Longest Motifs
with a Functionally Equivalent Central Block

1,2,% 3, %%

Maxime Crochemore , Raffaele Giancarlo®**, and Marie-France Sagot®2***
! Institut Gaspard-Monge, University of Marne-la-Vallée
77454 Marne-la-Vallée CEDEX 2, France
maxime.crochemoreQuniv-mlv.fr
2 Department of Computer Science, King’s College London

London WC2R, 2LS, UK

3 Dipartimento di Matematica ed Applicazioni, Universit4 di Palermo

Via Archirafi 34, 90123 Palermo, Italy

raffaele@math.unipa.it

4 Inria Rhéne-Alpes, Laboratoire de Biométrie et Biologie Evolutive

Université Claude Bernard, 69622 Villeurbanne cedex, France
Marie-France.Sagot@inria.fr

Abstract. This paper presents a generalization of the notion of longest
repeats with a block of k don’t care symbols introduced by [8] (for k
fixed) to longest motifs composed of three parts: a first and last that
parameterize match (that is, match via some symbol renaming, initially
unknown), and a functionally equivalent central block. Such three-part
motifs are called longest block motifs. Different types of functional equiv-
alence, and thus of matching criteria for the central block are considered,
which include as a subcase the one treated in [8] and extend to the case
of regular expressions with no Kleene closure or complement operation.
‘We show that a single general algorithmic tool that is a non-trivial ex-
tension of the ideas introduced in [8] can handle all the various kinds of
longest block motifs defined in this paper. The algorithm complexity is,
in all cases, in O(nlogn).

1 Introduction

Crochemore et al. [8] have recently introduced and studied the notion of longest
repeats with a block of k don’t care symbols, where k is fixed. These are words

* Partially supported by CNRS, France, the French Ministry of Research through
ACI NIM, and by Wellcome Foundation and NATO Grants.

** Partially supported by Italian MIUR, grants PRIN “Metodi Combinatori ed Algo-
ritmici per la Scoperta di Patterns in Biosequenze” and FIRB “Bioinformatica per
la Genomica e La Proteomica”. Additional support provided by CNRS, France,
by means of a Visiting Fellowship to Institut Gaspard-Monge and by the French
Ministritry of Research through ACI NIM.

*** Partially supported by French Ministry of Research Programs Biolnformatique
Inter EPST and ACI NIM and by Wellcome Foundation, Royal Society and Nato
Grants.

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 298-309, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Longest Motifs with a Functionally Equivalent Central Block 299

of the form V oF W that appear repeated in a string X, where o* is a region of

length k with an arbitrary content. Their work has some relation with previous
work on repeats with bounded gaps [5,12]. In general, the term motif [9] is
used in biology to describe similar functional components that several biological
sequences may have in common. It can also be used to describe any collection of
similar words of a longer sequence. In nature, many motifs are composite, i.e.,
they are composed of conserved parts separated by random regions of variable
lengths. By now, the literature on motif discovery is very rich [4], although a
completely satisfactory algorithmic solution has not been reached yet.

Even richer (see [15-17]) is the literature on the characterization and detec-
tion of regularities in strings, where the object of study ranges from identification
of periodic parts to identification of parts that simply appear more than once.
Baker [2, 3] has contributed to the notion of parameterized strings and has given
several algorithms that find maximal repeated words in a string that p-match,
i.e., that are identical up to a renaming (initially unknown) of the symbols. Pa-
rameterized strings are a successful tool for the identification of duplicated parts
of code in large software systems. These are pieces of code that are identical,
except for a consistent renaming of variables. Motivated by practical as well as
theoretical considerations, Amir et al. [1] have investigated the notion of func-
tion matching that incorporates parameterized strings as a special case. Such
investigations of words that are “similar” according to a well defined correspon-
dence hint at the existence of meaningful regularities in strings, such as motifs,
that may not be captured by standard notions of equality.

In this paper, we make a first step in studying a new notion of motifs, where
equality of strings is replaced by more general “equivalence” rules. We consider
the simplest of such motifs, i.e., motifs of the form Vo* W, with & fixed, which we
refer to as block motifs. One important point in this study is that the notation o¥,
which usually indicates a don’t care block of length &, assumes in the case of the
present paper a new meaning. Indeed, oF is now a place holder stating that, for
two strings described by the motif, the portion of each string going from position
V] +1 to |V] + k — 1, referred to as the central block, must match according
to a specified set of rules. To illustrate this notion, consider ab ¢? ab and the
rule stating that any two strings described by the motif must have their central
block identical, up to a renaming of symbols. For instance, abxyab and ababab
are both described by ab ¢? ab and the given rule, since there is a one-to-one
correspondence between {x,y} and {a,b}. Notions associated with the example
and the intuition just given are formalized in Section 3, where the central block
oF is specified by a set of matching criteria, all related to parameterized strings
and function matching. Moreover, our approach can be extended to the case
where such central block is a fixed regular expression, containing no Kleene
closure or complement operation. Our main contribution for this part is a formal
treatment of this extended type of motifs, resulting in conditions under which
their definition is sound.

At the algorithmic level, our main contribution is to provide a general algo-
rithm that extracts all longest block motifs, occurring in a string of length n,

300 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

in O(nlogn) time. Indeed, for each of the matching criteria for the central part
presented in Section 3 the general algorithm specializes to find that type of motif
by simply defining a new lexicographic order relation on strings. We also show
that the techniques in [8], in conjunction with some additional ideas presented
here, can be naturally extended to yield a general algorithmic tool to discover
even subtler repeated patterns in a string.

Due to space limitations, proofs will either be omitted or simply outlined.
Moreover, we shall discuss only some of the block motifs that can be identified
by our algorithm.

2 Preliminaries

2.1 Parameterized Strings

We start by recalling some basic definitions from the work by Brenda Baker
on parameterized strings [2,3]. Let X and IT be two alphabets, referred to as
constant and parameter, respectively. A p-string X is a string over the union of
these two alphabets. A p-string is therefore just like any string, except that some
symbols are parameters. In what follows, for illustrative purposes, let X' = {a, b}
and IT = {u,v,x,y}. Baker gave a definition of matching for p-strings, which
reduces to the following;:

Definition 1. Two p-strings X and Y of equal length p-match if and only if
there exists a bijective morphism G : Y UII — X U II such that G(a) = « for
a€e X and Y, = G(X;), Vi € [1..|X]].

For instance, X = abuvabuvu and Y = abryabryx p-match, with G such
that G(u) =z and G(v) = y.

For ease of reference, let Xy = X U II. From now on, we refer to p-strings
simply as strings over the alphabet Xy and, except otherwise stated, we assume
that the notion of match coincides with that of p-match. We refer to the usual
notion of match for strings as exact match. In that case, X is treated as a
set of constants. Moreover, we refer to bijective morphims over X; as renaming
functions. We also use the term prefix, suffix and word in the usual way, i.e.,
the i-th suffix of X is x;x;41 -+ x,, where n is the length of the string. In what
follows, let X denote its reverse, i.e., Tp - - - T1.

We need to recall the definition of parameterized suffix tree, denoted by p-
suffix tree, also due to Baker [2,3]. Its definition is based, among other things,
on a transformation of suffixes and prefixes of a string such that, when they
match, they can share a path in a lexicographic tree. Indeed, consider the string
Y = wuuvvv, made only of the parameters v and v. Notice that uuu and vvv p-
match, and therefore they should share a path when the suffixes of the string are
“stored” in a (compacted or not) lexicographic tree. That would not be possible
if the lexicographic tree were over the alphabet X;. We now briefly discuss the
ideas behind this transformation. Consider a new alphabet Xy = X'|J N, where
N is the set of nonnegative integers.

Longest Motifs with a Functionally Equivalent Central Block 301

Let prev be a transformation function on strings operating as follows on a
string X. For each parameter, its first occurrence in X is replaced by 0, and
each successive occurrence is represented by its distance, along the string, to the
previous occurrence. Constants are left unchanged. We denote by prev(X) the
prev representation of X over the alphabet .

The prev function basically substitutes parameters with integers, leaving the
constants unchanged, i.e., it transforms strings over X into strings over X5. For
example, prev(abryxzaaya) = ab0020aaba.

The notion of match on strings corresponds to equality in their prev repre-
sentation [2, 3]:

Lemma 2. Two strings X and Y p-match if and only if prev(X) =prev(Y).
Moreover, these two strings are a match if and only if X and Y are.

Notice that the prev representation of two strings tells us nothing about
which words, in each string, are a p-match. For instance, consider abxyzrzaaya
and zzzztzwaata. Words xyxzaaya and ztzwaata match, but that cannot be
directly inferred from the prev representation of the two full strings.

Let X be a string that ends with a unique endmarker symbol. A parameter-
ized suffix tree for X (p-suffix tree for short) is a compacted lexicographic tree
storing the prev representation of all suffixes of X.

The above definition is sound in the sense that all factors of X are represented
in the p-suffix tree (that follows from the fact that each such word is prefix of
some suffix). Even more importantly, matching factors share a path in the tree.
Indeed, consider two factors that match. Assume that they are of length m.
Certainly they are prefixes of two suffixes of X. When represented via the prev
function, these two suffixes must have equal prefixes of length at least m (by Fact
2). Therefore, the two words must share a path in the p-suffix tree. Consider again
Y = wuuvvv. Notice that prev(uuuvvv) = 012012 and that prev(vov) = 012, so
uuw and vvv can share a path in the p-suffix tree.

For later use, we also need to define a lexicographic order relation on the prev
representation of strings. It reduces to the usual definition when the string has
no parameters. Consider the alphabet X5 and let <5 denote the standard lexi-
cographic order relation for strings over a fixed alphabet: the subscript indicates
to which alphabet the relation refers to.

Definition 3. Let X and Y be two strings. We say that X is lexicographically
smaller than' Y if and only if prev(X) <o prev(Y). We indicate such a relation
ma <sg.

2.2 Matching via Functions

In what follows, we need another type of relation that, for now, we define as a
Table. A Table T has domain Y7 and ranges over the power set of Xy.

Definition 4. Given two tables T and T’ and two strings X andY of length n,
we say that X table matches Y wvia the two tables T and T', or, for short, that
X and Y t-match, if and only if y; € T(x;) and x; € T'(y;), for all 1 < i < mn.

302 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

For instance, let T'(a) = {a,u}, T(b) = {x,v,y}, T'(a) = T'(u) = {a} and
T(z) =T'(v) =T'(y) = {b}. Then X = aaabbb and Y = auazvy t-match.

A first difference between table and parameterized matches is that in the
first case, all symbols in X are treated as parameters and the correspondence
is fixed once and for all.

A more substantial difference between table and parameterized matches is
that tables may not be functions (as in the example above). For arbitrary ta-
bles, t-matching is also in general not an equivalence relation. Indeed, although
symmetry is implied by the definition, neither reflexivity nor transitivity are.
Notice also that t-matching incorporates the notion of match with don’t care.
In this latter case, both tables assign to each symbol the don’t care symbol. We
call this table the don’t care table.

3 Functions and Block Motifs

We now investigate the notion of block motif, which was termed repeat with a
block of don’t cares in [8], in conjunction with that of parameterized and table
match.

Let 7 be a family of tables and k an integer, with 0 < k& < n, where n is the
length of a string X. Consider also a family of renaming functions.

Definition 5. Let Y be a factor of X. Y is a general k-repeat if and only if
the following conditions hold: (a) Y can be written as VQW, V and W both
non-empty and |Q| = k; (b) there exists another word Z of X, two renaming
functions F' and G and two tables in T, such that Z = F(V)Q'G(W) and Q and
Q' t-match, via the two tables.

Definition 6. Let R(k,i,7) be the following binary relation on strings of length
m, withl <i<j+1,j<mandk=j—1i+1:Z R(k,i,j) Y if and only if
(z122- - 2zi—1), (Zjg1 -+ 2m) and (y1y2 - - Yi—1), (Yj+1 - - - Ym) match, respectively,
while (z; - - - zj) and (y; - - - y;) t-match via two not necessarily distinct tables in T .

We now give a formal definition of motif. Intuitively, it is a representative
string that describes multiple occurrences of “equivalent” strings.

Definition 7. Given a string X, consider a factor Y of X, of length m, and
assume that it is a general k-repeat. Let i and j be as in Definition 6 and con-
sider all factors Z of X such that Y R(k,i,j) Z. Assume that R(k,i,7) is an
equivalence relation. Then, for each class with at least two elements, a block mo-
tif is any arbitrarily chosen word in that class, say Y. As for standard strings,
the block motif can be written as y1ya - - - yi—1 O Yj+1 - Ym, once it is under-
stood that oF is a place holder specifying a central part of the motif and that the
matching criterion for that part is given by the family of tables.

For instance, restrict the family of tables to be the don’t care table only. Let
Z = abvvva and Y = abzzya; then we have Z R(2,3,4) Y with the identity
function for the prefix ab and G(v) = y and G(a) = a for the suffix of length

Longest Motifs with a Functionally Equivalent Central Block 303

2. Moreover, consider X = Y Z. Then, ab o® va is a block motif. Also ab¢? ya
is a block motif, but it is equivalent to the other one, given the choices made
about the family of tables and the fact that we are using a notion of match via
renaming.

We now investigate the types of table families that allow us to properly define
block motifs. As it should be clear from the example discussed earlier, the notion
of block motifs, as defined in [8], is a special case of the ones defined here. Tt is
also clear that the family of all tables yields the same notion of block motif as the
one with the don’t care table only. However, it can be shown that exclusion of
the don’t care table is not enough to obtain a proper definition of block motifs.
Fortunately, there are easily checkable sufficient conditions ensuring that the
family of tables guarantees R to be an equivalence relation, as we outline next.

Definition 8. Consider two tables T and T'. Let their composition, denoted by
o, be defined by T o T'(a) = U.eq (o) T(c), for each symbol a in the alphabet.
Tha family T is closed under composition if and only if, for any two tables in
the family, their composition is a table in the family.

Definition 9. A table T contains a table T' if and only if T'(a) C T(a), for
each symbol a in the alphabet.

Lemma 10. Assume that T is closed under composition and that there exists a
table in T containing the identity table. Then R is an equivalence relation.

We now consider some interesting special classes of table functions, in par-
ticular four of them, for which we can define block motifs. Let 7, consist only of
the don’t care table. Let 7, and 7, consist of renaming functions and many-to-
one functions, respectively. In order to define the fourth family, we need some
remarks.

The use of tables for the middle part of a block motif allows us to specify
simple substitution rules a bit more relaxed than renaming functions. We discuss
one of them. Let us partition the alphabet into classes and let P denote the
corresponding partition. We then define a partition table 7p that assigns to each
symbol the class it belongs to. For instance, fix two characters in the alphabet,
say a and b. Consider the table, denoted for short Ty p, that assigns {a,b} to
both @ and b and the symbol itself to the remaining characters. In a sense, 7p
formalizes the notion of groups of characters being interchangeable, or equivalent.
Such situations arise in practice (see for instance [6,11,13,14,19,21,22]), in
particular in the study of protein folding.

Let the fourth family of tables consist of only 7p, for some given partition P
of the alphabet 3.

Lemma 11. Pick any one of T,,7,.,7,, or Tp and consider the relation R in
Definition 6 for the chosen family. R is an equivalence relation. In particular,
when the chosen family is 7T,,, R is the same relation as that for 7,.. Therefore,
for all those tables one can properly define block motifs.

304 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

Let the family of tables be one-to-one functions. Consider X = Y Z, where
Y = abzzya and Z = abvvva. Then, ab o? va and ab o2 ya are block motifs
representing the same class, the one consisting of Y and Z. We can pick any
one of the two, since they are equivalent. Notice that the rule for the central
part states that the corresponding region for two strings described by the motifs
must be each a renaming of the other.

Let the family of tables be T, 3, defined earlier. Let Z = cdccdacde and
Y = cdcedbede. Let X = ZY. Then cdc o3 cdc is a block motif, representing
both Y and Z. Again, the rule for the central part states that the corresponding
region for two strings described by the motif must be identical, except that a
and b can be treated as the same character.

4 Longest Block Motifs with a Fixed Partition Table

We now give an algorithm that finds all longest block motifs in a string, when we
use a partition table, known and fixed once and for all. The algorithm is a non-
trivial generalization of the one introduced in [8]. In fact, we show that the main
techniques used there, and that we nickname as the two-tree trick, represent a
powerful tool to extract longest block motifs in various settings, when used in
conjunction with the algorithmic ideas presented in this section.

Indeed, a verbatim application of the two-tree trick would work on the p-
suffix trees for the string and its reverse. Unfortunately, that turns out to be
not enough in our setting. We need to construct a tree somewhat different from
a p-suffix tree, which we refer to as a p-suffix tree on a mixed alphabet. Using
this latter tree, the techniques in [8] can be extended. Moreover, due to the
generality of the algorithm constructing this novel version of the p-suffix tree,
all the techniques we discuss in this section extend to the other three types of
block motifs defined in section 3, as it is briefly outlined in section 5.

For each class in P, select a representative. The representatives give a reduced
alphabet Ys3. For any string Y, let Y be its corresponding string on the new
alphabet, obtained by replacing each symbol in Y with its representative. In
what follows, for our examples, we choose Ty, 1, with a as representative. Consider
a string X and assume that it has block motif V oF W, with respect to table
Tp. We recall that V oF W is a shorthand notation for the fact that strings in
the class (a) t-match in the positions corresponding to the central part and, (b)
they (parameterize) match in the positions corresponding to V and W. We are
interested in finding all longest block motifs.

Consider a lexicographic tree T, storing a set of strings. Let Y be a string.
The locus w of Y in T, if it exists, is the node such that Y matches the string
corresponding to the path from the root of T' to u. Notice that when T is a
p-suffix tree, then prev(Y’) must be the string on the path from the root to w.
For standard strings, the definition of locus reduces to the usual one. With those
differences in mind, one can also define in the usual way the notion of contracted
and extended locus of a string. Moreover, given a node u, let d(u) be the length
of the string of which w is locus.

Longest Motifs with a Functionally Equivalent Central Block 305

4.1 A p-Suffix Tree on a Mixed Alphabet

Definition 12. The modified prev representation of a string Y, mprev(Y), is
defined as follows. If |Y| < k, then it is Y. Else, it is Wprev(Z), whereY = WZ
and |W| = k.

For instance, let Y = abauuzz, and k = 3. Then, its modified prev represen-
tation is mprev(Y) = aaa0101.

Definition 13. Let X be a string with a unique endmarker. Let T% be a lex-
icographic tree storing each suffix of X in lexicographic order, via its mprev
representation. That is, T% is like a p-suffix tree, but the initial part of each
suffiz is represented on the reduced alphabet.

For instance, let X = abbabbb and k = 2, the first suffix of X is stored as
aababbb.

Notice that T% has O(n) nodes, since it has n leaves and each node has
outdegree at least two. We anticipate that we only need to build and use the
topology of T%, since we do not use it for pattern matching and indexing, as it
is costumary for those data structures.

We now show how to build T% in O(nlogn) time. Let BuildTree be a pro-
cedure that takes as input the n suffixes of X and returns as output 7%. The
only primitive that the procedure needs to use is the check, in constant time, for
the lexicographic order of two suffixes, according to a new order relation that
we define. The check should also return the longest prefix the two suffixes have
in common, and which suffix is smaller than the other.

Definition 14. Let Y and Z be two strings. Let <3 be a lexicographic order
relation over X3. We define a new order relation Y <,, Z as follows. When
Y| < k, it must be Y <s U, where U is a prefiz of Z and |U| = |Y|. Assume
that |Y| >k, and let Z=US andY = RP, with |R| = |U| = k. Then, it must
be R <3 U or R =U but prev(P) <y prev(S). Abusing notation, we can write
that mprev(Y') <., mprev(Z), whenY <,, Z.

Let T be a tree and consider two nodes u and v. Let LC' A(u,v) denote the
lowest common ancestor of u and v. Given the suffix tree T'¢ [18] and the p-
suffix tree Tx, assume that they have been processed to answer LC A queries in
constant time [10,20]. Then, it is easy to check, in constant time, the <, order
of two suffixes of X, via two LCA queries in those trees. Moreover, that also
gives us the length of the matching prefix. The details are omitted. We refer to
such an operation as compare(i,j), where ¢ and j are the suffix positions. It
returns which one is smaller and the length of their common prefix.

Now, BuildTree works as follows. It simply builds the tree, without any
labelling of the edges, as it is usual in lexicographic trees.

306 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

ALGORITHM BuildTree

1. Using compare and the <,, relation, sort the suffixes of X with, say, Heapsort
[7].
2. Process the sorted list 41, - - -, i, of suffixes in increasing order as follows:

2.1 When the first suffix is processed, create a root and a leaf, push them in
a stack in the order they are created. Label the leaf with 4.

2.2 Assume that we have processed the list up to iy and that we are now
processing i441. Assume that on the stack we have the path from the
root to leaf labeled ¢4 in the tree built so far, from bottom to top. Let it
be uy,ug, -, us.

2.2.1 Using compare and the <, relation, find the longest prefix that 4,
and ¢g41 have in common. Let Z denote that prefix and d be its
length.

2.2.2 Pop elements from the stack until one finds two such that d(u;) <
d < d(uit1). Pop w;q1 from the stack. If d(u;) = d, then u; is the
locus of Z in the tree built so far. Else, u; and w41 are its contracted
and extended locus, respectively. If u; is the locus of Z, add a new
leaf labeled 7,441 as offspring of u; and push it on the stack. Else,
create a new internal node u, as locus of Z, add it as offspring of w;
and make u;y; an offspring of u. Moreover, add a new leaf labeled
ig+1 as offspring of v and push the new created nodes on the stack,
in the order in which they were created. We now have on the stack
the path from the root to the leaf labeled ig1.

Lemma 15. Tree T% can be correctly built in O(nlogn) time.

4.2 The Algorithm

Consider the trees T% and T, where the latter one is a p-suffix tree. For each
leaf labeled ¢ in T, change its label to be n + 2 — 4, so that whenever the left
part of a block motif starts at 4 in X, we have the position in X where the right
part starts, including the central part. We refer to those positions as twins. Visit
T in preorder. Consider the two leaves {1 € T’y and f5 € T%;, corresponding to
a pair of twins. Assign to £, the same preorder number as that of 1. Let V of W
be a block motif and let ¢ be one of its occurrences in X, i.e., where it starts. In
order to simplify our notation, we refer to such an occurrence via the preorder
number of the leaf assigned to i+ |V |41 in T%. From now on, we shall simply be
working with those preorder numbers. Indeed, given the tree we are in, we can
recover the positions in X or X corresponding to the label at a leaf in constant
time, by suitably keeping a set of tables. The details are as in [8]. Moreover, we
can also recover the position where a block motif occurs, given the block motif
and the preorder number assigned to the position. Given a tree T, let L(v) be
the list of labels assigned to the leaves in the subtree rooted at v. For the trees
we are working with, those would be preorder numbers.

Longest Motifs with a Functionally Equivalent Central Block 307

Definition 16. We say that V oF W is mazimal if and only if extending any
word in the class, both to the left and to the right, results in the loss of at least
one element in the class. That is, by extending the strings in the class, we can
possibly get a new block motif, but its class does not contain that of V o W.

For instance, let X = aabbazzbrababyyayabbbuu. Block motif abo? xx is max-
imal. Indeed, it represents the class of words {abbaxx, ababyy, abbbuu}. However,
extending any of those words either to the right and to the left results in a smaller
class.

Lemma 17. Consider a string X, its reverse X, the trees T and T%. Assume
that V o* W is mazimal. Pick any representative in the class, say VQW . Then
V' and mprev(QW) have a locus u in T and v in T, respectively. Moreover,
all the occurrences of Vo8 W are in L(u) () L(v). Conversely, pick two nodes u'
and v', in T and T, respectively. Assume that there are at least two labels i
and j in L(u') (L(v") such that LCA(i, j) = u' and LCA(i,j) = ', in T and
T% , respectively. Assume also that d(v') > k. Then, they are occurrences of a
mazimal block motif.

We also need the following;:

Lemma 18. Consider an internal node v in T and two of its offsprings, say,
v1 and vo. Let ji,j2,- -, jm be the sorted list of labels assigned to the leaves in
the subtree rooted at vi and let © be a label assigned to any leaf in vo. Let g be the
first index such that j, < i. Similarly, let c be the first index such that i < j.. The
mazximal block motif of mazimum length that i forms with j1, j2, -+, jm S either
with jg, if it exists, or with j., if it exists, provided that either d(LC A(i,j4)) > k
or d(LCA(i,3j.)) > k and the LC A is computed on T%.

We now present the algorithm.

ALGORITHM LM

1. Build T and T’. Visit T in preorder and establish a correspondence be-
tween the preorder numbers of the leaves in T’y and the leaves in T. Trans-
form T5 into a binary suffix tree B (see [8]);

2. Visit B bottom up and, at each node, merge the sorted lists of the labels
(preorder numbers in T%) associated to the leaves in the subtrees rooted at
the children. Let these lists be A; and Ay and assume that |A;] < |Asgl.
Merge A; into As. Any time an element 4 of the first list is inserted in the
proper place in the other, e.g., j, and j. in Lemma 18 are identified, we
only need to check for two possibly new longest maximal block motifs that
i can generate. While processing the nodes in the tree, we keep track of the
longest maximal block motifs found.

Theorem 19. ALGORITHM LM correctly identifies all longest block motifs in a
string X, when the matching rule for the central part is given by a partition
table. It can be implemented to run in O(nlogn) time.

308 Maxime Crochemore, Raffaele Giancarlo, and Marie-France Sagot

Proof. The proof of correctness comes from Lemma 18. The details of the anal-
ysis are as in [8] with the addition that we need to build both T5 and T', which
can be done in O(nlogn) time ([3,18] and Lemma 15). O

5 Extensions

In this Section we show how to specialize the algorithm in Section 4 when the
central part is specified by 75. All we need to do is to define a lexicographic
order relation, analogous to the one in Definition 14. In turn, that will enable
us to define a variant of the tree T%, which can still be built in O(nlogn)
time with Algorithm BuildTree and used in Algorithm LM to identify block
motifs with the don’t care symbol. We limit ourselves to define the new tree. An
analogous reasoning will yield algorithms dealing with a central part defined by
either renaming functions or by regular expressions with no Kleene Closure or
Complement operation. The details are omitted. For the new objects we define,
we keep the same notation as for their analogous in Section 4.

Let * be a symbol not belonging to the alphabet and not matching any other
symbol of the alphabet. Consider Definition 12 and change it as follows:

Definition 20. The modified prev representation of a string Y, mprev(Y), is
defined as follows. If |Y| = m < k, then it is ™. Else, it is +*prev(Z), where
Y =WZ and |W| = k.

For instance, let Y = abauuzz, and k = 3. Then, its modified prev represen-
tation is mprev(Y') = * x x0101.

We now define another lexicographic tree, still denoted by T%. Consider
Definition 13 and change it as follows:

Definition 21. Let X be a string with a unique endmarker. Let T% be a lexi-
cographic tree storing each suffix of X, via their mprev representation according
to Definition 20. That is, T% is like a p-suffix tree, but the initial part of each
suffix is represented with *’s.

For instance, let X = abbabbb and k = 2, the first suffix of X is stored as
* % babbb.

Finally, consider Definition 14 and change it as follows:

Definition 22. Let Y and Z be two strings. We define a new order relation
Y <,n Z as follows. When |Y| < k, it must be |Y| < |Z|. Assume that |Y| > k,
and let Z=US andY = RP, with |R| = |U| = k. Then, it must be prev(P) <q
prev(S). With a little abuse of notation, we can write mprev(Y) <., mprev(Z).

Observe that Algorithm BuildTree will work correctly with this new defi-
nition of lexicographic order, except that now, in order to compare suffixes, we
need only the p-suffix tree T';. Finally, the results in Section 4.2 hold verbatim:

Theorem 23. ALGORITHM LM correctly identifies all longest block motifs in a
string X, when the matching rule for the central part is given by the don’t care
table. It can be implemented to run in O(nlogn) time.

Longest Motifs with a Functionally Equivalent Central Block 309

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Amir, Y. Aumann, R. Cole, M. Lewenstein, and Ely Porat. Function matching:
Algorithms, applications, and a lower bound. In Proc. of ICALP 03, Lecture Notes
in Computer Science, pages 929-942, 2003.

B. S. Baker. Parameterized pattern matching: Algorithms and applications. J.
Comput. Syst. Sci., 52(1):28-42, February 1996.

B. S. Baker. Parameterized duplication in strings: Algorithms and an application
to software maintenance. SIAM J. Computing, 26(5):1343-1362, October 1997.
A. Brazma, 1. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the auto-
matic discovery of patterns in biosequences. J. of Computational Biology, 5:277—
304, 1997.

G.S. Brodal, R.B. Lyngsg, C.N.S. Pederson, and J. Stoye. Finding maximal pairs
with bounded gaps. J. of Discrete Algorithms, 1(1):1-27, 2000.

H.S. Chan and K.A. Dill. Compact polymers. Macromolecules, 22:4559-4573, 1989.
T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms
— Second Edition. MIT Press, Cambridge, MA, 1998.

Maxime Crochemore, Costas S. Iliopoulos, Manal Mohamed, and Marie-France
Sagot. Longest repeated motif with a block of don’t cares. In M. Farach-Colton,
editor, Latin American Theoretical INformatics (LATIN), number 2976 in LNCS,
pages 271-278. Springer-Verlag, 2004.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. on Computing, 13:338-355, 1984.

S. Karlin and G. Ghandour. Multiple-alphabet amino acid sequence comparisons
of the immunoglobulin kappa-chain constant domain. Proc. Natl. Acad. Sci. USA,
82(24):8597-8601, December 1985.

R. Kolpakov and G. Kucherov. Finding repeats with fixed gaps. In Proc. of SPIRE
02,, pages 162-168, 2002.

T. Li, K. Fan, J. Wang, and W. Wang. Reduction of protein sequence complexity
by residue grouping. Protein Eng., (5):323-330, 2003.

X. Liu, D. Liu, J. Qi, and W.M. Zheng. Simplified amino acid alphabets based on
deviation of conditional probability from random background. Phys. Rev F, 66:1-9,
2002.

M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.

M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press,
2002.

M. Lothaire. Applied Combinatorics on Words. in preparation, 2004.
http://igm.univ-mlv.fr /~berstel /Lothaire/index.html.

E.M. McCreight. A space economical suffix tree construction algorithm. J. of ACM,
23:262-272, 1976.

L.R. Murphy, A. Wallgvist, and R.M. Levy. Simplified amino acid alphabets for
protein fold recognition and implications for folding. Protein. Eng., 13:149-152,
2000.

B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification
and parallelization. Siam J. on Computing, 17:1253-1262, 1988.

M. Spitzer, G. Fuellen, P. Cullen, and S. Lorkowsk. Viscose: Visualisation and
comparison of consensus sequences. Bioinformatics, to appear, 2004.

J. Wang and W. Wang. A computational approach to simplifying the protein fold-
ing alphabet. Nat. Struct. Biol., 11:1033-1038, 1999.

	1 Introduction
	2 Preliminaries
	2.1 Parameterized Strings
	2.2 Matching via Functions

	3 Functions and Block Motifs
	4 Longest Block Motifs with a Fixed Partition Table
	4.1 A p-Suffix Tree on a Mixed Alphabet
	4.2 The Algorithm

	5 Extensions
	References

