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Abstract

There has been a renewed interest for metabolism in the computational biology community,
leading to an avalanche of papers coming from methodological network analysis as well as
experimental and theoretical biology. This paper is meant to serve as an initial guide for both
the biologists interested in formal approaches and the mathematicians or computer scientists
wishing to inject more realism into their models. The paper is focused on the structural aspects
of metabolism only. The literature is vast enough already, and the thread through it difficult to
follow even for the more experienced worker in the field. We explain methods for acquiring data
and reconstructing metabolic networks, and review the various models that have been used
for their structural analysis. Several concepts such as modularity are introduced, as are the
controversies that have beset the field these past few years, for instance, on whether metabolic
networks are small-world or scale-free, and on which model better explains the evolution of
metabolism.

keywords: metabolism, network, metabolic data, modelling, topological analysis, modular-
ity, evolution
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1 Introduction

In his December 11, 1907 lecture for the Nobel prize in chemistry, Eduard Buchner said: “We
are seeing the cells of plants and animals more and more clearly as chemical factories, where the
various products are manufactured in separate workshops. The enzymes act as the overseers. Our
acquaintance with these most important agents of living things is constantly increasing”. An even
perfunctory look at the computational biology literature will indicate that interest of the community
for such cellular “chemical factories” is also constantly increasing to the point where anyone may
feel overwhelmed by the amount and variety of papers pertaining to the topic. This survey is meant
as an initial guide into chemical factories, that is into metabolism which is defined as “the sum of
the physical and chemical processes in an organism by which its material substance is produced,
maintained, and destroyed, and by which energy is made available” [1]. The guide is “initial”
because providing a complete even if simplified roadmap through the whole of the computational
biology literature on metabolism would be beyond the scope of a single paper. We decided therefore
to focus our attention on the simplest mathematical model one may draw of metabolism, that of
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a graph (or hypergraph), and on the questions that may be asked using such a model. These are
essentially structural questions on what corresponds to a static representation of metabolism. We
shall see that, even within such restrictions, the literature is already vast and controversial enough.
We also chose to focus our attention on metabolism exclusively and to intentionally disregard other
cellular processes such as gene regulation and signalling. The main reason, besides a problem of
space (talking about such processes even in simplified ways would take us too far), is that, at least
for now, metabolism is far better documented (with more abundant and reliable data) and thus
provides a good stepping stone for initiating the modelling of complex cell factories.

Although this paper concerns “only” structural aspects of metabolism, the topic is of importance
as illustrated by the numerous in silico analyses that will be discussed at some length in this paper,
various of which represent also experimentally fully checked “success stories” (see [18, 159, 169,
176] for a few examples and references on both in silico and in vitro or in vivo work) where the
study of structural features such as input-output relationships and maximisation of a product,
modularity, pathway redundancy and phenotypic behaviour were able to bring significant insight
in the understanding of a metabolic system and in some cases even means to modify and monitor
it. As an additional motivation for this review, it is worth stressing that in all these cases, the use
of formal models was an essential requirement.

The term metabolism is derived from the Greek word “metabolē” for “change”. Its scientific
study appears to have started some 400 years ago with experiments performed by Santorio Sanc-
torius on human, indeed on himself. The experiments involved observing weight fluctuations in his
body over the course of a day and during various metabolic processes such as occur when digesting,
sleeping, and eating. Through these experiments, published in Ars de statica medicina in 1614,
Sanctorius introduced the quantitative aspect into medical research, and at the same time founded
the modern study of metabolism with, however, an exclusively vitalistic view to explain it. It was
two centuries later only, by studying the fermentation of sugar to alcohol by yeast, that Louis Pas-
teur showed that the organic compounds and chemical reactions found in cells are no different in
principle from chemistry. It was however really the discovery of enzymes by Eduard Buchner in the
early 20th century that separated the study of the chemical reactions composing the metabolism
of an organism from the biological study of its cells.

Such reactions are traditionally grouped into so-called metabolic pathways, which may in turn
be classified as anabolic or catabolic. Anabolism is the synthesis of molecules through the use
of energy and consumption of reducing agents (a reducing agent is a substance that chemically
reduces other substances by donating one or several electrons) while catabolism corresponds to the
degradation of molecules yielding energy and the production of reducing agents. The pathways
may either be studied in isolation or, since they are overlapping, be combined together to yield
what is referred to as a metabolic network. The benefits of studying the whole network rather than
individual pathways are numerous and include, for instance, the possibility to explore alternative
pathways.

Before getting to a network representation of metabolism however, the first task is to acquire
the data. This is no trivial matter and will be described at some length in Section 2. The pro-
cess can be time-consuming but it is time worth spending in order to avoid the risk of fully or
partially invalidating the results obtained with any later analysis, above all their correct biological
interpretation. Once data are acquired, modelling them into a network may then start. We discuss
in Section 2.3 the various graph-related models (the only ones considered in this survey for the
reasons given above) that have been or could be used.

With a graph representation of metabolism in hand, initial analyses are possible. These concern
mainly the network topology. Although all such analyses are potentially interesting, one stands
out perhaps more than others. This concerns the issue of modularity. It is generally agreed that
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the notion of modularity is relevant in biology, indeed important for understanding function and
evolution. For metabolism in particular, this notion is old if one considers that the metabolic
pathways into which the chemical reactions taking place in a cell are traditionally organised and
depicted correspond to modules. Glycolysis, and the urea and tricarboxylic acid cycles are probably
the most ancient such pathways to have been discovered, the first by Otto Meyerhof around 1940
following the work of Louis Pasteur and others on fermentation, and the last two by Hans Krebs in
1932 and 1937 respectively. The tricarboxylic acid cycle, TCA cycle for short, which corresponds
to the sequence of chemical reactions that produces energy in cells, is also known as the Krebs
cycle and earned Hans Krebs a Nobel Prize in 1953. The identification of metabolic pathways
presents however a certain arbitrariness, particularly at the frontiers of the pathways that are often
ill defined. Automatic and formal ways of identifying metabolic pathways, such as those that have
been familiar to biochemists since the last century, have therefore been explored, as have other
definitions of modules, some of which are operationally rather than biologically motivated. All
are presented in Section 3 together with the other network measures that have been applied to
metabolism.

Although doubtless useful, in particular for understanding biological processes and also for
validating some computational methods developed for analysing metabolism, the search for modules
should not overshadow the need sometimes to work with the full network. This will depend on
the biological question that is asked. Studying the evolution of metabolism may be one occasion
where using the full network is in some cases required. Work on this essential topic is discussed
in Section 4. It may be argued that structural analyses should not be divorced from evolutionary
considerations as the latter are important for keeping a check on the soundness of the first. For the
sake of exposition however, such separation appears to be helpful.

The reader who wishes to skip information on how data is acquired and is knowledgeable on
how metabolic networks may be represented using graph or constraint-based models, may safely
go directly to Sections 3 or 4.

2 Acquisition of metabolic data

2.1 Defining the entities

A metabolic network may be formally defined as a collection of objects and the relations among
them. The objects correspond to chemical compounds, biochemical reactions, enzymes and genes
(see Figure 1).

Chemical compounds, also called metabolites, are small molecules that are imported/exported
and/or synthesised/degraded inside an organism. For most metabolites, the amount observed varies
depending on the tissue and cell compartment inside which the compound is present. Tissues and
cells indeed contain a number of liquid compartments separated from one another by selectively
permeable membranes.

Biochemical reactions produce a set of one or more compounds (called the products) from
another set of one or more compounds (called the substrates). In theory, a chemical reaction can
occur in both directions. However, under particular physiological conditions, some reactions occur
in only one direction. In this case, they are defined as being irreversible if all other conditions
remain constant. Inside a cell, some reactions are spontaneous but most are catalysed by one
or several enzymes which strongly accelerate their speed. An enzyme is a protein or a protein
complex, coded by one or several genes. A single enzyme may accept distinct substrates and may
catalyse several reactions, and conversely, a single reaction may be catalysed by several enzymes.
Elucidating the links between genes, proteins and reactions (the so-called GPR relationship) is not

4



a trivial task and is a major concern in metabolic reconstruction [?] as is discussed in the next
section.

The presence of small molecules, called cofactors, is sometimes essential to allow the catalysis
of a reaction by an enzyme. Such molecules can vary for a given reaction among several organisms.
By binding the enzyme, cofactors can enhance or decrease the activity of the enzyme. They are
called, respectively, allosteric activators or allosteric inhibitors. The term allostery indicates that
the regulatory site of an allosteric protein is separate from its active site.

Data on individual reactions have not always been available and the concept of metabolic
pathway has often been used to informally characterise the set of reactions involved in the synthesis
or degradation of a molecule of interest (glycolysis for the transformation of glucose into pyruvate
for instance). The concept of metabolic pathway remains very much employed for historical reasons
but lacks formal definition. In particular, there is no consensus on the boundaries of a pathway.
Efforts were made in recent years to propose a more formal definition [52, 98, 152, 157] but no
general agreement has been reached yet.

2.2 Metabolic reconstruction

Reconstructing a metabolic network consists in inferring the relations between genes, proteins
(enzymes) and reactions in a given metabolic system. This is usually achieved using comparative
genomics but also, often as a refinement step, using metabolomic data (the latter referring to the
type and quantity of metabolites present in the metabolism of an organism).

Other types of relations may be more difficult to assess. This is the case, for instance, of the
allosteric effects of an enzyme which are rarely known. The precision needed in the definition of
each relational link depends also on the question one wishes to answer. In some cases, it suffices to
obtain a list of metabolites associated with a list of the chemical transformations to which they are
linked. On the other hand, if the aim is to study, for instance, the relationship between genotype
and phenotype, then it becomes necessary to establish a precise correspondence between reactions
and the enzymatic genes whose protein products catalyse them.

Inference from comparative genomic data usually suggests a list of metabolic reactions present in
an organism of interest, not the whole network. Although the process has been highly automated
in recent years, it still requires in most cases an expert manual intervention sustained by data
painstakingly collected from the literature. Once a model for the whole network, such as a graph,
has been obtained a study of its general mathematical properties can start (see Section 3).

The quality of such a reconstruction obviously strongly depends on the quality of the genome
annotation for that organism and, to a lesser degree, on the taxonomic position of the input
organism. Indeed, there exist few organisms for which the set of genes composing their genomes
and their associated functions (metabolic or other) are well known. This is the case, for instance, of
Escherichia coli. EcoCyc [91], the part of the metabolic database BioCyc [85] dedicated to E. coli,
thus offers an excellent level of accuracy due in no small part to its numerous links to experimental
evidence. This kind of database is however an exception among genome-scale metabolic databases.
Besides being often much less accurate, most of the pathways in BioCyc or in KEGG, another widely
used database for metabolism [7], are further biased towards the microbial and plant kingdoms.
The quality of the metabolic reconstruction of any animal is thus expected to be worse than the
one of a bacterium evolutionarily close to Escherichia coli.

Metabolic reconstruction from comparative genomics is traditionally divided in two parts. The
first provides a functional annotation of the metabolic genes, i.e. determines the catalytic activity
of the enzymes the genes code for. The second defines the relation between functional annotations
and biochemical reactions, i.e. establishes the list of reactions enabled by the annotated catalytic
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Figure 1: Simplified UML schema of the various objects involved in a metabolic network. The indi-
cations on each side of an arrow representing a relation between two objects define the cardinalities
of each object in the relation: “1” means exactly one, “0..*” means zero or more, “1..*” means one
or more. For instance, the indications on each side of the relation “codes for” between “Gene” and
“Protein” mean that one gene can produce several proteins (in the case of alternative splicing for
instance) or none if the gene is not a protein gene (this explains the “0” in the cardinality for the
proteins), and that a protein can either be produced by more than one gene or supplied by the
environment (this explains the “0” in the cardinality for the genes).
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activities.

2.2.1 Functional annotation of the metabolic genes

Recent high-throughput genome sequencing techniques have given access to many complete genome
sequences. For instance, the EBI genomic database (http://www.ebi.ac.uk/genomes/) contained
at the time of writing this paper the complete genomes of 575 bacteria or viruses, 51 archea and
74 eukaryotes. Most genomes have been annotated using fully automated methods. The first step
consists in detecting the boundaries of the genes and in assigning a function to the protein(s)
such genes code for. Several complementary methods are currently used to identify the limits of
a gene, which proceed by putting together information from, among others, the detection of open
reading frames and of conserved motifs around the junctions between introns and exons (in the case
of eukaryotes), as well as alignments with already known genes. The latter should enable also to
determine the function(s) of the genes. Indeed, this is most often predicted by sequence comparison
of the related protein with proteins of known function(s) in already sequenced genomes.

In the case of a metabolic network reconstruction, it is particularly important to be able to
establish the catalytic function(s), if any, of a protein. Functions are specified either based on
experimental clues or by using automatic methods. Because of the frequency of new completely
sequenced genomes, it is nowadays impossible to provide annotations based on experiments for each
protein, and automatic methods are therefore the most common means of assigning function(s) to
a protein. As pointed out in [58], the first challenge is however in arriving at an unambiguous and
operational (for the purpose of an automated prediction) definition of “function”.

Protein function The ambiguity comes from the fact that protein function may depend on
which aspect, biochemical or physiological for instance, is considered. It can also be highly context-
dependent as exemplified by the so-called “moonlighting proteins” which have different functions
inside a same organism depending on their cellular localisation, cell-related level of expression,
oligomeric state, and cellular concentration of a ligand, substrate, cofactor or product [78]. Such
characteristic can go unsuspected for years.

Ontologies such as GO (“Gene Ontology”) [10], by establishing a common and controlled vo-
cabulary for the functional description of homologous genes in multiple organisms, have made gene
annotation easier and in general more consistent, and have improved data exchange and curation.
A so-called EC (for “Enzyme Commission”) numbering system is used to classify enzymes by type
and function by means of a hierarchical code with 4 digits separated by dots attributed by the
IUBMB (International Union of Biochemistry and Molecular Biology). Each digit represents a pro-
gressively finer class [177]. The first one defines the type of reaction catalysed (1. oxidoreductases,
2. transferases, 3. hydrolases, 4. lyases, 5. isomerases, 6. ligases), the next two further indicate,
respectively, the reaction’s subclass and sub-subclass, and the fourth is the serial number of the
enzyme in its sub-subclass (see http://www.chem.qmul.ac.uk/iubmb/enzyme/rules.html for more
details). Unfortunately, the assignment of an EC-number, even when correct, can be imprecise.
For instance, the EC number 2.7.1.69 corresponds to 60 genes in Lactobacillus plantarum [175].
Moreover, at current time, some 30 to 40% of the metabolic activities biochemically characterised,
that is experimentally known to exist in nature and to which an EC number has been assigned,
remain orphan in the sense that no gene responsible for the corresponding reactions has ever been
identified in any organism [23, 106, 137].

Orthology approaches The classical way to annotate a whole-genome set of proteins is to
perform sequence comparison between them and the proteins of other species whose genomes have
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Figure 2: Reconciliation of the gene tree G and the species tree S into the tree R.

already been annotated in order to detect homology, more precisely orthology. The corresponding
function assignment is indeed based on the assumption that orthologous enzymes have same activity.
Orthologous proteins are homologs in different species that originated from a single ancestral gene
after a speciation event [53]. One major difficulty with such methods is to distinguish orthologs
from paralogs. The latter result from the intra-genomic duplication of an ancestral gene and are
assumed to have different function(s). Two main approaches exist to address this problem.

The first is based on an all-against-all reciprocal sequence comparison of the proteins encoded
in complete genomes using, for instance, Blast [6]. Two proteins are classified into the same group
if they are more similar between them than to any other proteins from the same genomes, that is,
if they are each other’s Best-Reciprocal-Hits (BRH). BRH methods are well adapted for large-scale
data and are at current time commonly used to annotate new sequenced genomes. COG (“Clusters
of Orthologous Groups”) [173] is the first database built in this way and is certainly the most
famous one. The Kegg Orthology (KO) system [83] is based on the same concept and is also widely
used, particularly for metabolic reconstruction. Neither COG nor KO are however able to take
into account gene duplications which may occur after a speciation event and lead to the presence
of co-orthologs in the same genome. The latter have more recently been considered by Remm et
al. to improve the clustering of orthologous groups [146].

The second main approach to distinguish speciation events (evidence of an orthology link) from
duplication events (evidence of a paralogy link) is based on a comparison of gene trees G with a
reference species tree S. The result of the comparison is a “reconciled” tree R which is a variation
of the species tree in which duplication nodes have been inserted in order to explain incongruences
with a gene tree [41] (see Figure 2).

Automatic “tree reconciliation” methods were developed for genome-scale studies but require
completely resolved gene and species trees. To circumvent this problem, Dufayard et al. proposed
a method allowing for the presence of a number of unresolved nodes both in the gene and the
species trees [40]. Several databases are built using a tree reconciliation method, among which
are HOVERGEN [41] for vertebrates, INVHOGEN [132] for invertebrates and TreeFam [107] for
animals. However, tree reconciliation methods present various drawbacks [102]: they are based
on still poorly characterised models of gene duplication and loss, the species phylogeny used (in
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general this follows the taxonomy provided by the NCBI) contains a large number of unresolved
nodes, and last, computing a reconciled tree is time-consuming.

Whatever specific method is chosen, all orthology-based approaches assume that orthologs have
same function(s) while paralogs have different function(s). However, closely related paralogs may
have more similar functions than distantly related orthologs. Moreover, it is not always the case
that orthologs have same function(s). They may instead present rather different functionalities,
even when the percentage of conserved bases among aligned orthologs is very high [58, 119].

Sequence signature approaches Since the function of a protein is essentially determined by
one or several active domains, identifying sequence signatures may appear to be more appropriate
for predicting protein function(s). Several databases, such as Interpro [118] and ProDom [160],
propose an automated clustering of homologous domains that can then be used to establish the
function(s) of a protein. More specifically in the context of metabolic genes, Claudel-Renard et al.
introduced a method, called PRIAM, [26], that assigns enzymatic activities based on a classification
into modules of the enzymes in the ENZYME database [11]. An enzyme module is defined as a
longest homologous segment shared among an enzyme collection.

The increase in the number and diversity of the sequences available in databases make all
homology-based methods error-prone, whether they are based on sequence comparison or on com-
mon sequence signature detection. As more proteins are automatically annotated, the propagation
of such annotation errors may quickly escalate [58]. Indeed orphan genes may be associated to
a sequence in another genome where no experimental evidence exists that would permit to link
the orphans to that or to any other homologous sequence [137]. Moreover, some proteins with
undetectable sequence similarity may have, in fact, the same function (they are called “analogs”)
[60].

Genomic context approaches Information provided by homology-based methods can be com-
plemented by investigating protein co-evolution. The hypothesis is that functionally linked proteins
evolve in a correlated fashion. If N genomes are considered, a phylogenetic profile is established for
each protein that corresponds to a vector of bits of length N , each bit indicating the presence or
absence of a homolog in a given genome. Proteins are then clustered, and function(s) determined
according to the similarity of their phylogenetic profiles [133].

In prokaryotes where functionally related genes tend to be co-regulated and co-localised on the
chromosome, groups of contiguous genes are in general preserved across different genomes, with
conserved local order. This information can be used to infer the function(s) of the protein a gene
encodes, even in the absence of any similarity with other sequences [149, 181]. Is has been shown
also that genes linked by fusion events generally code for functionally related proteins [201, 44].

Other approaches Expression microarrays, protein-protein interaction networks and informa-
tion on cellular localisation may provide further clues for the assignment of function to a protein.
In this case, only a general function at the cellular level may be inferred, not a precise molecular
function (such as a complete EC number). We refer the interested reader to [58] for an overview
of these methods.

To avoid the drawbacks inherent to each of the above approaches, attempts have been made to
combine them in an efficient way. The method of Chua et al. thus models into a same weighted
graph information about sequence homology, protein-protein interactions, protein domains, gene
expression data and literature [24]. Some “missing genes” approaches (see further details in Sec-
tion 2.2.3) attempt also to integrate several kinds of information to identify genes for missing
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enzymes [126, 200].

Manual refinement After any automatic gene annotation, doing a manual refinement is es-
sential. Several annotation platforms, such as GenDB [115], MaGe [181] or Iogma (http://www.
genostar.org), provide powerful graphical interfaces to help experts to curate automatically gener-
ated annotations. Since it is very difficult to have an expert group to annotate all the genes in a
single genome, Overbeek et al. propose an approach where all genes occurring in a “subsystem”
(such as a metabolic pathway for instance) are analysed over a large collection of genomes by an
expert in that subsystem [125].

Various currently available projects try to provide improved genome annotations by using cu-
rated and up-to-date genomic sequences. This is the case, for instance, of RefSeq [138], GenomeRe-
views [90] Ensembl [77] and Hamap (for “High-quality Automated and Manual Annotation of micro-
bial Proteomes”). The latter uses both manual and semi-automatic curation to obtain the complete
proteomes of sequenced bacteria [62]. The project Integr8 gathers data from both GenomeReviews
and Hamap [90].

Despite the rapid growth-rate of new methods and data to determine protein function(s), the
fractions of genes for which no function can be predicted is still high (around 40%), especially in
eukaryotes, and remains a major problem [64, 137]. It is important to keep in mind this observation
since, whatever the efficiency of the metabolic reconstruction methods, the metabolic capabilities of
an organism will remain incomplete as long as the assignment of protein function(s) is incomplete
or imprecise.

2.2.2 Defining the set of metabolic reactions and pathways

Once enzyme functions have been tentatively defined, links must be established between them and
the corresponding biochemical reactions. The ENZYME database describes each type of charac-
terised enzyme for which an EC number could be provided, and contains links to various metabolic
databases and to Uniprot [11], which is the world’s most comprehensive catalog of information on
proteins. It is a central repository of protein sequences and functions created by joining the infor-
mation contained in Swiss-Prot, TrEMBL, and PIR. The BRENDA database provides additional
detail, when available, concerning the substrate specificity of the reactions across several organisms
[154]. The BIOCYC [85] and KEGG [84] databases, currently the most widely used, store infor-
mation on genomic data, proteins, reactions, compounds and metabolic pathways. Perhaps the
two most currently used tools to automatically infer a set of biochemical reactions from genomic
data are KAAS, the KEGG Automatic Annotation Server [116], and PathoLogic, the prediction
tool in the Pathway-Tools used to build, query, and visualise BioCyc-like databases [87]. The two
adopt a somewhat distinct strategy. In KEGG, the genes present in the databases are identified by
their Kegg-Orthology number (KO number) which groups orthologs coding for the same enzymatic
activity. A biochemical reaction is considered as possible in an organism if its genome contains a
gene that is classified by sequence comparison into the KO group corresponding to the EC number
of the reaction. PathoLogic does not do sequence comparison but assumes instead this has already
been performed and the information stored, for instance, in GenBank, the comprehensive NIH-
maintained genetic sequence database [13]. As a consequence, if an EC number has been assigned
to a gene product (the EC number can be retrieved from the ec number qualifier in GenBank), the
corresponding reaction in a database called MetaCyc [22] used by PathoLogic is added to the list of
reactions feasible in the organism. MetaCyc stores information on nonredundant, experimentally
elucidated metabolic pathways for more than 900 organisms. If a gene has no EC number assigned,
its assigned functions are matched against the list of names of functions present in MetaCyc. To a
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great extent, the strategy of KAAS is thus to re-do the assignment of a function for each gene while
the strategy of PathoLogic is to use the pre-existing annotations. This means that the quality of
the predictions in PathoLogic highly depends on the quality of the annotations. On the other hand,
PathoLogic can also take into account information that does not come from sequence comparison.
The main advantage of the KAAS metabolic reconstruction is that it can start its assignment from
draft genomes.

Historically, metabolic pathways are sets of reactions corresponding to a metabolic function.
For instance, glycolysis is a sequence of reactions involved in the degradation of glucose (a molecule
with 6 carbon atoms) into pyruvate (a molecule with 3 carbon atoms) and other molecules needed
for the biosynthesis of macromolecules constitutive of a cell. Glycolysis is one of the metabolic
pathways (such as the TCA cycle and the pentose phosphate pathway for instance) which occurs in
almost every organism. Reference metabolic pathways have thus been built to represent common
and alternative organism-dependent reactions. By comparing the set of reactions expected to
occur in an organism with the set of reactions in reference metabolic pathways, it is possible to
infer the main metabolic functions of an organism. In KEGG, the reference metabolic pathways
are organised into metabolic maps where all known variants are drawn together. From a list of
reactions or even gene identifiers defined by KAAS, it is possible to highlight the corresponding
reactions in each reference metabolic map. PathoLogic additionally attempts to predict which
pathways are susceptible to occur in the input organism. The prediction is based on the proportion
of metabolic reactions in the pathway for which there is an evidence [126] and on the presence of
unique reactions. Indeed, reactions occurring in only one pathway provide a stronger evidence for
the presence of a metabolic pathway than reactions occurring in several other pathways.

Neither KAAS nor PathoLogic can predict novel pathways. For this, the Pathway Hunter Tool
(PHT) [143] can be used. Starting from a set of annotated EC numbers, and a source/destination
metabolite pair selected by the user, the shortest metabolic pathways (k-shortest pathways) are
computed by PHT. These provide alternative routes that may then be evaluated for biological
significance.

A genome-based metabolic reconstruction enables to very quickly obtain a draft of the relations
between genes, enzymes and reactions, and, for instance, to study the impact of some genomic events
(such as duplications, transfers or deletions of genes) on a metabolic network. However, this draft
reconstruction often contains errors or imprecisions that must in general be further painstakingly
and expertly curated with help from the literature or from other more refined methods which are
described next.

2.2.3 Refinements of a metabolic reconstruction

Missing genes and fragments in a metabolic reconstruction After any metabolic recon-
struction, some reactions appear as “missing”. They correspond to gaps in the biochemical path-
ways that were nevertheless declared as being present in the reconstruction. We observe that there
seems to be no established quantitative criterion in the literature to decide whether a pathway is
present in a metabolic reconstruction. Any such missing reaction can be explained [29, 124] by:

1. a low sequence similarity of the corresponding gene with the reference ones coding for the
missing enzyme in other organisms;

2. the products of the reaction can be obtained from alternative pathways or are provided by
the environment;

3. the presence of multi-enzyme proteins;
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4. the corresponding gene is really absent in the genome.

Various approaches exist to complete these gaps by trying to identify the genes encoding for
a specific metabolic function. Like most methods used in this area, they are based on ad-hoc
heuristics. Osterman et al. propose a very good review on the use of comparative genomics to
search for missing genes [124]. Indeed, various types of genomic evidence can be combined to
propose candidate genes for a missing reaction: genes coding for enzymes involved in the same
pathway are often chromosomal neighbours (in prokaryotes, the case of eukaryotes is less clear)
[66, 63, 93]; protein fusion events provide some evidence of potential functional coupling [93]; two
proteins which appear in the same metabolic pathways tend to occur together or not in any specific
organism [93]; genes functionally coupled are expected to be co-regulated [93]. Inference of the
missing reactions may be performed using a supervised approach (such as Support Vector Machine)
which requires partial knowledge of the network and good training sets [66, 200]. Candidate genes
have their similarity to known genes measured according to the relative importance of each of the
previously cited evidence. These methods are interesting for both metabolic reconstruction and
gene annotation.

When the missing reactions represent a pathway fragment, another approach [21] may be used to
infer it by comparison with a set of known pathways. The latter are previously modelled as enzyme
graphs labelled with GO annotations. Data mining techniques are used to detect frequent pathway
functionality patterns in the graphs and these are then matched onto the metabolic network of
interest. The underlying idea is to focus on the biological processes carried by the various steps
along a pathway rather than on the specific genomic or chemical features of each individual enzyme
[21].

Reversibility of the reactions The direction of a reaction in certain physiological conditions is
determined by the thermodynamic properties of the reaction, the kinetic properties of the enzyme
and the concentration of its substrates and products. In a metabolic reconstruction, the direc-
tion of a reaction is often added a posteriori and manually, or the reaction is left as reversible.
Methods to automatically assign a direction to the reactions in a genome-scale metabolic network
reconstruction remain rare. Yang et al. [202] show how the direction of a reaction may be deter-
mined by analysing the stoichiometric matrix of the metabolic network. The stoichiometric matrix
of a network gives the coefficients for all reactions in a metabolic network. The stoichiometric
coefficient for a given metabolite in relation to a given reaction represents the degree to which
the metabolite participates in the reaction. For instance, if the reaction R is A + 2B → C + 3D
(reactant metabolites A and B are transformed into product metabolites C and D by reaction R),
then the stoichiometric coefficients of A, B, C, and D are, respectively, 1, 2, 1, and 3. In general,
stoichiometric coefficients are integers since elementary reactions always involve whole molecules.
Obviously, the coefficient is zero for metabolites which do not participate in the reaction. Yang
et al. [202] showed how, using the stoichiometric matrix, feasible reaction directions in a given
system may be computed from those imposed by the reactions at the boundary of the system that
transport metabolites in or out. However, the algorithm was tested on a reaction network of only
44 reactions. The algorithm proposed by Kümmel et al. [103] exploits instead all available exper-
imental thermodynamic data, given by the derived Gibbs energies of formation, and metabolite
concentrations to identify irreversible reactions. The standard Gibbs free energy of formation of
a metabolite is the change of Gibbs free energy that accompanies the formation of 1 mole (the
mole is a counting unit) of that substance from its component elements, at their standard states
(the most stable form of the element at 25 degrees Celsius and 100 kilopascals). The Gibbs energy
of a reaction can intuitively be thought of as the maximum amount of work obtainable from a
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reaction. Next, Kümmel et al.’s algorithm aims at identifying, on the basis of some heuristic rules,
sets of reactions (subnetworks) whose simultaneous operation is thermodynamically infeasible. A
thermodynamically infeasible subnetwork may, for instance, be a cyclic operation of a reaction set
such as the example given in [103] of three reactions A ↔ B, B ↔ C and A ↔ C. If A is converted
to B, and B to C, then C must have a lower Gibbs energy of formation than A meaning that the
reaction C → A is not feasible. The algorithm was tested on a genome-scale model of Escherichia
coli (920 reactions) and assigned 130 of the 920 reactions as irreversible. Feist et al. also propose
a genome-scale metabolic reconstruction for Escherichia coli K12 which includes thermodynamic
information [47]. The directions are inferred from the values of standard Gibbs free energy change
of formation for most metabolites and reactions, estimated from the structure of the metabolites
[114].

Inferring the presence of reactions from metabolite data Large-scale techniques have
recently been developed to determine the metabolome of an organism, i.e. the set of its detected
metabolites. The techniques are grouped under the term “metabolomics”. A good description of
those currently used, with their advantages and limitations, has appeared already in several reviews
[14, 69, 122]. The catalogue of metabolites thus produced provide additional information about
which compounds are really present inside an organism. Indeed, because of incomplete knowledge
on substrate specificity, reconstruction from sequence annotation gives only partial and approximate
knowledge on the metabolites participating in a metabolic network.

Some methods suggest feasible biochemical reactions from sets of metabolites. For instance,
Arita uses hypothetical links (16 basic types) between compounds to infer biochemical reactions
even if they do not correspond to a known enzyme [8]. In the same way, Kotera proposes a method
to assign partial EC numbers from a set of substrates and a set of products [101]. Breitling et al.’s
approach on the other hand relies on the development of ultra-high resolution mass spectrometers
and on the fact that only a limited repertoire of chemical transformations account for the majority
of biochemical reactions within cells [17]. This enables to infer feasible biochemical reactions
by computing accurate mass differences between compounds and then referring to a table which
provides correspondences between mass difference and chemical reaction. The main advantage of
such a method is that no genomic information is required. The disadvantage is that it does not
provide any information about the relations between genes, enzymes and reactions.

Refining metabolic reconstruction using biological experimental evidence Mass spec-
trometry for the large-scale identification of the proteins in an organism enables to confirm the
presence of enzymes predicted from genomic annotations [182, 191]. In the same way, several other
high-throughput techniques currently exist to define the metabolome, that is, the set of metabo-
lites present in an organism [14, 51, 57, 122]. High-throughput phenotyping and gene expression
data may also be used together with the predictions of a computational model in order to refine a
metabolic network [31]. At a smaller scale, physiological information may provide important addi-
tional clues to complete the set of reactions in a metabolic network. For instance, in the metabolic
model of Streptomyces coelicolor built by Borodina et al [16], 89% of the reactions have an associ-
ated annotated gene while the remaining reactions were included based on physiological evidence.
The purification of an enzyme and study of its catalytic activities following functional annotation
or mass spectrometry may also further enable to precise its substrate specificity.

The analysis of admissible fluxes in a network, together with incorporated constraints that limit
the network behaviour with respect to feasible steady state flux distributions, has also been used in
order to predict the phenotypic behaviour of the network as a function of such constraints. At each
iteration, the phenotypic predictions computed by such an analysis are compared with experimental
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observations. If the model predictions do not correlate with the experiments, hypotheses about the
functions of an organism are generated to expand the model [16, 39].

2.3 Modelling metabolism

Metabolism can be studied from a structural or from a dynamic point of view. Distinct models
are used in each case [166], the most common being graphs, so-called constraint-based models and
differential equations. The latter is necessary for dynamic studies. Since this review is focused
on the structural analysis of metabolism, we mostly cover the first two types, with an emphasis
on graph models. The reader interested in dynamic aspects of networks and a representation by
differential equations of the latter may refer to [170].

2.3.1 Graphs

Formally, a graph G is defined as a couple (V,E) with V a finite set of nodes and E a set of
edges that is a subset of V 2. Modelling a metabolic network with a graph means choosing which
biological entities will be associated to nodes and edges. In the context of metabolism, biological
entities may be compounds, reactions or enzymes. We start by describing the graph models more
frequently found in the literature and discuss in what context they may introduce ambiguities.

The question of which is the right graph model to choose depends mainly on the type of question
asked, whether, for instance, the focus is on connectedness only, or if knowing the exact pattern of
connection is necessary.

Figure 3: Reaction graph and enzyme graph for the sets of reactions: R1: A + B → C + D, R2:
D + E → F + G, R3: F + G → H + I, R4: I → J + K. E1, E2 and E3 are enzymes: E1 catalyses
R1 and R4, E2 catalyses R2 and E3 catalyses R3.

More commonly used graph models A compound graph is a model of the metabolic network
where the nodes correspond to compounds and there is an edge between compounds A and B if
there exists a reaction where one is substrate and the other is product. In a reaction graph, nodes
correspond to reactions and there is an edge between two reactions if there exists a compound
which is produced by one and consumed by the other. Enzyme graphs are also sometimes used. In
this case, nodes correspond to enzymes and there is an edge between two enzymes if they catalyse
reactions that share a compound. Using the enzyme graph may lead to confusion in the structure
of the network, i.e. reactions catalysed by a same enzyme are “merged”, thereby creating shortcuts
between distant compounds (see Figure 3).

14



Nevertheless, this model may still be adopted if the focus is really on enzymes and on the
relations between them, as in [75]. One should call attention to the fact that enzyme and reaction
graphs are often mistaken for one another although they are really different. Using a labelled graph
(that is, a graph where nodes and edges may be labelled), enzymes can be introduced as reaction
labels, either in the compound graph or in the reaction graph. This ensures that the structure of
the network is preserved.

Compound and reactions graphs may sometimes be ambiguous [37]. For instance, the two
following networks lead to the same compound graphs as indicated in Figure 4 a.

Network 1 Network 2

Reaction 1: A ↔ C Reaction 1: A + B ↔ C
Reaction 2: B ↔ C Reaction 2: C ↔ D
Reaction 3: C ↔ D

Figure 4: a. Compound graph for the sets of reactions: set 1. A ↔ C, B ↔ C, C ↔ D; and
set 2. A + B ↔ C, C ↔ D. b. Bipartite graph for the set of reactions: A + B ↔ C, C ↔ D.
c. Undirected hypergraph corresponding to the network: A + B ↔ C, C ↔ D. d. Directed
hypergraph corresponding to the network: A + B → C, C → D.

One may resolve this ambiguity by adding reactions as edge labels. Another method consists
in using a more expressive graph model: either a bipartite graph or an hypergraph.

Most expressive models Formally, a bipartite graph is a graph whose set of nodes V can be
divided into two disjoint subsets V1 and V2 such that each edge has a node in V1 and the other
in V2. In the context of a metabolic network, one of the sets corresponds to compounds and the
other to reactions. In the case of the example of Networks 1 and 2 above, the ambiguity would be
avoided as shown in Figure 4 b.

Another way of solving the ambiguity of simple graphs is to use a hypergraph. Intuitively, a
hypergraph is a graph where the edges may link more than two nodes. Formally, a hypergraph H
is a pair (V,E), where V = {v1, v2, ..., vn} is the set of nodes and E = {e1, e2, ..., em}, with Ei ⊆ V ,
for i = 1, ...,m, is the set of hyperedges. Clearly, if |Ei| = 2, for all i = 1, ...,m, then the hypergraph
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is a simple graph. In order to model a metabolic network with a hypergraph, nodes are usually
associated to compounds and hyperedges to reactions (see Figure 4 c).

The models mentioned previously were undirected. A directed graph is a graph where each
directed edge, that is arc in mathematical notation, is an ordered pair of nodes, one of which is the
source node and the other the target node. In the case of a hypergraph, a directed hyperedge, or
hyperarc, may have several sources and several targets (see Figure 4 d.).

Orientation of edges generally enables to model the direction of a reaction. In the case where
all reactions are irreversible (resp. reversible), the network will be modelled as a directed (resp.
undirected) graph. In the case where only some reactions are reversible, one may use a mixed graph
(some edges are directed and some are not). In several papers [50], the assumption is made that
all reactions are reversible. Indeed, we can argue that in presence of an excess of product, even
reactions which have a favoured direction may occur in the opposite direction.

Finally, one should notice that modelling a reversible reaction with undirected edges may still be
ambiguous (several networks may have the same representation), even when using bipartite graphs.
If we go back to the example given in Figure 4 b., the same graph could have been obtained using
the set of reactions: A ↔ B + C, C ↔ D. Indeed, there is no indication in the graph on which
compounds are on which side of the reaction; no difference is made between right compounds and
left compounds. One way of solving this problem is to use edge labels. Such edge labels may
also help in avoiding to compute biologically meaningless paths which link compounds that are
on the same side of a reaction (a substrate to another substrate for example). We may observe
that labelled bipartite graphs and hypergraphs are strictly equivalent in terms of the quantity of
modelled information. One may easily transform one into the other.

Possible model simplifications In all models presented above, it is commonly assumed that
all reactions and all compounds are equivalent. In practice, for a given reaction, some compounds
may be considered as primary and others as auxiliary. For instance, ATP and NADH are involved
in many reactions as, respectively, energy source and reducing agent. Considering them as regular
compounds to build a graph model would lead to artefactually link a very large number of reactions.

A classical way of dealing with this problem is to remove from the network all compounds that
participate in a large number of reactions [80, 110, 109]. This method has several caveats: 1. one
needs to heuristically define a threshold to determine how many metabolites to remove, 2. some
highly connected metabolites like pyruvate or fructose will be removed whereas it is commonly
agreed that they belong to the backbone of metabolism, and 3. even compounds like ATP that
could be safely removed from most reactions, should not be eliminated from those that participate
in their own synthesis.

Another option is to remove compounds only in the reactions where they are involved as side
compounds, i.e. remove edges and not nodes of the graph [104]. The idea is to maintain the back-
bone of metabolism and to get rid of shortcuts. The distinction between side compounds and main
compounds for each reaction is however not always available. It has been automatically generated
in BioCyc, initially for drawing purposes [86]. KEGG maps do not represent all compounds either.

Applying no treatment to such highly connected compounds may lead to misleading conclusions
when computing network measures as we shall see in Section 3.1.1.

2.3.2 Constraint-based modelling

The term “constraint-based modelling” was coined, and subsequently adopted by the bioinformatics
community, following two papers by the Palsson group [32, 127]. In a constraint-based framework,
the network is modelled by its stoichiometric matrix (see Section 2.2.3). This actually corresponds
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to a directed edge-labelled bipartite graph (or equivalently, hypergraph). In this case, the labels
are the stoichiometric coefficients of the compounds in the reactions, with signs to indicate if
they are produced or consumed. Reversibility of the reactions is not handled within the matrix
representation but provided as a separate information.

In constraint-based modelling, the focus is on the distribution of mass fluxes through the reac-
tions under some constraints. The principal motivation is to analyse the metabolic capabilities of an
organism. The main constraints that have been considered are: 1. steady state (every metabolite
that is produced has to be consumed); and 2. thermodynamic constraints (irreversible reactions
can only be taken in the appropriate direction).

In the following, we introduce the concept of a flux vector, denoted by v. A flux vector (or
flux distribution) is an m-vector of the space of reactions ℜm, where the element vi describes the
flux through reaction i and ℜ = Rev ∪ Irrev with Rev (resp. Irrev) the set of reactions that are
reversible (resp. irreversible). In this context, the term flux is equivalent to the net rate of the
reaction, that is to the difference between the rate of the direct reaction and the rate of the reverse
reaction.

If S is the stoichiometric matrix for the network, the two constraints previously mentioned
(steady state and thermodynamic) can be expressed as follows:

1. Sv = 0

2. vi > 0,∀i ∈ Irrev.

They define a portion of the flux space represented by a convex polyhedral cone containing all
admissible flux vectors. A flux vector is also called a mode.

Given this framework, two main issues have been addressed. The first, called Flux Balance
Analysis (FBA), is concerned with finding an admissible flux vector which optimises an objective
function. The objective functions that have been considered in the literature include biomass or
ATP production. FBA has many applications and has been shown to have good phenotypic pre-
dictive power [43]. FBA may also be used to measure the phenotypic effects of complete or partial
metabolic gene deletions and other types of perturbations on a system. Gene deletion studies are
in general performed by constraining the reaction flux(es) corresponding to the gene(s) (and as-
sociated proteins(s)) to zero and applying FBA on the network. This approach assumes that the
corresponding mutant system will display an optimal metabolic state, but as indicated in [158],
knockouts probably do not possess a mechanism for immediate regulation of fluxes toward the op-
timal growth configuration. Another flux-based analysis method, called MoMA [158], was therefore
developed that is similar to FBA and based on the same stoichiometric constraints, but where the
optimal growth flux for mutants is relaxed. Instead, MoMA provides an approximate solution for
a sub-optimal growth flux state, which is nearest in flux distribution to the unperturbed state. It
therefore involves a different optimisation problem than FBA, namely distance minimisation in flux
space.

When all admissible vectors are of interest, one may wish to find a set of vectors that can
generate all of them. This problem has been addressed several times and in different areas in the
past [28]. Several similar concepts now co-exist. The most widely used in the context of metabolic
networks are the concepts of elementary modes [156], extreme pathways [152] and minimal T-
invariants [185]. The three enable to investigate the space of all physiological states that are
meaningful [167].

Intuitively, an elementary mode is a special mode that has the property of not containing any
other mode. More formally, an elementary mode is a flux vector v that satisfies conditions 1 and 2
above plus the following condition:

17



3. There is no non-trivial admissible flux vector v′ such that: R(v′) ⊂ R(v)

where R(v) = {j | vj 6= 0}, i.e., R(v) is the set of reactions participating (with non-zero flux) in v;
R(v) is called the support of v.

Elementary modes have been said to represent a formalised definition of a biological pathway.
Indeed, a biological interpretation can be given to such flux vectors: a mode is a set of enzymes
that operate together at steady state [155] and a mode is elementary when the removal of one
enzyme causes it to fail. Extreme pathways were introduced in the field by Schilling et al. [151]
and are actually a subset of elementary modes. Both notions coincide in the case where all exchange
reactions (reactions connecting a metabolite with the outside of a metabolic system) are irreversible.
For a detailed comparison of the two, we refer the reader to [98]. As outlined in [157], the concept
of minimal T-invariants used in Petri Nets is also closely related to elementary modes, as is the
notion of extreme currents defined by B. Clarke [25]. Petri nets may be seen as directed bipartite
graphs with two types of nodes called places and transitions. Places may contain tokens which are
passed to other places through transitions according to some local rules. Unlike extreme pathways
and elementary modes, minimal T-invariants and extreme currents have only been defined in the
case of a network of irreversible reactions.

Clearly, there are links between the algorithms for enumerating elementary modes and the ones
for obtaining minimal T-invariants. Interested readers may refer to [28] as concerns minimal T-
invariants and to [59, 161, 180] for elementary modes. More generally, the usefulness of Petri-Net
approaches to the study of metabolic pathways is presented in [185]. As discussed in [2], counting
and enumerating such objects are hard algorithmic problems. In this case again, applications are
numerous and range from model validation [73] to prediction of gene expression patterns [167].

An elementary mode may be seen as a set of reactions that, when used together, performs a
given task. One may be interested instead in determining a set of reactions one needs to inhibit
to prevent a given task, usually called target reaction, from being performed. This leads to the
concept of a minimal (reaction) cut set that was recently introduced by Klamt and Gilles [96]. As
mentioned in a latter paper [95], the task to be silenced can also be a combination of reactions.
There is a strong link between reaction cut sets and elementary modes since the first have been
operationally defined as corresponding to a set of reactions whose deletion from the network stops
each elementary mode that contains the target reaction(s).

Readers interested in constraint-based modelling and wishing to have more details and examples
on these concepts are invited to read [98] and the references therein indicated.

3 Topological analyses

3.1 Synthetic graph measures

Once a metabolic network is modelled as a graph, classical measures from graph theory may be
used to check whether they provide any further insight into the structure and general characteristics
of the network. Several such measures have been applied to metabolic as well as to other types of
biological networks. In the “network analysis toolkit”, one may thus find a number of measures
such as: degree distribution, average inter-node distance (average shortest path length), closeness
centrality, diameter, clustering and assortativity coefficients, node- and edge-betweenness centrality,
and synthetic accessibility.

The degree of a node i, denoted by ki, is the number of edges linking it to other nodes of the
graph. The distance between two nodes i and j, is the length of a shortest path between these
two nodes (the path may be not unique). Average inter-node distance of a given network, that is
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average shortest path length, is the mean of the distance for all pairs of nodes. Closeness centrality
is the mean distance between a given node i and all other nodes reachable from it. The diameter
of a network is the maximum distance between any pair of nodes in the network. The clustering
coefficient of a node i is the proportion of existing edges over all those that are possible between
the neighbours of this node. It quantifies how close from a clique is the subgraph induced by i and
its adjacent nodes, where a clique is a maximal complete subgraph (each pair of nodes is connected
by an edge). The node-betweenness centrality, or betweenness-centrality for short, of a node i, is
the proportion, over all shortest paths between every pair of nodes in the network, of those that
contain i. Edge-betweenness centrality is similarly defined by replacing node i by edge e. Both are
a measure of the centrality of a node in a graph. The assortativity coefficient, denoted by ac, is

defined by ac =
P

k(ekk−akbl)
1−

P

k akbl
where ekl is the fraction of edges from a node of degree k to a node of

degree l, ak =
∑

l ekl, and bl =
∑

k ekl. It tells in a concise fashion how nodes of different degrees
are preferentially connected among themselves.

All the above measures may be applied to either a reaction or compound graph representation
of a metabolic network. A further measure, called synthetic accessibility [198], is more specific
of metabolites. The synthetic accessibility Sm of an output metabolite m is the minimal number
of metabolic reactions needed to produce m from a set of compounds defined as the inputs of a
network. Synthetic accessibility defined this way is a generalisation of graph diameter for directed
branching chemical reactions in an input-output transport network [198]. It has been used to
predict the viability of knockout strains with an accuracy that appears to be comparable to flux
balance analysis on large, unbiased mutant data sets [198].

We now comment on two main works where some of the above synthetic structural measures,
namely degree distribution and diameter, were applied to metabolic networks in an attempt to infer
biological meaning. The corresponding papers have met with an open success in the bioinformatics
community mainly because they propose to relate complex processes to simple measures. We try
to discuss the limitations of these approaches. One general word of caution is called for already
as concerns the use of synthetic measures: as stated in [68], such measures are truly informative
only when the network lacks a modular structure, or when it is modular but all modules are
homogeneous in terms of the mechanisms that originated them and their properties. If neither
of these two conditions is fulfilled, then any theory proposed may need to take into account the
modular structure of the network. Modularity is discussed in Section 3.2.

3.1.1 Small-world networks

The first work on the use of synthetic measures to analyse biological networks we comment on is
based on the concept of small-worlds. Historically, the small-world phenomenon was first described
by Stanley Milgram in the 1960s in a series of experiments where he chose individuals in cities
across the US and asked them to send a letter to another unknown person on the opposite coast
through a chain of people they knew on a first name basis [179]. The results of these experiments
enabled him to estimate the average path length of the considered social network. Surprisingly, this
value was very small (around 6) which later led to the famous expression “6 degrees of separation”.

The concept of small-world network was further formalised by Watts and Strogatz [195] who
gave a construction method for such networks and provided evidence that many types of networks
indeed fulfill the properties of a small-world, that is, their diameter increases logarithmically with
the number of nodes. The construction proceeds as follows. The starting point is a regular network
with n nodes and k edges per node. Each edge is then randomly rewired with probability p. The
construction method allows to adjust between regularity (p = 0) and disorder (p = 1). The authors
showed that it is the addition of edges between distant nodes (shortcuts) that causes a disruption
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in the diameter of the graph and therefore yields the small-world property (low diameter, high
clustering coefficient). It is worth observing in passing that this construction explains how to obtain
a network where there exists, as in Milgram’s experiment, short chains of acquaintances linking
together arbitrary pairs of strangers, but it does not explain why arbitrary pairs of strangers should
be able to find short chains of acquaintances that link them together. A more operational definition
that provides a better explanation for this was proposed by Kleinberg [99], who showed that, in
addition to having short paths, a network should contain latent structural cues that can be used to
guide a message towards a target. Not all small-world networks possess such cues and Kleinberg
therefore captured another component of Milgram’s experiment that was not evidenced by Watts
and Strogatz’s work.

In the case of metabolism, Fell and Wagner [50, 188] proposed soon after Watts and Strogatz’
paper appeared that the metabolic network of the bacterium Escherichia coli satisfies the proper-
ties of a small-world network. The authors further argued that this type of architecture enables to
minimise the transition times between metabolic states and thus contains clues as to the evolution-
ary history of metabolism. In 2004, Arita [9] suggested however that the graph model used by Fell
and Wagner was not realistic enough. In Arita’s model, the compounds themselves are represented
as graphs where nodes are atoms and edges are chemical bonds. The paths are then calculated as
atom trajectories between carbon atoms instead of complete metabolites (which enables to more
accurately represent mass transfer). With this model, Arita showed that the network diameter is
much larger than estimated previously, thereby questioning the biological interpretation of this net-
work measure. A same argument was advanced by Alm and Arkin [4] who pointed to the fact that
the concept of small-world networks tends to overlook the stoichiometry inherent to biochemical
reactions. Indeed, the edges that enable to reduce the path length in metabolic networks can often
be explained by co-factors that connect seemingly unrelated reactions. Yet another way of dealing
with paths in metabolic networks is to assign weights to the nodes according to their degree (see
Section 3.1) and to look for lightest paths [33]. This heuristic was shown to bring better results
(at least in terms of prediction of known metabolic pathways) compared to the situation where
frequent compounds are removed.

Clearly however, the notion of path in not very well suited to metabolic networks and one should
prefer the notion of balanced hyperpath as defined in constraint-based modelling (Section 2.3.2).

3.1.2 Scale-free networks

Another notion has become even more popular in the biological network literature than the small-
world property. This is the notion of scale-freeness. The term was introduced in 1999 by Barabasi
and Albert [12] to qualify a large diversity of networks whose degree distribution is believed to
deviate from the classical Poisson distribution that is expected in random graphs, and is instead
better approximated by a power-law distribution. The types of networks studied by Barabasi and
Albert in their 1999 Science paper included genetic, nervous and social networks as well as the
web. It was further proposed that, because of this property, such networks would be error tolerant
and robust to random attacks [142]. In the following years, other biological networks, including
metabolic [80], were suggested by Barabasi and colleagues to belong to this very general class of
networks. This same idea was then taken up and the property repeatedly exhibited by a number
of other authors. The reader may consult Khanin and Wit for further references [92].

In order to explain more formally what a “scale-free” network is, let us first consider the function
p(k), which gives the probability for a randomly chosen node to have k edges connected to it. A
network is said to be “scale-free” if for all k1, k2, the ratio p(k1)/p(k2) is invariant by multiplication
of k1 and k2:
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p(k1)

p(k2)
=

p(αk1)

p(αk2)
= F (

k1

k2
)

where α is a positive constant and F is the rescaling function. One can demonstrate that this
property is true if and only if the probability function p(k) follows a power law, i.e. p(k) ∝ k−γ

where γ is the power-law exponent [139].
One of the characteristics of scale-free networks (which differentiates them from Erdös-Rényi

graphs for which the degrees of the nodes follow a Poisson distribution) is that a few nodes have
many connections while a large number of nodes have very few connections. Highly connected nodes
are sometimes called “hubs” and are thought to play a particular role in the network. For instance,
in [81], the authors argued that, in the context of protein interaction networks, hubs correspond to
essential proteins in the sense that mutants lacking this protein have lethal phenotype. Scale-free
networks satisfy also the small-world property.

Recently, several works started to question the results of Barabasi and colleagues. This ques-
tioning may be classified into four main categories.

The first concerns the quality of the data modelled into the networks. It has been argued that
the high rate of errors in the data used to build the networks create artefactual links that invalidate
or at least weaken some of the results obtained. This concerns either the scale-free property or
the existence of hubs and their enrichment with essential nodes [5, 30]. This observation has been
so far applied more to protein-protein interaction networks (PPIs) than to metabolic networks.
Incompleteness of data is however a problem that concerns metabolic as much as other types of
biological networks. Stumpf et al. [168] thus noticed that the networks considered in the literature,
including for modelling metabolism, usually correspond to partial data reflecting our incomplete
knowledge of the studied processes. They therefore asked the legitimate question: if the networks
we observe are scale-free, does it imply that this is also true for the larger networks from which
they are extracted? Their answer to this question is no.

The second category of questioning is methodological. Two main works [92, 168] have thus
contested the proposition that the biological networks available and commonly used in the literature
are scale-free. Indeed, the test that is classically applied to show that the degrees of a graph are
drawn from a power-law distribution consists in fitting a straight line on a log-log plot. However,
as stated in [92], “fitting a straight line doesn’t necessarily make the points follow it”. More formal
methods are required to ascertain that the scale-free distribution is indeed the best model for the
data observed. Khanin and Wit [92] showed that several networks considered as scale-free using the
elementary fit-to-a-line test were no longer considered as such when applying a maximum-likelihood
method and chi-squared goodness of fit tests. They suggested other distributions have similar
qualitative properties as observed in biological networks, namely a few nodes with a high number
of connections and many with few connections. These distributions include truncated power-law
(which however they indicated exhibits also a poor fit to the data), generalised Pareto law, stretched
exponential distribution, geometric random graph, geometric distribution, or combinations of the
above [92]. By applying statistical model selection methods using maximum likelihood inference,
composite likelihood methods, the Akaike information criterion and goodness-of-fit tests, Stumpf
and colleagues [168] obtained that the degree distribution of present-day metabolic networks appear
to be better described by a log-normal model (if Y is a random variable with a normal distribution,
then X = exp(Y ) has a log-normal distribution). Like the scale-free distribution, the log-normal
as well as others mentioned by Khanin and Wit or tested by Stumpf et al., are fat-tailed, but they
are not scale-free.

The third category of questioning of the scale-freeness, or of other general properties of metabolic
networks are more deeply rooted in biology. Indeed, as observed by Alm and Arkin [4], one
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important characteristic of metabolism is forgotten by all purely topological studies such as the
node degree distribution: this is that each node has a specific identity, which furthermore is usually
distinct from the identity of other nodes. The node degree distribution captures therefore only a
very small part of the real characteristics of biological networks. As advanced by Alm and Arkin,
“whereas the Internet might function similarly if individual nodes were rewired while keeping the
same overall topology, metabolic reactions are highly specific and edges cannot, in general, be
swapped because of additional constraints such as conservation of mass”. They further mention
a comment by J. Doyle that biological networks might perhaps more accurately be considered as
“scale rich” because they are composed of many nodes of different types organised into modular
and hierarchical structures.

Finally, at a more conceptual level, it can be argued, as Keller did [88], that even if a network
is indeed proven to be scale-free, knowing this would not be very informative since this class is
possibly too general. Therefore, it seems that there is a need for finer measures to reach a more
relevant biological interpretation.

The works on small-world and scale-free networks illustrate the initial enthusiasm in the field
for general results on the structure of biological networks. Both have now been shown to have
limited impact on our understanding of metabolism. It seems that either the measures or the
interpretation we make of these measures have to be changed or further elaborated to be useful
when trying to make sense out of the structure of metabolism. The comments of Alm and Arkin
[4] point out also to crucial problems for testing any of the hypotheses that have been advanced
concerning the global structural properties considered in this section, but also any of the issues
that we shall discuss next: what is a good null graph-model, and therefore, what are the properties
that we expect by chance? Despite an abundant literature, this is a question that seems to remain
widely open.

3.2 Modularity

Wagner et al. informally define modularity as “an abstract concept that seeks to capture the various
levels and types of heterogeneity found in organisms” [190]. The authors argue that different kinds
of modules may be distinguished. All have however in common the fact that they are integrated with
respect to a certain kind of process (such as, for instance, natural variation, function, development
and so on) and should be relatively autonomous from other processes or parts of the organisms to
which they belong. All ideas of modularity appear therefore to refer to a pattern of connectedness
in which elements are grouped into highly connected subsets, the modules, which are more loosely
connected to other such groups. The notion of connection should not be understood here in the
strict sense of physical interaction but rather as, elements are considered as connected when they
belong to a common process. The independence of modules may be spatial or temporal, chemical
or genetic, structural or dynamic [197].

Modularity has been perceived both as a fundamental notion (deciding if a network is modular
is informative per se) and as an operational notion (decoupling a system into independent modules
may be computationally and formally very efficient). No really clear formal definition of this concept
has been reached.

Most biologists do however agree on the fact that modularity is present in biology. This is
obvious already at a high level [170]. Organ transplants are an example of this. In the same way as
organs can be considered as the modules of an organism, an organism may also be seen as the unit
of a population. At a lower scale, organs may be decomposed into cells formed of molecules which
in turn may be further decomposed into modules such as protein domains. At the intermediary
level between cells and molecules, the picture becomes however less clear. Nevertheless, several
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authors have argued in favour of modularity at all levels, including the cellular level [197]. Several
examples of cellular modules can be given [71] – DNA replication, glycolysis, protein synthesis –
some of which have been successfully reconstructed in vitro, which in itself represents an excellent
validating criterion for modularity. From a different perspective, the very fact that phenotypic
evolution can be studied on a character by character basis lead Wagner to plead in favour of the
existence of genetically independent modules [189], for which the term evolutionary module was
later coined. How modules originated however, for instance did they arise through the action of
natural selection or because of biased mutational mechanisms, remain largely open questions.

In the context of metabolism, several methods have been applied to identify modules, using
different operational definitions.

3.2.1 Top-down identification

Pathways A natural way to define modules in the context of metabolic networks is to build on
pre-existing concepts like the one of metabolic pathways. Indeed, glycolysis has been shown to be
reconstituted in vitro, thereby outlining its independence with respect to the rest of metabolism.
One limitation of this approach is that the concept of metabolic pathway has itself never been
defined formally. Instead, the partition of a network into pathways is partly due to historical
reasons, related to the way metabolism was discovered, and therefore reflects one subjective view
of metabolism.

Attempts at formalising the notion of a metabolic pathway have however been made. Yamada
et al. [199] for instance define a “pathway module” to be comprised of enzymes that have the same
phylogenetic profiles and are also close to each other in the metabolic network. The phylogenetic
profile of an enzymatic gene is represented by a string that encodes its presence or absence in every
available fully sequenced genome.

The concept of elementary mode has also been proposed as a formalised definition of a metabolic
pathway [155] and is therefore another good candidate for defining the concept of module. Indeed,
an elementary mode can be interpreted as a minimal set of enzymes that operate together at
steady state. Unfortunately, the exploding number of elementary modes (more than half a million
for a network of around one hundred reactions [97]) strongly limits their usage as an operational
definition. This framework may still be useful if employed, for instance, together with the notion
of coupled reactions [19], also named co-sets [128], i.e. reactions which participate in the same
elementary modes. More formally, coupled reactions are defined as reaction pairs such that the
fluxes passing through them, respectively v1 and v2, share any of the following types of coupling
[19]:

1. Directional coupling (v1 → v2), if a non-zero flux for v1 implies a non-zero flux for v2 but not
necessarily the reverse.

2. Partial coupling (v1 ↔ v2), if a non-zero flux for v1 implies a non-zero, though variable, flux
for v2 and vice versa.

3. Full coupling (v1 ⇔ v2), if a non-zero flux for v1 implies not only a non-zero but also a fixed
flux for v2 and vice versa.

Connectivity-based definitions Besides the notion of a pathway, various other methods were
developed to identify structures in networks that would be densely connected within the module
and loosely connected to the rest of the network. Many are inspired by long standing mathematical
work on modular graphs and graph decomposition. Great care must be taken however as the terms
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module and decomposition in particular are often employed in a different and sometimes looser
sense in the bioinformatics community. For ease of reference, we chose to follow the terms as used
in the bioinformatics community but do call attention to the potential confusion this may create.
It is an interesting issue whether more attention should not be paid to even seemingly unrelated
mathematical theory on modularity and decomposition when trying to define and identify modules
in biological networks.

In the bioinformatics effort to formalise the notion of modules in graphs, one may distinguish
between two main situations: all nodes are classified in at least one module; some nodes may remain
unclassified. The first case leads to the so-called network-decomposition approaches, the second to
methods for module detection.

Concerning module detection, Spirin et al [165] proposed a method to detect modules in protein
interaction networks (nodes represent proteins and edges represent interactions between proteins)
that could be applied also to a metabolic reaction or compound graph. A module is defined by
the authors as a dense subgraph. The density of a subgraph is given by the function Q(m,n) =
2m/(n(n − 1)), where m is the number of interactions between the n nodes of the subgraph. A
statistical criterion then enables to decide if the value taken by Q is exceptional. The null model
considered is a random graph model where the degree sequence is the same as in the studied graph.
One may observe that in order to be able to deal with large subgraphs, the authors use heuristics
(local search, simulated annealing) for the counting as well as approximations and simulations for
the statistical part. Indeed, the problem of searching for the heaviest induced subgraph has been
shown to be NP-hard [145, 100]. A problem is said to be NP (for Nondeterministic Polynomial
time) if given a solution, this can be checked for correctedness in polynomial time. Informally
speaking, a problem is said to be NP-hard if an algorithm for solving it can be translated (in
polynomial time) into one for solving any other NP-problem. In other words, a problem is NP-hard
if it is as at least as hard as any NP-problem. A problem which is both NP and NP-hard is called
an NP-complete problem.

Most network decomposition methods yield non-overlapping modules, i.e. modules constitute a
partition of the network. Elementary modes are one notable exception to this. Graph partitioning
is a method widely used, for instance in parallel computing (for a review, see [54]). In its simplest
formulation, graph partitioning consists in separating the nodes of a graph into p disjoint subsets of
similar size, while minimising the number of edges between subsets. This problem is NP-complete
even if p = 2 [61]. A limitation for the applicability of graph partitioning to other fields is that the
number of modules has to be known in advance which is not the case when considering metabolism.

Other methods initially developed for sociology are commonly used when the number of modules
is not known [194]. The problem still consists in separating the nodes of a graph into disjoint subsets
but the criterion to minimise is not anymore the number of inter-group edges. Indeed, in this case
the optimal solution would be a unique module containing the whole network. Instead, the criterion
to optimise, termed modularity function, is the sum for all modules of the difference between the
number of edges intra-module and the number of intra-module edges expected under a null model
[120]. The random graph model generally used is again one that preserves the degree sequence of
the nodes. In practice, the number of observed edges is given by the adjacency matrix of the graph,
and the number of expected edges is given by

ki×kj

2m
, where ki (resp. kj) is the degree of node i

(resp. j) and m is the number of edges in the graph. Finding the partition which optimises this
criterion is a difficult problem. Several heuristics have been proposed. Guimera et al. [67] use a
simulated annealing approach which they then apply to the metabolic network of Escherichia coli.
The modules identified (the method finds 19) are then compared to the metabolic pathways as
defined in KEGG. In some cases, modules can be given a general function. More recently, the same
type of approach was used by Parter et al. [130] to analyse the relationship between modularity in

24



the metabolic network of bacteria and variability in their environment. On the methodological side,
Newman [121] introduced a matricial formulation of the graph partition problem which enables to
use more efficient techniques from spectral algorithmics while Daudin et al. cluster nodes using a
method based on mixture degree distributions to obtain modules differently defined from those of
Newman and Guimera [36].

Two modular decomposition methods based on information provided by the stoichiometric
matrix have been more recently proposed [136, 204]. In [204], Yoon et al. attempted to identify
related modules by applying an algorithm for top-down partitioning of directed graphs with non-
uniform edge weights [204]. The weights are determined by the metabolic flux distribution and
require to perform FBA on the network. In [136], the idea was to establish a distance between
any two pairs of reactions i, j. The distance chosen is a Pearson’s correlation coefficient between
the fluxes carried by i, j for all possible steady states of the system. Obtaining such correlation
coefficients is done by computing the null-space of the stoichiometric matrix of the metabolic
network. Using such distances, a hierarchy is then constructed where the metabolic system is
represented by a tree whose root node corresponds to the whole system, leaf nodes to the reactions
and intermediate nodes to unique subsystems of reactions. Cutting the tree at any given level
produces modules of a certain granularity.

Finally, more ad-hoc methods with no clearly specified methodology have suggested that
metabolic networks are organised in a hierarchical modular [144] or bow-tie nested [205] way. The
perception in this case is that metabolic networks present a highly modular core-periphery struc-
ture, in which the core modules are tightly linked together and perform basic metabolic functions,
whereas the periphery modules interact with only a few other modules and accomplish relatively
independent and specialised functions. This reflects the “giant strong component” idea earlier
described by Ma and Zeng [110, 111]

It seems clear that further work in the field of module identification should include a more thor-
ough discussion of the modularity function and especially of the null model considered, suggestions
for improving the optimisation procedure to avoid local optima, and propositions of alternate ways
for module validation. More generally, all methods presented here have been defined for simple
graphs, new methods which would apply to bipartite graphs or hypergraphs probably need to be
developed.

Motifs Close to the concept of module is the one of motif. Both are thought to be building
blocks of a network. Mostly for computational reasons, only small motifs have been studied but
the difference between the concepts of module and motif is not so much a question of size as of
definition. A motif is thus generally not required to be autonomous but rather repeated (reused).

Motifs have first been introduced in the context of gene regulatory networks where they have
been defined as patterns of interconnections, more formally isomorphic subgraphs that appear
unexpectedly often in a network [162]. Once again, the expectation has to be defined and good
random graph models need to be discussed. Motifs were later proposed for metabolism with the
same [45] or with a different definition. In the latter case, the notion of a coloured motif was
introduced [104]. A coloured motif is defined as a collection of node labels that induces a connected
subgraph. The focus is on node labels (reaction mechanisms in this case) and not on the topology
of the subgraph although connectedness is required.

3.2.2 Bottom-up identification

So far, we mainly covered so-called top-down approaches to discover structural modules. One limit
of such approaches is that they propose structures of interest in a graph but the modules still need
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to be biologically validated. In contrast, bottom-up approaches such as described in [184] start from
a small number of entities and add elements one by one, experimentally verifying autonomy of the
module at every step. Such a process clearly cannot be applied in general since it implies a thorough
preliminary knowledge of the studied system in order to minimise the number of experiments.
Instead, methods that try to validate structural modules evaluate whether the module is either
functionally coherent (functional module) or evolutionarily conserved (evolutionary module).

Snel and Huynen [163] addressed the question of the overlap between functional modules and
evolutionary modules in the case of metabolic networks (where functional modules are identified as
metabolic pathways) and of protein interaction networks (where functional modules are considered
as protein complexes). The issue is complex. Should for instance co-regulation be considered besides
membership into a same pathway or protein complex, how is the fact that functional differences
may exist within a same orthologous group taken into account, and how is evolutionary modularity
quantified? For example, how modular is the evolution of a functional module when the “same”
module in another species is partly composed of different proteins and/or of fewer proteins? As the
authors indicated, with this as with many other issues, trends only can be identified, that are in this
case scored based on the observed level of evolutionary modularity relative to the level expected
for a random set of proteins. The general conclusion at which the authors arrive is that there are
substantial differences in the evolutionary modularity between individual functional modules (for
instance, biosynthetic pathways are more conserved as units than catabolic pathways). The same
general conclusion was reached by Spirin et al. [164] who showed that modules of high genomic
association and metabolic proximity do not necessarily match traditional metabolic pathways. Such
modules, rather than the traditional pathways, should therefore be thought of as evolutionary and
regulatory units. They also observed that genomic associations favour linear metabolic pathways
and break apart at branching points. The authors then suggested that linear pathways are regulated
and inherited as a single “building block” of the metabolic network. Although enzymatic subunits
are strongly associated, indicating persistent co-regulation and co-evolution, they also proposed,
based on the results obtained, that regulation and evolution of isoenzymes depend on their role in
providing alternative specificity or differential expression.

Structural modules (defined using topology), functional modules (defined using annotations)
and evolutionary modules (defined using orthology) therefore seem to be three different concepts
reflecting three different points of view on metabolism.

4 Evolution of metabolism

It is questionable whether the evolution of metabolism should be treated separately from the rest
since structural studies (connectivity, motifs, modules) already must take into account evolution
to be sound. We can however argue in favour of this choice by observing that the work described
next is exclusively dedicated to answering to the question: how did metabolism evolve?

More specifically, we attempt to provide an overview of the different theories for the evolution
of metabolic networks. A discussion on pre-enzymatic evolution is beyond the scope of this paper.
The interested reader may consult (this is a non-exhaustive list) Wächtershäuser [186, 187], Maden
[112], Lazcano and Miller [105], Morowitz et al. [117], and Caetano-Anollés et al. [20]. It is also
beyond the scope of this paper to discuss a mirror question to the evolution of networks which is
to understand how a metabolic network may shape the evolution of its enzymes. The interested
reader may start with the paper of Vitkup et al. [183] for a nice introduction to the topic.

After reviewing different models that have been suggested for the evolution of metabolism, we
comment on several works where the comparison of metabolic pathways or networks was used to
reconstruct evolutionary scenarii across different species.
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4.1 Models for the evolution of metabolic networks

4.1.1 Biological models

Various biological models were proposed to explain the evolution of metabolic networks. Schmidt
et al. [153] reviewed five and provided examples for each one of them. The five models include
de novo invention, retro-evolution, specialisation of multifunctional enzymes, pathway duplication
and patchwork recruitment. Clearly all these models are not exclusive and each one may help to
explain different parts of the evolution of metabolism. Moreover, one may observe that at least
two different questions are treated by the models recalled in [153]. These are: 1. in which order
are enzymes recruited, and 2. where do they come from? We propose to try and decouple the
two questions although this may seem an artificial exercise since the order could depend on what
is available in earlier metabolism, and therefore on the “wherefrom”. Proceeding in this way may
however help in getting at a better understanding of the issues at play.

Essentially two models give an answer to the first question, in which order are enzymes recruited?
The first was proposed in 1945 by Horowitz [76]. According to this model, by so-called retrograde
evolution, selective pressure on a metabolic pathway mainly targets the successful production of its
end-product. The formation of the required end-product from an intermediate metabolite therefore
increases the fitness of the organism. The same reasoning can be applied recursively, selective
pressure then acting on the production of the intermediate metabolite. The formation of this
metabolite from another metabolite again gives a selective advantage and the pathway thus evolves
backwards (see Figure 5).

Some thirty years later, a different model was advanced by Jensen [79] following earlier work
[192, 203]. This model is based on the central concept of substrate ambiguity observed for many
enzymes. In this model, that came to be known as the “patchwork-evolution” or “recruitment”
model, initial metabolism is carried out by a few substrate-ambiguous unregulated enzymes. In
this context, “any fortuitously formed compound that happened to be useful would have conferred
a selective advantage, thereby providing a basis for increased and more specific production of that
compound (by gene duplication and specialization via mutation)” [79] (see Figure 6). Jensen further
proposed that enzyme recruitment may be done “en bloc”, several enzymes being recruited in a
single step (see Figure 7).

Possible criticisms to either model bring to the fore the second type of question, where do
the enzymes come from? As suggested by Jensen, gene duplication followed by specialisation
via mutation appears to be one of the main sources of metabolic versatility whatever model is
considered.

As pointed out by D́ıaz-Mej́ıa et al. in [42], the two models, retrograde and patchwork, present
two main differences in relation to gene duplication. In the retrograde model, gene duplication pro-
vides an enzyme that can supply an exhausted substrate. This would often give rise to homologous
enzymes that catalyse consecutive reactions.

In the patchwork model, duplication of genes encoding for enzymes capable of catalysing one
or more reactions allows each descendant enzyme to specialise in relation to one of the ancestors.
Enzymes generated by patchwork evolution may be expected to catalyse reactions a greater distance
apart in the pathway than those originated by retrograde evolution.

This is the first main difference. The second is that the retrograde model invokes consecutive re-
actions and can therefore originate enzymes catalysing chemically dissimilar reactions that however
preserve substrate specificity while in the patchwork model promiscuous enzymes tend to catalyse
chemically similar reactions even while acting on different types of substrates. By studying the
reconstructed metabolic networks of the bacterium Escherichia coli and of a number of other or-
ganisms, D́ıaz-Mej́ıa et al. evaluated the influence of both chemical similarity and distance between
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Figure 5: Model of retrograde evolution.
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Figure 6: Model of patchwork evolution.

Figure 7: Duplication of genes and neo-functionalisation of enzymes.
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Figure 8: Duplication of genes and increase of the specificity of the enzymes.

reactions (computed as the number of reactions that separate them) on the rate of retention of du-
plicates. They uncovered an increased retention of duplicates for enzymes catalysing consecutive
reactions. This was observed also in enzyme-enzyme interaction networks, but not in interaction
networks of non-enzymatic proteins or in gene transcriptional regulatory networks. It suggests
that retention of duplicates results from the biochemical rules governing substrate-enzyme-product
relationships. The authors also confirmed a high retention of duplicates between chemically similar
reactions. The retention of duplicates between chemically dissimilar reactions is, however, also
greater than expected by chance as evaluated against null models. Altogether, the results seem
to indicate the influence on the retention of duplicates of both distance apart in the network (as
expected under the retrograde model) and chemical similarity of reactions (as expected under the
patchwork model). This suggests that the retrograde and patchwork models may not be inde-
pendent of each other. Rison et al. and Teichmann et al. [147, 174] had proposed the same in
conclusion of their papers but their study gave much stronger weight to the influence of patchwork
recruitment as compared to local recruitment in the evolution of pathways.

In [148], Rison and Thornton pointed also to another problem with the retrograde model of
Horowitz which is that it fails to explain how the model would work in an environment that is poor
in intermediate metabolites. Indeed, one strong assumption of this model is that each intermediate
of the backwardly evolving pathway was readily available in the primitive environment [79]. The
model also does not explain the development of pathways that include unstable metabolites which
could not accumulate in the environment long enough for retrograde recruitment to take place.
Roy [150] had however previously proposed a possible answer to this second problem which would
call for evolution to have taken place by jumps, i.e., by the local recruitment of a multi-functional
enzyme capable of catalysing several steps at a time, albeit inefficiently. Roy further speculated that
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in some cases, one primordial multi-enzyme might have catalysed the whole sequence of reactions
of a biosynthetic pathway (see Figure 8). The pathway would then have evolved by a single leap.
In their study, D́ıaz-Mej́ıa et al. [42] also pointed to a significant retention of duplicates as groups
instead of single pairs. In parallel to this, Mahadevan and Lovley [113] showed that the role of
gene duplications to boost enzymatic flux rather than provide metabolic resilience, as was advanced
by Papp et al. in [129] for prokaryotes, may not be universal. Indeed, in eukaryotes, redundancy
in metabolic networks appear to provide significantly more genetic buffering than do even gene
families [94].

In parallel to the controversy between a retrograde and/or patchwork model of metabolic path-
way evolution, other studies have argued that new enzymes plug preferentially at the periphery of
bacterial networks [141].

With large-scale datasets now at hand, all these models may be tested or refined and new models
can be proposed. As indicated in [42], massive gene duplications, in particular of whole genomes,
as well as consideration of other potential sources of metabolic versatility such as horizontal gene
transfer [109, 171], gain and loss of enzymatic genes [171, 65, 172] and gene fusions [46] could
enhance our understanding of the evolution of metabolism.

4.1.2 Computational models

In contrast with biological models, computational ones do not necessarily have biologically realistic
mechanistic foundations. Those presented in this section operate by the application of a set of
evolutionary rules and in general are said to be valid if the created graph presents characteristics
that match well with what is observed in real biological networks. In some cases, it is not direct
fit that is checked but instead fit to some properties the data is believed to satisfy.

In the context of their work on network structure, Barabasi and Albert [12] thus proposed a
model of network evolution that could explain the estimated power-law distribution of observed
node degrees. The two rules implemented in the model were: 1. the network grows continuously by
addition of new nodes (network growth), and 2. new nodes are linked preferentially to existing nodes
that are well connected (preferential attachment). The latter rule is put into effect by assuming that
the probability that a new node will be connected to a node i depends on the degree ki of that node.
This model was indeed later formally proven to yield networks with power-law degree distributions
in [38] although it is not explained how to take probabilities proportional to the degrees when these
are all zero [15]. Following Khanin and Wit [92] and Keller [88], one may however question the
validity of a mathematical model for evolution that adjusts the latter’s underlying principles and
assumptions so that the model may faithfully reproduce a topological property of the network,
namely here scale-freeness, that has not been conclusively proven.

Pfeiffer et al. [134] followed a logically sounder approach than Barabasi and Albert [12] which
consisted in studying whether hubs emerge when simulating for the evolution of a network accord-
ing to a scenario proposed by Kacser and Beeby [82], that itself is closely related to the model
of patchwork evolution advanced by Jensen [79]. Kacser and Beeby’s scenario is based on the as-
sumption that, because of the low coding capacity of early genomes, and because it is unlikely that
a large number of specialised enzymes emerged de novo, it is plausible to assume that ancestral
cells had only a few enzymes with broad specificities. This allowed for the catalysis of all essential
reactions at the cost of a low turnover for any single biochemical reaction. The ancestral cells are
then assumed to have been selected for growth rate and to have evolved by mutations affecting
the kinetic properties of the enzymes and occasional gene duplications. The simulations indicated
that duplications and specialisations lead to the loss of biochemical reactions and of intermediary
metabolites, and that complex features of metabolic networks such as the presence of hubs may
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indeed result.
Two other pieces of work proposed to algorithmically explore the evolution of a metabolic

network by applying two different types of operations. The first starts from a given compound
or sets of compounds and determines what is the scope of this compound [70]. The scope of a
compound corresponds to the set of compounds that can be generated starting from it using the
reactions that are available in an organism. This type of approach enables to address questions such
as, which compounds are essential, and may help to infer an order of appearance of compounds
during evolution. The second work addressed the question of the evolution of metabolism by
iteratively eliminating “unnecessary reactions” from a network [140]. The eliminating process is the
following: starting from a metabolic network, a reaction is picked at random and is withdrawn from
the network if its removal does not affect significantly the production of biomass (which is evaluated
using a flux balance analysis framework). This process is repeated until no such reaction can be
found anymore. The authors then related this process to the adaptation of bacterial metabolism to
new environmental niches. A major problem with the approach is that during the whole process,
the growing media and the biomass reaction stay constant, which lacks realism when modelling
adaptation. Moreover, one should notice that this process is greedy and outputs a minimal network
(many other minimal networks may exist) but not the minimum network.

4.2 Using comparative analysis to infer evolutionary scenarii

Various authors have started to reconstruct evolutionary scenarii for metabolic pathways and net-
works across different species. A parallel can be made here with sequence comparison. In order to
study the evolution of sequences, sequence similarity can be used to deduce common ancestry (i.e.
homology). Phylogenetic reconstruction methods may then allow to infer an evolutionary history
between homologous sequences. This history is generally represented as a tree. The same ideas
have been applied to metabolism.

We sketch the few methods currently available for inferring evolutionary scenarii after a discus-
sion of algorithms for computing a distance between pathways or networks by aligning them since
this is at the base of some of those methods.

4.2.1 Pathway and network alignment

From a methodological point of view, several works have been concerned with the alignment of
metabolic pathways, and more recently of whole networks. An alignment of metabolic pathways
differs from an alignment of sequences in two main aspects. First, the units to align are not
nucleotides or amino-acids but reactions, and second, the structure is not linear anymore but is
represented instead as a graph or hypergraph.

In order to align reactions, it is necessary to define a distance measure between them. When
aligning nucleotides, such distance is generally chosen to be proportional to the probability of
mutation from one nucleotide to another (substitution cost). Indeed, in this context, a substitu-
tion corresponds to a precise biological mechanism: a mutation fixed by natural selection. When
comparing reactions, no such parallel can be made between substitution and mutation. Instead,
distances between reactions are usually functional and do not necessarily reflect an evolutionary
relationship. This remark has no consequence if one is interested in the structural comparison of
metabolic pathways but may be crucial if one is concerned with establishing their evolutionary
history. Tohsato et al. [178] introduced a simple method to compare reactions based on the EC
numbers (see Section 2.1). Since the Enzymatic Classification forms a hierarchical structure which
can be represented as a tree, the similarity score between two EC numbers can be defined as a
function of the distance between them in the tree.
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The authors use this distance to compute alignments between linear metabolic pathways and
outline the structural similarities in the different amino acid biosynthesis pathways within the same
species and between different species [178]. A generalisation of the work of [178] was proposed by
Pinter et al. [135] in the case of branched metabolic pathways. The underlying computational
problem is linked to labelled subgraph isomorphism which can be solved in polynomial time. This
work does not allow to deal with general graphs (the authors heuristically break cycles) which
somehow restricts its applicability. The main motivation for restricting to trees is that subgraph
isomorphism is NP-hard. Nevertheless, efficient algorithms can still be designed even in this case,
provided that they take into account some specificities of the instances, such as their so-called
local diversity which reflects the fact that neighbouring nodes usually have distinct labels [196].
In the context of protein interaction networks, Kelley et al. [89] proposed to align graphs using
their decomposition into paths, a technique that could also be used for metabolic networks. How-
ever, the results of path alignments still have to be gathered a posteriori which constitutes the
bottleneck of the algorithm. Other rougher distance measures between two metabolic networks
have been adopted, for instance by Tun et al. who opted for the Hamming distance between the
adjacency matrices for the compound graphs representing the networks. Passing from pathway to
a whole network alignment represents a change of scale that clearly requires further methodological
developments.

The choice can also be made to ignore altogether topology and to identify the metabolic networks
to be compared with bags of enzymes and metabolites [27], or with various structural indices such
as the clustering coefficient, betweeness centrality, average path length, diameter, concentration of
subgraphs [206, 193, 131].

These can provide only very rough comparative measures and one should remember that graphs
themselves are already poor models for biomolecular reactions. Effort should therefore be placed
instead into reaching more realism, for instance by dealing with bipartite graphs or hypergraphs.
The question of how to align metabolites (or simply ignore metabolites in the alignment) should then
be addressed. More complex distance measures between reactions may also have to be considered
that take into account either the sequence or structure of the enzyme which enables the reaction,
or identify each reaction with the chemical transformation it represents. In the latter case, a
distance between two reactions could be modelled as a distance between two transforms. There
are two issues involved with such an approach. One is concerned with finding an optimal atom
mapping between the substrate(s) and the product(s) of an enzymatic reaction that at the same
time is reliable and can be efficiently computed. The second issue requires defining a similarity
measure between mappings that would accurately reflect the chemical and possibly evolutionary
similarity between chemical transformations. Some work has been done in this direction but it is
partial [84, 8, 101, 3, 49, 48, 72]. Clearly, this remains an open question, whose discussion may be
informatively fueled by reading Dandekar et al.’s paper [35] who compare glycolysis among different
organisms by using three methods: biochemical, by means of elementary modes and through a
comparative analysis.

4.2.2 Inferring evolutionary scenarii

The first method for inferring evolutionary scenarii between pathways we present was proposed
by Cunchillos et al. [34]. Its motivation was to predict the order of appearance of metabolic
pathways in the course of evolution. A metabolic pathway was simply modelled as a sequence of
presence/absence of enzymes, and its structure was not taken into account. Reconstruction was
performed by a method of maximum of parsimony. Interestingly, this work proposed a coherent
model of enzyme evolution in the sense that it allowed to discriminate between changes in substrate
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specificity, cofactor binding, etc. Liao et al. [108] worked at the larger level of full networks but
with a coarser measure based on distances between profiles that recorded this time the presence
and absence of whole metabolic pathways. Heymans et al. [74] worked as Cunchillos el al. at the
level of pathways but modelled each one as a set of enzymes. A phylogenetic tree was built using
a distance-based method where the distance reflects the similarity of sequences between enzymes
as well as the sequence similarity of the neighbouring enzymes in the pathway. In this way, the
structure of the pathway was indirectly taken into account. Forst and Schulten [56] proposed first
to detect homologs between the enzymes of different pathways using sequence alignment, and then
to calculate a distance between the pathways introducing gap penalties when no homolog is found.
A distance between pathways is therefore a combination of sequence alignment scores and gaps.
Later, the same first author and others [55] extended the distance measure to networks and based
it this time on simple operations on hypergraphs, such as union, intersection and difference of two
hypergraphs. Whole networks are also considered by Oh et al. [123] who used a kernel-based
method to compute the similarity between metabolic networks in polynomial time. The features
fed into the kernel-based algorithm are the connection information between any pair of enzymes
and the phylogenetic trees were reconstructed using hierarchical clustering.

The main conclusion that can be drawn on such scenarii is that there remain serious limitations
in the use of pathway or network comparison methods to infer evolutionary histories. The principal
one is the adoption of functional distances between pathways/networks. If the tree is intended to
reflect ancestry, then distances between pathways should integrate a realistic model for metabolism
evolution. In general, there is a lack of discussion on the possible impact of the chosen distances on
the reconstruction. It seems also that no available method satisfactorily considers the full structure
of the networks. Clearly, this topic is still in its early stages.

4.3 Conclusion

We hope this tour through the literature on the structural analysis of metabolic networks will
provide to researchers interested in the field, whether debutant or experienced, a good reference
guide. On reaching the end of the tour, it appears clear that the structure of metabolic networks
does behold functional and evolutionary information, even if not always. Basic measures such as the
degree sequence or the network diameter thus seem to provide only a limited amount of information,
if any. More advanced notions like modules and motifs on the other hand may help in getting a
better grip on the biology of those networks, but they sometimes lack biological validation. The
central notion of a realistic random graph model for metabolism is still open. Among the currently
available ones, few integrate the notion of time, which would enable to model evolutionary processes.
Random graphs appear notably in the context of hypothesis-testing as we saw repeatedly mentioned
across the paper. In most cases, an observed property must be compared to its expected value under
a null hypothesis in order to decide if the property is exceptional (i.e. unexpected) or, instead, can
be explained by chance alone. Random graph models come into play at this point and are crucial
to model what is expected under a null hypothesis. Unfortunately, null hypotheses are usually
rarely discussed in the context of biological networks, partly due to the lack of good corresponding
random graph models. Future directions in the field therefore include a thorough discussion of
possible such models and, perhaps, the development of hypergraph analysis methods to more finely
deal with the structure of metabolism.

The tour, long though it was, is also far from being complete. A lot more could be said on the
topic, and many more interesting references could have been given and discussed. And this was
concerned with “metabolism only”, and just one aspect of it! Understanding the relation between
structure and dynamics (the way the structure actually defines or constrains the dynamics) is yet
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another fascinating topic for which Segrè et al. [158], for instance, provide one very nice example.
Much work remains however to be done in this area, and a lot more on attempting to jointly
model several levels of organisation such as genomic, transcriptomic and metabolic, even though
the literature is already quite vast on both topics, as it is for each level of organisation considered
separately. Almost none of this literature is cited in this paper. Presenting it would require another
(very) long tour, but we must now “put the subject by, ’the rest next time-’ ” (Alice in Wonderland,
Lewis Carroll). At some point also, as Gryphon answered to the Mock Turtle who was asking him
to “Explain all that”, “No, no! The adventures first, [...] explanations take such a dreadful time”,
one should stop reading what others have done and take a plunge into the topic, and the dirty data,
oneself. Our final hope is to have provided any “just curious” reader of this paper the motivation
for throwing him/herself happily into the deep water.
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