
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Indexing gapped-factors using a tree

Pierre Peterlongo

INRIA / IRISA - CNRS, Rennes, France

Julien Allali
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ABSTRACT

We present a data structure to index a specific kind of factors, that is of substrings,
called gapped-factors. A gapped-factor is a factor containing a gap that is ignored during
the indexation. The data structure presented is based on the suffix tree and indexes all
the gapped-factors of a text with a fixed size of gap, and only those. The construction
of this data structure is done online in linear time and space. Such a data structure may
play an important role in various pattern matching and motif inference problems, for
instance in text filtration.
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1. Introduction

The indexation and extraction of repeated short words (called k-factorsa for
words of length k) has become a widely used technique in many text algorithmic
problems. One can mention their use in, for instance, fasta [1] and blast [2,
3]. Indeed, many algorithms for efficiently computing string matches [4, 5, 6] or
alignments [7, 8, 9, 10, 11, 12, 13] use k-factors. In particular, filtration algorithms
that have been created for quickly discarding large portions of the input before
applying a more expensive algorithm on the remaining data are often based on the
identification of such short repeated words [14, 15, 16, 17, 18, 19, 20].

∗Supported by the ACI Nouvelles Interfaces des Mathématiques π-vert project of the French
Ministry of Research, the ARC BIN project from the INRIA, and the ANR project REGLIS.

aAnother currently used term for designing k-factors is q-grams
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Among the exact filtration algorithms (exact in the sense that they discard
only portions of the text that can not be part of the final solution sought), some
consider motifs composed of non consecutive letters [15, 16, 17, 19], or sets of k-
factors [14, 18, 20]. Both present advantages for filtering purposes in comparison
with single k-factors with no letters skipped as shown in [15, 21, 17].

In order to efficiently use such motifs, one needs data structures to index them.
Depending on the kind of motifs adopted, different types of data structures may be
considered. For instance, sets of k-factors may be indexed in a hash table or using a
labelling technique as proposed in [22]. In this paper, we introduce a data structure
designed for the indexation of sub-words composed of a k-factor, a gap of length d
not taken into account during the indexation and a k′-factor. Such a sub-word is
called a gapped-factor as it contains a unique gap.

The new data structure is an adaptation of the suffix tree [23]. More precisely,
the construction we describe in this paper is an adaptation of the construction of
a k-factor tree [24], which itself is an extension of the Ukkonen construction of a
suffix tree [25]. A k-factor tree [24] (also called truncated suffix tree [26]) is a tree
indexing all k-factors of a text.

As indicated in Section 5, the new data structure, called a gapped-factor tree,
allows to extract in linear time all the repeated gapped-factors of a text or of a set
of texts. Furthermore, it offers the possibility to obtain in time O(k + k′) the list
of all the positions of a gapped-factor.

The paper is organised as follows. In Section 2, we provide the context and some
definitions about text and trees. In Section 3, we formally introduce gapped-factors
and the gapped-factor tree. In Section 4, we present the algorithm to construct
a gapped-factor tree for indexing the gapped-factors of a text after recalling the
Ukkonen construction of a suffix tree and the Allali construction of a k-factor tree.
We end by indicating two basic uses of gapped-factor trees.

2. Preliminaries

A text, also called a string, is a sequence of zero or more symbols from an
alphabet Σ. A text t of length n is denoted by t[0, n − 1] = t0t1 . . . tn−1, where
ti ∈ Σ for 0 ≤ i < n. The length of t is denoted by |t|. A string w is a factor of t if
t = uwv for u, v ∈ Σ∗; in this case, the string w occurs at position |u| in the string
t. A k-factor denotes a factor of length k. If t = uv for u, v ∈ Σ∗ then v is called
a suffix of t. A suffix starting at position i in t is denoted by ti....

A tree is a data structure composed of nodes connected together by edges.
Except for a special node called the root, each node has exactly one father. Nodes
with no children are called the leaves while all other nodes are called the inter-
nal nodes of the tree. An internal node having at least two children is called a
branching node.

Edges may be labelled. For instance, in Figure 1, edges are labelled with letters
from a given alphabet. The length of an edge is the number of characters of its
label. We call the depth of a node N the sum of the lengths of the edges that need
to be traversed from the root of the tree to reach N . By definition, the depth of
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Internal nodes

leaves

root

Fig. 1. Example of a tree labelled with letters from a given alphabet.
Reading all paths from the root to the leaves, leads to the strings AA, AC,
CA and CT

the root is thus 0.
Let N be a node of a tree, we denote by path(N ) the text corresponding to the

concatenation of the letters from a given alphabet labelling the edges from the root
to N .

For instance, if N′ denotes the leftmost leaf of the tree presented in Figure 1,
path(N0) = AA.

The suffix trie of a text t is a tree with every edges labelled with exactly one
elements of Σ. For each factor of t, there exists a node N such that path(N ) is
equal to that factor. If t has an ending symbol (a symbol that does not belong to
the alphabet Σ), all nodes N for which the path from the root spells a suffix of t
are leaves.

The implicit suffix tree of t is a tree with edges labelled by non-empty elements
of Σ∗. The suffix tree is a compressed version of the suffix trie. Each internal node
N of the suffix trie that has only one child is deleted and its two adjacent edges
are replaced by an edge that goes from the father of N to its child. The label of
the new edge is equal to the concatenation of the label of the edge going from the
father of N to N and of the label of the edge from N to its child. This tree is called
implicit because not all suffixes of t lead to a leaf. The true suffix tree is obtained
when a special ending symbol $ not in Σ is added at the end of t. A suffix tree
indexes all the |t| suffixes of a text t.

3. Gapped-factor tree

A gapped-factor tree indexes gapped-factors that are defined as follows:
Definition 1 (Gapped-factor) A gapped-factor is a concatenation of a factor
of length k, a gap of length d and another factor of length k′. A gapped-factor
occurring at position i in a text t is t[i, i+ k− 1].t[i+ k + d, i+ k + d+ k′− 1]. Such
a gapped-factor is called a (k-d-k′)-gapped-factor.
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An example of a (2-1-3)-gapped-factor is given in Figure 2.

0 1 2 3 4 5 6 7 8 9

k

10

GGA AA ACAGAG

d k’
Fig. 2. Example of a (2-1-3)-gapped-factor The first factor length is k = 2,
the gap is of length d = 1 and the second factor has a length k′ = 3. It occurs at
position 1 in the text. With these parameters, the content of the gapped-factor
occurring at position 1 is GGGAG composed by GG and GAG.

We propose a new data structure, called a gapped-factor tree, to index all the
(k-d-k′)-gapped-factors of a text or of a set of texts. This is a modification of the
suffix tree [23] data structure. The gapped-factor tree takes into account the gap
of length d of the gapped-factors it indexes. This means that the tree contains a
region up to which the k-factors are indexed as in a classical suffix tree, while below
this region the second factors (of length k′) of the (k-d-k′)-gapped-factors starting
with the same k-factor start from the same node. This region is called the invisible
region.

An intuitive idea of such a data structure is given in Figure 3.

A T

A C

A C

A A

A

C

C AA

CA

d

k

k’

A C

ACA

A C A

CA

k

k’

Fig. 3. An intuitive view of a gapped-factor tree. Even if this is not the
way the gapped-factor tree is constructed, a gapped-factor tree can be seen as
a truncated suffix tree where a part has been removed, provoking merges in
the lower part of the tree.

Definition 2 (Path in a Gapped-Factor Tree) Let w be a (k-d-k′)-gapped-factor
starting at position i < |t| − k − d− k′ that is indexed in such a tree. Let N be the
node at depth z ≤ k + k′ corresponding to this (k-d-k′)-gapped-factor. Then:

path(N ) =
{

t[i, i + z − 1] if z ≤ k
t[i, i + k − 1].t[i + k + d, i + d + z − 1] otherwise (1)

An example of gapped-factor tree and of a path in such a tree is presented in
Figure 4.

In the next section, we present the algorithm which performs the online con-
struction of a gapped-suffix tree.
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Fig. 4. Example of gapped-factor tree. The input sequence is
AGGAGAGACAA. The dashed lines correspond to the invisible region of
the tree. In this case, the gapped factors indexed are (2-1-3)-gapped-factors.
The information attached to the leaves corresponds to the starting positions
of a gapped-factor in the text.

4. Construction

The algorithm for constructing a gapped-factor tree is an extension of the algo-
rithm for constructing a k-factor tree [24], which is itself an extension of the suffix
tree construction algorithm due to Ukkonen[25]. Therefore, in the following, we
start by presenting the construction of a suffix tree, then the one of a k-factor tree,
and finally we describe the construction of a gapped-factor tree.

4.1. Ukkonen construction of the suffix tree

To present the Ukkonen algorithm, we follow the description given in [27]. This
algorithm constructs a full suffix tree of a text t in O(|t|) time and space. An
example of a suffix tree is given in the Figure 5.

A $ G

G A $ G

$

A

G

$

$ G

A

G

$

G

AGGAG

Fig. 5. Example of a suffix tree for the text AGGAG$. The dashed lines
represent the suffix links.

The algorithm is divided into |t| phases. The ith phase (for 0 ≤ i < |t|) consists
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in the insertion of all the i + 1 suffixes of t[0, i] into the tree. The naive approach
divides each phase i into i+1 steps, one step j (0 ≤ j < i) consisting in the insertion
of the suffix t[j, i] into the tree. This naive version of the construction algorithm is
presented in Algorithm 1. Clearly this algorithm is in O(|t|3).

Algorithm 1 Naive suffix tree construction algorithm
Require: A text t
Ensure: The suffix tree ST (t) of t
1: for i from 0 to |t| − 1 do
2: for j from 0 to i do
3: Add(ST (t),t[j, i])
4: end for
5: end for

The Ukkonen algorithm uses three tricks in order to reduce the time complexity
to O(|t|).

Before we present those tricks, we describe the encoding of a suffix tree. The
suffix tree created by this algorithm does not store the text: each node N contains
a couple of integers (s, e) corresponding to the starting and ending positions of the
factor in the text that led to the creation of the node itself. In the following, we
denote by Ns,e such a node. Thus, by definition, in the suffix tree of a text t,
path(Ns,e) is equal to t[s, e].

The Ukkonen algorithm uses suffix links. A suffix link is an oriented link between
two branching nodes of a suffix tree. Given a node Ns,e, its suffix link is denoted
by Sl(Ns,e) and the node pointed by Sl(Ns,e) is denoted by Sn(Ns,e). In this
case, path (Sn(Ns,e)) = path(Ns,e)

[
1, |path(Ns,e)|

]
. For instance, if path(Ns,e) =

AGGT , then, path(Sn(Ns,e)) = GGT .
In Figure 5, the suffix links are represented by dashed lines.
We present the three ideas leading to a linear time complexity for constructing

a suffix tree for the text t.

1. Let us assume that the suffix tree is constructed for t[0, i− 1]. During the ith

phase, all the leaves paths have to be lengthened by one in order to take the
character ti into account. In other terms, the ending integer e of each leaf has
to be incremented by one. Since by definition, all leaves have the same ending
integer, the latter can be coded by a global variable that is incremented by
one at each phase of the Ukkonen algorithm. This global variable is equal to
i during phase i. Thus, the extension of the leaves is implicit and done in
constant time.

2. (a) Fast Insertion: during the ith phase, let Ns,e be the last branching node
reached during the insertion of t[j, i]. By construction this node contains
a suffix link. In this case, t[j, i] = path(Ns,e).w.σ where w ∈ Σ∗ and
σ ∈ Σ. In order to insert t[j +1, i], w (which is necessarily already in the
tree) is read from Sn(Ns,e) and σ is added if needed.

6



To avoid having to read all the letters of w from Sn(Ns,e), the following
trick is used. At each branching node met during the reading of w, an
edge is chosen depending on the current letter in w. Once the edge is
identified, the node pointed by this edge is reached and we advance in
the reading of w by the number of letters in the edge. The process is
repeated while w is not totally read. Thus the complexity of the reading
of w is related to the number of nodes traversed and not to |w|.
If σ is added, a branching node is created. The suffix link of such a node
points to the last branching node met during the next insertion (it can
be a created one).
The pseudo-code of this algorithm is given in appendix in Algorithm 2.

(b) During phase i, all the suffixes of t[0, i] have to be inserted. Yet if during
the insertion of t[j, i], this word is already in the tree, then, by definition,
all the words {t[k, i], k ∈ [j, i]} are already in the tree as well. In this
case, the ith phase stops here. Similarly, the (i + 1)th phase can start
inserting t[j, i + 1]: with the implicit extension of the leaves, the factors
{t[k, i + 1], k ∈ [1, j − 1]} are already in the tree.

A pseudo-code of this construction algorithm is given in appendix in Algo-
rithm 1.

Each phase of the algorithm is not done in constant time. However the amortised
construction time is linear with respect to the input text length. The demonstration
of this complexity is given in [27]. It consists in bounding the overall number of
nodes traversed during all insertions.

4.2. Construction algorithm of a k-factor tree

The k-factor tree, also called truncated suffix tree, has been presented in [26]
and [24]. A k-factor tree is a suffix tree cut such that each word spelt from the
root to a leaf has a length bounded by k. An example of k-factor tree is given in
Figure 6. This structure finds applications in various areas such as data compression
[26, 28] where the indexation is made over a sliding window, or string matching and
computational biology [29, 30, 31] where the length of the motifs searched for in
the text is bounded.

The linear time construction algorithm we describe here is based on the Ukkonen
suffix tree construction algorithm. For further details on implementation and proof
of validity, the reader is referred to [24].

This algorithm is divided in two parts:

1. Build the suffix tree for t[0, k − 2].

2. Add in |t|− k +1 phases the suffixes of t[i− k +1, i] for i from k− 1 to |t|− 1.

The first part is achieved using the Ukkonen algorithm. During this part, the leaves
created are added to a queue called queue!eaf .

In the second part, we have to modify the Ukkonen algorithm so that:
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• for each phase i, we start by inserting t[j, i] with j not smaller than i− k + 1;

• implicit leaf extensions are stopped when the length k is reached for the path
of a leaf.

To do this last point, we use the queue queue!eaf .
During the whole construction, each leaf created is added at the end of queue!eaf .

Let Ls,e denote a leaf corresponding to a string starting position s and ending
position e. Suppose queue!eaf = L1

s1,e,L2
s2,e, . . . ,L

p
sp,e is not empty. The variable e

is a global variable applied to all the leaves present in queue!eaf . During each phase,
if the queue!eaf is not empty, we remove its first element say L1

s1,e and transform
it to L1

s,i . if we are in phase i. After this, L1
s1,i is not modified. Indeed, we know

that path(L1
s1,i) has a length of k.

Suppose we are in phase i = k − 1. Then queue!eaf contains at least one leaf
which corresponds to the one created during the insertion of t[0] in the tree (first
insertion of the first phase). This leaf is L1

0,e. In phase i = k, the leaf is now L1
0,k−1,

so the length of the path leading to it is equal to k. If there is another leaf in the
queue, it corresponds to L1

1,e and it is clear that the length of its path will be equal
to k at the next phase. And so on, as the leaves Ls,e are created with s incremented
by one between two leaves.

Once the leaf at the beginning of queue!eaf is fixed, we apply again the Ukkonen
algorithm from the last leaf in queue!eaf (the last created which can be the one we
have just fixed). At the end of phase (i.e. no leaf created during the last insertion),
we remove the leaf at the head of queue!eaf .

We describe now the case when there is no leaf in the queue. Suppose there
were a leaf in the queue at the previous phase i − 1. By fixing the end value of
this leaf, we have fixed the leaf corresponding to t[i− k, i− 1]. Then we started by
inserting t[i−k+1, i−1] in the tree. This insertion did not create a leaf (queue!eaf

is empty in phase i) and lead to a position p in the tree that corresponds to the
spelling of t[i − k + 1, i − 1]. In the current phase i, since queue!eaf is empty, we
have to start by inserting t[i − k + 1, i] in the tree. This can be done in constant
time by trying to insert t[i] from the position p. If this insertion creates a leaf, its
end value is directly set to i (not added in queue!eaf ) and it is used to try to insert
t[i− k +1, i]. If no leaf is created, then we continue by trying to insert t[i− k +1, i]
from the leaf reached (we know that the insertion of t[i− k, i] leads to a leaf since
the path length of the leaves is bounded by k). If the insertion of t[i− k +1, i] does
not create a leaf, we use the position reached in the tree to start the next phase.

A pseudo-code of this algorithm is given in appendix in Algorithm 1.
The time and space complexities of the algorithm are linear in the size of the

input text (see[24] for details).

4.3. Gapped-factor tree construction

We now present the construction algorithm of a gapped-factor tree (gft for
short). Once again, the construction algorithm is done online. As shown in Figure 4,
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Fig. 6. Example of a k-factor tree for the text AGGAG$ with k = 3.

a gft is composed of three different regions: the upper part of depth k, the invisible
region corresponding to the gap of length d, and the lower part of depth k′:

1. During the construction of the gft, the first region is treated exactly as for
a k-factor tree. The queue containing the leaves in extension is denoted by
queueleaf up.

2. When a leaf reaches the depth k, it enters in the invisible region for d phases.
To simulate this behaviour, a queue is created that contains the leaves in
extension in the invisible region. This queue is denoted by queueinvisible.
Leaves entering queueinvisible stay inside for d phases. During those phases,
leaves inside the queue are ignored. After d phases, a leaf in the queue is
virtually reaching the depth k + d. It is then removed from the queue.

3. The construction algorithm of the lower part of the tree is again very similar to
the one of a k-factor tree. All the tricks applied for the suffix tree construction
are still available. Once more a queue is used to store the leaves in extension
in the lower part of the tree. This queue is denoted by queueleaf low. The
ending integer of the leaves in extension in the queue is the global variable i.
The leaves stay in the queue during k′ phases before they become leaves that
stay fixed, and contain the positions of the gapped-factors corresponding to
the path leading to them from the root.

However, for the construction of the lower part, the use made of suffix links is
slightly different than in the upper part of the tree. This is due to the following
particularity of the gapped-factor tree: a node in the lower part of the tree
may have up to |Σ| suffix links. Indeed, one node in this tree may correspond
to several paths. According to the first letter in the invisible region leading
to a node, the suffix link to follow will not be the same. Figure 7 illustrates
this observation.

The algorithm 7 given in appendix gives an overview of the whole gapped-factor
tree construction algorithm.

4.3.1. Complexity of the Gft construction

The algorithm for constructing a gft uses all the tricks employed by Ukkonen and
Allali to lead to a linear time and memory complexity. One could at first glance
consider that the multiple suffix links add a multiplicative term in |Σ| to both
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Fig. 7. Example of multiple suffix links. The node pointed by an arrow
has two suffix links (in dotted line). One is labelled with an A and the other
is labelled with a B. The correct suffix link to follow depends on the path
that leads to the node. If the node is reached reading ABA.w (w ∈ Σ∗),
the correct suffix link to follow is the one labelled with an A; it goes to a
node reachable reading the text BA.w. Any other suffix link leaving the node
would be labelled differently and would reach a node corresponding to the text
B.σ.w, with σ ∈ Σ and σ #= A.

complexities. However one may observe that if more than one suffix link leaves a
node N in the lower part of the tree, it means that in a classical suffix tree, N would
have existed instead of one node. Thus,multiple suffix links do not involve extra
memory and extra time consumption with respect to an usual suffix tree. Thereby
the gapped-factor tree construction is done in linear time and memory complexity.

4.3.2. Generalisation to more than one text

As for the suffix tree or the k-factor tree, the gft can be extended to a generalised
gapped-factor tree and accept a set of m > 1 texts t0, t1, . . . , tm−1.

In this case, each text i ∈ [0,m − 1] ends with a special character $i and the
leaves are labelled not only with the positions of a gapped-factor but also with
the sequence number in [0,m − 1] where the factors occur. The complexity for

constructing a generalised gapped-factor tree is in O

(
m−1∑
i=0

|ti|
)

.

5. Basic uses of a gapped-factor tree

To find all the positions where a (k-d-k′)-gapped-factor occurs in a text given a
(k-d-k′)-gapped-factor tree for the text one needs to find the leaf corresponding to
the given gapped-factor. This is done straightforwardly by traversing the gapped-
factor tree from the root to the node as in a suffix tree. The list attached to the
leaf corresponds to the positions of the occurrences of the gapped-factors.

This algorithm takes a time proportional to the number of nodes traversed,
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which is in the worst case k + k′. Thus retrieving the positions of a given (k-d-k′)-
gapped-factor is done in O(k + k′).

The gft data structure allows also to easily find all the repeated gapped-factors
of a text or of a set of texts. If we are interested in finding all gapped-factors
occurring at least r times in a text, for r a positive integer, we just have to visit the
leaves. For each leaf, if the number of elements of the list attached to it is greater
or equal to r, the corresponding gapped-factor is considered as repeated.

As the number of elements of each list may be stored in the leaves, this extraction
is done in time proportional to the number of leaves. If n denotes the length of the
indexed text, the number of leaves is no greater than n. The extraction is therefore
done in time O(n).

In the generalised case, one may want to extract all gapped-factors occurring
in at least r different texts. In this case, to each leaf is attached the number of
different texts in which the corresponding gapped-factor occurs. Thus extracting
all gapped-factors occurring in at least r different texts is done by checking each

leaf in constant time leading to a complexity in O(
m∑

i=1
|ti|).

6. Conclusion

We presented a new data structure useful for indexing factors containing a gap
(called the gapped-factors). This data structure is based on the suffix tree structure.
Furthermore, we indicated an online construction algorithm of this data structure
for a text in linear time and space. This algorithm is based on the Ukkonen algo-
rithm for constructing a suffix tree.
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Appendix A: Pseudo-codes

In the following codes, the function length(N ,M) stands for the length of the
path from the node N to the node M.

Algorithm 2 Fast Insertion
Require: N ,t,start,end
Ensure: Insert a string tstart...end from a node N assuming that the tree is already

constructed for tstart...end−1 from N
1: endJump← false
2: while (not endJump) and ((end− start) %= 0) do
3: set child to the child of N that starts with the letter tstart

4: if (end− start) ≥ length(N , child) then
5: start← start + length(N , child)
6: N ← child
7: else
8: endJump← true
9: end if

10: end while
11: if (end− start) = 0 and N has not a child for letter tend then
12: add a child to N with edge label start equal to end
13: end if
14: e←the label of the edge between N and child
15: if eend−start+1 %= send then
16: split e at position end− start
17: add a leaf with start position equal to end to the new node
18: end if
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Algorithm 3 Function Phase (Suffix tree and k-factor tree construction)
Require: R, t, k, i, queueleaf , lastLeaf
Ensure: One phase of the construction of the suffix tree and of the k-factor tree.

The underlined parts stand only for the k-factor tree construction.
1: endPhase← false
2: repeat
3: forward← length(Father(lastLeaf), lastLeaf)− 1
4: if Sl(Father(lastLeaf)) is undefined and Father(lastLeaf)! = R then
5: forward←
6: forward + length(Father(Father(lastLeaf)), Father(lastLeaf))
7: if Father(Father(lastLeaf)) is R then
8: AddString(R,t,i− forward + 1,i)
9: else

10: AddString(Sl(Father(Father(lastLeaf))),t,i− forward,i)
11: end if
12: else
13: if Father(lastLeaf) is R then
14: AddString(R,t,i− forward + 1,i)
15: else
16: AddString(Sl(Father(lastLeaf)),t,i− forward,i)
17: end if
18: end if
19: if a node was created during the previous step then
20: set the suffix link of this node to the last node reached during the insertion
21: end if
22: if a leaf was created in the call to AddString then
23: set lastLeaf to this leaf
24: add this leaf at the end of queueleaf

25: end if
26: if no node was created during the call to AddString then
27: endPhase← true
28: end if
29: until not endPhase

14



Algorithm 4 Factor Tree
Require: R, t , k , queueleaf

Ensure: The k-factor tree of t
1: do the first k− 1 phases using Suffix Tree algorithm, filling queueleaf with each

new leaf created
2: for i from k to |t| do
3: if queueleaf is not empty then
4: set lastLeaf to the leaf at the end of queueleaf

5: else
6: add ti from last position reached during the last insertion
7: if a leaf is created then
8: add this leaf at the end of queueleaf

9: set lastLeaf to this leaf
10: else
11: set lastLeaf to the leaf reached
12: end if
13: end if
14: Phase (R, t , k, i, queueleaf , lastLeaf)
15: remove the leaf at the head of queueleaf and set its end value to i
16: end for
17: return R

Algorithm 5 Suffix Tree
Require: t
Ensure: The suffix tree of t
1: Add to R a leaf L with edge label t0
2: lastLeaf ← L
3: for i from 1 to |t| − 1 do
4: Phase (R, t , k, i, lastLeaf)
5: end for
6: return R
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Algorithm 6 Lower Part Tree
Require: R, t , k , d, i, queueleaf low, lastLeafLow
Ensure: A construction phase of the lower part of the gapped-factor tree
1: endPhaseLow ← false
2: repeat
3: forward← length(Father(lastLeafLow), lastLeafLow)− 1
4: if Sl(t, Father(lastLeafLow)) is defined but not labeled with the good char-

acter then
5: Point the Father(lastLeafLow) node as the node created during the pre-

vious step
6: end if
7: if Sl(tα, Father(lastLeafLow)) is undefined and Father(lastLeafLow)! =

R then
8: forward ←

forward+length(Father(Father(lastLeafLow)), Father(lastLeafLow))
9: if Father(Father(lastLeafLow)) is R then

10: AddString(R,t,i− forward + 1,i)
11: else
12: AddString(Sl(tα, F (F (lastLeafLow)))t,i− forward,i)
13: end if
14: else
15: if Father(lastLeafLow) is R then
16: AddString(R,t,i− forward + 1,i)
17: else
18: AddString(Sl(tα, F (lastLeafLow),t,i− forward,i)
19: end if
20: end if
21: if a node was created during the previous step then
22: set the suffix link labeled tα of this node to the last node reached during

the insertion
23: end if
24: if a leaf was created during the call to AddString then
25: set lastLeafLow to this leaf
26: add this leaf at the end of queueleaf low

27: end if
28: if no node was created in the call to AddString then
29: endPhaseLow ← true
30: end if
31: if the width of the last position reached during the fast insertion was ≤ k +d

then
32: endPhaseLow ← true
33: end if
34: until not endPhaseLow

NOTE : α is the first character in the invisible region on the lastLeafLow
path

16



Algorithm 7 GappedFactor Tree
Require: R, t , k , d, queueleaf up, queueleaf low, queueinvisible

Ensure: Complete construction algorithm of a gapped factor tee
1: do the first k phases using Suffix Tree algorithm, filling queueleaf up with each

new leaf created
2: for i from k to |t| do
3: if index of node at the head of queueinvisible = k + 1 then
4: create a new edge from this node labeled ti
5: add the new leaf at the end of queueleaf low

6: remove the node at head of queueinvisible

7: end if
8: if queueleaf up is not empty then
9: set lastLeafUp to the leaf at the end of queueleaf up

10: else
11: add ti from last position reached during the last insertion on the upper

part of the tree
12: if a leaf is created then
13: add this leaf at the end of queueleaf up

14: set lastLeafUp to this leaf
15: else
16: set lastLeafUp to the leaf reached
17: end if
18: end if
19: Phase(R, t, k, i, queueleaf up, lastLeafUp)
20: remove the pseudo leaf at the head of queueleaf up

21: if the pseudo leaf is new then
22: set the pseudo leaf index value to 0 (invisible zone)
23: add the pseudo leaf at the end of queueinvisible

24: end if
25: if i > k + d //the lower part of the tree is on construction then
26: if queueleaf low is not empty then
27: set lastLeafLow to the leaf at the end of queueleaf low

28: else
29: add ti from last position reached during the last insertion on the low part

of the tree
30: if a leaf is created then
31: add this leaf at the end of queueleaf low

32: set lastLeafLow to this leaf
33: else
34: set lastLeafLow to the leaf reached
35: end if
36: end if
37: Lower Part Tree(R, t, k, d, i, queueleaf low, lastLeafLow)
38: if i ≥ k + d + k // End the extention of the tree then
39: remove the leaf at the head of queueleaf low

40: set the leaf end value to i
41: end if
42: end if
43: end for
44: return R
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