Vol. 24 ECCB 2008, pages i160-i166
doi:10.1093/bioinformatics/btn282

Efficient representation and P-value computation for

high-order Markov motifs

Paulo G. S. da Fonseca'-2:* Christian Gautier?, Katia S. Guimaraes' and

Marie-France Sagot?

TCentro de Informatica, Universidade Federal de Pernambuco, 50732-970, Recife, Brazil and 2Université de Lyon,
F-69000, Lyon; Université Lyon 1; INRIA Rhéne-Alpes; CNRS, UMR5558, Laboratoire de Biométrie et Biologie

Evolutive, F-69622, Villeurbanne, France

ABSTRACT

Motivation: Position weight matrices (PWMs) have become
a standard for representing biological sequence motifs. Their
relative simplicity has favoured the development of efficient
algorithms for diverse tasks such as motif identification, sequence
scanning and statistical significance evaluation. Markov chain-
based models generalize the PWM model by allowing for inter-
position dependencies to be considered, at the cost of substantial
computational overhead, which may limit their application.

Results: In this article, we consider two aspects regarding the
use of higher order Markov models for biological sequence motifs,
namely, the representation and the computation of P-values for
motifs described by a set of occurrences. We propose an efficient
representation based on the use of tries, from which empirical
position-specific conditional base probabilities can be computed,
and extend state-of-the-art PWM-based algorithms to allow for the
computation of exact P-values for high-order Markov motif models.
Availability: The software is available in the form of a Java object-
oriented library from http://www.cin.ufpe.br/~paguso/kmarkov.
Contact: paguso@cin.ufpe.br

1 INTRODUCTION

Position weight matrices (PWMs) have become a de facto standard
probabilistic model for biological sequence motifs, for instance,
for representing transcription factor-binding sites (TFBS). Key
to this success is their simplicity, which allows for immediate
interpretation and easier analytical manipulation, and the consequent
computational efficiency, which has also favoured the development
of numerous techniques for the various tasks related to the analysis of
sequence motifs such as motif discovery (see GuhaThakurta, 2006,
for arecent survey), sequence scanning (Beckstette ez al., 2006; Pizzi
et al., 2007) and statistical significance assessment (Bejerano, 2003;
Touzet and Varre, 2007; Zhang et al., 2007). A strong hypothesis on
which the PWM model is based is that of the independence of each
position of the motif relative to other positions. This assumption, the
practicality it confers to the model notwithstanding, comes at the cost
of an alleged simplification of the actual biochemical interactions
that take place at the regulatory sites.

Markov models have been used for biological sequence analysis
in general (Durbin et al., 1999), and in particular for representing
binding site motifs (Ellrott et al., 2002; Huang et al., 2006; Zhao
et al., 2005). They represent a step up in terms of expressiveness

*To whom correspondence should be addressed.

over PWMs, since they allow for local dependencies between
adjacent positions to be represented directly (which does not mean
that non-adjacent positions are independent). Other more general
models have been proposed which allow for more complex inter-
position (in)dependence schemes to be considered. For example,
Barash et al. (2003) have successfully used Bayesian network
models to represent TFBS motifs. Unfortunately, however, the gain
in terms of expressiveness is often accompanied by a substantial
computational overhead, which may limit their application in
practice. Moreover, we conjecture that no model will replace PWMs
as a standard until it includes a reasonably complete algorithmic
framework for the diverse tasks related to the analysis of sequence
motifs mentioned above.

In this article, we address two aspects regarding the utilization
of higher order Markov models for biological sequence motifs.
First, we consider the representation of high-order Markov motifs
described by a set of occurrences. We propose a convenient
data structure based on tries, from which empirical position-
specific conditional base probabilities can be computed as needed.
Next, we consider the problem of computing exact P-values for
putative occurrences of high-order Markov motifs. We propose non-
trivial extensions of two state-of-the-art PWM-based algorithms for
working with a Markov dependency model. We illustrate the use of
the proposed model and algorithms on a set of TFBS motifs defined
by collections of aligned sites extracted from the TRANSFAC
database (Wingender et al., 2000).

2 METHODS
2.1 The K-order Markov model

A motif m of length W is a probabilistic model that defines a multivariate
discrete probability distribution Py (-) over the space of words of length
W of a fixed alphabet A. If x=x;---x €. A%, then Py(x) is actually a
shorthand for P(X; =x1,...,Xw =xw|m), where X; is a r.v. corresponding
to the position j of the pattern. Here, we consider sequence motifs that
are described by discrete K-order non-homogeneous Markov chains. The
likelihood of a particular word x =x; ---xw under such a model m is given by

w

P(x; '"xW|m):l_[P(Xj|Xj—K"'x_/—Ism)~

J=1

The model parameters are the position-specific transition probabilities
Pr(Xj=ao | Xjk =ak.....Xj-1=a1],

for all possible assignments of ap,...,ax in A and for each position
j=1,...,W.If K =0, then the model resumes to a PWM. In general, though,
this model captures local relationships between individual letters that can
vary according to their positions in the sequence.

i160 © The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

http://www.cin.ufpe.br/$sim $paguso/kmarkov
file:paguso@cin.ufpe.br

K-order Markov models

2.2 Representing a set of motif occurrences

In most practical cases, the parameters of a motif model are derived from
a set of occurrences, even during a learning procedure. For example, if we
examine the algorithms that learn motif models by EM (Bailey and Elkan,
1994), we see that the model parameters are updated so as to maximize the
likelihood of the occurrences indicated by the current estimates of the hidden
variables. The same goes for Gibbs sampling-based techniques (Lawrence
et al., 1993), where the model parameters are calculated from the last
sampled occurrences. In other words, the model parameters summarize the
relevant information contained in a set of occurrences. Motivated by these
observations, we adopt an alternative approach that consists in representing
a set of occurrences with a convenient data structure in such a way that
the information necessary for the computation of word probabilities can be
recovered as needed. Our proposed representation is based on the use of
index structures known as tries (Fredkin, 1960; Knuth, 1998).

DEFINITION 1 (Trie). A trie over a fixed alphabet A is a rooted tree such that
(i) every edge is labelled with a character in A and (ii) every node has, at
most, one outgoing edge labelled with a, for any a € A.

An important property resulting from the definition of tries is that we can
then establish a 1: 1 association between each node v and the word label(v)
obtained by concatenating the labels of the edges on the path from the root
to that node [by definition, label(root) =¢, the empty string]. We then define
the set of words represented by a trie 7 by

str(T) X {label(t) | 1 € leaves(T)).

If no word of a set of words X’ is a proper prefix of another, then there
exists one, and only one trie 7=T(X) s.t. str(T)=X. Since we can enforce
this pre-condition on X by appending a ‘sentinel’ symbol $¢.4 to each
of its elements, we can assume w.l.o.g. that it holds. Moreover, we can
generalize the definition of tries so that they can represent multisets of words:
we store the number of copies of a word in the multiset in the corresponding
leaf of the trie. We also attach to every internal node the sum of the counts of
the leaves of the subtree rooted at that node. We will refer to these numbers
generically as leaf counts. Figure 1 displays an example of an extended trie
with its leaf counts. Two fundamental properties of leaf counts are:
P1. The leaf count of a node v of T(X’) corresponds to the number of words
of X having label(v) as prefix.
P2. The leaf count of an internal node v equals the sum of leaf counts of its
children.

The extended trie encodes the character frequencies at each position of
the represented words as in a PWM. This fact is established by the following
proposition, which follows immediately from the definition of extended tries.

PROPOSITION 1. Let T =T(X) be a trie representing a multiset of words X.
The frequency of the character a at position j in X is obtained from T as
the sum of the leaf counts of the nodes at height j (the root is assumed to be
at height zero) whose incoming edges are labelled by a, divided by the total
number of represented words, i.e. the leaf count of the root node.

Consider the trie of Figure 1 for an example of the property above.
The proportion of words whose second letter is a t in that set, Pr[x; =t],

Fig. 1. Extended trie representing a multiset of 20 words of length 3.

is given by the sum of the leaf counts of the two nodes at height 2 whose
incoming edge is labelled by t, divided by the total number of words, that
is Prlx; =t]=(242)/20=0.2. However, tries are most useful when we
consider connections between positions. Suppose, for instance, that we want
to establish the probability of having a c in the first and third positions. By
looking at the leaf count of the central node at height one, we see that nine
words start with a c. By looking at the leaf counts of its children, we see that
in seven out of those nine words, the initial ¢ is followed by an a, whereas
in the other two, the second letter is a t. Since we made no restrictions about
the second letter, in principle all those words can interest us. However, by
looking at leaf counts further down in the tree, we notice that although the
two words that start with ct end by ¢, only two out of the seven words that
start with ca end with a c. The two words of the latter case plus the other two
of the former are then the only ones to match our requirements. The desired
probability can thus be computed as Pr[x; =c,x3=c]=(2+2)/20=0.2.
This principle is generalized in the following proposition which is, again,
a direct consequence of the definition of extended trie.

PROPOSITION 2. Let T=T(X) be a trie representing a multiset of words X,
each of length W. Let i=(i1,...,ir) C(1,...,W) be a ‘subvector’ of positions,
anda=(ai,...,ar) € AL be a vector of L characters. We denote by X; =a the
event [x;; =ay,...,x;, =a]. Then the probability of Xiy=a in X is given by
the sum of the leaf counts of all nodes of height ij, whose ingoing edges
are labelled by ar, and such that the paths from the root to those nodes go
through nodes at heights iy, ...,i.—1 whose incoming edges are labelled by
ai,...,ar—1, respectively, divided by the total number of represented words.

Conditional probabilities can be computed from Proposition 2 and
the relation P(A|B)=P(A,B)/P(B). For example, according to the trie
of Figure 1, the probability of having a g in the third position, given
that the base at the first position is a ¢ is given by Pr[x3=glx;=c]=
#[x1,3 =cgl/#[x1 =c]=5/9~0.56.

Finally, we note that, for a K-order Markov motif model m built from
a set of motif occurrences X', we need to compute transition probabilities
of the kind Py (xjlxj—x ---x;j—1) and thus we need to count the occurrences
of contiguous k-mers x;_g ---x; on &X'. This can be easily done as follows.
Starting from the nodes at height j—K —1 in the trie, we follow the edges
labelled by each position of the k-mer, x;_g,X;—k+1,...,Xj, in sequence, and
we sum up the leaf counts of the final nodes whenever we can reach the end
of the k-mer. Hence we need to visit at most

1+K |JAY-K-1

w
14+24+K AI‘K—'.K=K(— 7>
+24+ +j:1<Z;1| | T A

vertices for computing P, (X ---xw). However, this worst case O(K |.A| W=k
behaviour is rare in practice since it happens only when the motif trie
is complete. Most often the trie is very sparse for it contains only a few
occurrences of the motif. In addition, once P (xj|xj_k ---xj_1) is computed,
it can be stored for subsequent use.

2.3 Computing P-values for Markov meotif models

We consider now the problem of computing motif occurrence P-values for
K-order Markov models.

DEFINITION 2. Let m be a K-order motif model of length W. We define the
log-likelihood score of a word X relative to m as

0 m) Y 1og P (%).

Given also a background sequence model mg, we define the P-value of a
score | as
Povalue(l;m) % Poy((xe AY | (x;im)>1}).

In words, it represents the probability, under the background (null) model,
for a random sequence to have a score at least as good as | relative to the
motif model m.

i161

P.G.S.da Fonseca et al.

For the PWM model, the problem of computing P-values is well studied in
the literature and has been recently demonstrated to be NP-hard (Touzet and
Varre, 2007; Zhang et al., 2007). The naive solution consists in exhaustively
enumerating each word of the desired size W, computing its log-likelihood
under the motif model m and comparing it to the target score /. Approximate
methods exist which avoid exhaustive enumeration by sampling words from
the background distribution and estimating the P-value through the empirical
expected value of the binary indicator function 1(£(y, m) > /). Here, however,
we consider extensions of recent exact PWM-based techniques for our case
of K-order Markov models.

2.3.1 Branch-and-bound P-value computation The algorithm presented
by Bejerano (2003) is based on a recursive enumeration of the words of length
W in such a way that, at each point of the enumeration tree, we have a prefix
of length j <W and we can compute bounds for the log-likelihood score of
the words having this prefix. At this point, we compare these bounds with
the target score / to decide whether or not to pursue the enumeration further
down the tree. Procedures employing this kind of heuristic fall into a broad
class of algorithms commonly referred to as branch and bound algorithms
(e.g. Michalewicz and Fogel (2004), Sec. 4.4). A skeleton of this particular
procedure is shown in Figure 2.

The algorithm of Figure 2 can also be used for K-order Markov models,
its efficacy depending on the estimation of the bounds performed in line 7.
In order to explain our solution for this problem, we need some notation.
First, we notice that the log-likelihood score of a word x=ux;---xy W.r.t. a
K-order Markov model m of length W decomposes additively into £(x; m)=
ijllogP(xfle,K---Xj,l). We denote by £;(x;m)=P(x;|xj—g---xj—1) the
term corresponding to position j, which we call the j-position score. The
J-position score depends only on the character a at that position and the
k-mer k e AM"U=1LK) that precedes it. Thus we write £j(k-a;m) to denote
the j-position score of a word x with x;=a and xj_x|..,—1 =k. We denote
by Zu...v(x;m):Z;zuﬁj(x;m) the partial sum of the position scores for
positions from u to v, or the subword score from u to v. If u=1, then
we call it the v-prefix score of x. If v=W, it is called the u-suffix score

Algorithm BranchAndBoundPvalue
Input 1 the motif model of length W
myg: the background model
{: the log-likelihood threshold
y: aprefix of length j < W
Output P, ({z€ AV |21 =y A {z;m) >1})
1 if |y| = W then

2 if £(y; m) > [then
3 return P, (y)
4 else
5 return 0
6 else
7 Estimate bounds L™ (y) and L™ (y) s.t.
vz € AW with 2z ; = y, we have L™ (y) < £(z;m) <
Lrnax(y)
§ if L™in(y) > [then
9 return P, ({z € AW |21 ; =y})
10 else if L™#*(y) < [then
11 return (
12 else
13 s—0
14 for each ¢ € A do
15 s «— s + BranchAndBoundPvalue (m, my, 1, ya)
16 return s

Fig. 2. Branch and bound motif P-value computation. This algorithm must
be initially called with BranchAndBoundPvalue(m,mg,l,).

of x.! Notice that, as for the position score, the subword score ¢,,...,(X; m)
depends not only on the subword x,---x, but also on the k-mer k that
precedes it. We thus write £,...,(K-z;m) to denote the subword score from
u to v of a word x s.t. X,_|k...—1 =K and X,..,=z. For the v-prefix
score of a word starting with ve A” we write £..,(v;m), and for the
u-suffix score of a word ending with the suffix ue AW ~“*! preceded by
the k-mer k we write £,...(k-u;m). Finally, we denote by {7 (k---m)=

s
max, ¢ gv-u+1 £y..,(K-z; m) the maximum subword score from u to v of a word
with the ‘seed’ k-mer X,_|k|...—1 =K preceding the subword. By the same

token, we denote by £3%(-;m) =maxye 4v £...,(v;m) the maximum v-prefix
score and by £}**(K-;m) =max . qw-u+1 {y...(K-u;m) the maximum u-suffix
score for of a word with the ‘seed’” k-mer X,_|k|...,.—1 =K. The minimum
subword, prefix and suffix scores, Z{ff?f‘v(k- ;m), ETT‘,iV“(ﬁm) and Z{I‘T‘:F(k-;m)
are defined accordingly.

Back to the branch and bound problem, suppose that we are at a point in
the enumeration tree where we have spelled a (j — 1)-prefix y ending with
the k-mer K, that is, the prefix is of the form y =k for some k € Amin{K.j=2}
Then we propose to use the bounds Lmi“(y):é_}“j“(kﬁm) and L™*(y)=
Z}T‘f"‘(k;m) in line 7 of the algorithm of Figure 2. Notice that these are the
most strict bounds we can use knowing only the prefix y. The computation
of these bounds is done by a dynamic programming procedure based on the
following proposition.

LEMMA 1. Let m be a K-order Markov motif model of length W, 0<
u<v<W, and ke AMMKu=1} "1y addition, let L2 (K -*z;m) denote the
maximum subword score from u to v of a word X s.t. Xy_k..u—1 =K and
Xy..w =%Z, that is, we require that the subword X,,..., ends with z. Then the
following holds:

(i) If |z| >min{v—u+1,K}, then, for all a€ A,

s (K-sza;m) =L, (K- z; m)

+(v+l(Xv+l =a‘Xu7K~»v =kxz;m)
(ii) €™ (K-;m)=maxze 4z £; 2y (K-*z;m) for any 0<z<W—u+1.

ProoF. To prove proposition (i) notice that, by definition, €7
(k-*za; m) corresponds to the best subword score from u to v+ 1 of a word
X s.t. Xy—|k|.u—1 =K and X,...,; | =*za. The subword score from u to v+1

of one such a word is of the form
Lyey1 (X m) =L, (X;m) + -+, (x;m) +£, 11 (X;).

The condition |z| >min{v—u+1,K} guarantees that, if the size of the
subword (i.e. u —v+ 1) is greater than K, then z has size at least K. Otherwise,
z fills the whole space u---v. This means that all the letters affecting the
last term of the subword score £,,...,4+1(x; m) are fixed. Hence ¢,.1(x;m) is
constant and
@;7?’:,+1(k-*za;m):mfx{ﬁ,,(x;m)+--~+K‘,(x;m)+ev+1(x;m)}
:mfx{fu(x; m)+---+£,(x;m)} +£,4 1 (x;m)

=02 (k- #z;m)+ £y 1 (X; m).

Part (ii) follows directly from the definition of £;}**(k-;m) and €%},
(k-*z;m). It is only saying that the best score for a suffix starting at position
u preceded by k is the best score for a suffix starting at position u preceded
by k and ending with a certain z of size z, among all possible choices of z,
no matter its length.

Lemma 1 still holds if we consider minimum scores instead of maximum
scores, and the proof is analogous. Based on this result, we can compute
%% (k-;m) [and equally K{ﬂf‘(k; m)] as shown in Figure 3. For each position
j=u,...,W we build a table of the best subword scores Z‘;f‘:’;(k-*z;m)

'In the pattern-matching literature, the term u-suffix usually refers to the
suffix on length # whereas here it means the suffix starting at position u.

i162

K-order Markov models

Algorithm Max suffix log-score
Input m: a Markov motif model of order K and length W
w: the initial position of the suffix (1 < u < W)
k € Amin{K.u—1}. 4 <seed’ k-mer that precedes the suffix
Output #£1'**(k-; m)
{ Initialise S[u — 1, k] — 0
2forj=mu,..., W do

3 for each y s.t. S|j — 1,y is defined do
4 for each a € A do
5 S[.j.yta] — S8l —1,y]+£4i(y -a;m)
8 if 7 < K then
7 for each z € 47 do
8 Slj,z] — Slj, 2]
9 else
10 for each z € AX do ~
11 S[j, 2] — max,c4{ S[j, az] }

12 return max;{ S[W,z] }

Fig. 3. Dynamic programming computation of the maximum suffix log-
score. The minimum suffix log-score can be computed similarly, only by
replacing ‘max’ by ‘min’ in lines 11 and 12.

for all possible z of size z=min{K,j—u+1}. We start with the value
£ _ (k;m)=0 and use the entries of the table corresponding to position
J to build the entries of position j+ 1 with the aid of item (i) of Lemma 1.
When the size of the subword u...j is bigger than K, the best subword scores
from u to j+ 1, obtained after applying relation (i), would refer to subwords
ending with all possible suffixes of length K 4 1. However we do not need to
keep all this information since, for the next iteration, only the last K letters
of the subword will matter. We hence shrink the table by considering only
the best scores based on the last K positions of the subword. At the end, we
use item (ii) of the lemma to return the desired result.

As a final note, we remark that the algorithm of Figure 3 takes time
O((W —u)- \.AlK“). Indeed, for each position j=u, ..., W, we need to build
an extended table based on the |.A|X entries of the previous iteration and the
possible |A| new letters, hence | A|¥+! entries. Then we eventually need to
shrink this table, which demands visiting again its |AIXH! entries. At the
end of the algorithm, we have to scan the final | A|X entries corresponding
to the last position to obtain the final result. We also remark that, for each
prefix in the recursive enumeration, the computation of the maximum and
minimum suffix score bounds can be done simultaneously. Moreover, all
prefixes of the same length ending with the same k-mer will share the same
bounds, therefore this computation needs to be carried out only once per
k-mer and per prefix length. Thus the worst case total cost of computing score
bounds along the enumeration procedure is ZZV:I JAIK - (W —u)-|AKH =
JAPKHL W (W —1)/2= O(W2 | A[K).

2.3.2 Computing P-values by iterative model refining We discuss now our
extension of the method proposed by Touzet and Varre (2007). We begin with
the very general observation that an essential factor impacting the efficiency
of score P-value algorithms is the number of possible scores. We say that
a score s is possible for a model m whenever there is a word x s.t. the
score of x under m equals s. Indeed, in a principled enumeration schema
like the one discussed in the previous section, if there are many possible
scores then, at any given point, it is more likely that some of them will fail
to observe our pruning conditions forcing the recursion to go down. On the
other hand, if the number of possible scores is small, the number of possible
sequences being the same, the score distribution is more ‘concentrated’,
which results in more sequences being counted or discarded by groups,
hence abbreviating the enumeration. Therefore, it would be interesting to
reduce the number of possible scores of a model, for example, by truncating
the values of its parameters at an arbitrary precision. Of course, we cannot
do this in general for any score threshold, since this could result in some

sequences whose scores are normally above the threshold not being counted
due to the reduction in their scores caused by the precision loss. However,
for sufficiently extreme P-values and for an adequate precision, we may miss
no sequence while speeding up the P-value computation.

To formalize these ideas, let us re-phrase some key definitions found in
Touzet and Varre (2007). First, given a number x € R and a precision € > 1,
we define the round value of x at precision € as [x]c = é le-x], where |-]
denotes the ‘integer part’ function. The precision € will be normally taken
to be a non-negative power of 10, i.e. €= 10% for k>0 and, in this case,
the rounding operation will correspond to truncating the number at its k-th
decimal place. Next, given a K-order Markov motif model of length W, m,
we call the derived €-round model m, the model obtaining by rounding each
parameter of m at precision €, that is

w
x;me) ="y 10g[Pm(xj1xj & -+ 1)le-
j=1

Since, for any x>0, [x]c <x, and since log is a monotonically increasing
function, it follows that £(x;m.)<£(x;m) for all €>1 and for all xe AY.
We can thus define the maximal error associated to the precision € as

Am.e & max {£(x;m)—£(x;m,)}.
xe AW

By this very definition of the maximum error, we have that, for any € >1
and xe AV
L(x;me) <L(x;m) <L(X;me)+Am e

Finally, given a null model mg, we define the log-score distribution of m
(under myg) as the function

Omo(s;m) & P (Ixe A | £(x;m) =s5)),

that is, for s € R, Om, (s; m) denotes the probability under mg for a sequence
to have log-score s in m.

The algorithm we are about to describe is based on the following
proposition.

LEMMA 2. Let m be a K-order Markov model, €' > € be two precisions and
t' <t be two real numbers s.t. P-value(t;m,)=P-value(t — Apm ¢;m¢) and
P-value(t';mg) = P-value(t' — Ay ¢;mer). Then

D Omy(ssm)= " Omy(s;my).

t'<s<t t'<s<t

Lemma 2 is essentially the same as Lemma 8 in Touzet and Varre
(2007). We refer thus to that paper for a proof. This result says that we
can approximate the log-score distribution of the original model m with no
error by the score distribution of the round model m, inside the interval
[¢',1). I, for a still higher precision €”, we could find a value ¢’ <¢’ s.t.
P-value(t”;m¢r) = P-value(t’” — Ay, v; mer) then, according to the lemma,
we would be able to approximate the original score distribution inside
the adjacent interval [¢”,") with the refined model m.». The net effect is
that we would have the original score distribution in the interval [¢”,1)
exactly estimated from two round distributions. If we continue increasing
the precision, we get an increasingly larger interval.

This idea is used to compute P-value(/,m) by approximating the log-
score distribution on a series of adjacent intervals covering the entire range
[, +00) using round models of increasing precision. The procedure is shown
in Figure 4. The two main problems of this algorithm when applied to
K-order Markov models correspond to lines 5 and 6. The former refers to
the computation of the maximum error, which is a trivial problem when
PWMs are used, but which is more complicated in our case. The latter
corresponds to the computation of the score distribution, which is the core
of the algorithm with exponential behaviour. The strategy to alleviate its
deleterious impact consists in starting with models with low precision and
augmenting it progressively. The increase in the precision up to a reasonable
level may still be necessary, but it is also partially compensated by the fact

i163

P.G.S.da Fonseca et al.

Algorithm Iterative P-value refinement

Input m: the (K-order Markov) motif model of length W
my: the background model
I: The log-likelihood score threshold
e == 0: the initial precison

= 1: the precision update factor
QOutput P-value(x; m)
I t « any value > 0
2 e—egp
I p—0
4 repeat
h] Compute the maximum error Ay,
[Compute QQm,, (s; m,) for all accessible score s € [— Am ., t)
7 Search for the smallest ¢ s.1.
P-value(t';m,) = P-value(t’' — Am,c;m.)
8 if such a t’ exists then
9 PP+ e Qmpls;ime)
10 te—t
11 € ¢ K- €
12 until [= ¢

13 return p

Fig. 4. P-value iterative refinement.

that the interval over which the distribution is computed diminishes as the
precision grows.

For the purpose of computing the maximum error associated to the round
model m,, we have elaborated a dynamic programming algorithm which is
based on the following proposition.

LEMMA 3. Let Amcelj.K] =mMaXy_ e A {£.j(yym)—£. ;(y;me)}, e
Am,¢lj, K] denotes the maximum rounding error for a prefix of length j ending
with Kk (by convention, Ay ¢[0,e]=0). Then, the following holds:

(i) If |k|>min{K,j} then, Vae A,
Amclj+1,kal=Amelj, K]+ [£j+1(k-a;m)— €1 (K-a;me)].
(ii) Ame=maxgc gk Am,e[W K], forany 0<k<W.

PrOOF. For part (i), let y=xka e A/*!, that is, y is a prefix of length j+ 1
ending with ka. Then

Lo jpr(y;m)—£. i1 (y;me)

J1 1
=Y logPm(ilyi—k-yi-1)— Y _ loglPmyilyi—k --yi-1)]e
izl i=1

J J
=1 logPmilyi—kyi-1)— Y _ 1oglPmilyi—& -+¥i-1)]e
i=1 i=1
+ {10g Pm (Vj+1 1= k| +1-) — L0l P [(j1 |¥j— kj-41-))e } -

Because of the restriction on the size of K, the last term of the sum above is
fixed, that is,

Cojpi(ysm)— L.y (y; me)

J J
= logPm(yilyi—k+yi-1)— Y _ log[Pm(ilyi—k - -yi-1)le

i=1 i=1

+lj1(k-a;m)— £y (K-a;me)].

Algorithm Max rounding error
Input mn: the motif model of length W
e: the rounding precision
Output Ay e = max, o 4w {£(x;m) — £(x;m.)}
I TInitialise D[0,] — 0
2forj=1,...,Wdo
3 for each k s.t. D[j — 1, K] is defined do
4 for each a € A do
5 DJj, ka] — D[j — 1,k]
+log Pm(Yjt1 = alY;_ k415 = k)
—10g[Pm (Y11 = alY;_|kj41...; = K)e
6 if j < K then
7 for each k € A7 do
8 D[j, k] < D[j,k]
9 else
10 for each k € AKX do
11 Dlj, 2] HInaXaEA{ﬁU»aZ]}
12 return maxy { D[W, K] }

Fig. 5. Maximum rounding error for K-order Markov models.

Hence

Amelj+1,kal= max

y=+kac A /! {EMJ#l (ysm)— e'“j+1 (y; me)}

= max {£.(y;m)—£. i(y;m
y,=*k€Af{ G m)—L.(y';me))

+ [r1(k-a;m)— £ (k-a;me)]
=Am,elj.kI+[¢+1(k-a;m)— €1 (k-a;me)].

Part (ii) is a direct consequence of the definition of Ay, [W,K]. It is only
saying that the maximum error for a W-word is the maximum error for a
W-word (=W-prefix) ending with a certain k among all possible choices
for k.

The algorithm of Figure 5 computes Ay, . by using Lemma 3 to build
tables D[j,Kk] containing the values of Ay [j, k] for j=1,...,W and ke
Amin{. K} g g easy to see that, for each j=1,..., W, the algorithm takes at
most [A|X*! steps to build the table D[j,kal, and then |.4]¥*! additional
steps to read all its elements and ‘compress’ it into the final table D[j,Kk].
Hence the overall time complexity of the algorithm is O(W - A+,

Finally, we need to discuss how to compute the score distribution
Om, (s;m). More specifically, our objective is to compute O, (s;m) for
every possible score s within a given interval [c¢,d]. The idea is to perform
the enumeration of the words in LAY and select the words x satisfying
¢ <{(x;m) <d, grouping them by their scores. As in the branch and bound
P-value computation, we use bounds for the scores of a word starting
with a given prefix to prune the enumeration. However, we now perform
a breadth-first enumeration whereas in the branch and bound algorithm we
performed a depth-first enumeration. This is necessary because we keep
track of the possible prefix scores for all prefixes of length j in order to
compute the possible scores for prefixes of length j+ 1. As a matter of fact,
we do not need to keep track of all possible prefixes of length j and their
scores for the computation of the possible prefix scores of length j+ 1 since
only the last k=min{K, j} letters of the j-prefix affect the (j4 1)-position
score. We hence need only to keep a table with the possible combinations
of (j,Kk,s), where j is the size of the prefix, k e Amin{KJ} i such that
the prefix is of the form xk and s is a possible score for one or more
prefixes of this form. The value of the entry in the table indexed by (j,Kk,s)
corresponds to Pmo({yeAj | y=xkAL_;(y;m)=s}). In the end, the entries
of the form (j=W,K,s) summarize all possible scores in [c,d] and the
corresponding words of length W, grouped by each possible suffix k, with

i164

K-order Markov models

Algorithm Log-likelihood score distribution
Input m: the motif model of length W
my: the background model
c: the lower limit of the score interval
d: the upper limit of the score interval
Output Q[s] = Qm, (s; m) for all possible score s € [c, d]
I Tnitialise S[0,¢,0] — 1
2forj=1,..., Wdo
3 for each (k, s) s.t. S[j — 1, k, 5] is defined do
4 for each a € Ado
5 s' —s+4j(k-a;m)
6 p/ <—S[j—1,k,5]><Pm0(Xj :a|X,7'7|k\~-~j71 :k)

=

7 Let k’ be the suffix of ka of size k = min{j, K}
8 Compute K;“fi (k";m), £ (k'-;m) if necessary
and store the result for subsequent use
9 if c—0mer (K'm) <’ <d— (k' m) then
10 if S[7,k’, s'] is not defined then
11 Define S[j,k’,s’] = p’
12 else
13 S[j7k/75/]<_S[j7klvsl]+p/

14 for each (k, s) s.t. S|W, k, s] is defined do
15 if Q[s] is not defined then

16 Define Q[s] = S[W, k, s]
17 else

18 Qs] — Qls] + S[W, k, s]
19 return Q

Fig. 6. Log-likelihood score distribution.

their joint probabilities under the background model. The procedure is shown
in Figure 6.

The core of the algorithm consists in computing the score distribution
tables S[j,k,s] by taking the entries of S[j—1,Kk,s] and considering their
extension to position j upon the addition of each character a€ A, thus
IS[j— 1,Kk,s]|-|.A| possibilities. For each possible extension, the algorithm
makes use of suffix score bounds, as in the branch and bound procedure,
and so the maximum time cost for computing these bounds is the same as
in that algorithm. The maximum time of the table construction phase is thus
given by 3% [S[j— 1.k, s][-|Al+ 3L, (W—j)|APK+!. The final phase
of the algorithm consists in reading the entries of S[W, K, s] to produce the
final table Q[s]. Overall, the worst case occurs when each prefix of length
j=1,...,W originates a distinct prefix score, all of them passing the pruning
criteria. In this case, |S[j,k,s]|=|.A} and thus the the total cost of the
algorithm (assuming W > K) is given by le] |AY +Z/~‘11 (W= AP+ =

W1 _ 2K+1 (2 _ . i
‘Al‘AM‘A‘ + LAl 2(W W) :0(|A\W), as expected. However, in practice,

the iterative refinement algorithm considerably reduces the size of the score
distribution tables (and therefore the running time of the algorithm) by, on
the one hand, working with models of the lowest possible precision, which
reduces the number of possible scores and, on the other hand, by decreasing
the score interval as the model precision increases, which makes the pruning
filter more strict.

2.3.3 Computing the log-likelihood threshold for a given P-value Despite
the speed-up brought by the P-value computation algorithms proposed
here, this problem remains computationally costly. This is why, instead of
computing the P-value of a putative occurrence in order to determine if it
is significant or not, it is preferable to have a likelihood threshold and test
whether the likelihood of this occurrence is greater than this threshold. The
algorithm proposed by Touzet and Varre (2007) for computing the maximum
possible score whose P-value is greater than a given value p can also be
used for K-order Markov models once we have extended the algorithms
for computing the log-likelihood distribution (Fig. 6) and the maximum

error (Fig. 5), and by using our adapted branch and bound algorithm as
the counterpart of the algorithm ‘FastPvalue’ of that paper.

3 DISCUSSION

To illustrate our discussion, we report some results of an experiment
performed to study the behaviour of our P-value algorithms. We
have selected seven motifs with lengths ranging from 6 to 12 from
the dataset used in Barash er al. (2003), which contains TBFS
alignments extracted from the TRANSFAC database (Wingender
et al., 2000). We chose, for each length, the motif with the greatest
number of complete aligned sites (i.e. gaps were not allowed). Next,
we used each of these motifs to build a K-order Markov model
for K=0,1,2 using the motif trie representation. Then, for each
of these models, we took the same set of 20 words sampled from
the uniform background model, and computed the P-value of their
log-scores using the brute-force (BF), branch and bound (BB) and
iterative refinement (IR) methods. The mean computa-tion times are
summarized in Table 1. By analysing this table we notice that:

e The implemented heuristics significantly improve over the
naive method in practice, although for small motif lengths,
the gain is not substantial due to the overhead brought by the
calculation of score bounds and score distributions.

* As expected, the mean computation time per P-value of the
naive method remains more or less unaltered for a fixed motif
length, no matter what the motif order is (SD is also low).
The BB and IR methods, on the contrary, are more sensitive to
the variation of the model order, since the number of possible
scores varies exponentially with this number.

* For a fixed motif order, all algorithms are negatively affected
by an increase of the motif length. However, the actual
computation times depend on each particular model and on
the distribution of the scores. It may happen that a model
with a bigger length gives lower computation times if the test
sequences give more extreme P-values. Hence it is difficult to
compare different values from the same column.

* Comparing the values of each line, we can see that, in general,
the IR method performs better than the BB method. The
difference is accentuated as both the motif size and order
grows since this increases exponentially the number of possible
scores, a problem which is addressed more directly in the IR
method by using models with lower precision.

4 CONCLUSION

In this article, we have considered two practical issues regarding the
use of high-order Markov models for the representation of biological
sequence motifs. First, we proposed a compact representation for
a set of example motif occurrences from which position-specific
conditional base probabilities can be efficiently computed. This
representation can be useful in situations where the model is
constantly updated, for instance, during the course of a motif
learning procedure. As an example, we have included, in the
software library mentioned in the abstract, an implementation of
the motif site sampler (Lawrence et al., 1993) which uses the trie
representation to infer K-order Markov motifs in a set of unaligned
sequences. In the original Gibbs sampling procedure, the model
parameters are updated as soon as a new site is sampled. With
the proposed representation, we only include the newly sampled

i165

P.G.S.da Fonseca et al.

Table 1. P-value computation times for different values of K and W using

three methods: BF, BB and IR.

w BF BB IR
K=0
6 19.4 (5.11) 10.3 (4.1) 13.6 (6.34)
7 99.85 (2.43) 13.45 (6.36) 40.05 (14.0)
8 393.5 (1.6) 42.8 (23.3) 31.6 (6.26)
9 2608.65 (11.77) 274.4 (89.14) 551.6 (179.65)
10 18334.35 (26.38) 812.75 (280.43) 487.75 (102.03)
11 ? 3155.9 (1331.48) 71.6 (9.18)
12 ? 42891.95 (16387.32) 26459.4 (10752.97)
K=1
6 15.95 (1.09) 5.6 (2.11) 20.25 (2.8)
7 89.8 (1.23) 36.85 (18.8) 58.3 (14.84)
8 345.65 (1.38) 164.0 (73.02) 76.3 (18.22)
9 2417.15 (3.13) 702.75 (306.62) 1023.75 (344.67)
10 19626.5 (19.36) 3780.5 (2135.76) 1124.95 (376.28)
11 ? 3010.15 (1146.59) 363.25 (90.32)
12 ? 53487.65 (14953.72) 77476.75 (30706.51)
K=2
6 15.45 (0.68) 5.65 (9.05) 53.4 (3.03)
7 69.1 (0.44) 30.4 (20.75) 76.85 (7.76)
8 288.45 (3.26) 144.1 (58.07) 136.35 (13.78)
9 2024.3 (2.22) 759.85 (252.66) 602.65 (118.77)
10 17432.05 (28.64) 6668.05 (2722.57) 1052.1 (264.83)
11 ? 1779.45 (810.61) 364.75 (77.89)
12 ? 39105.9 (18679.04) 14084.05 (4488.29)

Shown are the mean time per P-value computation and the SD (inside parenthesis) for
each motif length and for each of the computation methods. The best mean performance
for each pair (K,W) is shown in boldface. The naive enumeration method was not tested
for W>10.

occurrence in the trie, which can be done in linear time. Then we
considered the problem of assessing the statistical significance of
putative occurrences through the computation of exact P-values. We
proposed extensions of PWM-based techniques to deal with K-order
Markov models. These PWM algorithms figure among the most
efficient algorithms in their category, and these extensions enrich
the algorithmic toolkit of Markov dependency models contributing
to the dissemination of their use. It is known, however, that standard
K-order Markov models can suffer from the scarcity of training
data, and therefore it will be interesting to study the adaptation of
the proposed representation and algorithms to more general Markov-
type dependency models such as the ones proposed by Zhao et al.
(2005) or Huang et al. (2006), for instance.

ACKNOWLEDGEMENTS
The authors thank Augusto Vellozo for the helpful discussions.

Funding: P.F. was funded by a doctoral scholarship from the CAPES
Foundation (Brazilian ministry of education) under co-supervision
of K.G. and ML.ESS. This project was also funded by an ANR research
grant (Project REGLIS no. 05-NT05-3_45205) and counted on the
computational infrastructure of the PRABI (Rhone-Alpes Pole of
Bioinformatics).

Conflict of Interest: none declared.

REFERENCES

Bailey,T.L. and Elkan,C. (1994) Fitting a mixture model by expectation maximization
to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol.,
2, 28-36.

Barash,Y. et al. (2003) Modeling dependencies in protein-DNA binding sites. In
Proceedings of the Seventh Annual International Conference on Research in
Computational Molecular Biology (RECOMB’03). ACM, New York, NY, USA,
pp. 28-37.

Beckstette,M. et al. (2006) Fast index based algorithms and software for matching
position specific scoring matrices. BMC Bioinformatics, 7, 389.

Bejerano,G. (2003) Efficient exact P-value computation and applications to biosequence
analysis. In Proceedings of the Seventh Annual International Conference on
Research in Computational Molecular Biology (RECOMB’03). ACM, New York,
NY, USA, pp. 38-47.

Durbin,R. et al. (1999) Biological sequence Analysis : Probabilistic Models of Proteins
and Nucleic Acids. Cambridge University Press, Cambridge, UK.

Ellrott,K. et al. (2002) Identifying transcription factor binding sites through markov
chain optimization. Bioinformatics, 18(Suppl 2), S100-S109.

Fredkin,E. (1960) Trie memory. Comm. ACM, 3, 490-499.

GuhaThakurta,D. (2006) Computational identification of transcriptional regulatory
elements in DNA sequence. Nucleic Acids Res., 34, 3585-3598.

Huang,W. et al. (2006) Optimized mixed markov models for motif identification. BMC
Bioinformatics, 7, 279.

Knuth,D.E. (1998) Sorting and searching. In The Art of Computer Programming, vol. 3
of The Art of Computer Programming. 2nd edn. Addison, Reading, MA, USA.
Lawrence,C.E. et al. (1993) Detecting subtle sequence signals: a Gibbs sampling

strategy for multiple alignment. Science, 262, 208-214.

Michalewicz,Z. and Fogel,D. (2004) How to Solve it: Modern Heuristics. Springer,
Berlin, Germany.

Pizzi,C. et al. (2007) Fast search algorithms for position specific scoring matrices. In
Proceedings of the Bioinfomatics Research and Development BIRD 2007, vol. 4414
of Lecture Notes in Bioinformatics. Springer, Berlin, Germany, pp. 239-250.

Touzet,H. and Varre,J.-S. (2007) Efficient and accurate P-value computation for position
weight matrices. Algorithms Mol. Biol., 2, 15.

Wingender,E. et al (2000) Transfac: an integrated system for gene expression regulation.
Nucleic Acids Res., 28, 316-319.

Zhang,J. et al. (2007) Computing exact P-values for DNA motifs. Bioinformatics, 23,
531-537.

Zhao,X. et al. (2005) Finding short DNA motifs using permuted markov models.
J. Comput. Biol., 12, 894-906.

i166

	Efficient representation and P-value computation for high-order Markov motifs
	Paulo G. S. da Fonseca, Christian Gautier, Katia S. Guimarães and Marie-France Sagot
	1 Introduction
	2 Methods
	3 Discussion
	4 Conclusion

