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Abstract—In comparative genomics, algorithms that sort permutations by reversals are often used to propose evolutionary scenarios

of large-scale genomic mutations between species. One of the main problems of such methods is that they give one solution while the

number of optimal solutions is huge, with no criteria to discriminate among them. Bergeron et al. started to give some structure to the

set of optimal solutions, in order to be able to deliver more presentable results than only one solution or a complete list of all solutions.

The structure is a way to group solutions into equivalence classes, and to identify in each class one particular representative. However,

the design of an algorithm to compute this set of representatives without enumerating all solutions was stated to be an open problem.

We propose, in this paper, an answer to this problem, that is, an algorithm which gives one representative for each class of solutions

and counts the number of solutions in each class, with a better theoretical and practical complexity than the complete enumeration

method. We give an example of how to reduce the number of equivalence classes obtained, using further constraints. Finally, we apply

our algorithm to analyze the possible scenarios of rearrangements between mammalian sex chromosomes.

Index Terms—Computational biology, genome rearrangements, signed permutations, sorting by reversals, common intervals, perfect

sorting, evolution.

Ç

1 INTRODUCTION

THE combinatorics of genome rearrangements is a very
prolific domain of computational biology. It consists of,

given a set of actual genomes, inferring the large-scale
evolutionary mutations that explain the differences in the
organization of these genomes. For a general survey of the
algorithmic aspects of genome rearrangements, see [17].

One of the most used mathematical models for repre-

senting and manipulating such genome rearrangements is

given by signed permutations, where the elements are

homologous markers, and by reversals as the main events

that may alter the order of the markers along the genomes.

The combinatorial problem consists of giving the shortest

sequence of reversals that transforms one permutation into

another. The problem of sorting signed permutations by

reversals has been the subject of a huge literature (among

others, [2], [7], [11], [14], [15], [24]), but all algorithms

propose one optimal solution, whereas the solutions can be
very numerous. This kind of delivery may be useless for
biological purposes, and the algorithms are therefore
mainly useful to compute a distance between genomes.

One study by Siepel [20] resulted in a method to
enumerate all solutions. This is, however, almost as useless
as providing only one solution, because, often, the solutions
are so many that the whole set cannot be presented (when it
can be computed). A few studies tried to decrease the size
of the set of optimal solutions by introducing some
biological constraints, such as favoring small inversions
[1], or inversions that do not cut some clusters of colocalized
genes1 [11], [4]. The number of solutions is decreased, but
the whole set of solutions is never handled.

Bergeron et al. [5] then provided a way to group the
solutions into equivalence classes. However, no algorithmic
study was performed, and in particular, the problem of
giving one element in each class without enumerating all
the solutions was mentioned open. In this paper, we
introduce a solution to this problem. Our solution gives
one representative element per class of solutions and counts
the number of solutions in each class. The complete
enumeration of the solutions is not needed, and the
theoretical complexity, as well as the practical execution
time are lower than in any other current method for the
enumeration of the solutions.

We show two examples of possible use of such a method.
First, we consider the criterion of colocalized genes
mentioned in [4] and [11], and show that the algorithm
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Rhône-Alpes, 622 avenue de l’Europe, 38334 Montbonnot, France.
{marie-france.sagot, eric.tannier}@inria.fr.

. C. Scornavacca is with the Laboratoire d’Informatique, de Robotique et de
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1. Clusters of colocalized genes are intervals of the genomes composed
by the same genes but not necessarily in the same order and orientations.
Formal definitions and their possible usage in the present context are
provided in Section 4.2.
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we propose not only reduces the space of solutions of
sorting by reversals (this was the motivation of [4] and [11])
but also reduces the number of classes of solutions, showing
the interest of applying this criterion together with the
classification of solutions presented in this paper. As a
second example, we applied our algorithm to analyze the
possible scenarios of rearrangements that differentiate
mammalian X and Y sex chromosomes. These chromo-
somes are very different, but are believed to have evolved
from an identical pair of chromosomes [18]. Current
theories claim that reversals have an important role to
explain the differences observed between the X and
Y chromosomes [19], [21]. In [19], one scenario of reversals
is proposed, whereas the studied permutation allows
thousands of solutions. Using the possibilities provided
by our algorithm, we were able to analyze the whole set of
solutions, and to evaluate the proposed sequence of
reversals to explain the evolution of the human X and
Y chromosomes.

This paper is an extended version of a previously
published one [8] and is organized as follows: We present
the usual model for dealing with gene order and orientation
in Section 2. In Section 3, we describe the algorithm. Section 4
is dedicated to practical experiments on simulated and
biological data, including the X and Y chromosomes, and to
an analysis of the performance of our implementation.

2 SORTING BY REVERSALS AND ITS SOLUTION

SPACE

2.1 Signed Permutations

Genome rearrangements such as reversals may change the
order of some segments in a genome, and also the DNA
strand the segment is on. We identify homologous genomic
markers with the integers 1; . . . ; n, with a plus or minus sign
to indicate the strand they lie on. The order and orientation
of genomic markers of one species in relation to another is
represented by a signed permutation of size n, that is, a
bijection � over f�n; . . . ;�1; 1; . . . ; ng, such that ��i ¼ ��i,
where �i is the image of i by �. A signed permutation is
usually written using the list of elements ð�1; . . . ; �nÞ. The
identity permutation ð1; . . . ; nÞ is denoted by Id.

A subset of numbers � � f1; . . . ; ng is said to be an
interval of a permutation � if there exist i, j 2 f1; . . . ; ng,
1 � i � j � n, such that � ¼ fj�ij; . . . ; j�jjg. Two intervals
are said to overlap if they intersect but none is contained
in the other. For example, if � is (1, �3, �5, 2, 4, �6),
then �1 ¼ f1; 3; 5g and �2 ¼ f2; 3; 5g overlap, while �3 ¼
f2; 3; 4; 5g and �4 ¼ f2; 5g do not.

2.2 Sorting by Reversals

Given a permutation � and an interval � of �, we can apply
a reversal on �, that is, the operation which reverses the
order and flips the signs of the elements of �: if
� ¼ fj�ij; . . . ; j�jjg,

� � � ¼ ð�1; . . . ; �i�1;��j; . . . ;��i; �jþ1; . . . ; �nÞ:

Due to this, an interval � can also be used to denote a
reversal. For example, if the permutation � is (4, �3, �1, 2)
and � ¼ f1; 2g, then � � � ¼ ð4;�3;�2; 1Þ. We say that a
sequence of reversals �1 . . . �k sorts a permutation � if �i is an

interval of � � �1 � � � �i�1 for all i, and � � �1 � � � �k ¼ Id. The
length of the shortest sequence of reversals sorting a
permutation � is called the reversal distance of �, and is
denoted by dð�Þ. The shortest sequence of reversals sorting
� is called an optimal sorting sequence. For example, if the
permutation � is (4, �3, �1, 2), one optimal sorting
sequence is {1}{1, 2}{4}{1, 2, 3, 4}.

Computing the reversal distance and finding an optimal
sorting sequence has been the topic of a huge literature. The
first polynomial algorithm to find an optimal sorting
sequence appeared in [15]. The fastest algorithm to compute
the distance was given in [2]; the fastest way to find an
optimal sequence can be retrieved from a compilation of [7],
[14], and [24].

However, all these studies give one sequence among
possibly many. For example, for the permutation (�12, 11,
�10, 6, 13, �5, 2, 7, 8, �9, 3, 4, 1), the number of solutions is
8,278,540, and it can be useless when attempting a biological
interpretation to know only one among them.

The set of all solutions may be retrieved thanks to an
algorithm by Siepel [20], that, given a permutation,
computes all the reversals that are the first step of an
optimal sequence, but in the aforementioned example,
listing the 8,278,540 sequences is almost as useless as giving
only one of them.

2.3 Traces

More interesting for our study is the representation of the
set of solutions that is given in [5]. Let s be a sequence of
reversals, and � and � be two reversals of s, which appear
consecutively in s. The operation of commutation of � and �
in s consists of replacing the sequence �� by ��. Two
sequences are said to be equivalent if one can be obtained
from another by a sequence of commutations of nonover-
lapping reversals.

Observe that if a sequence of reversals is a sorting
sequence for a permutation �, every equivalent sequence is
also a sorting sequence, because if two reversals do not
overlap, it does not matter in which order they are applied.

For example, if the permutation � is (4, �3, �1, 2),
consider the solution given by the sequence of reversals
{1}{1, 2}{4}{1, 2, 3, 4}. Here, {4} and {1, 2} do not overlap, so
{1}{1, 2}{4}{1, 2, 3, 4} is equivalent to {1}{4}{1, 2}{1, 2, 3, 4}. By
the way, all permutations of these four reversals can be
obtained from one another by a sequence of commutations
and are, therefore, equivalent.

For the same permutation, if now we consider the
solution {1, 3, 4}{2, 4}{2, 3}{3}, it is equivalent, by commu-
tation of {3} with all the other reversals, to {1, 3, 4}{2, 4}{3}{2,
3}, {1, 3, 4}{3}{2, 4}{2, 3}, and {3}{1, 3, 4}{2, 4}{2, 3}. There is, in
this case, no other equivalent sequence, as the other pairs of
consecutive reversals all overlap.

An equivalence class of optimal sequences of reversals
over this equivalence relation is called a trace. The concept
of traces is well studied in combinatorics, see, for example,
[10]. It is particularly relevant in our study because of a
result proven in [5], which states that the set of all optimal
sequences of reversals sorting a signed permutation is a
union of traces.

As a consequence, if the set of solutions is too big to be
enumerated, the set of traces may be a more relevant result
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for the problem of sorting by reversals. It remains to find a

good way to represent the traces in a compact manner.

2.4 Normal Form of a Trace

A trace T is, thus, a set of equivalent sequences of subsets of

f1; . . . ; ng. Two subsets of f1; . . . ; ng may be compared by

writing their elements in increasing lexicographic order,

and comparing the two obtained sequences.
A sequence s of T is said to be in normal form if it can be

decomposed into substrings2 s ¼ u1j . . . jum such that

. every pair of elements of a substring ui is
nonoverlapping,

. for every element � of a substring ui ði > 1Þ, there is
at least one element � of the substring ui�1 such that
� and � overlap, and

. every substring ui is increasing according to the
lexicographic order.

A theorem by Cartier and Foata (cited in [5]) states that,

for any trace, there is a unique element that is in the normal

form. We may, therefore, represent a trace by its element in

the normal form.
For example, the permutation (4, �3, �1, 2) has two

traces of optimal sequences, one is {1}{1, 2}{1, 2, 3, 4}{4}, and

the other is f1; 3; 4gf3gjf2; 4gjf2; 3g. In this example, giving

the two normal forms of the traces allows to describe the

whole set of 28 solutions in a compact way.

2.5 The Algorithmics of Traces

Bergeron et al. [5] provide no algorithmic insight for this

way of representing the solutions of sorting by reversals.

They state, as an open problem, the complexity of giving

one element in each trace. The best algorithm so far to

enumerate the traces is, therefore, to do a complete

enumeration of all the solutions, and from each solution,

to compute the associated trace and add it to the list of

found traces if it is not already in it.
We give, in the next section, an algorithm that enumer-

ates the normal form of all the traces of solutions given a

signed permutation, and counts the number of solutions in

each trace, without enumerating all the solutions.

3 THE ALGORITHM AND ITS COMPLEXITY

For comparison purposes, it will be useful to describe first

the only available algorithm that is up to now able to

enumerate all the traces of the solution space of sorting by

reversals, and to examine its theoretical complexity. Then,

we describe our algorithm and achieve some comparisons

between the two, both from the point of view of theoretical

complexity and implementation behavior. All complexities

are functions of n, the size of the permutation, which is the

size of the input, and N , the number of traces of optimal

solutions, which is the size of the output. The reversal

distance is bounded by n, as in a permutation without

adjacencies; it always has order n (see, for example, [15]).

3.1 Enumeration of the Solutions

A sequence of reversals s ¼ �1�2 . . . �i is called an optimal

i-sequence if dð� � �1 � � � �iÞ ¼ dð�Þ � i. Note that if i ¼ dð�Þ,
then s is an optimal sorting sequence.

The set of all optimal 1-sequences of a permutation can

be computed with the help of an algorithm by Siepel [20]. It

has time complexity Oðn3Þ, and the number of possible

optimal 1-sequences is bounded by n2.
The set of all optimal i-sequences can then be computed

from the set of optimal ði� 1Þ-sequences by iterating the

same algorithm for finding all 1-sequences. The set of

optimal i-sequences has, therefore, size of at most Oðn2iÞ,
and such an algorithm has time complexity of at most

Oðn3 �
Pi

k¼1 n
2kÞ. In this way, we can enumerate the set of

all optimal sorting sequences in time Oðn2nþ3Þ.
There remains to group the sorting sequences by trace,

and to construct the normal form of each trace.
For any optimal i-sequence s of reversals, and under the

equivalence relation deduced from the commutation of

reversals, is defined the trace that contains s, that we call an

i-trace.
Given an optimal sorting sequence s ¼ �1�2 . . . �d for a

permutation � with reversal distance d, the normal form of

the trace T that contains s is constructed by iteratively

adding the elements �i, 1 � i � n, to the normal form f of

the ði� 1Þ-trace containing the sequence �1 . . . �i�1. This

adding procedure is represented by f þ �i and described by

Algorithm 1.

Algorithm 1: Adding an element �i to a normal form f of an

ði� 1Þ-trace: f þ �i
Input: The normal form f ¼ u1ju2j . . . juk of an ði� 1Þ-trace

and the next element �i
Output: The normal form of the i-trace containing the

sequence u1u2 . . .uk�i
Let j be the maximum index such that uj contains an

element that overlaps with �i, or 0 if such a uj does not

exist

if j ¼ k then

Add a new substring ukþ1  �i
else

Add �i to the substring ujþ1, according to the
lexicographic order

end if

As the reversal distance and the interval sizes are

bounded by n, the procedure has complexity Oðn2 lognÞ,
considering that the elements of each reversal have to be

sorted, and comparing reversals may be done in OðnÞ.
The constructed solution is compared to a list of already

constructed normal forms of traces, so that one trace is not

written several times. This may take Oðn2 logNÞ operations,

where Oðn2Þ is the size of a trace and N is the number of

found traces. As N is bounded by the number of solutions,

we have n2 logN � n2 logðn2nÞ ¼ 2n3 logn.
Eventually, the total time complexity for enumerating all

the normal forms of the traces is bounded by

Oðn2nþ3Þ þOðn2nðn2 lognþ 2n3 lognÞÞ ¼ Oðn2nþ3 lognÞ:
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This upper bound on the theoretical complexity does not

give hope that this method can be applied to big

permutations. We shall actually see in practice that it is

intractable for permutations � above around dð�Þ ¼ 10.
This method can be implemented with the help of the

GRAPPA software,3 which contains an implementation of
Siepel’s algorithm, and it is the only one that, among all
available applications about sorting by reversals, is able to
give more than one unique solution.

3.2 Enumeration of the Traces

We now come to the description of the method to
enumerate all the normal forms of the traces of solutions.

A k-trace T 0 is a prefix of an i-trace T ðk � iÞ if each
k-sequence of T 0 is a prefix of an i-sequence of T . It is
equivalent [10] to saying that T 0 contains a k-sequence which
is a prefix of an i-sequence of T .

The idea of the algorithm to enumerate the traces is
almost naturally contained in this notion. It is easy to see
that every prefix of size k of an optimal i-sequence is in a
k-trace of optimal k-sequences. So, instead of enumerating
all the i-sequences and then computing and comparing the
traces, it is therefore more valuable to enumerate and
compare directly all the i-traces.

We have seen in Algorithm 1 a way to construct the
normal form of an i-trace from the one of an ði� 1Þ-trace.
We may use this method to construct all i-traces simulta-
neously in an incremental way, without computing all the
solutions. With no additive cost, we also compute the
number of sequences in each i-trace.

The method is detailed in Algorithm 2.

Algorithm 2: Enumerating all the traces of a signed
permutation

Input: A signed permutation �

Output: The normal form and size ðf; sÞ of each trace of

optimal sequences of reversals sorting �

d reversal distance of �

T  ;
S  f�j� is an optimal 1-sequence for �g [Siepel [20]]

for each reversal � 2 S do

insert ð�; 1Þ in T [each first reversal is a 1-trace]

end for

for each integer i from 2 to d do

T 0  ;[contains the normal forms/sizes of all the

i-traces]

for each ðf; sÞ in T [ðf; sÞ represents an ði� 1Þ-trace]

do

�f  � � f [apply the ði� 1Þ-sequence f to �]

S  f�j� is an optimal 1-sequence for �fg [Siepel [20]]

for each reversal � 2 S do

f�  f þ � [Algorithm 1]

if there is ðf 0; s0Þ 2 T 0 such that f 0 ¼ f� then

s0  s0 þ s [upd. the size of the i-trace repr. by f 0]

else

insert ðf�; sÞ in T 0 [ðf�; sÞ represent an i-trace]
end if

end for

end for

T  T 0
end for

return T [T is the final set of d-traces]

Theorem 1. At the end of Algorithm 2, T contains, for every

trace T of solutions for sorting �, one element of T (the normal

form) and the number of solutions in T .

Proof. The proof is by induction. We prove that at the end

of step i of the main loop of Algorithm 2, the set T
contains all the normal forms and the size of the i-traces

of optimal sequences for �.
For i ¼ 1, each 1-trace is generated and the size of a

1-trace is 1.
For an arbitrary 2 � i � dð�Þ, by hypothesis, T

contains all the normal forms and the size of the optimal
ði� 1Þ-traces. Every i-trace has a prefix in this set, since a
prefix of size i� 1 of an optimal i-sequence is an optimal
ði� 1Þ-sequence. So, every i-trace is found from an ði�
1Þ-trace by adding a 1-sequence.

Now, it remains to prove that the cardinality of an
i-trace T is the sum of the cardinalities of its
ði� 1Þ-prefixes, so that the right size of all traces is
computed. Let �1; . . . ; �k be the reversals that are in the
last position of at least one sequence in T . Let xj be
the number of elements of T which have �j as their
last position. Then, the number of sequences of T isP

j xj. Now, for all j, as �j is the last reversal of an
optimal i-sequence x1 . . .xi�1�j of T , x1 . . .xi�1 is an
optimal ði� 1Þ-sequence of reversals, so it belongs to an
ði� 1Þ-trace T 0 of size xj. By the induction hypothesis,
the size of the trace T is therefore the sum of the sizes
of all ði� 1Þ-prefixes of T , and the algorithm provides
this size, since it generates all prefixes. tu

3.3 Theoretical Complexity

The complexity of the algorithm depends on the number
Pdð�Þ

i¼1 nðiÞ, where nðiÞ is the number of i-traces of optimal

i-sequences. As every i-trace is a prefix of a d-trace, where

d ¼ dð�Þ, this number is bounded by the number of d-traces

times the number of prefixes of each trace.
To give an estimation of the number of prefixes of a trace,

we need to adopt a representation of the traces as partially

ordered sets (posets). It is possible to represent a trace T

that contains an optimal sequence �1 . . . �d by a partial

ordering of the set PT ¼ f�1; . . . ; �dg (if two reversals of the

sequence are equal, they should both appear in the set PT ,

differentiated by their indices in the sequence �1 . . . �d). The

relation <T is defined as the transitive closure of the

relation /, itself defined by �i / �j if and only if i < j and �i
and �j overlap.

In other words, �i <T �j if and only if �i is always before

�j in the elements of T (see [10]).
For example, T ¼ f1; 3; 4gf3gjf2; 4gjf2; 3g is a trace of

optimal sorting sequences of reversals for the permutation (4,

�3,�1, 2). The elements ofPT are {1, 3, 4}, {3} {2, 4}, and {2, 3},
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and the relations are f1; 3; 4g <T f2; 4g, f2; 4g <T f2; 3g, and
f1; 3; 4g <T f2; 3g.

The set PT with the relation <T is a partially ordered set
(poset). A linear extension of a poset is a total order <tot

which satisfies � <T �) � <tot �. The set of all linear
extensions of ðPT ; <T Þ is exactly the set of elements of the
trace T (see [10]). We may, therefore, identify the trace T

and the poset ðPT ; <T Þ, and simply speak about the poset T .
The height of a trace (or poset) is the cardinality of the

maximum set of elements of PT that is totally ordered by
the relation <T . It is also the number of subsequences ui in
the normal form of a trace.

The width of a trace (or poset) is a maximum cardinality
set of elements of PT that are not comparable by the relation
<T . It is at least (but in general not equal to) the maximum
size of a subsequence ui in the normal form of a trace. The
width of a poset can be computed in polynomial time
thanks to a reduction of Fulkerson [13] to a bipartite
matching problem.

The representation of a trace as a poset allows us to use
the parameters of the poset in the computations of the
complexity of the algorithms, and it is also a nice way to
present the solution of sorting by reversals. Indeed, a poset
corresponds to a set of reversals that may have occurred
during evolution and that could, therefore, help explain the
difference between the organization of two genomes. It
indicates what we know and what we do not know about
the order in which these potential reversals occurred.
Instead of giving a list of sequences, or a unique sequence
representing an equivalence class, the poset therefore gives
one possible solution, with uncertainties as concerns the
exact shape of the solution.

An ideal of a poset ðPT ; <T Þ is a subset U of PT such that
if � 2 U and � <T �, then � 2 U .

It is very easy to see that ideals of posets and prefixes of
traces correspond to the same notions, and that in
particular, the number of prefixes of a trace T is exactly
the number of ideals of the poset ðPT ; <T Þ.

The advantage of this notation is that the number of
ideals of a poset can be estimated. It is bounded by nk,
where n is the size of PT and k is the width of the poset [22].

The number of i-traces that we generate is therefore
bounded by Nnkmax , where N is the number of d-traces and
kmax is the maximum width of a d-trace.

Given this estimation, we may give a bound for the
complexity of our algorithm. Indeed, for every i-trace,
1 � i � d� 1, we apply an Oðn3Þ algorithm to find all the
1-sequences. For all these 1-sequences (there are at most n2 of
them), we then apply Algorithm 1 to construct the normal
form of the ðiþ 1Þ-trace, and compare the constructed
normal form to the current list of normal forms of
ðiþ 1Þ-traces.

This gives a final complexity of

OðNnkmaxðn3 þ n2ðn2 þ n logðNnkmaxÞÞÞÞ ¼ OðNnkmaxþ4Þ:

Observe that computing the number of linear extensions
of a poset is #P -complete [9], and the best-known
algorithms run in OðnkÞ, where n is the size of the poset
and k is its width [23]. Our algorithm counts the number of
elements in each d-trace, that is the number of linear
extensions of the associated posets. Our time complexity,
thus, nearly reaches the best-known complexity for the
counting part.

If, in general, the width of a poset may be as large as its
number of elements, we have made some experiments on
simulated permutations (see Fig. 1) which show that, in
practice, this parameter is often lower, which explains the
speedup of our algorithm compared to a total enumeration
procedure.

4 EXPERIMENTAL RESULTS AND APPLICATIONS

4.1 Implementation and Performance

We implemented4 our algorithm and tested it on randomly
simulated permutations to evaluate its performance.

Some results are recorded in Fig. 2. These numbers may
be useful to give an idea of the quantities that we are
dealing with, numbers of solutions and number of traces.

Even if we are quickly limited in the size of the
permutations that it is possible to treat, there is a solid
gain in relation to the existing methods. Observe that the
main limit concerns the amount of memory that needs to be
used, more than the time. In the next section, we propose an
idea to deal with this problem.
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4. The implementation is part of the BaobabLuna package, available
online at http://biomserv.univ-lyon1.fr/~marilia/luna.htm.

Fig. 1. Distribution of the width of posets for three random permutations
of size 20 and different reversal distances (d ¼ 8, d ¼ 10, and d ¼ 12).
For each permutation, we computed the traces of optimal sequences
and we calculated the number of occurrences of each width in the
traces.

Fig. 2. Computation results (1). Columns from left to right contain: 1) the
origin of the permutation, its number of elements, and reversal distance;
2) the number of solutions of sorting this permutation by reversals; 3) the
number of traces; 4) the execution time of an algorithm that enumerates
all the solutions; 5) the execution time of the same program, adding the
computation of all the traces from the solutions; and 6) the execution
time of the enumeration of the traces, according to Algorithm 2. All
algorithms are part of the BaobabLuna Package. Experiments were
made on a personal computer with a 1.8-GHz CPU and 1-Gbyte
random-access memory (RAM).



4.2 Perfect Solutions and Perfect Traces

We now show how the algorithm presented in this paper
can be useful to study a variant of sorting by reversals
called “perfect” sorting.

A common interval of a permutation � is an interval of �
that is also an interval of the identity permutation. Common
intervals are used to model groups of homologous genes
colocalized in the two species that are represented by the
permutations. The idea behind common intervals is that, if
these genes are together in both species, then probably they
were together in the common ancestor of the two species
and were not separated by evolution. A sequence of
reversals �1 . . . �k that sorts a permutation � is said to be
perfect if no reversal among �1; . . . ; �k overlaps a common
interval of �. We are interested in finding optimal scenarios
(i.e., that sort a permutation in a minimum number of
reversals) that respect the principle of conserved segments.
The problem of finding such a scenario is investigated in [4]
and [11]. However, the algorithm presented in [4] always
gives only one scenario, if this exists.

We analyze the behavior of perfect scenarios in relation
to traces. First, we remark that the classification into traces
is well adapted to this constraint because of the following
property.

Proposition 1. Every trace of solutions for sorting a signed
permutation by reversals contains either only perfect solutions
or no perfect solution.

Proof. If any sequence s ¼ �1 . . . �k for sorting a permutation
� is perfect, by definition, none of �1; . . . ; �k overlap some
common interval of �. So, any sequence with the same
reversals in a different order is perfect. This is the case
for all the sequences of a trace, so if one sequence of a
trace is perfect, they all are. tu

We, therefore, call perfect a trace that contains only perfect
solutions of length dð�Þ. Such a trace does not always exist:
All parsimonious scenarios may break common intervals
(see [11]).

In order to find the perfect traces, we may modify the
algorithm by stopping the exploration of an i-trace when a
found reversal overlaps a common interval. In this way, we
can also reduce the running time and decrease considerably
the amount of memory we need. In the case where a perfect
trace does not exist, we can easily generalize this approach
by fixing a threshold on the number of reversals that may
overlap a common interval. A trace that is below this
threshold is called a near-perfect trace.

We have investigated how the solution space is reduced
when only perfect or near-perfect traces are taken into
account. In order to do that, we ran a simulation generating
100 random permutations, with size n ¼ 12 and reversal
distance 2 � d � 11. For each permutation, we computed
the number of reversals that overlap common intervals for
each trace (if this number is equal to zero, we have a perfect
trace).

By choosing as near-perfect traces those that minimize
this number among all traces (which means only the perfect
traces if one exists), we computed the ratio of solutions and
traces that are near perfect.

On average, over the 100 permutations performed, the
solution space is divided by three when the near-perfect
criterion is applied. What is interesting in the structure of
traces in this case is that the number of traces is itself
divided by 20. This is not surprising since the posets of
perfect traces usually have a greater width than nonperfect
ones. This may indicate that finding perfect or near-perfect
traces could provide a better representation of the solution
space of sorting by reversals.

4.3 Analysis of a Scenario for the Evolution of the
X and Y Human Chromosomes

We then applied our algorithm to analyze some scenarios
concerning the evolution of the mammalian X and
Y chromosomes. These chromosomes are very different; in
particular, in humans, for instance, while the X chromo-
some is 155 Mbp long, the Y chromosome is 58 Mbp long.
Nevertheless, both are believed to have evolved from an
identical autosomal pair5 [18]. This process is at the origin
of sexual differentiation: the female XX and the male
XY pairs. Due to the recombination mechanism, female
organization favors conservation of the X chromosome. On
the other hand, evolution of the male XY pair causes the
divergence of the Y chromosome, as it gradually loses the
capacity of recombining with its X partner.

The X and Y chromosomes still share a “pseudoautoso-
mal” region at one of their extremity, where recombination
occurs as between autosomes. Ninety percent of the
Y chromosome is, however, male specific, and shows
major differences in sequence as well as in gene order with
the X. Current theories suggest that the pseudoautosomal
region, which originally covered the whole chromosomes,
was successively pruned by a few big reversals on the
Y chromosome [16], whose extremities stood on each side
of the limit of the pseudoautosomal region. The successive
limits of the pseudoautosomal region on the X chromo-
some, from the origin to where it is located now, represent
the limits of what have been called the “evolutionary
strata” of the sex chromosomes.

Several arguments seem to indicate the presence of five
strata on the X chromosome [19], [21]. The strata are
ordered according to their creation time. Thus, the stratum
that is the closest to the pseudoautosomal region is
numbered 5, while the stratum that is at the other extremity
of the X chromosome is numbered 1. A scenario of reversals
on a signed permutation representing the relative ordering
of the genes common to chromosomes X and Y has been
published in [19], and is given as an argument to support
the existence and bounds of the most recent strata. The
scenario is represented in Fig. 3.

However, for the same permutation, there are many
scenarios that are possible, including other scenarios that
are in agreement with a model of evolution by strata, which
we now describe.

4.3.1 Model of Evolution by Strata

For a signed permutation � ¼ ð�1; . . . ; �nÞ, a k-strata is
defined as a partition of � into a sorted set B ¼
ðIk; Ik�1; . . . ; I1Þ of k intervals, such that
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5. Autosomes are all nonsex chromosomes.



Ik ¼ fj�1j; . . . ; j�nk jg;
Ik�1 ¼ fj�nkþ1j; . . . ; j�nkþnk�1

jg; . . . ;

I1 ¼ fj�nkþ...þn2þ1j; . . . ; j�nkþ...þn1
jg;

where ni is the size of the interval Ii. Observe that the
intervals are ordered by their positions, but they are
indexed in a decreasing way from the beginning to the
end of the permutation.

We say that an optimal sequence of reversals r ¼
�1�2 . . . �d produces a k-strata B ¼ ðIk; Ik�1; . . . ; I1Þ in � if r
has a subsequence6 b ¼ �1�2 . . . �k, such that for 1 � i � k,
the reversal �i contains the interval Ii and, for any j > i, no
element of Ij is in �i. In addition, for any two consecutive
reversals �i and �iþ1 of b, if � is a reversal that occurs
between �i and �iþ1 in r, then � is a subset of I1 [ I2 . . . [ Ii.
The reversals in b are said to be big reversals (each big
reversal creates a new stratum), while the reversals of r that
are not in b are said to be small reversals. A sequence of
reversals that produces a k-strata has k big reversals and
d� k small reversals (we recall that d is the reversal distance
for the given permutation).

Consider a permutation � and a

k-strata B ¼ ðIk; Ik�1; . . . ; I1Þ

for �. If T is a trace of optimal reversal sequences for �, we
call B-induced subtrace TB the subset of T defined as
TB ¼ fsjs 2 T and s produces the k-strata B in �g.

We have developed a version of our exploration
algorithm that, given a k-strata B, outputs the set of
solutions that produces B. This requires a slight modifica-
tion of the algorithm described as follows.

4.3.2 Algorithm for Exploring the Solutions

that Stratify a Permutation

Besides a signed permutation �, the modified algorithm
requires a k-strata B ¼ ðIk; Ik�1; . . . ; I1Þ for �. The algorithm
returns the traces whose B-induced subtraces are not empty,
and, for each trace, the size of its B-induced subtrace.

It is the first step (Siepel’s step) that is mainly modified.
After searching all of the next reversals, we must select only
those that are compatible with the given k-strata: the first
reversal is fixed and corresponds exactly to the first stratum
(it is a big reversal); then, at each step, suppose stratum Ik
has been moved by a big reversal and not stratum Ikþ1, we
can choose between performing a big reversal including
Ikþ1 and no elements from the following ones, or a small
reversal, included in I1 [ . . . [ Ik.

The complexity of the algorithm is not changed under
this modification: to select a reversal, we only need to
compare its boundaries to the strata boundaries. The
selection step can be done in time Oðn2Þ since the number
of reversals returned by Siepel’s algorithm is Oðn2Þ (n is the
size of the permutation). The number of selected big and
small reversals is also bounded by n2.

The trace construction remains unchanged, but, as a
consequence of the selection of the reversals to be
performed, we in fact construct the B-induced subtraces
that compute only the solutions that produce the given
k-strata. At the end of the execution, we have the complete
set of nonempty B-induced subtraces (represented by the
normal forms of the corresponding traces) and their sizes
for a given permutation and a k-strata B.

4.3.3 Analysis of the Results

We applied our modified algorithm to the permutation
� ¼ ð�4;�3; 12;�11;�8; 10; 9; 7;�6;�5; 2;�1Þ, derived from
the genes that are shared by the last three strata of the human
X and Y chromosomes (Fig. 3). It was used in [19] to account
for the positions of the strata 3, 4, and 5 in the human sex
chromosomes, by giving one solution to sorting by reversals.

We are now able to handle the whole set of solutions: the
solution space of sorting this permutation by reversals
contains 31,752 solutions, distributed among the following
six traces:

f1;2gf1;2;5;...;12gf2gf7gf8;10gf12gjf1;...;4gf8;9g

f1;...;12gf2gf3;4;12gf5;...;11gf7gf8;10gjf3;...;11gf8;9g

f1;...;12gf2;...;12gf2;5;...;12gf7gf8;10gf12gjf2;3;4gf8;9g

f2;5;...;12gf5;...;11gf7gf8;10gjf1;12gf8;9gjf1;5;...;11gjf1;2;3;4g

f1;2gf7gf8;10gjf1;5;...;11gf8;9gjf1;3;4;12gjf2;...;12gf3;...;11g

f2;...;12gf7gf8;10gjf1;3;4;12gf8;9gjf1;5;...;11gjf1;2gf3;...;11g

(each trace contains, respectively, 10080, 10080, 10080, 840,
336, and 336 solutions)

When we search only for the scenarios of sorting by
reversals that respect the formation of the last three strata as
they are defined in [19], that is,

B ¼ ðf3; 4g; f5; 6; 7; 8; 9; 10; 11; 12g; f1; 2gÞ;

we get 420 solutions, corresponding to a unique B-induced
subtrace, represented by the normal form of its correspond-
ing trace:

f1; 2gf1; 2; 5; . . . ; 12gf2gf7gf8; 10gf12gjf1; . . . ; 4gf8; 9g;
ð420 sol:Þ:

There are, in consequence, 420 solutions out of 31,752
that support the bounds given in [19], and they are all in the
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Fig. 3. Scenario of rearrangement of human Y chromosome that shows

the formation of the last three strata (numbered 3, 4, and 5) on

X chromosome (extracted from [19]). The PAR symbol represents the

pseudoautosomal region in each chromosome.

6. A “subsequence” b of a sequence r is obtained by eliminating some of
the elements (here reversals) of r while preserving the order of the
remaining elements.



same trace. Here, more relevant than the number of
solutions is the fact that they are all part of a unique
subtrace, which means that the reversals have been
identified correctly. So, if we suppose the bounds are
known, the scenario given in [19] is accurate.

Nevertheless, the limits between strata may be not so
clear, and one could be interested in testing other
hypotheses. For instance, we could extend stratum 4
incorporating to it the markers 1 and 2 which were part
of stratum 3 in the previous scenario. According to this
hypothesis, which could be biologically meaningful as well,
we have B0 ¼ ðf3; 4g; f1; 2; 5; 6; 7; 8; 9; 10; 11; 12gÞ, and there
are 2,520 solutions in the B0-induced subtrace:

f1; 2gf1; 2; 5; . . . ; 12gf2gf7gf8; 10gf12gjf1; . . . ; 4gf8; 9g;
ð2520 sol:Þ:

Thus, using our algorithm, we are able to evaluate the
different hypotheses of stratification and find all the
subtraces (that is, a representation of all solutions) that
produce each stratification.

4.3.4 On the Execution Time of the Strata Variant

In order to evaluate the execution time of this modified
algorithm, we ran both the original algorithm (that searches
for all the traces) and the modified one (that searches for the
strata-induced subtraces) over the previous permutation
and over an extended permutation, also extracted from
human X and Y chromosomes’ evolution.7 The results are
presented in Fig. 4 and shows that searching for strata-
subtraces runs much faster than searching for all traces.
This is an advantage of modifying the implementation of
the algorithm instead of making all treatments a posteriori,
like in the previous section, for searching perfect traces.

5 CONCLUSIONS, LIMITATIONS AND PERSPECTIVES

We have devised an algorithm that gives a representation of
all the solutions of sorting signed permutations by
reversals, without enumerating each solution. It is the first
algorithm that achieves this, to our knowledge, and it

performs better than the complete enumeration on all the
data on which we tested it.

The implementation of the algorithm is online, inte-
grated to a package for the manipulation of signed
permutations.

Although this program is faster than the previously
published methods, it is still limited (mainly because of
memory) to small permutations, with dð�Þ of at most 20, on
a personal computer that has 1-Gbyte RAM.8 It is sufficient
for some biological applications, as we show on the
comparison of the human X and Y chromosomes (see
Fig. 4). For many data sets however, it is still insufficient
because of the size of the output.

Indeed, if the solution space is dramatically reduced
when dealing with traces of solutions, it is often still too big
to be handled by biologists on large permutations. The
algorithmic limit coincides, therefore, with the limit of the
utility of the solution. An idea to try to solve this problem is
to add further biological criteria (besides the principle of
conserved elements we have shown in Section 4.2) about
perfect traces to reduce the number of traces. If the criteria
can be checked during the computation of traces, and not
only a posteriori, then we can also reduce the amount of
memory and push further the limits of our algorithm. It is
also the case for the strata-induced subtraces, where the
property can be checked during the construction of the
traces, speeding up the execution of the constrained version
related to the evolution of the mammalian sex chromosomes.

The analysis of the traces of solutions related to the gene
positions on the X and Y chromosomes shows the utility of
such an algorithm to explore the solution space of sorting
by reversals. Indeed, while giving one scenario as in [19]
may support some strata boundaries, the examination of the
whole set of traces and strata-induced subtraces gives
different insights on the value of this support.

Of course, one may also consider that the scenario of
evolution that separated the X and Y chromosomes (and
more generally, any instance of the problem) was not an
optimal scenario, or may contain other events than
reversals. For the present methods, if we consider near-
optimal solutions, the space of solutions is bigger and
harder to handle. It is, however, important to go toward this
direction in the future.
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INRIA Rhône-Alpes, in the Helix project. He works at the Laboratoire de
Biométrie et Biologie Evolutive of the CNRS, University of Lyon 1,
France. His research interests include comparative genomics and
combinatorics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

356 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 3, JULY-SEPTEMBER 2008


