The Gapped-Factor Tree

Pierre Peterlongo!, Julien Allali', and Marie-France Sagot®? *

I Institut Gaspard-Monge, Université de Marne-la-Vallée, France
pierre.peterlongo@univ-mlv.fr
2 INRIA Rhéne-Alpes and Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université
Claude Bernard, Lyon, France
3 King’s College, London, UK

Abstract. We present a data structure to index a specific kind of factors, that is of
substrings, called gapped-factors. A gapped-factor is a factor containing a gap that is
ignored during the indexation. The data structure presented is based on the suffix tree
and indexes all the gapped-factors of a text with a fixed size of gap, and only those.
The construction of this data structure is done online in O(n x |X|) time and space,
with n the length of the text and |X| the size of the alphabet. Such a data structure
may play an important role in some pattern matching and motif inference problems,
for instance in text filtration.

Keywords: suffix tree, k-factor factor tree, string index, gapped-factor, gapped-factor
tree

1 Introduction

The indexation and extraction of repeated short words (called k-factors* for words
of length k) has become a widely used technique in many text algorithmic problems.
One can mention their use in, for instance, FASTA [17] and BLAST [2, 3]. Indeed, many
algorithms for efficiently computing string matches [10, 24, 29] or alignments [5,4, 9,
12,16, 18, 21] use k-factors. In particular, filtration algorithms that have been created
for quickly discarding large portions of the input before applying a more expensive
algorithm on the remaining data are often based on the identification of such short
repeated words [6-8, 15,25, 26, 28].

Among the exact filtration algorithms (exact in the sense that they discard only
portions of the text that can not be part of the final solution sought), some consider
k-factors composed of non consecutive letters [7, 8,15, 26], or sets of k-factors [6, 25,
28]. Both present advantages for filtering purposes in comparison with single k-factors
with no letters skipped as shown in [7, 14, 15].

In order to efficiently use such k-factors, one needs data structures to index them.
Depending on the kind of k-factor adopted, different types of data structures may be
considered. For instance, sets of k-factors may be indexed in a hash table or using a
labelling technique as proposed in [13]. In this paper, we introduce a data structure
designed for the indexation of sub-words composed of a k-factor, a gap of length d not
taken into account during the indexation and a k’-factor. Such a sub-word is called a
gapped-factor as it contains a unique gap.

The new data structure is an adaptation of the suffix tree [20]. More precisely,
the construction we describe in this paper is an adaptation of the construction of a

* Supported by the ACI Nouvelles Interfaces des Mathématiques w-vert project of the French Min-
istry of Research, the ARC BIN project from the INRIA, and the ANR project REGLIS.
4 Another currently used term for designing k-factors is ¢g-grams

The Gapped-Factor Tree

k-factor tree [1], which itself is an extension of the Ukkonen construction of a suffix
tree [31]. A k-factor tree is a tree indexing all k-factors of a text.

As indicated in Section 5, the new data structure, called a gapped-factor tree,
allows to extract in linear time all the repeated gapped-factors of a text or of a set
of texts. Furthermore, it offers the possibility to obtain in time O(k + £’) the list of
all the positions of a gapped-factor.

The paper is organised as follows. In Section 2, we provide the context and some
definitions about text and trees. In Section 3, we formally introduce gapped-factors
and the gapped-factor tree. In Section 4, we present the algorithm to construct a
gapped-factor tree for indexing the gapped-factors of a text after recalling the Ukko-
nen construction of a suffix tree and the Allali construction of a k-factor tree. We end
by indicating two basic uses of gapped-factor trees.

2 Preliminaries

A text, also called a string, is a sequence of zero or more symbols from an alphabet Y.
A text t of length n is denoted by t[0,n—1| = tot; .. .t, 1, where t; € X for 0 < i < n.
The length of ¢ is denoted by [¢|. A string w is a factor of t if t = uwv for u,v € X*;
in this case, the string w occurs at position |u| in the string ¢. A k-factor denotes a
factor of length k. If t = wv for u, v € X* then v is called a suffix of t. A suffix
starting at position ¢ in ¢ is denoted by ;. .

A tree is a data structure composed of nodes connected together by edges. Except
for a special node called the root, each node has exactly one father. Nodes with no
children are called the leaves while all other nodes are called the internal nodes of
the tree. An internal node having at least two children is called a branching node.

We call the depth of a node A/ the sum of the lengths of the edges that need
to be traversed from the root of the tree to reach N. By definition, the depth of the
root is thus 0.

Nodes and edges may be labelled. For instance, in Figure 1, edges are labelled
with letters from a given alphabet.

“~"* root

- * Internal nodes

S\

Figure 1. Example of a tree labelled with letters from a given alphabet. Reading all paths
from the root to the leaves, leads to the strings AA, AC, CA and CT.

183

Proceedings of the Prague Stringology Conference 06

Let N be a node of a tree, we denote by path(N') the text corresponding to the
concatenation of the letters from a given alphabet labelling the edges from the root
to \V.

For instance, if Ny denotes the leftmost leaf of the tree presented in Figure 1,
path(Ny) = AA.

The suffix trie of a text t is a tree with edges labelled with elements of Y. For
each factor of ¢, there exists a node N such that path(N') is equal to that factor. If ¢
has an ending symbol, all nodes N for which the path from the root spells a suffix of
t are leaves.

The implicit suffix tree of t is a tree with edges labelled by non-empty elements
of X*. The suffix tree is a compressed version of the suffix trie. Each internal node
N of the suffix trie that has only one child is deleted and its two adjacent edges are
replaced by an edge that goes from the father of A to its child. The label of the new
edge is equal to the concatenation of the label of the edge going from the father of
N to N and of the label of the edge from N to its child. This tree is called implicit
because not all suffixes of ¢ lead to a leaf. The true suffix tree is obtained when a
special ending symbol $ not in X is added at the end of t. A suffix tree indexes all
the || suffixes of a text ¢.

3 Gapped-factor tree

A gapped-factor tree indexes gapped-factors that are defined as follows:

Definition 1 (Gapped-factor). A gapped-factor is a concatenation of a factor of
length k, a gap of length d and another factor of length k'. A gapped-factor occurring
at position i in a text t istli,i+k—1].tli+k+d, i+ k+d+k —1]. Such a gapped-factor
is called a (k-d-k')-gapped-factor.

An example of a (2-1-3)-gapped-factor is given in Figure 2.

012345678910
AIGGAIGAGACAA

Ky K

Figure 2. Example of a (2-1-3)-gapped-factor. The first factor length is k = 2, the gap is of
length d = 1 and the second factor has a length ¥’ = 3. It occurs at position 1 in the text. With
these parameters, the content of the gapped-factor occurring at position 1 is GGGAG composed by
GG and GAG.

We propose a new data structure, called a gapped-factor tree, to index all the (k-
d-k')-gapped-factors of a text or of a set of texts. This is a modification of the suffix
tree [20] data structure. The gapped-factor tree takes into account the gap of length
d of the gapped-factors it indexes. This means that the tree contains a region up to
which the k-factors are indexed as in a classical suffix tree, while below this region
the second factors (of length &) of the (k-d-k')-gapped-factors starting with the same
k-factor start from the same node. This region is called the invisible region.

An intuitive idea of such a data structure is given in Figure 3.

184

The Gapped-Factor Tree

Figure 3. An intuitive view of a gapped-factor tree. Even if this is not the way the gapped-
factor tree is constructed, a gapped-factor tree can be seen as a truncated suffix tree where a part
has been removed, provoking merges in the lower part of the tree.

Definition 2 (Path in a Gapped-Factor Tree). Let w be a (k-d-k')-gapped-factor
starting at position i < |t| — k —d — k' that is indexed in such a tree. Let N be the
node at depth z < k + k' corresponding to this (k-d-k')-gapped-factor. Then:

it i+ 2 —1] if 2 <k
path(N) = {t[z’,z’—i—k‘— 1.tli + k+d,i+d+ z — 1] otherwise

An example of gapped-factor tree and of a path in such a tree is presented in
Figure 4.

7(012345678910
AGGAGAGACAA

Figure 4. Example of gapped-factor tree. The input sequence is AGGAGAGACAA. The
dashed lines correspond to the invisible region of the tree. In this case, the gapped factors in-
dexed are (2-1-3)-gapped-factors. The information attached to one of the leaves corresponds to the
starting positions of a gapped-factor in the text.

In the next section, we present the algorithm which performs the online construc-
tion of a gapped-suffix tree.

185

Proceedings of the Prague Stringology Conference 06

4 Construction

The algorithm for constructing a gapped-factor tree is an extension of the algo-
rithm for constructing a k-factor tree [1], which is itself an extension of the suffix tree
construction algorithm due to Ukkonen[31]. Therefore, in the following, we start by
presenting the construction of a suffix tree, then the one of a k-factor tree, and finally
we describe the construction of a gapped-factor tree.

4.1 Ukkonen construction of the suffix tree

To present the Ukkonen algorithm, we follow the description given in [11]. This algo-
rithm constructs a full suffix tree of a text ¢ in O(|¢|) time and space. An example of
a suffix tree is given in the Figure 5.

Figure 5. Example of a suffix tree for the text AGGAG$. The dashed lines represent the suffix
links.

The algorithm is divided into [t| phases. The i'* phase (for 0 < i < [t|) consists
in the insertion of all the ¢ + 1 suffixes of ¢[0,] into the tree. The naive approach
divides each phase i into i + 1 steps, one step j (0 < j < ¢) consisting in the insertion
of the suffix ¢[j,] into the tree. This naive version of the construction algorithm is
presented in Algorithm 9. Clearly this algorithm is in O(]¢[?).

Algorithm 9 Naive suffix tree construction algorithm
Require: A text t
Ensure: The suffix tree ST (t) of ¢

1: for i from 0 to |[t| — 1 do

2: for j from 0 to i do

3: Add(ST'(t),t5,1])

4: end for

5: end for

The Ukkonen algorithm uses three tricks in order to reduce the time complexity
to O([t]).

186

The Gapped-Factor Tree

Before we present those three tricks, we describe the encoding of a suffix tree. The
suffix tree created by this algorithm does not store the text: each node N contains
a couple of integers (s,e) corresponding to the starting and ending positions of the
factor in the text that led to the creation of the node itself. In the following, we denote
by Ns. such a node. Thus, by definition, in the suffix tree of a text t, path(Ns,) is
equal to t[s, e].

The Ukkonen algorithm uses suffix links. A suffiz link is an oriented link between
two branching nodes of a suffix tree. Given a node N, its suffix link is denoted
by Si(Ns.) and the node pointed by S;(N.) is denoted by S, (Ns.). In this case,
path (S,(Nse)) = path(N.)[1, [path(N;,.)|]. For instance, if path(N;.) = AGGT,
then, path(S,(Ns.e)) = GGT.

In Figure 5, the suffix links are represented by dashed lines.

We present the three ideas leading to a linear time complexity for constructing a
suffix tree for the text t.

1. Let us assume that the suffix tree is constructed for ¢[0, i —1]. During the i*" phase,
all the leaves have to be lengthened by one in order to take the character ¢; into
account. In other terms, the ending integer e of each leaf has to be incremented
by one. Since by definition, all leaves have the same ending integer, the latter can
be coded by a global variable that is incremented by one at each phase of the
Ukkonen algorithm. This global variable is equal to ¢ during phase i. Thus, the
extension of the leaves is implicit and done in constant time.

2.(a) Fast Insertion: during the i*" phase, let N . be the last branching node reached
during the insertion of ¢[7, 7]. By construction this node contains a suffix link. In
this case, t[j,i] = path(Ns.).w.c where w € ¥* and o € X. In order to insert
t[j+1,1], w (which is necessarily already in the tree) is read from S,,(N5.) and
o is added if needed.

To avoid having to read all the letters of w from S, (N..), the following trick is
used. At each branching node met during the reading of w, an edge is chosen
depending on the current letter in w. Once the edge is identified, the node
pointed by this edge is reached and we advance in the reading of w by the
number of letters in the edge. The process is repeated while w is not totally
read. Thus the complexity of the reading of w is related to the number of nodes
traversed and not to |w|.

If o is added, a branching node is created. The suffix link of such a node points
to the last branching node met during the next insertion (it can be a created
one).

The pseudo-code of this algorithm is given in appendix in Figure 10.

(b) During phase i, all the suffixes of ¢[0,] have to be inserted. Yet if during the
insertion of t[j, 4], this word is already in the tree, then, by definition, all the
words {t[k,i],k € [j,i]} are already in the tree as well. In this case, the 7"
phase stops here. Similarly, the (i + 1) phase can start inserting t[j,4 + 1]:
with the implicit extension of the leaves, the factors {t[k,i+ 1],k € [1,j — 1]}
are already in the tree.

A pseudo-code of this construction algorithm is given in appendix in Algorithm A.

Each phase of the algorithm is not done in constant time. However the amortised
construction time is linear with respect to the input text length. The demonstration
of this complexity is given in [11]. It consists in bounding the overall number of nodes
traversed during all insertions.

187

Proceedings of the Prague Stringology Conference 06

4.2 Construction algorithm of a k-factor tree

The k-factor tree, also called truncated suffix tree, has been presented in [22] and [1].
A k-factor tree is a suffix tree cut such that each word spelt from the root to a leaf
has a length bounded by k. An example of k-factor tree is given in Figure 6. This
structure finds applications in various areas such as data compression [22, 23] where
the indexation is made over a sliding window, or string matching and computational
biology [19, 27, 30] where the length of the motifs searched for in the text is bounded.

The linear time construction algorithm we describe here is based on the Ukkonen
suffix tree construction algorithm. For further details on implementation and proof
of validity, the reader is referred to [1].

This algorithm is divided in two parts:

1. Build the suffix tree for ¢[0, k — 2].
2. Add in |t| — k + 1 phases the suffixes of t[i — k,i| for i from k& — 1 to [¢t| — 1.

The first part is achieved using the Ukkonen algorithm. During this part, the leaves
created are added to a queue called queuee,y.
In the second part, we have to modify the Ukkonen algorithm so that:

— for each phase i, we start by inserting t[7, 7] with j not smaller than i — k + 1;
— implicit leaf extensions are stopped when the length £ is reached for the path of
a leaf.

To do this last point, we use the queue queueeqs.

During the whole construction, each leaf created is added at the end of queue e, -
In the second part, for each phase i, there are two possibilities: either queuege,s is
empty or not.

Suppose queuege,y contains at least one leaf. Let £ . denote a leaf starting position
s and ending position e. We then have queuegeqr = Lilﬁ ... L, .. We start by fixing
the end position of L, , to i, that is [,L,e becomes Eilﬂ.. Indeed, we know that
path(Ll, ;) has a length of k.

Suppbse we are in phase ¢ = k—1. Then queuey.,s contains at least one leaf which
corresponds to the one created during the insertion of ¢[0] in the tree (first insertion
of the first phase). This leaf is £ .. In phase i = k, the leaf is now £j,_,, so its length
is equal to k. If there is another leaf in the queue, it corresponds to Eie and it is clear
that its length will be equal to k at the next phase. And so on, as the leaves L, are
created with s incremented by one between two leaves.

Once the leaf at the beginning of queueg,y is fixed, we apply again the Ukkonen
algorithm from the last leaf in queuese,s (the last created which can be the one we
have just fixed). At the end of phase (i.e. no leaf created during the last insertion),
we remove the leaf at the head of queueseqy.

We describe now the case when there is no leaf in the queue. Suppose there were
a leaf in the queue at the previous phase i — 1. By fixing the end value of this leaf,
we have fixed the leaf corresponding to t[i — k,7 — 1]. Then we started by inserting
tli —k+ 1,7 — 1] in the tree. This insertion did not create a leaf (queuese,s is empty
in phase i) and lead to a position p in the tree that corresponds to the spelling of
tli — k + 1,7 — 1]. In the current phase i, since queues, is empty, we have to start
by inserting ¢[i — k + 1,4] in the tree. This can be done in constant time by trying to
insert ¢[i] from the position p. If this insertion creates a leaf, its end value is directly
set to ¢ (not added in queuey.qs) and it is used to try to insert t[i — k+1,1]. If no leaf

. sPe:

188

The Gapped-Factor Tree

is created, then we continue by trying to insert ¢[i — k + 1,4 from the leaf reached
(we know that the insertion of t[i — k,i| leads to a leaf since the path length of the
leaves is bounded by k). If the insertion of t[i — k + 1, 4] does not create a leaf, we use
the position reached in the tree to start the next phase.

A pseudo-code of this algorithm is given in appendix in Algorithm A.

The time and space complexities of the algorithm are linear in the size of the
input text (see[l] for details).

k=3

Figure 6. Example of a k-factor tree for the text AGGAGS$ with k = 3

4.3 Gapped-factor tree construction

We now present the construction algorithm of a gapped-factor tree (gft for short).
Once again, the construction algorithm is done online. As shown in Figure 4, a gft
is composed of three different regions: the upper part of depth £, the invisible region
corresponding to the gap of length d, and the lower part of depth £’

1. During the construction of the gft, the first region is treated exactly as for a k-
factor tree. The queue containing the leaves in extension is denoted by queteeq f up-

2. When a leaf reaches the depth k£, it enters in the invisible region for d phases. To
simulate this behaviour, a queue is created that contains the leaves in extension
in the invisible region. This queue is denoted by queue;nyisivie- Leaves entering
queue;nisive stay inside for d phases. During those phases, leaves inside the queue
are ignored. After d phases, a leaf in the queue is virtually reaching the depth
k + d. It is then removed from the queue.

3. The construction algorithm of the lower part of the tree is again very similar to

the one of a k-factor tree. All the tricks applied for the suffix tree construction are
still available. Once more a queue is used to store the leaves in extension in the
lower part of the tree. This queue is denoted by queuejeqf 1o The ending integer
of the leaves in extension in the queue is the global variable 7. The leaves stay in
the queue during &’ phases before they become leaves that stay fixed, and contain
the positions of the gapped-factors corresponding to the path leading to them
from the root.
However, for the construction of the lower part, the use made of suffix links is
slightly different than in the upper part of the tree. This is due to the following
particularity of the gapped-factor tree: a node in the lower part of the tree may
have up to | Y] suffix links. Indeed, one node in this tree may correspond to several
paths. According to the first letter in the invisible region leading to a node, the
suffix link to follow will not be the same. Figure 7 illustrates this observation.

The algorithm 15 given in appendix gives an overview of the whole gapped-factor
tree construction algorithm.

189

Proceedings of the Prague Stringology Conference 06

Figure 7. Example of multiple suffix links. The node pointed by an arrow has two suffix links
(in dotted line). One is labelled with an A and the other is labelled with a B. The correct suffix
link to follow depends on the path that leads to the node. If the node is reached reading ABA.w
(w € X*), the correct suffix link to follow is the one labelled with an A; it goes to a node reachable
reading the text BA.w. Any other suffix link leaving the node would be labelled differently and
would reach a node corresponding to the text B.o.w, with ¢ € X and ¢ # A.

Complexity of the Gft construction The algorithm for constructing a gft uses
all the tricks employed by Ukkonen and Allali to lead to a linear time and memory
complexity. However, the multiple suffix links add a multiplicative term in |X| to
both complexities. Thus the total time and memory complexity for the construction
of a gapped-factor tree for a text ¢ is in O([t| x |X|). One can notice that once the
gapped-factor is constructed, the (multiple) suffix links are not useful anymore and
can be removed. In this case, the memory complexity falls back to O(|t|).

Generalisation to more than one text As for the suffix tree or the k-factor tree,
the gft can be extended to a generalised gapped-factor tree and accept a set of m > 1
texts 1, tl, ce tr_1-

In this case, each text i € [0,m — 1] ends with a special character $; and the
leaves are labelled not only with the positions of a gapped-factor but also with the
sequence number in [0, m—1] where the factors occur. The complexity for constructing

m—1
a generalised gapped-factor tree is in O ((> \M) X | X \)

1=0

5 Basic uses of a gapped-factor tree

To find all the positions where a (k-d-k")-gapped-factor occurs in a text given a
(k-d-E')-gapped-factor tree for the text one needs to find the leaf corresponding to
the given gapped-factor. This is done straightforwardly by traversing the gapped-
factor tree from the root to the node as in a suffix tree. The list attached to the leaf
corresponds to the positions of the occurrences of the gapped-factors.

190

The Gapped-Factor Tree

This algorithm takes a time proportional to the number of nodes traversed, which
is in the worst case k + k’. Thus retrieving the positions of a given (k-d-k')-gapped-
factor is done in O(k + &').

The gft data structure allows also to easily find all the repeated gapped-factors of
a text or of a set of texts. If we are interested in finding all gapped-factors occurring
at least r times in a text, for r a positive integer, we just have to visit the leaves. For
each leaf, if the number of elements of the list attached to it is greater or equal to r,
the corresponding gapped-factor is considered as repeated.

As the number of elements of each list may be stored in the leaves, this extraction
is done in time proportional to the number of leaves. If n denotes the length of the
indexed text, the number of leaves is no greater than n. The extraction is therefore
done in time O(n).

In the generalised case, one may want to extract all gapped-factors occurring in
at least r different texts. In this case, to each leaf is attached the number of different
texts in which the corresponding gapped-factor occurs. Thus extracting all gapped-
factors occurring in at least r different texts is done by checking each leaf in constant

time leading to a complexity in O(>_ |t;]).
i=1

6 Conclusion

We presented a new data structure used for indexing factors containing a gap (called
the gapped-factors). This data structure is based on the suffix tree structure. Fur-
thermore, we indicated an online construction algorithm of this data structure for a
text ¢ on an alphabet X in O(Jt| x |X|) time and space. This algorithm is based on
the Ukkonen algorithm for constructing a suffix tree.

References

[1] J. Arpant AND M. SAacoT: The at most k-deep factor tree, Tech. Rep. #2004-03, Institut
Gaspard Monge, Université de Marne-la-Vallée, 2004.

[2] S. ArrscHuL, W. GisH, W. MILLER, E. MYERS, AND D. LIPMAN: Basic local alignment
search tool. Journal of Molecular Biology, 215(3) 1990, pp. 403-410.

[3] S. ALrscHUL, T. MADDEN, A. SCHAFFER, J. ZHANG, Z. ZHANG, W. MILLER, AND D. Lip-
MAN: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Research, 25 1997, pp. 3389-3402.

[4] M. BrubpNnO, M. CHAPMAN, B. GOTTGENS, S. BATZOGLOU, AND B. MORGENSTERN: Fast
and sensitive multiple alignment of large genomic sequences. BMC Bioinformatics, 4 2003, p. 66.

[5] M. Brubpno, C. B. Do, G. M. CoopPER, M. Kim, E. Davypov, E. D. GREEN, A. SIDOW,
AND S. BATZOGLOU: LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple align-
ment of genomic DNA. Genome Research, 13 2003, pp. 721-731.

[6] S. BURKHARDT, A. CRAUSER, P. FERRAGINA, H. P. LENHOF, AND M. VINGRON: ¢-gram
based database searching using a suffix array (QUASAR). Proceedings of the third annual
international conference on Computational molecular biology (Recomb 99), 1999, pp. 77-83.

[7] S. BURKHARDT AND J. KARKKAINEN: Better filtering with gapped q-grams, in Proceedings
of the 12th Annual Symposium on Combinatorial Pattern Matching (CPM 2001), vol. 2089 of
LNCS, 2001, pp. 73-85.

[8] S. BURKHARDT AND J. KARKKAINEN: One-gapped g-gram filters for Levenshtein distance.
13th Annual Symposium on Combinatorial Pattern Matching (CPM 2002), 2373 of LNCS 2002,
pp- 225-234.

9] R. C. EDGAR: MUSCLE: Multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32(5) 2004, pp. 1792-1797.

191

Proceedings of the Prague Stringology Conference 06

[10] L. GravaNo, P. IpEIROTIS, H. JAGADISH, N. KOoUDAS, S. MUTHUKRISHNAN, AND D. SRI-
VASTAVA: Approzimate string joins in a database (almost) for free, in In Proc. of 27th Int’l
Conf. on Very Large DataBases (VLDB 2001), 2001, pp. 491-500.

[11] D. GUSFIELD: Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology, Cambridge University Press, 1997.

[12] M. HOHL, S. KURTZ, AND E. OHLEBUSCH: Efficient multiple genome alignment. ISMB
(Supplement of Bioinformatics), Vol. 18 2002, pp. S312-S320.

[13] C. S. ILiopouLos, J. McHUGH, P. PETERLONGO, N. PisANTI, W. RYTTER, AND M.-F.
SAGOT: A first approach to finding common motifs with gaps. International Journal of Founda-
tions of Computer Science, 16(6) 2005, pp. 1145-1154.

[14] J. KARKKAINEN: Computing the threshold for g-gram filters. Proceedings of the 8th Scandina-
vian Workshop on Algorithm Theory (SWAT 2002), 2368 of LNCS 2002, pp. 348-357.

[15] G. KUCHEROV, L. NOE, AND M. ROYTBERG: Multiseed lossless filtration. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 02 2005, pp. 51-61.

[16) M. L1 AND B. Ma: PatternHunter II: Highly sensitive and fast homology search. Genome
Informatics, 14 2003, pp. 164-175.

[17] D. J. LipmAN AND W. R. PEARSON: Rapid and sensitive protein similarity searches. Science,
227 1985, pp. 1435-1441.

[18] B. Ma, J. TROMP, AND M. L1: PatternHunter: Faster and more sensitive homology search.
Bioinformatics, 18(3) 2002, pp. 440-445.

[19] L. MARSAN AND M.-F. SAGOT: Extracting structured motifs using a suffix tree - algorithms
and application to promoter consensus identification, in RECOMB, 2000, pp. 210-219.

[20] E. M. McCREIGHT: A space-economical suffix tree construction algorithm. Journal of the
Association of Computing Machinery, 23(2) 1976, pp. 262-272.

[21] M. MICHAEL, C. DIETERICH, AND M. VINGRON: Siteblast rapid and sensitive local alignment
of genomic sequences employing motif anchors. Bioinformatics, 21(9) 2005, pp. 2093-2094.

[22] J. NA, A. Apostorico, C. ILiorouLos, AND K. PARK: Truncated suffiz trees and their
application to data compression. Theor. Comput. Sci., 304(1-3) 2003, pp. 87-101.

[23] J. NAa aND K. PARK: Data compression with truncated suffiz trees. Data Compression Con-
ference (DCC 2000), IEEE Computer Society, online edition:
http://computer.org/proceedings/dcc/0592/0592toc.htm 2000, p. 565.

[24] G. NAVARRO, E. SUTINEN, J. TANNINEN, AND J. TARHIO: Indexing text with approximate
g-grams. 11th Annual Symposium on Combinatorial Pattern Matching (CPM 2000), 1848 of
LNCS 2000, pp. 350-363.

[25] P. PETERLONGO, N. PisaNTI, F. BOYER, AND M.-F. SAGOT: Lossless filter for finding
long multiple approzimate repetitions using a new data structure, the bi-factor array. String
Processing and Information Retrieval (SPIRE 2005), 3772 of LNCS 2005, pp. 179-190.

[26] P. PEVZNER AND M. WATERMAN: Multiple filtration and approximate pattern matching. Al-
gorithmica, 13 1995, pp. 135-154.

[27] N. P1sanTI, A. CARVALHO, L. MARSAN, AND M.-F. SAacoT: RISOTTO: Fast extraction
of motifs with mismatches, in Proceedings of the 7Tth Latin American Theoretical Informatics
Symposium, vol. 3887 of LNCS, 2006, pp. 757-768.

[28] K. R. RASMUSSEN, J. STOYE, AND E. W. MYERS: Efficient g-gram filters for finding all e-
matches over a given length, in 9th Annual International Conference, Research in Computational
Molecular Biology (Recomb 2005), vol. 3678 of LNCS, 2005, pp. 189-203.

[29] E. SUTINEN AND J. TARHIO: On using g-gram locations in approximate string matching, in
Third Annual European Symposium, (ESA 95), vol. 979 of LNCS, 1995, pp. 327-340.

[30] P. THEBAULT, S. DEGIVRY, T. ScHIEX, AND C. GASPIN: Combining constraint processing and
pattern matching to describe and locate structured motifs in genomic sequences, in Fifth IJCAI-
05 Workshop on Modelling and Solving Problems with Constraints, Edindurgh, Scotland, 2005,
pp- 330-337.

[31] E. UKKONEN: On-line construction of suffiz-trees. Algorithmica, 14 1995, pp. 249-260.

192

The Gapped-Factor Tree

A Pseudo-codes

Algorithm 10 Fast Insertion

Require: N i start,end
Ensure: Insert a string tsiqrt.. eng from a node N assuming that the tree is already constructed for

Lstart...end—1 from N
endJump «— false
while (not endJump) and ((end — start) # 0) do
set child to the child of N that starts with the letter ¢t
if (end — start) > length(N, child) then
start < start + length(N, child)
N« child
else
endJump «— true
end if
end while

: if (end — start) = 0 and N has not a child for letter te,q then

add a child to A with edge label start equal to end

. end if
: e «the label of the edge between A and child
. if €end—start+1 7é Send then

split e at position end — start
add a leaf with start position equal to end to the new node

: end if

Algorithm 11 Factor Tree

Require: R, t, k , queueeqy
Ensure: The k-factor tree of ¢

1: do the first k£ —1 phases using Suffix_Tree algorithm, filling queue;c, ¢ with each new leaf created
2: for i from k to |t| do

3: if queuejeqs is not empty then

4: set lastLeaf to the leaf at the end of queueicqr

5: else

6: add ¢; from last position reached during the last insertion
7 if a leaf is created then

8: add this leaf at the end of queueicqys

9: set lastLeaf to this leaf

10: else

11: set lastLeaf to the leaf reached

12: end if
13: end if
14: Phase (R, t, k, i, queuejcqy, lastLeaf)
15: remove the leaf at the head of queue;eqs and set its end value to i
16: end for

17: return R

193

Proceedings of the Prague Stringology Conference 06

Algorithm 12 Function Phase (Suffix tree and k-factor tree construction)

Require: R, t, k, i, queuejcqy, lastLeaf

Ensure: One phase of the construction of the suffix tree and of the k-factor tree. The underlined
parts stand only for the k-factor tree construction.

1: endPhase «— false

2: repeat

3: forward < length(Father(lastLeaf),lastLeaf) — 1

4: if S)(Father(lastLeaf)) is undefined and Father(lastLeaf)! = R then
5% forward — forward + length(Father(Father(lastLeaf)), Father(lastLeaf))
6: if Father(Father(lastLeaf)) is R then
7 AddString(R,t,i — forward + 1,i)
8: else
9: AddString(S;(Father(Father(lastLeaf))),t,i — forward,i)
10: end if
11: else
12: if Father(lastLeaf) is R then
13: AddString(R,t,i — forward + 1,i)
14: else
15: AddString(S;(Father(lastLeaf)),t,i — forward,i)
16: end if
17 end if
18: if a node was created during the previous step then
19: set the suffix link of this node to the last node reached during the insertion
20: end if
21: if a leaf was created in the call to AddString then
22: set lastLeaf to this leaf
23: add this leaf at the end of queuejear
24: end if
25: if no node was created during the call to AddString then
26: endPhase «— true
27: end if

28: until not endPhase

Algorithm 13 Suffix Tree
Require: t
Ensure: The suffix tree of ¢

1: Add to R a leaf L with edge label ¢g
2: lastLeaf «— L

3: for i from 1 to |t/ — 1 do

4: Phase (R, t, k, i, lastLeaf)

5: end for

6: return R

194

The Gapped-Factor Tree

Algorithm 14 Lower_Part_Tree

Require: R, 1,k , d, i, queucicas_iow, lastLeaf Low
Ensure: A construction phase of the lower part of the gapped-factor tree
1: endPhaseLow «— false

2: repeat
3: forward < length(Father(lastLeaf Low),lastLeaf Low) — 1
4: if Si(t, Father(lastLeafLow)) is defined but not labeled with the good character then
5: Point the Father(lastLeafLow) node as the node created during the previous step
6: end if
7. if Si(ta, Father(lastLeaf Low)) is undefined and Father(lastLeafLow)! = R then
8: forward — forward + length(Father(Father(lastLeafLow)), Father(lastLeaf Low))
9: if Father(Father(lastLeafLow)) is R then

10: AddString(R,t,i — forward + 1,i)

11: else

12: AddString(S;(ta, F(F(lastLeaf Low)))t,i — forward,i)

13: end if

14: else

15: if Father(lastLeafLow) is R then

16: AddString(R,t,i — forward + 1,i)

17: else

18: AddString (S (ta, F(lastLeaf Low),t,i — forward,i)

19: end if

20: end if

21: if a node was created during the previous step then

22: set the suffix link labeled ¢, of this node to the last node reached during the insertion

23: end if

24: if a leaf was created during the call to AddString then

25: set lastLeafLow to this leaf

26: add this leaf at the end of queueicar_iow

27: end if

28: if no node was created in the call to AddString then

29: endPhaseLow «+ true

30: end if

31: if the width of the last position reached during the fast insertion was < k + d then

32: endPhaseLow «— true

33: end if

34: until not endPhaseLow

NOTE : « is the first character in the invisible region on the lastLea f Low path

195

Proceedings of the Prague Stringology Conference 06

Algorithm 15 GappedFactor_Tree

ReqUire: Ra t, k y d> qUEUClea f up, qUEUCIeaf lows qUEUCnyisible

Ensure: Complete construction algorithm of a gapped factor tee
1: do the first k£ phases using Suffix_Tree algorithm, filling queue;eq s up With each new leaf created
2: for i from k to |t| do

3: if index of node at the head of queue;,yisinie = k + 1 then
4: create a new edge from this node labeled ¢;
5: add the new leaf at the end of queuejeq s iow
6: remove the node at head of queue;nyisiie
7: end if
8: if queueieqaf_up is not empty then
9: set lastLeafUp to the leaf at the end of queueieq s up
10: else
11: add ¢; from last position reached during the last insertion on the upper part of the tree
12: if a leaf is created then
13: add this leaf at the end of queuejeqf_up
14: set lastLeafUp to this leaf
15: else
16: set lastLeafUp to the leaf reached
17: end if
18: end if
19: Phase(R, t, k, i, queuejeqf up, lastLeafUp)
20: remove the pseudo leaf at the head of queuejeq s up
21: if the pseudo leaf is new then
22: set the pseudo leaf index value to 0 (invisible zone)
23: add the pseudo leaf at the end of queue;pyisivie
24: end if
25: it i > k+d //the lower part of the tree is on construction then
26: if queuejeay 0w is nOt empty then
27: set lastLeaf Low to the leaf at the end of queueicq s jow
28: else
29: add t; from last position reached during the last insertion on the low part of the tree
30: if a leaf is created then
31: add this leaf at the end of queueicar_iow
32: set lastLea fLow to this leaf
33: else
34: set lastLeafLow to the leaf reached
35: end if
36: end if
37: Lower_Part_Tree(R, t, k, d, i, queu€ieqs_jow, lastLeafLow)
38: if i >k+d+k // End the extention of the tree then
39: remove the leaf at the head of queueicqf_iow
40: set the leaf end value to 4
41: end if
42: end if
43: end for

44: return R

196

