
Evolution under reversals: parsimony and
conservation of common intervals

Yoan Diekmann, Marie-France Sagot, and Eric Tannier

Abstract—In comparative genomics, gene order data is
often modelled as signed permutations. A classical problem
for genome comparison is to detect common intervals in
permutations, that is, genes that are co-localised in several
species, indicating that they remained grouped during
evolution. A second largely studied problem related to
gene order is to compute a minimum scenario of reversals
that transforms a signed permutation into another. Several
studies began to mix the two problems, and it was observed
that their results are not always compatible: often parsi-
monious scenarios of reversals break common intervals. If
a scenario does not break any common interval, it is called
perfect. In two recent studies, Bérard et al. defined a class
of permutations for which building a perfect scenario of
reversals sorting a permutation was achieved in polynomial
time, and stated as an open question whether it is possible
to decide, given a permutation, if there exists a minimum
scenario of reversals that is perfect. In this paper, we give
a solution to this problem, and prove that this widens
the class of permutations addressed by the aforementioned
studies. We implemented and tested this algorithm on gene
order data of chromosomes from several mammal species,
and we compared it to other methods. The algorithm helps
to choose among several possible scenarios of reversals,
and indicates that the minimum scenario of reversals is
not always the most plausible.

Index Terms—Computational biology, genome rear-
rangements, signed permutations, sorting by reversals,
common intervals, perfect sorting

I. INTRODUCTION

In computational biology, it is commonly ac-
cepted, using a parsimony argument, that if a

Yoan Diekmann is at the Technische Fakultät of the University of
Bielefeld, Germany

Marie-France Sagot and Eric Tannier are at the Laboratoire de
Biométrie et Biologie Evolutive (UMR 5558) of the CNRS and
University of Lyon 1, Villeubanne, and from the HELIX project of
the INRIA Rhône-Alpes, France

Marie-France Sagot is a visiting professor of the King’s College,
London, UK

This work is funded by the ACI “New interfaces of Mathematics”
(project “Mathematical and algorithmical aspects of biochemical and
evolutionary networks”), by the INRIA coordinated action ARC
(project “Integrated Biological Networks”), and by the Agence Na-
tionale de la Recherche (project REGLIS, “From the molecule to the
cell”).

group of homologous genes (that is genes having
a common ancestry) is co-localised in two different
species, then these genes were probably together in
the common ancestor and were not later separated
during evolution. The detection of such common
clusters of homologous genes, that is of what is
called common intervals of permutations, has al-
ready been the subject of several algorithmic studies
(see for instance [2], [10]).

In the theory of rearrangements, applying the
parsimony principle means minimising the number
of events in a reconstruction of possible evolu-
tionary mutations between species. Rearrangement
algorithms are used in biology to estimate an evo-
lutionary distance between species, to infer the
localisation of the evolutionary breakpoints along
a DNA molecule, or to reconstruct the genomes
of ancestors of actual species. The algorithmics
related to the rearrangements theory has also been
intensively studied. The main results have been
obtained on the problem of sorting by reversals [9],
[5], which is a common event in evolution. The
problem in this case concerns nding a shortest
sequence of reversals that transforms one genome
into the other.

A drawback of the methods developed so far
to nd such parsimonious evolutionary scenarios is
that they do not respect the principle of common
intervals: it has indeed been noticed several times
that in the case of reversals, the two criteria are
not always compatible. A minimum rearrangement
scenario may break common intervals and then put
them back together later again.

A scenario that does not break any common
interval is called perfect. A few studies [3], [4], [8]
began to mix the two principles by designing perfect
scenarios, with an NP-completeness result, and an
algorithm which is polynomial for an identied class
of permutations. We go further in this direction,
answering an open question mentioned in [3] and
showing through an example that the class dened

in [4] is widened by our study. The open question
concerned the possibility of designing a polyno-
mial time algorithm to decide whether there exists
a minimum scenario of reversals that is perfect.
The principles of our solution were rst presented
in [11].

This study has also several other motivations.
Indeed, a second drawback of the algorithms for
obtaining optimal scenarios of rearrangements is the
huge number of solutions they provide. Trying to
add criteria coming from constraints on common
intervals could be a solution to discriminate more
plausible solutions.

Moreover, in another study on the global align-
ment of mammalian genomes [6], the authors
use common intervals to cluster markers along a
genome, and then apply rearrangement algorithms
on the clustered data. To cope with the possible
incompatibility between the two principles (of com-
mon intervals and of a most parsimonious scenario),
they have to use an arbitrary threshold for decid-
ing whether a rearrangement is inside or outside
a common interval: below this threshold, a rear-
rangement is ignored and data are clustered, and
above the threshold, it is considered as a bona-fide
rearrangement. The authors of [6] put as an open
problem how to get rid of this articial parameter.
Knowing how to cluster genes during the execution
of a rearrangement algorithm would be a more
natural way to answer this question. We tested our
method on some chromosomes of several mammal
species, and we report the cases when the optimal
scenario of reversals is not compatible with common
intervals, indicating that one should choose between
the two principles and not use both.

This paper is organised as follows: we describe
the usual model for dealing with gene order and
orientation in the next section. In Section III, we re-
call some basic facts about the structure of common
intervals of a permutation, and introduce a property
that characterises some common intervals in terms
of rearrangements. This will lead in Section IV
to the algorithm that is the keystone of the paper.
Section V relates this study to the problem of perfect
sorting by reversals, generalising the results of [4]
by handling a class of permutations not included
in the latter. Last, in Section VI, we provide some
insights on the theoretical and practical complexity
of the algorithm, and summarise how it behaves on

data from some mammalian chromosomes.

II. CHROMOSOMES AS SIGNED PERMUTATIONS

A. Generalities
Genome rearrangements such as reversals may

change the order of the genes in a genome, and
also the direction of transcription. We identify the
genes with the integers 1, . . . , n, with a plus or
minus sign to indicate their orientation. The order
and orientation of genomic markers of one species
related to another will be represented by a signed
permutation of {1, . . . , n}, that is, by a bijection π
over [−n, n] \ {0}, with the constraint that π−i =
−πi, where πi = π(i). The permutation may thus
be given by the image of 1 . . . n.

To simplify exposition, we adopt the usual exten-
sion which consists in adding π0 = 0, and πn+1 =
n+1 to the permutation. We therefore often dene a
signed permutation by writing (0 π1 . . . πn n+1).
The identity permutation (0 1 . . . n n+1) is denoted
by Id.

For all i ∈ {0, . . . , n}, the pair πiπi+1 is called a
point of π, and more precisely an adjacency if πi +
1 = πi+1 and a breakpoint otherwise. The number
of points of a permutation π is denoted by p(π),
and the number of its breakpoints by b(π).

The reversal of the interval [i, j] ⊆ [1, n] (i ≤
j) is the signed permutation ρi,j = (0 . . . i − 1
−j . . . − i j + 1 . . . n + 1). Note that π · ρi,j

is the permutation obtained from π by reversing the
order and ipping the signs of the elements in the
interval [i, j]:
π·ρi,j = (π0 . . . πi−1 −πj . . . −πi πj+1 . . . πn+1)

If ρ1, . . . , ρk is a sequence of reversals, we say
that it sorts a permutation π if π · ρ1 · · · ρk = Id.
In this case, the sequence is called a scenario of
reversals for π. The length of a shortest sequence of
reversals that sorts π is called the reversal distance
of π, and is denoted by d(π). A shortest sequence
of reversals sorting π is called a parsimonious
scenario.

An interval of a permutation π is a set
{|πa|, . . . , |πb|}, with 1 ≤ a < b ≤ n. The numbers
πa and πb are the extremities of the interval. Two
intervals are said to overlap if they intersect but
one is not contained in the other. A reversal ρi,j

breaks {|πa|, . . . , |πb|} if [i, j] and [a, b] overlap. A
sequence of reversals breaks an interval I if at least
one reversal of the sequence breaks I .

B. Common Intervals
Let π be a signed permutation of {1, . . . , n},

and I = {|πa|, . . . , |πb|} an interval of π, for
[a, b] ⊆ [1, n]. Let m = mini∈[a,b] |πi| and M =
maxi∈[a,b] |πi|.

The interval I is said to be oriented if there exist
i, j ∈ [a, b], such that πi and πj have different signs,
and unoriented otherwise.

The interval I is said to be sorted if for all i ∈
[a, b−1], the point πiπi+1 is an adjacency. A sorted
interval is always unoriented. It is sorted positively
if πa > 0 and negatively if πa < 0. In π = (0 −
7 3 − 1 4 2 8 − 6 − 5 9), {6, 5} is sorted
negatively.

The interval I is said to be a common interval if
M − m = b − a (it is common to π and Id). In
π = (0 −7 3 −1 4 2 8 −6 −5 9), {3, 1, 4, 2}
is a common interval.

The common interval I is said to be framed if
either πa = m and πb = M , or πa = −M and πb =
−m. A component of π is a framed interval that is
not the union of framed intervals properly contained
in it. In π = (0 −7 −4 2 −3 −1 8 −6 −5 9), the
interval {4, 2, 3, 1} is framed, and it is a component.

The interval I is said to be perfect if there exists a
parsimonious sequence of reversals which does not
break I .

A perfect interval is a common interval, but the
converse is not true. For example, in (0 − 2 −
3 1 4), {2, 3} is a common interval but any
parsimonious scenario breaks it.

According to [3], we say that a sorting sequence
of reversals is perfect if it breaks no common
interval. If a permutation has a perfect parsimonious
scenario, then all its common intervals are perfect.
The converse is however not true: for example, in
(0 − 3 4 − 1 2 5), both {1, 2} and {3, 4} are
perfect, but any parsimonious sequence of reversals
breaks one of them.

Perfect sorting sequences of minimum size have
been studied in [3], [4], [8]. In [8], it is proved that
given a permutation and a subset I of its common
intervals, it is NP-hard to compute the minimum
scenario that does not break the intervals of I. The
problem of nding a perfect sequence of reversals of
minimum length is still open, to our knowledge. In
[4], a class of permutations is presented, for which
this problem is polynomial. We show in Section V
that we can enlarge this class with innite families
of permutations.

The parsimonious scenario such that the smallest
possible number of reversals break some common
intervals is evoked in [3], but not solved. The
authors study a special class of permutations for
which there exists a perfect parsimonious scenario,
and the question is asked whether it is possible to
decide in polynomial time, given a permutation, if
there is a perfect parsimonious scenario that sorts it.
In Section IV, we give this algorithm. Before that,
we still need some preliminaries.

C. Sorting by reversals
The main result about sorting by reversals is

a theorem of Hannenhalli and Pevzner [9], which
yielded the rst polynomial algorithm to nd a par-
simonious sequence of reversals sorting any signed
permutation.

We mention here a weaker version of this the-
orem, to avoid introducing notions which are use-
less for our purpose. One of the consequences of
the general version of Hannenhalli and Pevzner’s
theorem is that it is possible to characterise the
permutations for which all parsimonious sequences
of reversals have to break some framed interval.
According to the standard vocabulary, they are the
permutations that need a “hurdle merging”. They
can be characterised in this way. In [5], it is noted
that two components are disjoint, nested with differ-
ent extremities, or overlapping on one element. The
following lemma is extrapolated from the structure
of components studied in [5].
Lemma 1: [5] For a permutation π, any scenario

of reversals has to break some component if and
only if π has at least three unoriented components
A, B, C, such that one of the following holds:

• A ⊂ B ⊂ C;
• C ∩ B = ∅ and A contains B and C;
• |C ∩ B| ≤ 1 and A is contained in B or C.
We call such permutations fools. They obviously

never have a perfect parsimonious scenario. We
therefore start by assuming that the permutations we
treat are not fools. It is easy to decide in linear time
if a permutation is a fool or not (see for example
[5]). We denote by u(π) the number of unoriented
components in a permutation π.

Another parameter is useful for stating the the-
orem, and is related to the so-called breakpoint
graph. This is a usual tool for dealing with signed
permutations, and it is present in almost every study

on sorting by reversals. We use it intensively in the
proofs of correctness of our method.

The breakpoint graph BG(π) of a permutation
π is a graph with vertex set V dened as follows:
for each integer i in {1, . . . , n}, let i− and i+ be
two vertices in V ; add to V the two vertices 0+

and (n+1)−. Observe that all vertex labels are non
negative numbers, but for simplicity and to avoid
having to use absolute values, we may later refer to
vertex (−i)+ (or (−i)−): this is the same as vertex
i+ (or i−).

The breakpoint graph of a signed permutation has
sometimes been called the diagram of desire and
reality due to the edge set E of BG(π), which is
the union of two perfect matchings of V , denoted
by R, the reality edges and D, the desire edges:

• D contains the edges i+(i + 1)− for all i ∈
{0, . . . , n};

• R contains an edge for all i ∈ {0, . . . , n},
from π+

i if πi is non negative, and from π−
i

otherwise, to π−
i+1 if πi+1 is non negative, and

to π+
i+1 otherwise.

Reality edges dene the permutation π (what you
have), and desire edges dene Id (what you want
to have). An example of breakpoint graph is drawn
in Figure 1.

To avoid case checking, in the notation of an
edge, the mention of the exponent + or − may
be omitted. For instance, πiπi+1 is a reality edge,
indicating nothing as concerns the signs of πi and
πi+1.

It is easy to check that every vertex of BG(π) has
degree two (it has one incident edge in R and one
in D), so the breakpoint graph is a set of disjoint
cycles. By the cycles of a permutation π, we mean
the cycles of BG(π). The number of cycles of π is
denoted by c(π).

We now state the theorem of Hannenhalli and
Pevzner. Recall that d(π) is the minimum number
of reversals needed to sort a permutation, p(π) is the
number of points of the permutation (adjacencies
and breakpoints), c(π) is the number of cycles of
the breakpoint graph, and u(π) is the number of
unoriented components.
Theorem 1: [9] Let π be a permutation but not a

fool. Then d(π) = p(π) − c(π) + u(π).
This means that any reversal in a perfect parsi-

monious scenario increases by one the number of
cycles of the permutation (p(π) = n + 1 does not

0 7 7 3 3 1 1 4 4 2 2 8 8 6 6 5 5 9+ + + + + ++ + +! ! ! ! ! ! ! ! !
r

d

r’

d’

0 !7 3 !1 4 2 8 !6 !5 9

Fig. 1. The breakpoint graph of the permutation (0 − 7 3 −
1 4 2 8 − 6 − 5 9). Reality edges are represented in bold, and
desire edges are represented by thin lines.

change after a reversal), except one (the rst one)
for each unoriented component. Each component is
sorted separately, and independently from the rest
of the permutation. A detailed description of this is
given in Section IV.

III. THE STRUCTURE OF COMMON INTERVALS

As mentioned in the previous section, two framed
intervals may only overlap on one of their ex-
tremities, so it is easy to identify an inclusion-
wise minimal one and treat it separately. This is
not immediately the case in general for common
intervals. However, common intervals of a permu-
tation have a nice structure, which will allow us
to consider intervals one by one, starting from
inclusion-wise minimal ones. We recall basic facts
about the structure of common intervals that are
useful for our purpose. The reader may refer to [7]
for a general presentation on modular structures.

A. Strong common intervals
A common interval is called strong if it does not

overlap any other common interval. By denition,
the family of strong common intervals is nested.
We then dene the tree of strong common intervals
of a permutation, in which each node is a strong
common interval, and its children are the strong
common intervals that it contains. Note that in this
tree, the leaves are the numbers in the permutation,
and the root is the whole permutation. An example
of such a tree for the permutation (0 − 7 3 −
1 4 2 8 − 6 − 5 9) is given in Figure 2.

Given any strong interval, it is possible to assign
an order to its children. Indeed, given two of its
children A and B, since they are common intervals
themselves, either all the numbers of A are bigger

!7 3 !1 4 2 8 !6 !5

!7 3 !1 4 2 8

prime

prime

3 !1 4 2

!6 !5
linear

!6 !5

Fig. 2. The tree of strong common intervals of the permutation
(0 − 7 3 − 1 4 2 8 − 6 − 5 9).

(in absolute value) than all the numbers of B, either
all the numbers of A are smaller (in absolute value)
than all the numbers of B. So it is possible to give
an order to the set of children of a strong interval,
and to say A < B, or B < A. For a strong interval
I , with children C1, . . . , Ck, a quotient of I is a
permutation of k positive numbers (c1 . . . ck), such
that ci < cj if and only if Ci < Cj, and ci is placed
before cj if and only if the elements of Ci are placed
before the elements of Cj.

For example, if the permutation is (−7 3 −
1 4 2 8 −6 −5), suppose I is the whole permu-
tation, the children nodes of I are {7}, {3, 1, 4, 2},
{8}, {6, 5}. A quotient permutation of I is therefore
(3 1 4 2).

Strong intervals can be of two types. If all the
intervals of a quotient permutation are common
intervals (a quotient is Id or Id · ρ1,n), then I is
called linear. If the only common intervals are the
singletons, then I is called prime. A singleton is
both linear and prime. There are examples of linear
and prime nodes on the permutation of Figure 2. The
following lemma is where lies the great interest of
this structure, and what makes dealing with strong
intervals sufcient for obtaining properties on all
intervals.
Lemma 2: [7] If I is a strong interval, then it is

either linear, or prime.
We shall sort each strong interval independently,

assuming that all the strong intervals strictly in-
cluded in it are already sorted (we start by the
inclusion-wise minimal ones), and end with the last
strong common interval, which is the permutation
itself, when all the strong sub-intervals have been
sorted. We therefore always deal with quotient per-
mutations. The problem will be to know in which
direction to sort an interval, when all sub-intervals

have been sorted. This is what we study now.

B. Perfect intervals

A trivial necessary condition for the existence
of a perfect parsimonious scenario is that every
common interval is perfect. It is easy to determine
if one strong interval is perfect or not, thanks to the
following fundamental lemma presented in [8].
Lemma 3: [8] If a sequence of reversals sorts a

permutation and does not break an interval I , then
there exists a sorting sequence of same size (with the
same reversals), in which all the reversals contained
in I (they sort I) are before all other reversals (they
sort outside I).

If we want to know if an interval is perfect or not,
it is sufcient to know if there is a sequence of rever-
sals that sorts the interval, and preserves optimality
of the remaining permutation. The difculty remains
to choose whether to sort the interval positively
or negatively. For this purpose, we introduce two
new notations. Let [a, b] ⊆ [1, n] be such that I =
{|πa|, . . . , |πb|} is a strong common interval. Let
M = maxi∈[a,b] |πi|, and m = mini∈[a,b] |πi|. Denote
by ι+ the permutation of the numbers [m−1, M+1],
which consists in the numbers of I framed by m−1
and M+1. Let ι− be the permutation which consists
in the numbers of I framed by −(M + 1) and ends
with −(m − 1).

We have that d(ι+) is the minimum number
of reversals needed to sort a common interval
I positively, and d(ι−) the minimum number of
reversals needed to sort it negatively. Of course,
|d(ι+) − d(ι−)| ≤ 1, because if it is sorted in one
direction, then one reversal is sufcient to have it
sorted in the other. If d(ι+) = d(ι−), the interval I
is called neutral.

Call π \ I+ the obtained permutation when I
has been sorted positively, and π \ I− the obtained
permutation when I has been sorted negatively. An
example of permutations ι+, ι−, π \ I+ and π \ I−

is given in Figure 3.
By Lemma 3, we have this characterisation of

perfect intervals.
Lemma 4: An interval I of π is perfect if and

only if d(π) = d(ι+)+d(π \ I+) or d(π) = d(ι−)+
d(π \ I−).

As a consequence, if ι+ or π \ I+ contain more
unoriented components than π, then because of

0 !7 3 !1 4 2 8 !6 !5 9

0 !7 1 2 3 4 8 !6 !5 9 0 !7 !4 !3 !2 !1 8 !6 !5 9

0 3 !1 4 2 5 !5 3 !1 4 2 0

d1 d2 d1
d2

d3 d4 d3
d4

Fig. 3. Permutations ι+, ι−, π \ I+ and π \ I− for the interval
I = {3, 1, 4, 2} in the permutation (0 − 7 3 −1 4 2 8 −6 −5 9),
and their breakpoint graphs. Here, c(ι+) = c(ι−) = 1, c(π) = 1,
c(π \ I+) = 5 and c(π \ I−) = 6, so the interval I is neutral and
d(π \ I+) "= d(π \ I−).

Theorem 1, the interval I cannot be perfect, and
it is the same for the negative case.

The following key result helps to choose between
the positive and negative direction. It is the result
that makes the polynomial algorithm possible. We
treat the case of unoriented components separately
in the algorithm, so this lemma will be useful only
in the case of oriented components.
Lemma 5: If I is a perfect neutral interval in-

cluded in an oriented component of a permutation
π, then d(π \ I+) (= d(π \ I−).

Proof: Let [a, b] ⊆ [1, n] be such that I =
{|πa|, . . . , |πb|} is the perfect neutral interval of π.
Then d(ι+) = d(ι−), and suppose that d(π) =
d(ι+) + d(π \ I+) (the other case is symmetric).
Let M = maxi∈[a,b] |πi|, and m = mini∈[a,b] |πi|. As
mentioned before, from Theorem 1 and Lemma 4,
since I is perfect, there cannot be unoriented com-
ponents in π \ I+ that are not in π, so saying that
d(π \ I+) (= d(π \ I−) is equivalent to saying that
c(π \ I+) (= c(π \ I−) (again by Theorem 1). We
therefore prove the latter.

In the breakpoint graph of π, given an interval
I , call a cut-edge an edge that has one extremity
in I and one outside I . If I is a common interval,
there are four cut-edges (two desire and two reality
edges), with extremities πa, πb, m and M . In the
permutation of Figure 1 with I = {1, 2, 3, 4}, they
are the edges denoted by d, d′, r and r′. Let C be the
set of cycles of π containing at least one cut-edge.
Since cut-edges are exactly the ones separating the
inside from the outside of the interval, if a cycle
contains one of those edges, it has to contain another

one (if it goes outside, it has to come back). Then
either C contains only one cycle, or there are two
cycles, each containing two cut-edges. In Figure 1,
C contains only one cycle.

All the cycles outside C have an exact correspon-
dent in π\I+ or ι+. The cycles of C in π are replaced
by disjoint cycles in π \ I+ and ι+. Let C+ be the
set of those cycles. Note that the cycles of C+ are
obtained from the cycles of C by removing the four
cut-edges: this gives a set of paths, with extremities
that are then joined by new edges. This gives in
particular |C+| ≤ |C| + 2.

Let us prove that in any case, |C+| = |C| + 2.
Suppose |C+| < |C| + 2. Note that in π \ I+, there
are at least p(ι+) − 2 adjacencies due to the sorted
interval I . So adding to |C+| < |C| + 2 the cycles
which are common to π and ι+ or π \ I+, we get
c(ι+) + c(π \ I+) − (p(ι+) − 2) < c(π) + 2. With
p(π) = p(π \ I+), we get p(π) − c(π) < p(ι+) −
c(ι+) + p(π \ I+) − c(π \ I+), and then d(π) <
d(ι+)+d(π \ I+), which contradicts the hypothesis.

There are then at least three cycles in C+, two
of them being either in π \ I+ or in ι+. Suppose
rst that two are in ι+. Let d1 and d2 be the two
desire edges in these two cycles of C+ in ι+. For
an illustration see Figure 3. Then in ι−, these two
desire edges exchange one of their extremities, and
they belong to the same cycle (the remaining of
the cycles is unchanged). This makes c(ι+) > c(ι−)
which is in contradiction with the hypothesis that I
should be neutral. There is therefore only one cycle
of C+ in ι+ (by the way |C| = 1 and |C+| = 3).

In consequence, π \ I+ has two cycles in C+.
Let d3 and d4 be the two desire edges in the two
cycles of C+. Then in π\I−, these two desire edges
exchange one of their extremities, so they belong
to the same cycle (the remaining of the cycles is
unchanged). This makes c(π\I+) > c(π\I−), which
ends the proof.

IV. PERFECT PARSIMONIOUS SEQUENCES OF
REVERSALS

As noticed in [8], the main difculty in nding
perfect sequences of reversals of minimum length
(among all perfect sequences) is that it is sometimes
impossible to decide whether to sort a particular
interval positively or negatively. The last lemma
of the previous section shows that in the case of
parsimonious scenarios, this choice is constrained
by the data.

Here we describe the general method to decide
the existence of a perfect parsimonious sequence of
reversals sorting a permutation π, and study the time
complexity of the method.

We apply as a black box the usual techniques
to sort permutations by reversals when there is
no common intervals constraint, or to compute the
reversal distance. One can see for instance [1], [5],
[12] for fast methods to do so.

We divide the algorithm into two parts, one is the
procedure to sort an oriented component (this is the
main algorithmic issue), described in Algorithm 1,
while the main procedure, which treats the general
case, is described in Algorithm 2.

Algorithm 1: Sorting an oriented component
Input: An oriented component C of a permutation π,
with no proper sub-component which is not sorted.
Output: A perfect parsimonious scenario for C, or a
certicate that proves it does not exist.

While C is not sorted
For all strong common intervals I included
in C, in bottom-up order (such that I is
not sorted but has only sorted strong sub-
intervals)
1) Compute d(ι+), d(ι−), d(π \ I+), and

d(π \ I−).
2) If d(π) = d(ι+)+d(π\I+), then assign

“+” to I;
If d(π) = d(ι−)+d(π\I−), then assign
“-” to I;
If I has no sign, then there is no perfect
parsimonious scenario;
If I has both signs, then it is not neu-
tral: if d(ι+) < d(ι−), then keep the
“+” sign, else keep the “-” sign.

3) If I is prime, then sort the permutation
ι+ (or ι− if I has a “-” sign) with the
method of [12], and apply the same
reversals to π.

4) If I is linear, then reverse all the chil-
dren that are sorted negatively (or posi-
tively if I has a “-” sign).

Algorithm 2: Parsimonious and perfect sorting by
reversals
Input: A permutation π.
Output: A perfect parsimonious scenario, or a cer-
ticate that proves it does not exist.

Check that π is not a fool (see Lemma 1). If
it is, there is no perfect parsimonious sorting
sequence.
For all components C of the permutation, in
bottom-up order (such that every component
included in C has already been sorted)

1) If C is oriented, then sort it with Algo-
rithm 1.

2) If C is unoriented then
For all reversals ρ that make C oriented,
do not break any common interval, nor
decrease c(π),

Apply ρ to π
Sort C (now oriented) with Algo-
rithm 1.

Theorem 2: Algorithm 2 constructs a perfect par-
simonious sequence of reversals sorting π if one
exists, and runs in O(n4).

Proof: First, we prove that Algorithm 1 is
correct, that is, it sorts an oriented component
whenever possible. Observe that it requires that ev-
ery proper sub-component has already been sorted,
which is guaranteed by a bottom-up search over the
components of π in Algorithm 2.

From Lemma 4, every time a strong interval is not
given a sign, this means the interval is not perfect,
so it is a sufcient condition for the inexistence of
a perfect parsimonious scenario.

If an interval is given only one sign, then the
direction in which it should be sorted is necessary,
and any perfect parsimonious scenario would sort it
this way, so if there is such a scenario, the algorithm
nds it.

Now the only difculty is the case when the
interval I is given two signs. In this case, from
Lemma 5, we have either d(ι+) < d(ι−) or
d(ι−) < d(ι+). Suppose without loss of generality
that d(ι+) < d(ι−). We prove that if there is a
perfect parsimonious scenario, then there is one
sorting I in the positive direction. Indeed, suppose a
perfect parsimonious scenario sorts I in the negative
direction. It thus sorts I with d(ι−) reversals, and
then π \ I− with d(π \ I−) reversals. Then the
scenario sorting I in the positive direction, reversing
it, and then sorting π \ I− with the same reversals
is also parsimonious, because its length is the same
as for the optimal scenario, and perfectness is not
changed by the reversal of a whole strong segment.
There is therefore also a solution sorting I posi-

tively, and the algorithm nds it.
Lastly, in the case of a linear interval, the only

allowed reversals are the reversals of a single child,
because any other reversal would break a common
interval. The described method, reversing all chil-
dren with negative or positive signs according to
the direction of the interval, is the method of [3]
to sort linear intervals with a perfect scenario of
minimum length. Thus it is a parsimonious one if
a parsimonious one exists. This method may be
applied to sort all linear intervals while checking
that all operations are optimal for parsimony.

Now let us examine the theoretical time com-
plexity of Algorithm 1. We prove it runs in time
O(k2), where k is the number of breakpoints of the
component C.

Step 1 is achieved in O(n) time by reversal
distance computations, with the methods of [1], [5].
Step 2 is done in constant time. Step 3 is the most
costly, because it requires an algorithm to sort I .
The most efcient ones can run in less than O(k ′2)
time [12], where k′ is the number of breakpoints of
I . The last Step 5 is linear in k′, as mentioned in
[3].

Overall, the four steps may be achieved in time
O(n) + O(k′2), and the number of breakpoints of
C is decreased by k′ at the end of these steps. The
total time complexity is therefore O(n + k2).

Now the correctness of Algorithm 2 remains to
be stated. It sorts a permutation by examining every
component one by one. As the permutation is not
a fool, it can be decomposed into components,
and each component can be treated separately. If
a component is oriented, then the algorithm calls
Algorithm 1, and if it is unoriented, it tries all
reasonable possibilities to orient it. This is done
only at the rst step, so it still has a polynomial
running time. The complete exploration guarantees
the correctness of the method.

Algorithm 2 runs therefore in time O(n4), where
n is the size of the permutation. Indeed, in the case
of an unoriented component, every reversal in Step
2 of the algorithm has to be tried. There are at most
O(k2) of them, where k is the number of break-
points of the component C, and they are applied
only in the rst step, so in the case of unoriented
components O(k2) calls to Algorithm 1 may be
necessary. At the end, the number of breakpoints of
π has decreased by k, because C is sorted. Thus the
whole yields an O(n4) time complexity algorithm.

V. PERFECT SORTING BY REVERSALS

The algorithm of the previous section decides if
there exists a perfect parsimonious scenario sorting
a permutation. It is a particular case of the problem
mentioned in [8] and proved NP-hard. It is a general
case of the problem mentioned in [3] and proved
polynomial. Those studies, together with [4], treated
the problem of relaxing parsimony, and of designing
perfect scenarios of reversals of minimum cardinal-
ity among all perfect scenarios. In [4], Bérard et al.
also generalised the result in [3], and constructed a
large class of permutations for which there exists
a polynomial method to design perfect scenarios
of minimum length. The question therefore arised
of the relation between the study presented in the
present paper and Bérard et al.’s class. In this
section, we prove that our algorithm widens this
latter class by adding to it examples that are treated
by our method, but neither by [3] nor by [4].

In the tree of strong common intervals of a
permutation, we call a node ambiguous if it is
neutral and prime, and its parent is prime. Let a(π)
be the number of ambiguous nodes in a permutation.
The following is an extrapolation from the results
in [4].
Theorem 3: [4] There is a polynomial time algo-

rithm for designing perfect scenarios of reversals of
minimum length for all permutations where a(π) is
bounded by a poly-logarithmic function of the size
of the permutation.

We show a class of permutations such that a(π)
is a linear function of their size, and that admit
a perfect parsimonious scenario. This means our
algorithm computes in polynomial time a perfect
scenario of reversals, while the one of [4] is ex-
ponential. This widens the class of permutations for
which there exists a polynomial algorithm that nds
a minimal length perfect scenario of reversals.

Let K be any positive integer. We dene for any
K a permutation πK of size n = 4 × K + 1.

• πK(1) = −(K + 1).
• For all i = 1 . . .K, πK(4i − 2) = 3K + i + 1,
• For all i = 1 . . .K, πK(4i − 1) = −(K + 2i),
• For all i = 1 . . .K, πK(4i) = i,
• For all i = 1 . . .K, πK(4i+1) = −(K+2i+1).
For instance, π1 = (−2 5 − 3 1 − 4), π2 =

(−3 8 − 4 1 − 5 9 − 6 2 − 7) and π3 =
(−4 11 −5 1 −6 12 −7 2 −8 13 −9 3 −10).

We let the reader check that a permutation is

indeed dened for every K, and that d(πK) =
2K + 1 for all K. Indeed, the breakpoint graph has
2K +1 cycles, each of size 4. There is no common
interval in this permutation other than the singletons
and the set of all numbers.

Now take any negative number −i of πK , and
replace it in the permutation by 2 + i − i 3 +
i 1 + i, which is an ambiguous common interval.
Shift the remaining of the permutation by adding 3
(in absolute value) to every number greater than i.
For instance, if K = 1, i = 2, the result is (4 −
2 5 3 8 − 6 1 − 7). Note that the number of
cycles has decreased by one through this operation.

Do the same for all the negative numbers of πK

except one. Let ΠK be the resulting permutation.
It has size 10K + 1. For instance, Π1 = (4 −
2 5 3 11 8 −6 9 7 1 −10). It has 2K ambiguous
intervals, which are all the intervals added from πK .
It has a perfect parsimonious scenario, because all
the intervals 2 + i − i 3 + i 1 + i can be sorted
negatively in 4 reversals, which transforms ΠK into
πK in 8K reversals. There is then a perfect scenario
for sorting ΠK in 10K + 1 reversals. Furthermore,
the breakpoint graph of ΠK has only one cycle:
indeed, every replacement of a negative number
by the sequence of four numbers has the effect of
decreasing the number of cycles by one, so doing
this for every negative number except one decreases
the number of cycles up to one. So by Theorem 1,
d(ΠK) = 10K + 1.

Those permutations have therefore a linear num-
ber of ambiguous intervals, and are sorted in poly-
nomial time by our algorithm. This proves that
together with [4], we construct a bigger class of
permutations for which perfect sorting by reversals
results in a polynomial problem.

VI. EXPERIMENTAL RESULTS

We implemented the algorithm described in Sec-
tion IV and tested it on gene order data from sev-
eral mammalian species. The implementation1 was
realised in Java, since simplicity was our concern
rather than speed. The high theoretical complexity
(O(n4)) is not a constraint given the size of the
tested data. The implementation thus provides the
result nearly immediately for all tests.

The algorithm decides whether there exists a per-
fect parsimonious scenario of reversals; if yes, the

1http://biomserv.univ-lyon1.fr/˜tannier/PSbR

TABLE I
EXPERIMENTAL RESULTS: COLUMNS 1 AND 2 GIVE THE

COMPARED CHROMOSOMES; COLUMN 3 INDICATES WHETHER

THERE EXISTS A PERFECT PARSIMONIOUS SCENARIO OR NOT

(THE RESULT OF THE ALGORITHM OF SECTION IV); COLUMN 4
SHOWS THE UPPER BOUND TO THE NUMBER OF STRONG COMMON

INTERVALS THAT HAVE TO BE BROKEN IN A PARSIMONIOUS

SCENARIO (GIVEN BY THE EXTENSION): IT IS 0 IF THE PREVIOUS

ANSWER IS “YES”; COLUMN 5 INDICATES THE REVERSAL

DISTANCE BETWEEN THE TWO CHROMOSOMES, AND COLUMN 6,
THE MINIMUM NUMBER OF REVERSALS IN A PERFECT SCENARIO

(GIVEN BY OUR IMPLEMENTATION OF THE ALGORITHM OF [4]).

Chromosome Chromosome perf. #segs d #rev.
1 2 ? brok. perf.

Human 1 Chimp 1 no 3 28 30
Human 2 Chimp 12 yes 0 11 11
Human 2 Chimp 13 no 1 8 11
Human 3 Chimp 2 yes 0 3 3
Human 4 Chimp 3 yes 0 29 29
Human 5 Chimp 4 no 1 36 37
Human 6 Chimp 5 yes 0 6 6
Human 7 Chimp 6 no 1 23 24
Human 8 Chimp 7 yes 0 10 10
Human 9 Chimp 11 yes 0 20 20
Human 10 Chimp 8 yes 0 16 16
Human 11 Chimp 9 no 1 15 16
Human 12 Chimp 10 yes 0 12 12
Human 13 Chimp 14 yes 0 3 3
Human 14 Chimp 15 yes 0 3 3
Human 15 Chimp 16 yes 0 9 9
Human 16 Chimp 18 no 2 15 16
Human 17 Chimp 19 yes 0 15 15
Human 18 Chimp 17 yes 0 5 5
Human 19 Chimp 20 no 1 34 35
Human 20 Chimp 21 yes 0 12 12
Human 21 Chimp 22 yes 0 3 3
Human 22 Chimp 23 no 2 19 20
Human X Chimp X no 1 24 25
Human Y Chimp Y yes 0 3 3
Human X Dog X yes 0 48 48
Human X Mouse X no 5 62 69
Human X Rat X no 4 52 56
Mouse X Rat X no 6 65 71
Mouse X Chimp X yes 0 31 31
Mouse X Dog X yes 0 51 51

Rat X Chimp X yes 0 38 38
Rat X Dog X no 2 54 59

Chimp X Dog X yes 0 29 29

sequence is given, in the other case, the algorithm
stops when a contradiction is found.

We then extended the algorithm presented in
Section IV by enabling it to continue even if a
perfect parsimonious scenario does not exist. The
principle of the extension is simple: every time
the algorithm stops because the only choice to
continue would be to break a common interval, this

operation is performed and the algorithm is then
allowed to run on. Since intervals are considered
in a bottom-up inclusion-wise order, this tends to
break preferentially small intervals, which may be
considered less signicant than bigger ones.

Regarding the tree of strong common intervals,
the extended algorithm deletes a node and replaces
it by joining its children to the parental node while
preserving their order, wherein the elements are
sorted ignoring the former interval.

A second modication we introduced is linked to
the occurrence of fool permutations. Since common
intervals model clusters of genes that must stay to-
gether, the reversals associated to a hurdle merging
do not seem very probable from a biological point
of view. We therefore never break framed intervals,
and sort them always the same way, even if in this
case the resulting sequence is not optimal in the
sense of parsimony.

The data we used for the tests consisted
of reciprocal-best-hit (RBH) ortholog assignments
taken from the GeM knowledge database2, which
contains gene order information on the genomes of
human, mouse, rat, chimp, dog (in draft form) and
other vertebrate species.

The RBH method is well adapted to our model,
because it provides a one to one correspondence be-
tween genes, and data are immediately transcribed
into permutations. However, it often provides false
positives because of duplication events. There are
also genes with a position that very unlikely is
the result of a reversal. We then applied a pre-
processing to smooth the permutations by deleting
putative false orthologs or genes with positions
reecting other rearrangement events than reversals.
The pre-processing consists in the following: if a
single gene is found between two blocks of con-
tiguous genes in one permutation while these blocks
are direct neighbours in the other permutation, the
”intruder” gene is deleted in both permutations. This
pre-processing should be in the future replaced, for
a cleaner process, by better methods of identication
of orthologs, and detection of false positive in the
RBHs. This is one of the possibilities for future
work.

The tests focussed on genomic data from man
and chimp, since interchromosomal rearrangements
are rare between these two species, and on the

2http://pbil.univ-lyon1.fr/gem/gem_home.php

gonosomes of man, chimp, mouse, rat and dog,
since they do not rearrange much with autosomes.
The data are therefore coherent with our single
chromosome model. We compared our method and
the extension of it to the one of [4], that we re-
implemented for our purpose. When a perfect par-
simonious scenario exists, the results of both algo-
rithms are identical: in contrast to the method of [4],
our method simply guarantees a polynomial running
time. In the other case (there is no perfect parsi-
monious scenario), the algorithm in [4] increases
the number of reversals, while our method may
break some intervals but maintains a parsimonious
solution. The results are shown in Table I. Column 3
indicates whether a perfect parsimonious scenario
exists. Column 4 shows the number of intervals
that have been broken by our heuristic in order
to have a parsimonious scenario. Column 5 is the
number of reversals in a parsimonious scenario, and
Column 6 is the minimum number of reversals in a
perfect scenario, computed with our implementation
of the algorithm of [4]. Observe that two lines are
not necessarily comparable, since the number of
extracted orthologous genes is different for all the
couples. Permutations are of diverse sizes, all the
genes are not common to all the species, so the
triangle inequality is not veried and these distances
may not be used to infer phylogenies.

For the closely related species human and chimp,
the existence of perfect parsimonious scenarios is
observed for most chromosomes. For the chromo-
somes for which such scenarios do not exist, most
of the time only one small interval has to be broken.
In this case, we nd exactly the minimum number
of strong intervals that have to be broken, so the
extension of the algorithm gives an exact solution.
Sometimes it is necessary to add several inversions
in order to preserve only one small interval (see
human 2 against chimp 13). In these cases, the
parsimonious solution may be more likely than the
perfect one. In other cases, like in the comparison
of the mouse and rat X chromosomes, some big
intervals have to be broken in order to obtain a par-
simonious scenario, and maybe some biologically
relevant conservations are not preserved.

The existence of a perfect parsimonious scenario
is correlated with the number of reversals in a
scenario, which is expected. In some cases, even
distant species like mouse and chimp have such a
scenario. Then the algorithm discriminates among

all possible parsimonious scenarios, and proposes a
perfect one, which may be seen as a more likely
candidate than a non-perfect scenario of evolution.
The most problematic cases are those which involve
murine species, for which there are many branch-
specic rearrangements. In this case, it has to be
decided if one trusts the parsimony principle in
relation to the number of events, or the preservation
of common intervals, because obviously both are
not compatible.

VII. CONCLUSION

We designed a polynomial algorithm to decide
the existence of a perfect parsimonious sequence
of reversals sorting a permutation, thus answering
an open question mentioned in the literature. We
showed that this widens the known class of per-
mutations for which perfect sorting by reversals is
solvable in polynomial time. We also extended the
algorithm to a heuristic that sorts a permutation if
no such perfect sorting sequence exists.

We implemented our method and tested it on
several chromosomes of mammalian species by
comparing what we obtain to the results of another
similar method in the literature. In certain cases,
the space of optimal solutions is reduced by this
additional constraint. In other cases, we observe an
incompatibility between the principle of reconstruct-
ing evolutionary events with parsimony methods,
and preserving co-localised clusters of genes.

One future direction would be to extend our
model to be able to handle multi-chromosomal
genomes and duplicated genes. The latter might
lead to better methods than reciprocal best hit to
identify orthologies, and thus enable to address a
wider range of data.

ACKNOWLEDGMENT

We would like to thank Vincent Navratil for help-
ing us to retrieve the data from the GeM database,
Cédric Chauve for putting to us the question about
the existence of the family of permutations con-
structed in Section V, and the anonymous referees
for their comments that have given to the paper its
nal form.

REFERENCES

[1] Bader, D.A., Moret, B.M.E., and Yan, M., “A linear-time algo-
rithm for computing inversion distances between signed permuta-
tions with an experimental study”, J. Comput. Biol. 8, 5 (2001),
483-491.

[2] Beal M.-P., Bergeron A., Corteel S. and Rafnot, M., “An
Algorithmic View of Gene Teams”, Theor. Comput. Sci. 320(2-
3):395-418, 2004.

[3] Bérard S., Bergeron A. and Chauve C., “Common structures
in evolution scenarios”, 2nd RECOMB Comparative Genomics
Satellite Workshop, Lecture Notes in BioInformatics, 3388:1-15,
2004.

[4] Bérard S., Bergeron A. and Chauve C., Paul C., “Perfect Sorting
by Reversals is not always difcult”, proceedings of WABI 2005,
Lecture Notes in Computer Science 3692:228-237, 2005.

[5] Bergeron A., Mixtacki J. and Stoye J., “The inversion distance
problem”, in Mathematics of evolution and phylogeny (O. Gascuel
Ed.) Oxford University Press, 2005.

[6] Bourque G., Pevzner P. and Tesler G., “Reconstructing the
genomic architecture of ancestral Mammals: Lessons from human,
mouse and rat genomes”, Genome Research 14:507-516, 2004.

[7] Bui Xuan B.-M., Habib M. and Paul C., ”Revisiting T. Uno
and M. Yagiura’s Algorithm”, Proceedings ISAAC 2005, Lecture
Notes in Computer Science 3827:146-155, 2005.

[8] Figeac M. and Varré J.-S., “Sorting by reversals with common
intervals”, proceedings of WABI 2004, Lecture Notes in Computer
Science 3240, 26-37, 2004.

[9] Hannenhalli S. and Pevzner P. , “Transforming cabbage into
turnip (polynomial algorithm for sorting signed permutations by
reversals”, Journal of the ACM, 46:1– 27, 1999.

[10] Heber S. and Stoye J., “Finding all Common Intervals of
k Permutations”, Proceedings of CPM 2001, Lecture Notes in
Computer Science, vol. 2089, 207-218, 2001.

[11] Sagot M.-F. and Tannier E., “Perfect Sorting by Reversals”,
proceedings of COCOON 2005, Lecture Notes in Computer
Science 3595, 42-51, 2005.

[12] Tannier E., Bergeron A. and Sagot M.-F., “Advances on Sorting
by Reversals”, to appear in Discrete Applied Mathematics, 2006.

Yoan Diekmann is studying ”Naturwischenschaftliche Informatik”
(computer science) at the Technische Fakultät of the University of
Bielefeld, Germany. He achieved this work when staying for an
internship at the University of Marne-La-Vallée. His research interest
are in computational biology.

Marie-France Sagot received the BSc degree in computer science
from the university of Sao Paulo, Brazil, in 1991, the PhD degree
in theoretical computer science and applications from the University
of Marne-la-Vallée, France, in 1996, and the Habilitation from the
same university in 2000. From 1997 to 2001, she worked as a
research associate at the Pasteur Institute in Paris, France. In 2001,
she moved to Lyon, France, as a research associate at the INRIA. She
is now a research director at the INRIA Rhône-Alpes, in the Helix
project. She is the head of the Baobab team at the Laboratoire de
Biométrie et Biologie Evolutive of the CNRS, University of Lyon 1,
in Villeurbanne. Her research interests are in computational biology,
algorithmics and combinatorics.

Eric Tannier got his PhD in discrete mathematics from the Uni-
versity of Grenoble 1. He is now a research associate at the INRIA
Rhône-Alpes, in the Helix project. He works at the Laboratoire de
Biométrie et Biologie Evolutive of the CNRS, University of Lyon 1,
in Villeurbanne. His research interests are in comparative genomics
and combinatorics.

