapping on colour-partitioned graphs, we give a
general algorithm for comparing two MiGaLs, M(G, R) and M ′(G′, R′), having
the same number of layers. This number is denoted by |M | = |M ′|. The algorithm
assumes again that we have a black box B that computes a colour-constrained
mapping between two colour-partitioned graphs.

The initialisation step colours the vertices of G1 and G′
1 with 1.

The algorithm is then divided into |M | steps. For each layer i from 1 to |M |,
we compute the mapping Mi between Gi and G′

i using B and (except for the
last step) colour the vertices of Gi+1 and G′

i+1 such that vertices associated by
the mapping have the same colour and vertices absent from Mi are coloured
with 0. The result of the algorithm is the set of all mappings between each pair
of layers.

The pseudo-code of this algorithm is shown in Figure 2. Let b be the time
complexity of algorithm B; the time required to compare two MiGaLs of size n
is O(n ∗ b).



Compare(M(G, R), M ′(G′, R′))
1. colour = 2
2. Set all vertices of G1 and G′

1 to 1.
3. for each layer i from 1 to |M |
4. M = B(Gi, G

′
i)

5. set the color of V (Gi+1) and V ′(G′
i+1) to 0

6. for each couple of sets (u, v) in M
7. for all nodes n in u
8. set the colour of nodes in α(n) to colour
9. for all nodes m in v
10. set the colour of nodes in α′(m) to colour
11. set colour to colour + 1
12. return M1...|M|

Fig. 2. Algorithm for the comparison of two MiGaL structures using an external algo-
rithm B that computes a colour-constrained mapping between two colour-partitioned
graphs.

It is important to notice that the main idea of this algorithm is to compute
mappings from the top to the bottom layer. Each layer is compared using the
mapping of the previous one without reconsidering the choices implied by this
mapping.

We now present a practical application of the MiGaL structure and of the
comparison algorithm to the study of RNA secondary structures. In particular,
we show, in this case, how to significantly improve the complexity of algorithm
B by taking advantage of the node-colouring.

3 RNA-MiGaL

RNAs are one of the most important molecules in the cell. They are composed
by a succession of nucleotides named A,C,G and U (also referred to as bases).
Inside a cell, RNAs do not keep a linear form but instead fold in space. The
fold is given by the set of interactions between nucleotides. An RNA can be
described at three different levels, respectively called its primary, secondary and
tertiary structures. The primary structure refers to the sequence of nucleotides.
The secondary structure is composed of the list of base pairs that participate in
an helix (see below). The tertiary structure corresponds to all interactions (base
pairings) in the RNA that is, to its 3D structure.

The function of an RNA (be it the well known ribosomal and transfert RNAs
or the more recently discovered snoRNAs, microRNAs, etc.) is strongly linked
to the shape adopted by the RNA in space. It is accepted that two RNAs that
have the same function will have closely similar secondary structures but not
necessarily similar primary structures. Considering this, it is fundamental to have



efficient algorithms to compare RNAs from the point of view of their secondary
structures.

Various structural elements can be distinguished in the secondary structure
of an RNA: helices which correspond to consecutive base pairs, hairpin-loops
which are unpaired bases at the end of an helix, internal-loops defined by the
unpaired bases between two helices and called bulges when one side is empty,
multi-loops which are the meeting point of at least three helices and, finally,
stems that are series of helices, internal-loops and bulges.

Many approaches have been used for modelling secondary structures. Mainly,
three codings has been proposed to represent RNA secondary structures: rooted
ordered trees [16]; arc annotated sequences [3]; 2-intervals [14].

Fig. 3. Edit operations, edit distance and alignment on rooted ordered labelled (on
nodes and edges) trees. On the first line, the first tree is edited by a substitution of
a−3 to d−5. Then the node 5 is deleted and after that the node 0 is inserted. From this
point, if operations have unit cost (1 for mismatch, deletion, insertion), the edit cost is
3 (the edit distance is 2 because the substitution is useless). The last two trees on the
first line give an example of edge fusion (edges ce and b, the new label is constructed
by concatenation) and node fusion (nodes 0 and 1, the new label is computed using
mean). The second line shows how to align the first tree of the first line with the fourth.
We see here that the alignment cost is four (two insertions and two deletions).

Here we focus on the tree model. We represent secondary structures by rooted
ordered trees because the root correspond to the beginning and the end of the
molecule and the order between the children of a node corresponds to the ori-
entation of the sequence. In fact, we can use different tree models depending on
the information we want to encode. In [16], Zuker and Sankoff use trees where
internal nodes code for base pairs and leaves for free nucleotides. This tree can be
compacted [7] into a homeomorphically irreductible tree where internal nodes
correspond to helices and leaves correspond to fragments of unpaired bases.



Shapiro in [12] uses a tree where edges code for helices and nodes are labelled
on {M, B, I, H, R} (multi-loop, budge, internal-loop, hairpin-loop and the root).
We can also use a more abstract tree where edges code for stems and nodes for
multi-loops and hairpin-loops, or just for multi-loops.

To compare rooted ordered trees, there exist essentially two methods. The
first is the edit distance [11, 13, 15] based on three edit operations. A substitution
changes the label of a node. A deletion removes a node of the tree, its children
are then re-attached to the node’s father preserving the relative order between
nodes. An insertion is the opposite operation of a deletion. If we assign a score
to each of these operations, we can define the edit distance between two trees
as the minimum of the score of a series of edit operations (sum of the score
of each operation) that transforms the first tree into the second one. Recently,
Allali et al. [1] extended this distance by introducing four new operations: node
fusion, edge fusion and the opposite operations of node split and edge split. These
operations allow to address some of the limitations of the classical edit distance
when comparing RNA secondary structures using high level trees (where nodes
and edges code for secondary structure elements only, not for nucleotides). The
complexity of the classical edit distance is O(n4) where n is the size of the trees
and O((2d)ln4) for the algorithm with node and edge fusions where d is the
degree of the trees and l the maximum number of consecutive fusions per node.

The second method for comparing rooted ordered trees is by performing a tree
alignment [10, 9]. In this case, the goal is to insert blank labelled nodes in the two
trees such that they become isomorphic. The score of the alignment corresponds
to the sum of the scores of the association of node labels (the blank character
assumes the role of insertions and deletions in sequence alignment). The optimal
score, maximal or minimal depending on the scoring scheme adopted, is then
sought. A tree alignment can be expressed as an edit distance computation
where insertions must precede all deletions. We do not give further details here
on alignments as we only use edit distance later in the paper.

We now suggest a new modelling of RNA secondary structures based on the
MiGaL data structure introduced earlier in the paper. We thus call RNA-MiGaL
a MiGaL structure composed by four layers, each modelled by a rooted ordered
tree. The next section is dedicated to a description of RNA-MiGaL.

3.1 The four layers definition

The four layers contained in an RNA-MiGaL correspond to the secondary struc-
ture of an RNA observed at different levels of detail. Thus, each layer is modelled
by a rooted ordered labelled tree. In the bottom layer, nodes and leaves code for
nucleotides while the top layer encodes the network of multi-loops of an RNA.
This choice has been dictated by two assumptions. The first, already mentioned,
is that structure is more important than sequence. Thus we introduce informa-
tion on nucleotides at the bottom layer only which will be treated last by the
comparison algorithm. The second is that the network of multi-loops can be
considered as the skeleton of the secondary structure of an RNA. RNAs of the
same family should thus have strongly conserved multi-loop networks. For this



reason, the top layer of an RNA-MiGaL is a tree that codes for the multi-loop
network. Intermediate layers correspond to the structure encoded using stems
or helices.

We provide below a summary of the layers and of the meaning of a node and
a leaf in each layer:

– The tree of layer 1 corresponds to the multi-loop network. The nodes encode
multi-loops and the edges encode stems. In the nodes, we store the number
of helices connected by the multi-loop. In the edges, we store the number of
nucleotides contained in the stem.

– Layer 2 consists in the structure defined by the stems. The internal nodes
represent multi-loops, leaves represent hairpin-loops and edges encode stems.
In the edges, we store the number of base pairs and the number of unpaired
bases contained in the stem. In the internal nodes and leaves, we store the
number of unpaired bases contained in the multi-loops and hairpin-loops.

– The tree of layer 3 encodes secondary structure elements: nodes encode
hairpin-loops, multi-loops, internal-loops and bulges and store the number
of unpaired bases of the corresponding element. The edges represent helices
and store the number of base pairs of the helices.

– The last tree models the RNA primary structure. The internal nodes thus
represent base pairs and leaves unpaired bases. Both store the names of the
corresponding bases.

3.2 RNA-MiGaL comparison

The problem now is to compare two secondary structures using RNA-MiGaLs.
To do so, we use edit distance with fusions and the algorithm described in [1] to
compare the pairs of trees of layers 1, 2 and 3. To take into account the colour
of the nodes and edges, we just have to test if two nodes or edges have the
same colour to allow them to be fusioned (in a tree) or substituted (between
the trees). The trees of layer 4 are compared using the classical edit distance as
fusions make no sense for nucleotides.

Figures 4 and 5 show the result of the comparison using RNA-MiGaLs be-
tween two Group I Intron RNAs retrieved from [2]. The left RNA is found in
Acanthamoeba griffini and the right one in Chlorella sorokiniana.

The time complexity required to compare two trees of a same layer is O((2d)ln4)
for the first 3 layers and O(n4) for the last layer with n the size of the trees.
Since we colour nodes while we progress in the comparison, and, once trees are
coloured, substitutions and fusions can only be performed on nodes of same
colour, we may wonder if it is not possible to compare separately the subtrees
defined by each colour.

The response is positive but it requires some attention as is shown in the
following example. Figure 6 presents on the top left a colour-partitioned tree,
with white corresponding to colour 0. In the box, we have split each tree into
subtrees according to their colour and computed the edit distance between these
trees separately. The nodes associated by the mapping are linked with dashed



Fig. 4. Result of the comparison of two Group I Introns. On the left, the result of the
comparison of the trees of layer 1; on the right, the result of the comparison of the
trees of layer 2.

Fig. 5. Result of the comparison of two Group I Introns. On the top, the comparison
of the trees of layer 3; on the bottom, the result of the comparison of the trees of layer
4.



lines. We have then reported the result of the computations on the original trees.
The problem is pointed to by the bold dashed lines in the tree at the bottom.
We have two couples of nodes associated via two different computations. Inside
each computation, the relative order of the nodes is respected by the edition
(we work on ordered trees). However, on the final tree, the associations do not
respect the order between the nodes.

Fig. 6. Problem about splitting tree according to colour to optimize edition computa-
tion.

We therefore have to modify the algorithm such as to take into account the
presence of a subtree of a colour x hanging from an edge of a subtree of colour
y )= x. To do so, we introduce anchors during the splitting step. When we split
trees into subtrees according to their colour, we add anchors to the subtrees.
These anchors represent the subtrees of another colour that hang from an edge
of the subtree being considered as shown in Figure 7. The anchors have the same
colour as the subtrees they stand for. We then have to modify the edit distance
scoring scheme such that:

– deleting the anchor of colour c costs the deletion of the subtree corresponding
to the anchor;

– an anchor of colour c can only match with an anchor of the same colour.

Finally, we order the edit computations according to the dependence implied by
the colouring scheme, that is we consider the subtree from the leaves to the root.

The consequence on the complexity is important as the time required to
compare two trees of a given layer has a time (and space) complexity which
depends on the size of the biggest subtree and not on the size of the whole trees
anymore.



In the worst-case, the time complexity is 0((2d)l × n4) for each level but in
the case of RNAs, on average, the tree at each layer contains a number of subtree
that is proportional to the size of the tree, and the observed time complexity is
close to linear except for the first layer.

Fig. 7. Splitting the left tree into subtrees according to the colours of the nodes and
addition of anchors (represented by triangles).

4 Conclusion

We introduced in this paper a new data structure and an algorithm for comparing
such structures. Both are generic and may be applied to very different types of
problems. They are particularly interesting for comparing objects that may be
described at different levels of abstraction.

RNA secondary structures are one example of such objects and we therefore
showed how to optimise the generic algorithm, in particular its special colouring
scheme for going from one level of abstraction to the next, to compare two RNA
secondary structures. The results obtained are very satisfying. In particular, the
algorithm addresses the so-called scattering effect described in the literature
[1]. The new algorithm allows to compare large sized structures in a fast way
while the multiple layer approach represents a biologically very natural way of
modelling and analysing with RNAs.
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