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Abstract

A k-repeat is a string wk =u∗ kv that matches more than one substring of x, where ∗ is the don’t care letter and k > 0. We propose
an O(n log n)-time algorithm for computing all longest k-repeats in a given string x = x[1..n]. The proposed algorithm uses suffix
trees to fulfill this task and relies on the ability to answer lowest common ancestor queries in constant time.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In biology the term motif is often used to describe similar functional components that different biological sequences
(DNA, RNA, proteins) may have in common. For instance, in DNA sequences the sets could represent noncoding repeat
elements, promoter sequences, regulatory sites or enhancers/silencers. In many cases, such as promoter sequences or
regulatory sites, the motifs are composite, i.e., the functional components represented by such motifs are in fact
composed of two or more strictly/approximaly conserved parts separated by random regions of variable lengths.

A repeat in a string x is a substring w of x that occurs more than once. For given fixed k > 0, a k-repeat is a string
wk = u ∗k v that matches more than one substring of x, where ∗ is the don’t care letter. A longest k-repeat is a k-repeat
of maximum length over x.

In this paper, we concentrate on calculating a special kind of motifs. By considering the biological sequence as a
string, a k-repeat can be seen as a motif with two solid parts separated by a random region (gap) of length k. We propose
an O(n log n)-time algorithm for computing all longest k-repeats as well as their corresponding matching substrings
in a given string of length n.
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The paper is organised as follows: In Section 2, we state the preliminaries used throughout the paper. In Section 3,
we define the k-repeats problem and describe in general how to compute all longest k-repeats using two suffix trees.
In Section 4, we present our method to speed up the computation. In Section 5, we give details of the algorithm. In
Section 6, we analyse the running time of the algorithm. Conclusions are drawn in Section 7.

2. Preliminaries

Throughout the paper, a string x of length n is considered as x[1..n] = x[1]x[2] · · · x[n], where x[i] ∈ ! is the ith
letter of x and ! is a finite alphabet. The number of letters in x is called the length of x, and is denoted by |x|. The empty
string (of length zero) is denoted by ". The reverse of x is denoted by ←−x .

A symbol ‘∗’ /∈ ! is called a don’t care letter. The don’t care letter matches any letter in the alphabet. Two letters #
and $ are said to match (# = $) if they are equal or one of them is don’t care.

A repeat in a string x is a substring w of x that occurs more than once. Let Nw be the number of times w occurs
in x. That is, if Lw = {i1, i2, ...} is the complete occurrences-list of w in x, then Nw = |Lw|. A repeat w is called
left-maximal if and only if N#w %= Nw for any # ∈ ! − {"}. Respectively, a repeat w is called right-maximal if
and only if Nw$ %= Nw for any $ ∈ ! − {"}. If w is both left-maximal and right-maximal then it is said to be
maximal.

For given k > 0, a k-repeat is a string wk = u ∗k v that matches more than one substring of x, where ∗ is the don’t
care letter, and u and v are both over !. We will call u and v the left-part and right-part of the wk , respectively. The
longest k-repeat is a k-repeat of maximum length over x. Note that the longest k-repeat in x in not necessarily unique.
Here, !∗

k is used to denote the length of the longest k-repeat in a given string x. Note that, if !∗ is the length of the
longest repeat in x then !∗

k !!∗ + k.
We present a method for finding all longest k-repeats in a given string x. Our method uses the suffix tree of x as a

fundamental data structure. A complete description of suffix trees is beyond the scope of this paper, and can be found
in [7,8]. However, for the sake of completeness, we will briefly review the notion.

Definition 1 (Suffix tree). A suffix tree T (x) of the string x$ = x[1..n]$, n!1 is a rooted directed tree with exactly n
leaves numbered 1 to n + 1, where $ /∈ !. Each internal node has at least two children and each edge is labelled with a
nonempty substring of x. No two edges descending from a node can have edge-labels beginning with the same letter.
The key feature of the suffix tree is that for any leaf i, the concatenation of the edge-labels on the path from the root to
leaf i exactly spells out the ith suffix x[i..n + 1] of x, with n + 1 denoting the empty suffix.

For any node v, the path-label of v is the label of the path from the root of T (x) to v; it is denoted by label(v). The
string-depth of v is the number of letters in v’s path-label; it is denoted by depth(v). The leaf-list of v is the set of the
leaf numbers in the subtree rooted at v; it is denoted by LL(v).

Several algorithms construct the suffix tree T (x) in !(n) time and space, assuming fixed alphabet (see for example
[7,8]). All the internal nodes in T (x) have an out-degree between 2 and |!|. Therefore, we can transform the suffix
tree T (x) into a binary one B(x) by replacing every node v in T (x) with out-degree d > 2 by a binary tree with d − 1
internal nodes and d −2 internal edges, where the d leaves are the d children of v. Since T (x) has n leaves, constructing
B(x) requires adding at most n − 2 new nodes. Each new node can be added in constant time. This implies that the
binary suffix tree B(x) can be constructed in O(n) time.

Our method makes use of Schieber and Vishkin’s lowest common ancestor (LCA) algorithm [11]. For a given rooted
tree T , the LCA of two nodes u and v is the deepest node in T that is ancestor of both u and v. After a linear amount
of preprocessing of a rooted tree, any two nodes can be specified and their lowest common ancestor found in constant
time. That is, a rooted tree with n nodes is first preprocessed in O(n) time, and thereafter any lowest common ancestor
query takes only a constant time to be solved, independent of n.

In the context of suffix trees, the situation commonly arises that both u and v are leaves in T (x), where x[i..n] and
x[j..n] are the suffixes represented by u and v, respectively, for integers i and j in the range 1..n + 1. In this case,
the node w = LCA(u, v) is the root of the minimum size subtree which contains u and v. Note that the path-label
of w (label(w)) is the longest common prefix of x[i..n] and x[j..n]. The ability to find a longest common prefix is an
important primitive in many string problems.



250 M. Crochemore et al. / Theoretical Computer Science 362 (2006) 248 –254

3. The longest k-repeats problem

The longest k-repeats problem requires finding all longest k-repeats in a given string x together with their length !∗
k .

For example, x = abcdabcaef abcgabc has 2-repeats

∗2, a∗2, ∗2a, a ∗2 a, ab ∗2 aabc ∗2 d, ab ∗2 abc, abc ∗2 bc,

among others, of which the last two are the longest (!∗
2 = 7). The first longest 2-repeat, ab∗2 abc, matches both abcdab

and abcgabc. The latter, abc ∗2 bc, matches both abcdabc and abcgabc.
By definition, a k-repeat matches at least two substrings in x. Let w∗

k = u ∗k v be one of the longest k-repeat in x that
matches both x[i..i + !∗

k] and x[j..j + !∗
k], where 1" i, j "(n− !∗

k). Therefore, the left-part u occurs at positions i and
j and the right-part v occurs at positions i + |u| + k and j + |u| + k. Clearly, with respect to these two occurrences,
u needs to be left-maximal repeat while v needs to be right-maximal repeat in x, that is, x[i − 1] %= x[j − 1] and
x[i + !∗

k] %= x[j + !∗
k]. Otherwise, w∗

k cannot be a longest k-repeat.
The suffix tree provides a compact representation of all maximal repeats. In fact, all right-maximal repeats in x are

represented naturally by the suffix tree of x. Similarly, all left-maximal repeats of x are represented by the suffix tree of
←−x . Thus, T (←−x ) can be used to generate the left-part, while T (x) can be used to generate the right-part of the k-repeat.
Note that the path-label (label(v)), of each internal node v ∈ T (←−x ), represents the reverse of a left-maximal repeat
in x ending at positions {j | j = n + 1 − i and i ∈ LL(v)}.

An obvious approach to solve the longest k-repeats problem is as follows:
1. generate all possible left-maximal repeats u, together with their occurrences list Lu;
2. for each pair of its occurrence positions i1 and i2, calculate the right-maximal repeat v, if any, that occurs at both

j1 = i1 + |u| + k and j2 = i2 + |u| + k;
3. calculate the length of the corresponding k-repeat wk = ←−u ∗k v;
4. report the longest k-repeats.

The above can be achieved as follows: First, replace each index i in T (←−x ) by n + 1 − i + (k + 1). Thus, for each
node u ∈ T (←−x ), the modified leaf-list L̃L(u) = {j | j = n + 1 − i + (k + 1) and i ∈ LL(u)}. Then, traverse T (←−x )

from bottom up, visiting each node in the tree. In detail, walk from the leaves upward, visiting a node u only after

Fig. 1. The suffix tree of gcctaxxxgcata.
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Fig. 2. The suffix tree of atacgxxxatccg. Each index i is replaced by 16 − i. The gray nodes may be omitted.

visiting every child of u. During the visit to u, calculate for each possible pair i1, i2 ∈ L̃L(u) the node v = LCA(i1, i2)

in T (x). Finally, calculate the length of the k-repeat wk = ←−−−−−
label(u) ∗k label(v), which is equal to depth(u) +

k + depth(v).
For example, if k = 1 and x = gcctaxxxgcata, then Figs. 1 and 2 represent the suffix trees of x and ←−x , respectively.

Note that, each index i in T (←−x ) has been replaced by 16− i. Consider node u in T (←−x ) labelled by ‘cg’. The modified
leaf-list of u is L̃L(u) = {4, 12}. Let node v be the lowest common ancestor of nodes 4 and 12 in T (x), label(v) = ‘ta’.
Thus, gc ∗ ta is a 1-repeat. Since it is the longest 1-repeat in x, !∗

1 equals 5.
Clearly, this method takes O(n3) time. This is because there are O(n) nodes in T (←−x ) representing O(n) possible

candidates for the left-maximal left-part. For each node u ∈ T (←−x ), the size of the modified leaf-list L̃L(u) is O(n).
Hence, there are O(n2) pairs to be checked for possible extension with a block of k don’t cares and a right-maximal
right-part. Checking each pair is done using a longest common ancestor query in O(1) time. This gives a total of O(n3)

time for this method. In the next section, we will show how this method can be modified to run in O(n log n) time.

4. Speeding up the calculation

In this section, we will explain how the method suggested in the previous section can be modified efficiently in
order to avoid checking all pairs in the modified leaf-lists. The idea is based on two main observations. Let B(←−x ) be
the binary suffix tree of ←−x and let u1 and u2 be the two children of node u. Moreover, let L̃L(u1) = {i1, i2, ...} and
L̃L(u2) = {j1, j2, ...} be the modified leaf-lists of u1 and u2. Our first observation states that, if we traverse B(←−x )

bottom-up, then at each internal node u and for all possible integers p and q, we only need to check all pairs ip, jq for
possible extension with k don’t cares and right-maximal right-part. Thus, there is no need to check pairs ip, iq . This is
because such pairs have been already checked during the visit to some nodes v1, where v1 is in the subtree rooted at
u1. Similarly, we do not need to check pairs jp, jq . This is because such pairs have been also checked during the visit
to some nodes v2, where v2 is in the subtree rooted at u2.

The second observation is based on our interest in calculating all longest k-repeats and not in calculating all possible
k-repeats. Recall that checking each pairs of indices for a possible extension is done using a constant-time longest
common ancestor query. One of the most interesting properties of the lowest common ancestor is ‘the leaves that are
close together have a least common ancestor of greater depth’. In the context of suffix tree, the depth of a node is the
length of the longest common prefix represented by that node. By traversing the suffix tree in a depth-first manner,
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the suffixes of a string can be ordered by assigning a number to each leaf of the suffix tree; we will call this number a
preorder number. Using the preorder numbers of the leaves, the previous property of the longest common ancestor can
be extended to suffix trees as follows:

Lemma 1. Let i, j and k be the preorder numbers given to three leaves u, v and w in a suffix tree T (x). If i < j < k,
then the depth of LCA(u, v) cannot be less than the depth of LCA(u, w).

Proof. Let s and t be LCA(u, v) and LCA(u, w), respectively. The proof is based on the following three facts:
1. Two nodes are in different subtrees of their least common ancestor.
2. For two subtrees of a node, all elements of the left subtree have a smaller preorder number than any element of the

right subtree.
3. All ancestors of a node are on the path from it to the root.
Thus, if the depth of s is less than the depth of t then t must be on the path from u to s. Hence, t and any descendent of
it must be in the same subtree of s as u, which is a subtree to the left of that of s containing v. This requires k to be less
than j, which is a contradiction. #

This observation suggests the following: For each node u ∈ B(←−x ), where u1 and u2 are the two children of u; and
for all possible indices ip ∈ L̃L(u1), it is enough to check only two pairs ip, jq and ip, jr , where jq and jr are the
closest leaves to leaf ip in T (x) and jq, jr ∈ L̃L(u2). Efficient calculation of jq and jr cannot be achieved without
maintaining the indices in the modified leaf-lists in a sorted order according to their preorder numbering in T (x). In
the next section, we present details of our algorithm and the data structure used.

5. Algorithm

The initialisation phase of the algorithm consists of two main steps. In the first step, the suffix tree T (x) is built and
then traversed in a preorder manner where a number is assigned to each leaf. Let no(i) be the preorder number assigned
to the leaf i. For example, if T (x) is the tree of Fig. 1 then

i 1 2 3 4 5 6 7 8 9 10 11 12 13
no(i) 7 5 6 9 2 11 12 13 8 4 1 10 3

In the second step, the binary suffix tree B(←−x ) is built. In addition, a list is associated with each leaf i, initialised
with no(n + 1 − i + (k + 1)).

Note that the lists associated with the internal nodes of B(←−x ) can be calculated during the bottom-up traversal of
the binary suffix tree B(←−x ). The list associated with each internal node u is the sorted union of the disjoint lists of
the two children of u. This list can be considered as a modified leaf-list sorted according to the preorder numbers from
T (x). In order to guarantee an efficient merge of the lists, they are implemented using AVL-trees [3]. Although this
implementation is similar to the one used in [4,9], any other type of balanced search trees may be used. The efficient
merging of two AVL trees is essential to our method. The results on the merge operations of two height-balanced trees
stated in [5] are summarised in the following lemmas.

Lemma 2. Two AVL trees of size at most n and m can be merged in time O
(
log

(n+m
n

))
.

Lemma 3. Given a sorted list of elements e1 "e2 " · · · "en, and an AVL tree T of size at most m, where m!n, we
can find qi =max{x ∈ T |x"ei} for all i = 1, 2, . . . , n in time O(log

(n+m
n

)
).

Using the smaller-half trick, which states that ‘the sum over all nodes v of an arbitrary binary tree of terms that are
O(n1), where n1 and n2 are the numbers of leaves in the subtrees rooted at the children of v and n1 "n2, is O(n log n)’,
the following lemma stated in [4] is easy to prove:

Lemma 4. Let T be an arbitrary binary tree with n leaves. The sum over all internal nodes v in T of terms log
(n1+n2

n1

)
,

where n1 and n2 are the numbers of leaves in the subtrees rooted at the two children of v, is O(n log n).



M. Crochemore et al. / Theoretical Computer Science 362 (2006) 248 –254 253

Fig. 3. All-Longest-k-Repeats algorithm.

The algorithm for calculating all longest k-repeats and their length !∗
k in a given string x is presented in Fig. 3. Recall

that at every node u in the binary suffix tree B(←−x ), we construct an AVL tree Au that stores the sorted list of all the
preorder numbers associated with the elements in L̃L(u). If u is a leaf, then Au is constructed directly (Line 7). If
u is an internal node, then Au is constructed by merging Au1 and Au2 (Line 24), where Au1 and Au2 are the AVL
trees associated with the two children of u and |Au1 |" |Au2 |. Before constructing Au, we use Au1 and Au2 to check
for an occurrence of longest k-repeat. If an integer p in Au1 is going to be inserted between q and r in Au2 , then q
and r are efficiently obtained (Lemma 3). Let vp, vq and vr be the leaves in T (x) with a preorder number p, q and
r, respectively. The algorithm calculates the string-depth of both vpq = LCA(vp, vq) and vpr = LCA(vp, vr). Let
v = vpq if depth(vpq)"depth(vpr), vpr otherwise. Then, the algorithm checks whether depth(u) + k + depth(v) is
greater than max, where max is the current calculated length of the longest k-repeat. If so, max is updated and the pairs
(u, v) are stored in a list M. The algorithm returns the value !∗

k and the list M. Each element in M is a pair of vertices
(u, v) representing one of the longest k-repeats that is equal to ←−−−−−

label(u) ∗k label(v), where v ∈ T (x) and u ∈ B(←−x ).
Since u ∈ B(←−x ), where B(←−x ) is obtained from the original suffix tree by adding some internal nodes, more checking
is needed to avoid adding pairs to M representing the same k-repeat. Such checking is simple and should not affect the
running time.

Generally, we are interested in reporting the list of occurrences of each longest k-repeat. This can be done by checking
the leaf-lists of u and v or—perhaps more efficient—by running the algorithm twice once to calculate !∗

k and again to
report the occurrences list of each longest k-repeat. The latter will add a factor % to the original running time, where %
is the output size.

6. Time complexity

In this section, we analyse the running time of the algorithm. Recall that, for constant size alphabet, a suffix tree can
be built in linear time. Thus, building T (x) and giving preorder numbers for its leaves takes O(n) time (Lines 2–4).
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Similarly, building the binary suffix tree B(←−x ) takes O(n) time (Line 5). Creating an AVL tree of size one can be done
in constant time. Therefore, doing so at each of the n leaves of B(←−x ) takes O(n) time (Lines 6–7).

The algorithm then traverses B(←−x ) in depth-first manner (Lines 11–26). At every internal node u, the algorithm runs
a search loop on Lines 13–25 and then performs a merge at Line 26. Let Au1 and Au2 be the two AVL trees associated
with the two children of u where |Au1 |" |Au2 |. During the search loop, for each p ∈ Au1 , the algorithm searches Au2 to

find q and r. According to Lemma 3, the time required to complete the search loop at each node is O(log
(|Au1 |+|Au2 |

|Au1 |
)
).

Additionally, Lemma 2 states that the merge at Line 27 takes also O(log
(|Au1 |+|Au2 |

|Au1 |
)
) time. Summing these terms over

all the internal nodes of B(←−x ) gives the total running time of the tree traversal, that is, O(n log n) (Lemma 4). Thus,
the total running time of the algorithm is O(n log n) time. The following theorem states the result.

Theorem 1. Algorithm All-Longest-k-Repeats calculates all longest k-repeats, in a given string x of length n, together
with their length !∗

k in O(n log n) time.

7. Conclusions

We have presented an O(n log n) algorithm for computing all longest k-repeats in a given string x = x[1..n].
The algorithm uses two suffix trees intensively, one for the original string and the other for its reverse. The use of a
generalised suffix tree (for both the string and its reverse) would be possible but is not necessary because we do not
need all the information it contains. We have not yet explored the possibility of using an affix tree [12] but there are
some doubt that it will lead to a significant improvement in the asymptotic time complexity.

The use of the suffix array is also a possible improvement. It was shown that the suffix array can be constructed and
used as efficiently in terms of time [2] and more efficiently in terms of space than a suffix tree. In fact, the preorder
array no[1..n] introduced in Section 5 is somehow a suffix array; the exact suffix array can be achieved by ordering the
leaves of the suffix tree lexicographically.

We remark also the similarity of our algorithm for the longest k-repeats and all-repeats algorithm [6] that also uses
a reverse suffix tree, but works with suffix array as well. A more efficient all-repeats algorithm that uses suffix array
and avoids the reverse suffix tree was presented in [1]. We left exploring the possibility of avoiding reverse suffix tree
construction as an open problem.
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