
Theoretical Computer Science 374 (2007) 91–110
www.elsevier.com/locate/tcs

The maximum agreement forest problem: Approximation algorithms
and computational experiments!

Estela M. Rodriguesa, Marie-France Sagotb, Yoshiko Wakabayashia,∗

a Universidade de São Paulo, Departamento de Ciência da Computação, Rua do Matão, 1010, 05508-090 – São Paulo, Brazil
b INRIA Rhône-Alpes, Université Claude Bernard, Lyon I, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France

Received 22 April 2005; received in revised form 21 August 2006; accepted 12 December 2006

Communicated by M. Crochemore

Abstract

There are various techniques for reconstructing phylogenetic trees from data, and in this context the problem of determining how
distant two such trees are from each other arises naturally. Various metrics for measuring the distance between two phylogenies have
been defined. Another way of comparing two trees T and U is to compute the so called maximum agreement forest of these trees.
Informally, the number of components of an agreement forest tells how many edges from each of T and U need to be cut so that
the resulting forests agree, after performing all forced edge contractions. This problem is NP-hard even when the input trees have
maximum degree 2. Hein et al. [J. Hein, T. Jiang, L. Wang, K. Zhang, On the complexity of comparing evolutionary trees, Discrete
Applied Mathematics 71 (1996) 153–169] presented an approximation algorithm for it, claimed to have performance ratio 3. We
show that the performance ratio of the algorithm proposed by Hein et al. is 4, and we also present two new 3-approximation
algorithms for this problem. We show how to modify one of the algorithms into a (d + 1)-approximation algorithm for trees with
bounded degree d , d ≥ 2. Finally, we report on some computational experiments comparing the performance of the algorithms
presented in this paper.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Agreement forest; Approximation algorithm; APX-complete; Computational complexity; Evolutionary process; Phylogenetic tree

1. Introduction

Phylogenetic trees or phylogenies are a standard model for representing evolutionary processes, mostly involving
biological entities such as species or genes. By a phylogenetic tree, we mean a rooted unordered tree whose leaves
are uniquely labeled with elements of some set S, and whose internal nodes are unlabeled and have at least two

! This research was partially supported by CAPES-COFECUB Project 272/99-II. The three authors are members of the INRIA-FAPESP
Project 2004/14335-5 and Associate Team HELIX-USP (INRIA). The first author was supported by CNPq Grant Proc. 142307/97-1 and also
by CAPES Grant BEX 0650-99/4 during her visit to Institut Pasteur, where part of this research was done. The second author was supported by the
Program BioInformatics inter EPST, and the third author is partially supported by CNPq (Procs. 308138/04-0, 490333/04-4, 478329/04-0) and by
ProNEx–FAPESP/CNPq Proc. 2003/09925-5.

∗ Corresponding author. Tel.: +55 11 3091 6135; fax: +55 11 3091 6134.
E-mail addresses: emrod2006@gmail.com (E.M. Rodrigues), Marie-France.Sagot@inria.fr (M.-F. Sagot), yw@ime.usp.br (Y. Wakabayashi).

0304-3975/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.12.011

http://www.elsevier.com/locate/tcs
mailto:emrod2006@gmail.com
mailto:Marie-France.Sagot@inria.fr
mailto:yw@ime.usp.br
http://dx.doi.org/10.1016/j.tcs.2006.12.011

92 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

children. The degree of a node in a rooted tree is the number of children of this node. The elements of S stand for
the contemporary taxa whose evolutionary relationships one intends to model. These taxa correspond to the leaves of
the tree, whereas the ancestral taxa correspond to its internal nodes, so that for each ancestral taxon, all of its nearest
derived taxa are depicted as its children in the tree.

There are various techniques for reconstructing phylogenetic trees from such data, and in this setting the problem
of determining how distant two such trees are from each other arises naturally. Various metrics, such as NNI (nearest-
neighbor interchange), SPR (subtree prune and regraft) and TBR (tree bisection and reconnection) for measuring the
distance between two phylogenies have been proposed [8,5,3]. Some results relating these concepts are presented by
Allen and Steel [1]. In particular, they observed that one of the NP-hardness proofs presented by Hein et al. [4] can be
adapted to prove that the maximum agreement forest problem is NP-hard. Hein et al. [4] state that this proof can also be
adapted to a MAX SNP-hardness proof for the maximum agreement forest problem. On the basis of these results (but
using another problem for the reduction) Rodrigues [6] has shown that the maximum agreement forest problem for
trees with maximum degree 2 is APX-hard. This result together with the approximation algorithms described in this
paper shows that the maximum agreement forest problem for trees with bounded degree d (d ≥ 2) is APX-complete.
Thus, under the hypothesis that P $= NP, there is no polynomial approximation scheme for this problem.

We are concerned with the problem of finding the size of a maximum agreement forest of two trees with bounded
degree d , d ≥ 2. A formal definition of this problem is given in Section 2.2. A previous algorithm by Hein et al. [4],
which we describe in Section 3, has been claimed to find solutions within 3 times the optimum. In Section 4.1 we
exhibit a family of instances of the problem which shows that this algorithm has performance ratio at least 4, and in
Section 4.5 we prove that its performance ratio is indeed 4.

We also introduce two approximation algorithms for the problem, both based on the same framework as Hein’s
algorithm but yielding performance ratio 3. These algorithms are quite simple, but the analysis of the approximation
ratio of our first algorithm and Hein’s is rather long and technical, while our second algorithm admits a more
straightforward analysis. All these algorithms are presented and analyzed in Sections 3 and 4. We have implemented
and tested the algorithms with randomly generated instances and found that the first of the new algorithms here
proposed performs best, constructing solutions closer to the optimum than the other two ones. The implementations
and tests are discussed in Section 5. We conclude with a generalization of our first algorithm for trees with bounded
degree d (d ≥ 2), which has performance ratio d + 1. This result is presented in Section 6.

Early versions of some of the results shown in this paper were presented (with an outline of the proofs) in [7]. The
results on computational experiments with the implementation of the algorithms and the generalization of one of the
algorithms for trees with bounded degree d (d ≥ 2) did not appear in the earlier version. Recently, Chataigner [2]
designed an 8-approximation algorithm to find a maximum agreement forest of k binary trees, k ≥ 2.

2. Basic definitions

2.1. Phylogenetic forests

A phylogenetic tree consists of an unordered rooted tree, called its topology, such that each internal node has at
least two children, and of a set of labels which are mapped one-to-one to the leaves of the tree. If T is a phylogenetic
tree, then TT denotes its topology, LT its set of leaves, ST its set of labels, fT its one-to-one label-to-leaf mapping,
and rT its root. Since we consider phylogenetic trees as having rooted topologies, these are naturally oriented: we
assume arcs are always oriented towards the root.

For each arc e in a phylogenetic tree T , we denote by l(e) its lower endpoint (the endpoint of e which is the
farthest one from the root) and by u(e) its upper endpoint (the other endpoint of e). The lowest common ancestor
(lac) of a set of m ≥ 1 nodes {v1, . . . , vm} of T , written as lcaT ({v1, . . . , vm}), or simply lcaT (v1, . . . , vm), is the
ancestor of the nodes vi , 1 ≤ i ≤ m, whose distance from the root is maximum, where the distance of a node to the
root is the length of the (unique) path that connects this node to the root. For each node u in T , we denote by D(u)
the set of leaves in T that are descendants of u, and if u $= rT , then p(u) is the parent of u. For simplicity, for an arc
e, instead of writing D(l(e)), we write De (the set of the descendants of the lower endpoint of e). We observe that a
node is also considered a descendant of itself.

The concept of phylogenetic tree can be generalized so as to consider topologies with more than one component.
Such phylogenies are called phylogenetic forests. Each component in the topology of a phylogenetic forest

E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110 93

Fig. 1. Forests G|S and G[S] for S := {1, 2, 5, 6}.

corresponds to a component of the forest, with its own topology, root, leaf set, label set and label-to-leaf mapping.
If F is a phylogenetic forest, then TF denotes its topology, LF and SF (with a calligraphic L and S) the family of,
respectively, the leaf sets and the label sets of its components, fF its label-to-leaf mapping (fF is a bijection from⋃
SF = ⋃

S∈SF S into
⋃
LF = ⋃

L∈LF L), and RF the set of roots of its components.

2.2. Restrictions and agreement forests

Two phylogenetic forests G and H are said to be isomorphic if
⋃
SG = ⋃

SH, their topologies TG and TH
are isomorphic, and the isomorphism preserves both the roots of the components and the labels of the leaves. If
S is a subset of SV for some component V of G, then the simple restriction of G to S, denoted by G|S, is the
phylogenetic tree G′ such that SG′ = S; LG′ = fG(S) = { fG(a) : a ∈ S}; for each pair of nodes u, v in G′ we have
lcaG′(u, v) = lcaG(u, v); and rG′ = lcaG′(LG′). Let G[S] denote the minimal subtree of TG which connects all leaves
with labels in S. Fig. 1 illustrates the definition of G|S and G[S].

Let G be a phylogenetic forest and S = {Si : 1 ≤ i ≤ m} a family of m elements of SG such that for each i we
have Si ⊆ SV for some component V of G, and the subtrees G[Si] are pairwise node-disjoint. Then:

• we say that S defines a restriction of G;
• the restriction of G to S, written as G|S, is the phylogenetic forest composed of the components G|Si .

We denote by G[S] the forest composed of all components G[Si] for 1 ≤ i ≤ m. If G′ = G|S, then the size of G′,
denoted by |G′|, is the cardinality of S. If

⋃
SG = ⋃

SG′ , then G′ is a full restriction of G.
From the above definitions we can deduce the following. If S = {Si : 1 ≤ i ≤ m} defines a restriction of G, then

the set of arcs of G can be partitioned into two classes, one class being the one consisting of those arcs contained in
some G[Si]. If an arc e of G is in such a class, then V := G|Si is the unique component of G|S such that SV ∩ De $= ∅
and SV \ De $= ∅ (no other component exists because the subtrees G[Si] are all mutually disjoint). If an arc e of G
is not contained in any subtree G[Si] then each component V of G|S is either contained in the subtree rooted at l(e)
(in which case SV ∩ De $= ∅ and SV \ De = ∅) or it is not contained in the subtree rooted at l(e) (in which case
SV ∩ De = ∅). Thus, the following statement holds.

Lemma 1. Let G be a phylogenetic forest, S a family of subsets of
⋃
SG that defines a restriction of G, and e an arc

of G. Then there exists at most one component V of G|S such that SV ∩ De $= ∅ and SV \ De $= ∅.

The lemma above will be useful in Sections 4.2 and 4.3 when we define the concept of link. As we will see, the
analyses of the performance of the algorithms are all based on this concept.

An agreement forest of two given phylogenetic forests G and H is a phylogenetic forest F that is isomorphic to a
full restriction of G and to a full restriction of H. An agreement forest is said to be maximum if it has minimum size.
The problem of computing a maximum agreement forest of two given phylogenetic trees T and U is the Maximum
Agreement Forest problem, for short MAF.

We denote by MAF-d the maximum agreement forest problem for phylogenetic trees with bounded degree d ≥ 2.
Thus, MAF-2 is the special case of MAF for binary trees. This problem is discussed in Sections 3 and 4, and MAF-d
is addressed in Section 6.

94 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

Fig. 2. Elimination of an arc e.

3. The algorithms

In this section we present algorithms for MAF-2. Thus all trees mentioned here are assumed to have maximum
degree 2.

3.1. Eliminations

The basic operation used in the forthcoming algorithms is the elimination of an arc of a tree. This operation is
defined as follows.

Let W be a phylogenetic tree. The elimination of an arc e of W , denoted by Elim(W, l(e)), is the operation that
yields the phylogenetic forest whose components areW|De andW|(SW \ De). This operation can be implemented by
first removing the arc e fromW (which splitsW intoW|De andW[SW \ De]) and by performing a forced contraction
of the arc e′ in W[SW \ De] such that u(e′) = u(e) (which yields W|(SW \ De) from W[SW \ De]). Fig. 2 illustrates
this definition. This operation can be defined for phylogenetic forests as well, by letting all components that do not
contain the arc e remain the same and applying an elimination as defined above on the component that contains e.

The lemma below exhibits the equivalence between a full restriction of a phylogenetic forest H and a sequence of
arc eliminations starting from H.

Lemma 2. Let H be a phylogenetic forest. Then by performing a sequence of m arc eliminations starting from H, we
obtain a full restriction of H with size |H| + m. Conversely, let S be a set family that defines a full restriction of H.
Then H|S can be obtained from H by performing a sequence of |S| − |H| eliminations.

3.2. The basic method

The algorithm for MAF-2 devised by Hein, Jiang, Wang and Zhang [4] and the two algorithms we propose in this
paper proceed within the general framework we describe in this section. The algorithm of Hein et al. will be called
Algorithm 1, our two algorithms will be called Algorithm 2 and Algorithm 3. This common framework is introduced
as a basic method.

The basic method receives as input two phylogenetic trees T and U with ST = SU and returns an agreement
forest of T and U . The idea is to proceed by eliminating arcs in T and in U until two isomorphic restrictions are
obtained. Each iteration starts therefore with two restrictions obtained from T and U by the eliminations performed
up to that moment (see Lemma 2). In the beginning of each iteration the basic method searches one of the restrictions,
say the one obtained from T , for a pair of sibling leaves. If it finds such a pair, then it identifies the case that is
satisfied by this pair in the restriction coming from U . According to this case, the method applies on both restrictions a
predefined sequence of operations (eliminations, essentially). Such sequences of operations are called transactions.
The algorithms mentioned above differ in the transactions that are used for each case. In the next subsection we define
the operations, cases and transactions that are used in these algorithms.

We introduce now some notation for describing and analyzing the algorithms for MAF-2. The iterations of the basic
method are numbered 1, 2, . . . and so on. In each iteration i ≥ 1, the operations are separated into two sequences, one
with the operations done on T and the other with the operations done on U . If the sequences differ in length, the
shorter one is padded with identity operations. Let ̄i be the length of these sequences at iteration i .

We define a notation for the full restrictions obtained from T and U during the execution of the method. Let
G1 := T and for i ≥ 2 let Gi be the full restriction we obtain from Gi−1 after executing the operations of iteration i .

E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110 95

Basic Method
Input: Phylogenetic trees T and U such that ST = SU .
Output: The size of an agreement forest of T and U .

(1) G1 := T ;
(2) H1 := U ;
(3) i := 1;
(4) While there is a pair of sibling leaves fGi (a), fGi (b) in Gi
(5) Find out which case is satisfied by fHi (a) and fHi (b) in Hi ;
(6) Apply the corresponding transaction

obtaining Gi+1 from Gi and Hi+1 from Hi ;
(7) i := i + 1;
(8) Return |Hi |.

Fig. 3. An outline of the basic method.

Let G1
i := Gi , and for j ∈ {2, . . . , ̄i + 1} let G j

i be the full restriction we obtain by applying on G j−1
i the (j − 1)-th

operation of the sequence of operations performed on T at iteration i . Similarly, we define Hi and H j
i for each i ≥ 1

and j ∈ {1, . . . , ̄i + 1}. Observe that G1
i+1 = G ̄i +1

i and H1
i+1 = H̄i +1

i for each i .
In Fig. 3 we give an outline of the basic method. The algorithms for MAF-2 are derived from this outline by

specifying the operations, cases and transactions. Observe that the outline only outputs the size of a solution; we shall
see later how to get the solution itself. It also does not guarantee any upper bound on the size of the solution as yet.

3.3. Operations, cases and transactions

In this section, we complete the description of the basic method by defining the operations and cases that may
occur, and also state the transactions to be carried out in each case for each algorithm.

LetW be a phylogenetic tree. The operation of cutting an arc e of W , denoted by Cut(W, l(e)), is the elimination
of e as defined in Section 3.1. The operation of shrinking a pair of sibling leaves u and v to leaf u, written as
Srk(W, u, v), corresponds to the elimination of the arc e such that l(e) = v, followed by the removal of the isolated
node v.

We note that cuts and shrinks are the only operations used directly by the algorithms. Eliminations are used only
to implement these operations, and they are never called directly by the algorithms. Though cuts and eliminations
produce the same results, they are not interchangeable as a rule, since some eliminations may come from shrinks and
not from cuts.

We now define the cases. If, at some iteration i , the basic method does not halt, then Gi admits a pair of sibling
leaves. Let a and b be its labels.

If fHi (a) and fHi (b) belong to the same component in Hi , then the (a, b)-axis in Hi is the (unique) path in Hi
connecting fHi (a) and fHi (b), and the stems of the (a, b)-axis are the arcs e in Hi such that u(e) belongs to the axis
but e does not. The stems are labeled s1, s2, . . . , sk , according to the order in which they appear along the axis, with
stem s1 being the nearest one to fHi (a). The cases are shown in Fig. 4.

The forests Gi and Hi may have other components (we indicate in the figure only those containing the leaves a or
b). The constant k̄ specified in Cases 1 and 2 depends on the algorithm: we have k̄ = 1 for Algorithm 1 and k̄ = 2 for
Algorithm 2 (see Table 1).

Table 1 describes, for each algorithm, the transactions to be performed in each case. Note that the transactions
for Cases 1 and 2 are different for each of these algorithms. In these cases, Algorithm 1 and Algorithm 2 behave
equally, except when k = 2 (that is, there are two stems on the (a, b)-axis); and Algorithm 3 uses a somewhat hybrid
transaction. The transactions for Cases 3, 4 and 5 are identical for all three algorithms.

It will be proved in the analysis that these transactions satisfy the following properties:

• for each transaction performed by the algorithms, an arc that connects two blocks of a refinement H′ of some fixed
maximum agreement forest F of T and U is eliminated; and

96 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

Fig. 4. Cases of the basic method (with respect to the sibling leaves a and b). In each figure, the leftmost restriction is Gi and the rightmost
restriction is Hi .

Table 1
Transactions for Algorithms 1, 2 and 3

Algorithm 1 (Hein’s algorithm): k̄ = 1

Case 1 (k = 1) Cut(H j
i , l(s j)), for j = 1, . . . , k

Case 2 (k > 1) Cut(G1
i , f (a)); Cut(G2

i , f (b)); Cut(H1
i , f (a)); Cut(H2

i , f (b))

Case 3 Cut(G1
i , f (a)); Cut(G2

i , f (b)); Cut(H1
i , f (a)); Cut(H2

i , f (b))

Case 4 Cut(G1
i , f (b))

Case 5 Srk(G1
i , f (a), f (b)); Srk(H1

i , f (a), f (b))

Algorithm 2: k̄ = 2

Case 1 (1 ≤ k ≤ 2) Cut(H j
i , l(s j)), for j = 1, . . . , k

Case 2 (k > 2) Cut(G1
i , f (a)); Cut(G2

i , f (b)); Cut(H1
i , f (a)); Cut(H2

i , f (b))

Case 3 Cut(G1
i , f (a)); Cut(G2

i , f (b)); Cut(H1
i , f (a)); Cut(H2

i , f (b))

Case 4 Cut(G1
i , f (b))

Case 5 Srk(G1
i , f (a), f (b)); Srk(H1

i , f (a), f (b))

Algorithm 3

Cases 1 and 2 Cut(G1
i , f (a)); Cut(G2

i , f (b)); Cut(H1
i , f (a)); Cut(H2

i , f (b)); Cut(H3
i , l(s1))

Case 3 Cut(G1
i , f (a)); Cut(G2

i , f (b)); Cut(H1
i , f (a)); Cut(H2

i , f (b))

Case 4 Cut(G1
i , f (b))

Case 5 Srk(G1
i , f (a), f (b)); Srk(H1

i , f (a), f (b))

• at each iteration, H′ is an agreement forest of G and H (H′ is obtained from F by performing on F’s edges the
same operations done on U’s edges).

Fig. 8 shows a sequence of iterations performed by Algorithm 2.

3.4. Correctness and solution output

The next lemma guarantees that the algorithms produce an agreement forest of T and U :

E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110 97

Fig. 5. Instance I9: An example of the family of instances Im which shows that the approximation ratio of Algorithm 1 converges to 4 as m
increases.

Lemma 3. For each iteration i ≥ 1 of any of the Algorithms 1, 2 and 3, we have:
(a)

⋃
SGi = ⋃

SHi ;
(b) for each component W of Hi , there exists a component V of Gi such that SW ⊆ SV .

The halting condition of the basic method is the non-existence of a pair of sibling leaves in Gi . Thus, when the
algorithm halts, Gi contains only isolated nodes. The same holds for Hi because of Lemma 3(b); and since by (a)⋃
SGi = ⋃

SHi , we have that Gi and Hi are isomorphic. By re-attaching to Gi and Hi all the leaves that were
removed from their former location in a shrinking operation, we obtain from Gi a full restriction of T and from Hi
a full restriction of U such that these restrictions are isomorphic. We refer to this set of re-attaching steps as the re-
assembling task. Any of these two full restrictions can be output by the algorithm if a solution is required, but if we
want only the size of an agreement forest then re-assembling is not necessary.

3.5. Time complexity

It is not difficult to conclude that all these algorithms can be implemented to run in polynomial time in the number
n of leaves of the phylogenetic trees given as input.

In each iteration, it takes time O(n) to test whether Gi has a sibling pair. Let m be the number of arcs in T and U .
If Gi has a sibling pair, then the case must be identified, which takes time O(m) (for testing if the (a, b)-axis exists
and for counting the stems), and the respective transaction must be performed, which takes time O(n). Finally, there
are O(m) iterations since in each one at least an arc of T is eliminated. So the time complexity of each algorithm
amounts to O(m2). Re-assembling (if required) just adds another O(m) term to this amount. As our input trees do not
admit internal nodes of degree 1, each algorithm has time complexity O(n2).

4. Approximation ratio

4.1. Lower bounds

We start the approximation ratio analysis by giving lower bounds for the approximation ratios of the algorithms
presented in Section 3.

First of all, we exhibit a family of instances Im = (Tm,Um), m ≥ 7, which shows that the approximation ratio
of Algorithm 1 is larger than 3. Fig. 5 shows the instance I9 of this family: the tree T9 is the one consisting of the
long strip (the root is on the right-hand side). In the general case, the tree Tm is a generalization of T9: it has the same
structure and 4m +1 leaves labelled from 0 to 4m. The tree Um has two parts: one part consisting of m subtrees (which
will be recognized as Cases 2 with k = 2) laid each on top of the other; and the other part consisting of m single lined
up leaves. The labels of these leaves have to follow the pattern shown in the example shown in Fig. 5 for m = 9. The
tree T9 is constructed so as to force Algorithm 1 to handle at first all Cases 2 (cutting leaves 1–2–7–8–· · · –13–14 in U9
in the example) and then alternate cuts between the stringed leaves (28–29–· · · –35–36) and the remaining leaves from
the Cases 2 (0–3–9–· · · –18–15). In the general case, the transactions are similar (the set of transactions is determined
unambiguously by the pairs of sibling leaves the algorithm is forced to select in the tree Tm).

It turns out that for any instance Im of this family, Algorithm 1 produces an agreement forest with 4m components,
while there is an agreement forest with at most m + 2 components. Indeed, for the instance I9 shown in Fig. 5,
consider the agreement forest which contains leaves 1–2–7–8–· · · –13–14 together with leaves 28–29–· · · –35–36 as a

98 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

Fig. 6. Instance I′
9: An example of family of instances I′m which shows that the approximation ratio of Algorithm 2 converges to 3 as m increases.

Fig. 7. Instance I′′
9: An example of family of instances I′′m which shows that Algorithm 3 converges to 3 as m increases.

single component and the other leaves as isolated nodes; this agreement forest has 11 components. For this instance,
Algorithm 1 produces an agreement forest with 36 components: one consisting of a tree with leaves 15 and 36 and
the remaining ones consisting of precisely one leaf. Thus, for m = 4 the ratio is 36/11, but as m increases the ratio
4m/(m + 2) converges to 4. In Section 5 we show some computational experiments obtained for this instance, from
which we can conclude that an optimum solution for this instance has indeed m + 2 components.

The instance I9 can be modified to an instance I ′
9 to prove that the approximation ratio 3 of Algorithm 2 is tight.

It suffices to use three stems (instead of two) for a sequence of nine Cases 2, as shown in Fig. 6. For this instance,
Algorithm 2 outputs an agreement forest with 53 components: one containing leaves 35–53–54, and the remaining
ones consisting of precisely one leaf. However, for this instance, there exists an agreement forest with 20 components:
nodes 0–19–20–21–22–· · · –35–36 are separated, while the remaining nodes form a single component with 36 leaves.
Similarly, a more general instance I ′

m with 6m+1 leaves can be constructed, for which Algorithm 2 outputs a solution
with size 6m − 1 while the optimum is at most 2m + 2.

Finally, in Fig. 7 we give an instance I ′′
9 to show that the approximation ratio 3 of Algorithm 3 is tight. This

instance can be generalized in the obvious way to an instance I ′′
m = (Tm,Um), with 3m + 1 leaves, by piling m

Cases 2 for Um , and building Tm so that these cases are identified, and the leaves cut, in due order.
For the instance I ′′

9, Algorithm 3 outputs an agreement forest with 27 components, each of them consisting of
precisely one leaf; however, there exists a solution for this instance with 10 components which can be obtained by
separating nodes 2–4–6–· · · –18 and keeping the remaining nodes in a single component. Similarly, for the instance
I ′′

m there is an optimal solution with m + 1 components, while Algorithm 3 finds a solution with 3m components.
In Section 5, we show some computational results for these families of instances.

4.2. Links

The analysis of the approximation ratio of the algorithms is based on the following idea. We fix an arbitrary
maximum agreement forest, say F , of the input trees T and U ; we then compare the “ideal cuts” induced by F on T
and U with the cuts performed by the algorithms. We introduce some definitions in order to get hold of these “ideal
cuts”.

Let G be a phylogenetic forest and S a family of sets that defines a full restriction of G. An arc e of G is said to be
a link of G with respect to S if e is not in G[S]. Alternatively, we may say that e is a link with respect to G|S. Observe

E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110 99

Fig. 8. An execution of Algorithm 2.

that the definition of a link depends on the full restriction one is considering; hereafter, these full restrictions will be
clear from the context and therefore not explicitly written out.

The following two lemmas give further characterizations of links (the second lemma was used as the definition for
links in a previous version of this paper [7]).

Lemma 4. Let G be a phylogenetic forest, S a family of subsets of
⋃
SG that defines a full restriction of G, and e

an arc of G. Then e is a link with respect to S if and only if for every component V of G|S we have SV ∩ De = ∅ or
SV \ De = ∅.

Lemma 5 ([7]). Let G be a phylogenetic forest, S a family of subsets of
⋃
SG that defines a full restriction of G and

e an arc of G. Then e is a link with respect to S if and only if there are m ≥ 1 components V1, . . . , Vm of G|S such
that

⋃
1≤i≤m LVi = De.

Another property of links, which is important for the analysis, is stated in the following:

Lemma 6. Let H be a phylogenetic forest and S a family of sets that defines a full restriction of H. If a sequence of
| ⋃SH| − |H| eliminations is performed on H, then |S| − |H| links with respect to S are eliminated.

Proof. The proof is by induction on | ⋃SH| − |H|. If this is zero, then no elimination is performed on H and
|S| − |H| = 0. Otherwise, at least one elimination is performed. In this case, let H′ be the phylogenetic forest
obtained after the first elimination. If the eliminated arc e is a link then let S ′ := S; otherwise the family S has a set
that can be split into two parts in order to get a set family S ′ that defines a full restriction on H and preserves the links
with respect to S (see Lemmas 1 and 4). We now have | ⋃SH′ | − |H′| = | ⋃SH| − |H| − 1, so by the induction
hypothesis |S ′| − |H′| links are eliminated on H′ after performing the remaining eliminations on it. If e is a link with

100 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

respect to S, then there are |S ′| − |H′| + 1 = |S ′| − (|H′| − 1) = |S| − |H| links eliminated in H; otherwise there are
|S ′| − |H′| = (|S| + 1) − (|H| + 1) = |S| − |H| links eliminated in H. !

The result mentioned above shows the relationship between the arcs eliminated by the algorithms and the
aforementioned “ideal cuts” (eliminated links). Thus, for a given pair (T ,U) of trees, if F is a maximum agreement
forest of T and U , then Lemma 6 guarantees that the algorithms eliminate exactly |F | − 1 = |SF | − 1 links in U .
The next section addresses the question of how to “recognize” these links in the analysis of the performance of the
algorithms.

4.3. A property of the basic method

In order to make use of Lemma 6, we need first to provide a full restriction of G j
i and H j

i for each i ≥ 1 and
j ∈ {1, . . . , ̄i + 1}. A convenient way of doing this is to consider a maximum agreement forest F of the trees T and
U at the beginning of the execution of the basic method and to perform suitable eliminations on its arcs along with
those done on T and U by the transactions.

We define the notation to access the status of F at any time of an execution in the same way as we have proceeded
with T and U . Let H′

1 be the restriction of U isomorphic to F and for i ≥ 2, let H′
i be the restriction we get from

H′
i−1 after executing on it some “suitable” eliminations at iteration i . Let H′1

i := H′
i and for j ∈ {2, . . . , ̄i + 1},

let H′ j
i be H′ j−1

i if the arc e which is eliminated when transforming H j−1
i into H j

i is a link with respect to H′ j
i ;

otherwise let H′ j
i be the result of Elim(H′ j−1

i , l(e)). If the respective operation performed in U is a shrinking, the
resultant isolated node in H′ j

i is also removed.
Fig. 8 exemplifies how the forests H′

i evolve as Algorithm 2 proceeds. In this figure, Gi and Hi are indicated by
thick lines and the components of H′

i are indicated by curve lines. Note that in the second iteration the arc that is cut
is a link.

It is not difficult to prove the following lemma.

Lemma 7. For each i ≥ 1 and j ∈ {1, . . . , ̄i +1},H′ j
i is a full restriction ofH j

i and is isomorphic to a full restriction
of G j

i .

Proof. The proof is by induction on (i, j). If i = j = 1, then H′1
1 = F , which is an agreement forest of G1

1 = T and
H1

1 = U . If i > 1 or j > 1, it suffices to prove for j ≥ 2. If the arc e eliminated by the operation that produces H j
i

from H j−1
i is a link, then H′ j

i is a full restriction of H j−1
i by the induction hypothesis (H′ j−1

i is a full restriction of
H j−1

i) and by the definition of H′ j
i . Since H j

i is obtained by eliminating the arc e in H j−1
i and this arc is a link with

respect to H′ j
i , we have that H′ j

i is a full restriction of H j
i .

If the arc e eliminated by the operation that produces H j
i from H j−1

i is not a link, then H′ j
i is produced by the

operation Elim(H′ j−1
i , l(e)). In this case, by Lemma 2 we have thatH′ j

i is a full restriction ofH′ j−1
i . By the induction

hypothesis, H′ j−1
i is a full restriction of H j−1

i , so H′ j
i is a full restriction of H j−1

i . As in the other case, since the
arc e in H j−1

i is a link with respect to H′ j
i and H j

i is the result of the operation Elim(H j−1
i , l(e)), then H′ j

i is a full
restriction of H j

i . !

The next result relates the links with the cuts made by the algorithms.

Lemma 8. Let G and H be two phylogenetic forests with
⋃
SG = ⋃

SH, and let H′ be a full restriction of H that is
isomorphic to a full restriction of G. Suppose that fG(a) and fG(b) form a pair of sibling leaves in G.

• If fH′(a) and fH′(b) are in different components of H′ and fH(a) and fH(b) are not isolated, then at least one of
the arcs incident to fH(a) and fH(b) is a link.

• If fH′(a) and fH′(b) are in the same component of H′ and the (a, b)-axis in H admits at least one stem, then all
of its stems are links.

E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110 101

Proof. The first item is a consequence of Lemma 1 and of the definition of link. Let us prove the second item.
If fH′(a) and fH′(b) are in the same component of H′, then fH(a) and fH(b) are in the same component of H

and thus the (a, b)-axis exists. Let e be a stem of this axis.
If e is not a link, then by Lemmas 1 and 4, there exists a unique component W of H′ such that SW ∩ De $= ∅ and

SW \ De $= ∅. Let c be the label of a leaf in SW ∩ De. This component must cover nodes fH′(a) and fH′(b). Thus in
G we have lcaG(fG(a), fG(b)) as a strict descendent of lcaG(fG(a), fG(c)) and lcaG(fG(b), fG(c)), while in H we
have lcaH(fH(a), fH(b)) as a strict ancestor of lcaH(fH(a), fH(c)) or lcaH(fH(b), fH(c)). This however is absurd
since H′ is an agreement forest of G and H. !

Lemma 7 implies that, at each iteration i of the basic method, H′
i is an agreement forest of Gi and Hi . So we can

apply Lemma 8 for Gi , Hi and H′
i and conclude that, at each iteration i of the basic method, either at least one of the

arcs incident to fHi (a) and fHi (b) is a link, or all stems (if the (a, b)-axis admits any) are links.
Given that Lemma 6 relates the size of an optimum solution to the number of links that are eliminated, and that the

size of the solutions yielded by the algorithms is related to the number of cuts they perform (it is in fact that number
plus 1), it remains to analyze the relation between cuts and links at each iteration.

4.4. Performance ratio analysis of Algorithm 3

A simple observation is that any algorithm for MAF-2 derived from the basic method whose transactions cut at
most p arcs among which at least q ≥ 1 of them are links is a p/q-approximation algorithm. This observation has the
next result as a corollary:

Theorem 9. Algorithm 3 is a 3-approximation algorithm for MAF-2.

Proof. It suffices to verify that for p = 3 and q = 1 the fact stated above is true for Algorithm 3. !

4.5. The charging protocol

The common framework we adopted to describe Algorithms 1 and 2, where the constant k̄ is used to distinguish
them, allows us to analyze them together. With that purpose, we henceforth refer to them together as Algorithm 1–2
and consider k̄ as a parameter of this algorithm.

For Algorithm 1–2, the observation stated in Section 4.4 does not hold: there may be iterations in which cuts are
performed but no link is eliminated. However, Lemma 8 guarantees that in such situations there still exists a set of
links next to each arc that is cut. In our analysis these link sets make for the lack of eliminated links.

To implement this idea, we use a charging protocol. We suppose that there is a fee to be paid each time the algorithm
performs a cut, while shrinks are performed for free. Each fee is paid with a credit unit, and at the beginning of any
execution an initial amount of credit units is allotted to the algorithm, so that it can pay for the cuts it performs. In
order to allow for the momentary lack of credit units, the algorithm is permitted to issue debt units and to use them
to pay fees. At the end of the execution, the algorithm must have all debt units paid. We consider that one credit unit
pays one debt unit. It turns out that the initial amount of credit is related to the size of an optimum solution for MAF
while the total fee is related to the size of the algorithm’s solution. The goal of the analysis is therefore to ensure that
this protocol is consistent and that the total amount of credit units suffices to pay the total fee. This analysis technique
elaborates the sketch given in [4], but here the control over debt units is improved in order to prevent their clustering,
a feature that is lacking in [4].

The following sections state the charging protocol in full. This protocol has two parts, a credit protocol and a debt
protocol. Let α be the approximation ratio of Algorithm 1–2 and F be a maximum agreement forest of T and U .

Credit protocol
At the beginning of the first iteration, α(|F | − 1) credit units are placed on the unique component of H1

1, that is U .
Throughout the execution, these units are kept by the components ofH j

i . When there is an elimination in a component
of H j

i , some of the credit units allotted to that component are released and the remaining is redistributed between
the two resultant components and placed on them. Some of the released units may be used to pay debt units or fees,
and the remainder (if any) expire. The releasing and redistribution is done according to the following rules.

102 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

For each i ≥ 1 and j ∈ {1, . . . , ̄i }, let W be the component of H j
i that is split at the j-th operation of the i-th

iteration, and let e be the arc which is eliminated thereat. Consider the following definitions:
mW := number of components W ′ of H′ j

i such that SW ′ ⊆ SW ;

m∩ :=






1 if the operation performed in U is a shrinking;
number of components W ′ of H′ j+1

i such that SW ′ ⊆ De
if the operation performed in U is a cut.

m\ := number of components W ′ of H′ j+1
i such that SW ′ ⊆ SW \ De.

The α(mW − 1) credit units kept by W are divided between W|De and W|SW \ De according to the following
rules:

• if e is a link, then α(m∩ − 1) units are placed on W|De, α(m\ − 1) units are placed on W|SW \ De and α units are
released;

• if e is not a link, then α(m∩ − 1) units are placed on W|De, α(m\ − 1) units are placed on W|SW \ De and no
units are released.

It can be easily verified that this protocol for releasing and redistributing credit units preserves such units throughout
the execution of the algorithm.

Debt protocol
The credit protocol ties credit units to the components of U that are yielded along the execution of the algorithm.

Debt units are likewise tied to another element of the algorithm’s data structure by the debt protocol. In the charging
protocol, debt units are issued whenever the algorithm lacks credit units to pay fees. According to the protocol
(provided it is correct and the initial credit amount covers the total fee), this can only happen at iterations with no
link elimination. However, we have observed before that in such situations, there is a set of links next to each arc that
is cut. We need some definitions in order to specify these sets.

Let W be a phylogenetic tree, and let B be a set of nodes of W with at least two nodes. Denote by UPW (B) the
arc set whose upper endpoints are the lcas in W of at least two nodes of B. If for some i with i ≥ 2, iteration i − 1 is
case 2, then let the residue of the stems be the arc set UPHi ({l(sh) : 1 ≤ h ≤ k}) where s1, s2, . . . , sk are the stems
of the (a, b)-axis. Fig. 9 shows an example.

If for some iteration i ≥ 1 there are cuts but no link elimination, then one of the following two situations applies:

(1) The iteration is case 1 and sh is not a link in Hh
i−1 for h ∈ {1, . . . , k̄}. In this case, Lemma 8 guarantees that at

least one of the arcs incident to fHi−1(a) and fHi−1(b) is a link, and the algorithm associates the at most k̄ debt
units issued in this iteration (see Table 1) with this link.

(2) The iteration is case 2 and fHi−1(a), fHi−1(b) are in a component of H′
i−1 which has at least three leaves. In this

situation Lemma 8 guarantees that all arcs of the stem residues are links, and the algorithm associates the two
issued debt units (see Table 1) with this stem residue.

It remains to specify how debt units are handled at eliminations. In order to do this and to see that the protocol is
fully consistent, we need to give a few properties kept by stem residues as they are split by further eliminations.

Barriers
Take some H j

i with (i, j) $= (1, 1). Consider arc e in Fig. 2 for the elimination performed to produce H j
i . A node

set B in H j
i with at least two nodes is a barrier if:

(1) B is a primary barrier; that is, j = 1; iteration i − 1 is case 2 with fHi−1(a) and fHi−1(b) in a component of
H′

i−1 which has at least three leaves; B = {l(sh) : 1 ≤ h ≤ k}; or

(2) B admits an antecessor barrier B ′; that is, j ≥ 2 and there exists a barrier B ′ in H j−1
i such that one of the

following conditions holds:
(a) e ∈ UPH j−1

i
(B ′) and B = B ′ ∩ De or B = B ′ \ De;

(b) e $∈ UPH j−1
i

(B ′) and B = B ′.

E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110 103

Fig. 9. A primary barrier.

Fig. 9 has an example of a primary barrier. On the left, we have Hi−1, with the case 2 situation depicted, and on
the right we can see the residue of the stems and the primary barrier.

We have observed before that all arcs of primary barriers (seen as arc sets rather than node sets, and thus
corresponding to the stem residues) are links. This is also true for barriers with antecessors, according to the following
property.

Lemma 10. Let H j
i be such that (i, j) $= (1, 1), and let B be a barrier of H j

i . Then all arcs in UPH j
i
(B) are links.

According to the debt protocol, each primary barrier has some debt units associated with it. When an arc belonging
to a barrier is eliminated, this barrier is split in two halves that become new barriers (the barrier which has been
split being their antecessor). The released credit units are used to pay any fees and also a positive quota of the debt
associated with the antecessor barrier, and the remaining quotas are further associated with the two newly created
barriers. Since barriers shrink to singletons as Algorithm 1–2 proceeds and since all quotas must be paid when the
algorithm terminates, it is necessary to reach a balance between the size and number of quotas and the minimum size
of a primary barrier. Since each primary barrier of size k undergoes k − 1 credit releases, and the primary barriers for
Algorithm 1–2 have size greater than or equal to k̄ + 1 and at most two associated debt units, then the size of each
quota is at most 2/k̄.

Now the charge protocol is fully stated. To assert its consistency, we must still guarantee that barriers do not merge
(at the forced contractions), so that debt units do not cluster. The next lemma asserts this.

Lemma 11. In any H j
i with (i, j) $= (1, 1), consider two distinct barriers B and C. Then UPH j

i
(B) and UPH j

i
(C)

are arc-disjoint.

Proof. The proof is by induction on the number of operations performed since the most recent barrier, B or C , was
created. The basis of the induction is when this number is zero (that is, B is primary or C is primary).

Suppose without loss of generality that B is the most recent barrier and that it is primary. Then:

• according to the definition of primary barrier, two operations were performed starting from Hi−1 in the iteration
i − 1 (that is, ̄i−1 = 2);

• C admits an antecessor barrier C ′ in H2
i−1, and C ′ admits an antecessor barrier C ′′ in H1

i−1 = Hi−1.

Fig. 10 sketches the barrier C′′ in Hi−1, showing the two possible cases in which B is a primary barrier in Hi . Set
UPHi−1(C

′′) is shown in thick lines.
Consider the (a, b)-axis in Hi−1, and suppose that the path connecting lca(a, b) and rHi−1 does not contain the

node lca(C ′′) (Fig. 10, left). According to the definition of primary barrier, all the arcs of the (a, b)-axis are in the
same component in H′

i−1, and therefore none of the arcs in UPHi−1(C
′′) (which are links; see Lemma 10) is in the

axis. Since the arc whose lower endpoint is lca(C ′′) is a link, then UPH j
i
(B) and UPH j

i
(C) are arc-disjoint. The proof

is similar if the path connecting lca(a, b) and rHi−1 contains lca(C ′′) (Fig. 10, right).
In the induction step one has to analyse when both B and C admit antecessor barriers. The lemma can be easily

verified for all the cases of the definition of antecessor barrier. !

4.6. Performance ratio analysis of Algorithms 1 and 2

The analysis of Algorithm 1–2 considers four possible situations that can occur at each iteration:

104 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

Fig. 10. Restriction Hi−1 and antecessor barrier C′′ in the proof of Lemma 11.

• case 5 and no link elimination;
• case 1 and no link elimination;
• case 2 and no link elimination;
• at least one link elimination.

In the first case, there are no new debt units since shrinks require no fee to be paid.
In the second case, according to the debt protocol, at most k̄ debt units are associated with a single link. Without

loss of generality, this link is eliminated at an iteration case 5.
In the third case, the debt protocol states that a primary barrier holds the two debt units issued thereat, so that this

debt is paid as the barrier is split. We have seen that the size of the quota is at most 2/k̄.
Let us now consider the fourth case. Each link elimination should release enough credit to pay at most max(2, k̄)

fees plus a quota of at most 2/k̄ debt units. Thus,

α ≥ max(2, k̄) + 2/k̄,

and Algorithm 1–2 is a (max(2, k̄) + 2/k̄)-approximation algorithm for MAF-2. The minimum ratio is reached for
k̄ = 2, which yields approximation ratio 3 for Algorithm 2 while Algorithm 1 (Hein’s algorithm) has approximation
ratio 4. Thus combining these results with the lower bounds (family of instances) for algorithms 1 and 2 shown in
Section 4.1, we have the following:

Theorem 12. Algorithm 1 is a 4-approximation algorithm for MAF-2. Furthermore, the performance ratio 4 of this
algorithm is tight. !

Theorem 13. Algorithm 2 is a 3-approximation algorithm for MAF-2. Furthermore, the performance ratio 3 of this
algorithm is tight. !

5. Computational experiments

We have implemented and tested four algorithms for MAF-2: Algorithm 1, Algorithm 2, Algorithm 3, and a
variation of Algorithm 3 which we call here Algorithm 4.

Algorithm 4 is built using the basic method, and its transactions are listed in Table 2. For cases 1, 2, 4 and 5 of the
basic method, Algorithm 4 uses the same transactions as Algorithm 3. For case 3, after cutting off leaves f (a) in H1

i
and f (b) inH2

i , a third non-isolated leaf (if any), labeled c, is cut off inH3
i . It is not difficult to see that Algorithm 4 is

a 3-approximation algorithm for MAF-2: the same reasoning used to prove Theorem 9 proves this. It is also clear that
the solutions output by Algorithm 4 must have size greater than or equal to that of the solutions output by Algorithm 3
(it suffices to note that Algorithm 4 performs an additional cut in case 3).

E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110 105

Table 2
Transactions for Algorithm 4

Algorithm 4

Cases 1 and 2 Cut(G1
i , f (a)); Cut(G2

i , f (b)); Cut(H1
i , f (a)); Cut(H2

i , f (b)); Cut(H3
i , l(s1))

Case 3 Cut(G1
i , f (a)); Cut(G2

i , f (b)); Cut(H1
i , f (a)); Cut(H2

i , f (b)); Cut(H3
i , f (c))

Case 4 Cut(G1
i , f (b))

Case 5 Srk(G1
i , f (a), f (b)); Srk(H1

i , f (a), f (b))

Our motivation for implementing Algorithm 4 was to obtain tighter lower bounds for the optimal solutions of the
instances we have tested. As we noted, since the number of cuts performed by Algorithm 4 is at most 3 times the
number of cuts an optimal solution requires, we have that

| solution of Algorithm 4 | − 1 ≤ 3 (| optimal solution | − 1).

The −1 in the left-hand side of the above inequality is needed because the algorithm outputs the number of components
of the agreement forest that it finds, which is one unit larger than the number of cuts this algorithm performs; a similar
argument explains the −1 in the right-hand side of the inequality.

Thus, we can conclude that

lb = ,(| solution of Algorithm 4 | + 2)/3-

is a lower bound for the optimal solutions. The same argument also holds for Algorithm 3, but since
| solution of Algorithm 4 | ≥ | solution of Algorithm 3 |, Algorithm 4 provides better lower bounds (than those that
we could obtain with Algorithm 3). This lower bound, lb, is shown in Tables 3 and 4 for the instances we considered
in the experiments.

We have run all four algorithms for randomly generated trees and also for the instances Im , I ′
m and I ′′

m , which
we constructed to show that the performance ratios we have shown for these algorithms are tight.

The random trees in the instances we have tested were generated with the following algorithm. The user enters the
number n of labels of the instance and the number m of subtree transfers that are to be performed in the generation
algorithm. At the beginning of each iteration k ≥ 1 of the tree generation algorithm, we have a random tree Wk with
k leaves. To obtain a random tree with k + 1 leaves at the end of iteration k, the algorithm chooses randomly a node x
of Wk and appends to Wk a new leaf above x , as seen in Fig. 11. After n − 1 iterations, the algorithm produces a tree
with n leaves. It then proceeds by making a copy V of this tree and performing m subtree transfers on V . Each subtree
transfer is defined by a pair (x, y) of randomly chosen nodes, satisfying the following restrictions:

x $= rV and y $= p(x).

The tree Wn plus its copy V , to which a number of subtree transfers has been applied, constitute an instance of MAF-2
for which an upper bound for the size of the optimal solutions (m + 1) is known beforehand.

We have generated 10 such instances with 1000 labels and 399 subtree transfers each, numbered 001 through 010,
taking snapshots of each tree pair after the 9th, 49th, 99th, 199th and 399th subtree transfers. In this way, we have
obtained 50 instances partitioned into 5 groups with 10 instances each, such that an upper bound for the optimal
solution of, respectively, 10, 50, 100, 200 and 400 is known beforehand for each group. Tables 3 and 4 list some
results obtained for such instances.

We point out the following observations with respect to the performance of the algorithms for randomly generated
trees (Tables 3 and 4).

• Algorithm 2 performs no worse than Algorithm 1 in all cases. Algorithm 2 also performs systematically better than
Algorithm 1 (meaning that it produces approximate solutions closer to the optimum) when the number of subtree
transfers is greater than or equal to 99 for trees with 1000 leaves.

• Although the performance ratio of Algorithm 3 is better than the performance ratio of Algorithm 1, the solutions
found by Algorithm 1 – for all instances we have tested – were systematically better than the solutions found by
Algorithm 3.

106 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

Fig. 11. Adding a new node to a tree.

Table 3
Test results for randomly generated trees (part 1)

File Alg.2 Alg.1 Alg.3 Alg.4 lb (Alg.2)/lb

Optimum ≤ 10 (9 subtree transfers)

001–010 15 15 28 28 10 1.50
002–010 15 15 28 28 10 1.50
003–010 16 16 28 28 10 1.60
004–010 15 15 27 28 10 1.50
005–010 13 13 28 28 10 1.30
006–010 16 16 28 28 10 1.60
007–010 16 16 28 28 10 1.60
008–010 14 14 25 25 9 1.56
009–010 13 13 24 25 9 1.45
010–010 13 13 28 28 10 1.30

Optimum ≤ 50 (49 subtree transfers)

001–050 75 78 134 139 47 1.60
002–050 77 78 137 141 48 1.61
003–050 75 81 138 145 49 1.54
004–050 70 70 134 139 47 1.49
005–050 69 69 130 135 46 1.50
006–050 70 70 126 136 46 1.53
007–050 75 75 137 146 50 1.50
008–050 70 73 134 139 47 1.49
009–050 73 73 129 139 47 1.56
010–050 74 77 135 145 49 1.52

• It can be seen from the seventh column of these tables ((Alg.2)/lb) that Algorithm 2 produces solutions not greater
than 2 times the optimum when up to 199 subtree transfers are performed on trees with 1000 leaves each, and that
this ratio gets close to 1.5 as the number of subtree transfers decreases.

• For a very small subtree transfer number per leaf number ratio, the lower bound of Algorithm 4 comes close to the
size of the optimal solution.

In what follows we show the computational results obtained with the instances Im , I ′
m and I ′′

m , which we
mentioned in Section 4.1.

The results exhibited in Table 5 for the instance Im (see Fig. 5) show that, in fact, the ratio 4 of Algorithm 1 (of
Hein et al.) is tight. We note that the lower bounds (lb) obtained with the solution of Algorithm 4 combined with the

E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110 107

Table 4
Test results for randomly generated trees (part 2)

File Alg.2 Alg.1 Alg.3 Alg.4 lb (Alg.2)/lb

Optimum ≤ 100 (99 subtree transfers)

001–100 139 150 244 265 89 1.57
002–100 150 153 253 270 91 1.65
003–100 152 156 259 277 93 1.65
004–100 137 141 239 255 86 1.60
005–100 148 151 253 267 90 1.65
006–100 142 148 228 250 84 1.70
007–100 142 148 253 265 89 1.60
008–100 144 147 249 266 90 1.60
009–100 146 146 242 264 89 1.65
010–100 147 153 233 259 87 1.69

Optimum ≤ 200 (199 subtree transfers)

001–200 291 332 430 477 160 1.82
002–200 291 307 449 483 162 1.80
003–200 284 300 426 473 159 1.79
004–200 274 303 433 462 155 1.77
005–200 275 313 434 485 163 1.69
006–200 269 303 452 470 158 1.71
007–200 278 298 445 495 166 1.68
008–200 281 295 434 474 159 1.77
009–200 285 314 425 478 160 1.79
010–200 288 324 437 490 164 1.76

Optimum ≤ 400 (399 subtree transfers)

001–400 515 556 683 744 249 2.07
002–400 526 562 688 731 245 2.15
003–400 513 553 690 731 245 2.10
004–400 492 546 675 723 242 2.04
005–400 514 562 680 733 245 2.10
006–400 526 569 676 708 237 2.22
007–400 508 558 688 758 254 2.00
008–400 501 551 673 711 238 2.11
009–400 529 570 673 747 250 2.12
010–400 539 582 703 751 251 2.15

Table 5
Solutions output by Algorithms 1, 2, 3 and 4 for the instance Im , constructed to show that Algorithm 1 has performance ratio 4

Instance # leaves (opt ≤) lb Alg.2 Alg.1 Alg.3 Alg.4
Im 4m + 1 m + 2 4m

m = 20 81 22 22 22 80 64 64
m = 40 161 42 42 42 160 124 124
m = 60 241 62 62 62 240 184 184
m = 80 321 82 82 82 320 244 244
m = 100 401 102 102 102 400 304 304
m = 120 481 122 122 122 480 364 364
m = 140 561 142 142 142 560 424 424
m = 160 641 162 162 162 640 484 484
m = 180 721 182 182 182 720 544 544
m = 200 801 202 202 202 800 604 604

fact that opt ≤ m + 2 indicate that these are in fact the optimum values (here opt denotes the optimum value). It is
interesting to see that Algorithm 2 found optimum solutions for this family of instances.

108 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

Table 6
Solutions output by Algorithms 1, 2, 3 and 4 for the instance I′m , constructed to show that the performance ratio 3 of Algorithm 2 is tight

Instance # leaves (opt ≤) (ratio ≥) Alg.2 Alg.1 Alg.3 Alg.4
I′m 6m + 1 2m + 2 6m−1

2m+2 6m − 1

m = 20 121 42 2.833 119 120 104 106
m = 40 241 82 2.914 239 240 204 205
m = 60 361 122 2.942 359 360 304 307
m = 80 481 162 2.956 479 480 404 406
m = 100 601 202 2.965 599 600 504 505
m = 120 721 242 2.971 719 720 604 607
m = 140 841 282 2.975 839 840 704 706
m = 160 961 322 2.978 959 960 804 805
m = 180 1081 362 2.980 1079 1080 904 907
m = 200 1201 402 2.982 1199 1200 1004 1006

Table 7
Solutions output by Algorithms 1, 2, 3 and 4 for the instance I′′m , constructed to show that the ratio 3 of Algorithm 3 is tight

Instance # leaves (opt ≤) lb Alg.2 Alg.1 Alg.3 Alg.4
I′′m 3m + 1 m + 1 3m

m = 20 61 21 21 21 21 60 60
m = 40 121 41 41 41 41 120 120
m = 60 181 61 61 61 61 180 180
m = 80 241 81 81 81 81 240 240
m = 100 301 101 101 101 101 300 300
m = 120 361 121 121 121 121 360 360
m = 140 421 141 141 141 141 420 420
m = 160 481 161 161 161 161 480 480
m = 180 541 181 181 181 181 540 540
m = 200 601 201 201 201 201 600 600

In Table 6 we show the results obtained for the instance I ′
m (see Fig. 6), which we constructed to show that

Algorithm 2 has performance ratio 3. We note that the ratio (6m − 1)/(2m + 2) is a lower bound for the performance
ratio of Algorithm 2: in Section 4.1 we observed that the instance I ′

m has an optimum solution with value at most
2m + 2. It is interesting to note that, this is the only example we have for which Algorithm 3 performed better than
Algorithm 2.

In Table 7 we exhibit the results obtained for the instance I ′′
m (see Fig. 7), constructed to show that the performance

ratio 3 we have proved for Algorithm 3 is tight.
We conclude from the computational tests that the performance of Algorithm 2 is generally better than the

performance of the other algorithms. We note that, with the exception of the “bad” instances (I ′
m) we have constructed

for Algorithm 2, in all other instances the solutions it provides are at least as good as (mostly better than) the solutions
provided by the other algorithms, and also far better than 3 times the optimum.

6. A generalization of Algorithm 2

This section discusses how to generalize the main result in this paper – a 3-approximation algorithm for MAF-2 –
for trees with bounded degree d ≥ 2, by providing an approximation algorithm for MAF-d with performance ratio
d + 1.

Elimination is defined for trees with bounded degree as before: if W is a phylogenetic tree and e is an arc of W ,
then Elim(W, l(e)) is the phylogenetic tree whose components are W|De and W|(SW \ De). The only difference is
that in the implementation there is no need to perform a forced contraction in W[SW \ De] to produce W|(SW \ De)

unless u(e) has degree 2 in W .
In each iteration of the new algorithm – referred to as Algorithm 5 – Gi is searched for a maximal set of sibling

labels with at least two elements. Such a set is called a tuple. If Gi has no tuple, the algorithm outputs |Hi | and
terminates; otherwise it proceeds by finding the lowest of all lcas in Hi of at least two leaves with labels in the tuple.

E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110 109

Fig. 12. Tuple searching and splitting in Algorithm 5.

Table 8
Cases for Algorithm 5

Case 1 q + r > 0 and r ≤ p.
Case 2 q + r > 0 and r > p.
Case 5 q + r = 0.

Case 3 No label in the tuple is isolated in Hi .
Case 4 At least one label in the tuple is isolated in Hi .

If this lowest lca exists, the tuple is split into an a-tuple and a b-tuple, the first one comprising all labels descending
from the lowest lca in Hi and the second comprising the other labels in the tuple. If the lowest lca does not exist, then
the a-tuple is the whole original tuple and the b-tuple is empty. Let the a-frame be the set of paths in Hi connecting
each leaf whose label is in the a-tuple with the lowest lca, and let the stems be, as before, those arcs not in the a-frame
whose upper endpoints are in the a-frame. Let p be the size of the a-tuple (p ≥ 2), q be the size of the b-tuple (q ≥ 0)
and r be the number of stems (r ≥ 0) (see Fig. 12).

We define five cases for Algorithm 5. If there is no lowest lca in Hi for any two-element subset of the tuple, then
we have cases 3 and 4; otherwise we have cases 1, 2 or 5. Table 8 lists all cases and Table 9 lists the corresponding
transactions.

110 E.M. Rodrigues et al. / Theoretical Computer Science 374 (2007) 91–110

Table 9
Transactions for Algorithm 5

Case 1 Cut in Hi all stems and all leaves in the b-tuple.
Case 2 Cut in Gi and Hi all leaves in the a-tuple.
Case 3 Cut in Hi all leaves in the tuple.
Case 4 Cut in Gi all leaves in the tuple which are isolated in Hi .
Case 5 Shrink in Gi and Hi all leaves in the tuple.

Algorithm 5 has polynomial time complexity, like Algorithms 1 and 2.
Tuple search can be performed in time O(n), tuple splitting and stem counting can be performed in time O(nd2),

and each transaction takes time O(nd). As before, there are O(n) iterations, since at each elimination at least an arc
of T and U is eliminated. Algorithm 5 has therefore time complexity O(n2d2).

The same technique as was applied to Algorithm 1–2 can be used to prove that Algorithm 5 has approximation
ratio d + 1. In particular, the following version of Lemma 8 is true:

Lemma 14. Let G and H be two phylogenetic forests with
⋃
SG = ⋃

SH, and let H′ be a full restriction of H that is
isomorphic to a full restriction of G. Suppose that { fG(ai) : 1 ≤ i ≤ m} form a tuple in G.

• If there exist i1 and i2 such that fH′(ai1) and fH′(ai2) are in different components of H′ and fH(ai1) and fH(ai2)

are not isolated, then at least one of the arcs incident to fH′(ai1) and fH′(ai2) is a link.
• If all fH′(a1), . . . , fH′(am) are in the same component of H′ and the a-frame admits at least one stem, then all of

its stems are links.

The proof of Lemma 14 is similar to the proof of Lemma 8. This lemma is needed to guarantee that, in the debt
protocol for phylogenetic trees with bounded degree, there always exists a link set to which debt units can be associated
when there is an iteration with no link elimination. For bounded degree trees, the debt protocol must be reformulated
as follows:

• If an iteration is case 1 and no eliminated arc is a link, then it can be proven (using Lemma 14) that for some i such
that ai is in the a-tuple, fH′(ai) is a link. Then the q + r ≤ q + p ≤ d newly issued debt units are associated with
this link.

• If an iteration is case 2 and there is no link elimination, then Lemma 14 asserts that all arcs of the stem residue
(suitably defined) are links. The p ≤ d issued debt units are then associated with this residue.

Stem residues yield barriers as the algorithm proceeds with arc eliminations. The balance between debt and primary
barriers is attained by using quotas of size one, since each primary barrier has size at least r ≥ p + 1. In this way, the
protocols can be proven to be correct by setting α = d + 1.

Acknowledgements

We thank Cristina G. Fernandes for helpful discussions, and we are also grateful to an anonymous referee for
valuable suggestions.

References

[1] B. Allen, M. Steel, Subtree transfer operations and their induced metrics on evolutionary trees, Annals of Combinatorics 5 (2001) 1–13.
[2] F. Chataigner, Approximating the maximum agreement forest on k trees, Information Processing Letters 93 (5) (2005) 239–244.
[3] B. dasGupta, X. He, T. Jiang, M. Li, J. Tromp, L. Zhang, On distances between phylogenetic trees, in: Proceedings of the 8th ACM–SIAM

Symposium of Discrete Algorithms, 1997, pp. 427–436.
[4] J. Hein, T. Jiang, L. Wang, K. Zhang, On the complexity of comparing evolutionary trees, Discrete Applied Mathematics 71 (1996) 153–169.
[5] M. Li, J. Tromp, L. Zhang, On the nearest neighbour interchange distance between evolutionary trees, Journal on Theoretical Biology 182 (4)

(1996) 463–467.
[6] E.M. Rodrigues, Algoritmos para Comparação de Árvores Filogenéticas e o Problema dos Pontos de Recombinação. Ph.D. Thesis, Computer

Science Department, University of São Paulo, Brazil, February 2003.
[7] E.M. Rodrigues, M.-F. Sagot, Y. Wakabayashi, Some approximation results for the maximum agreement forest problem, in: Proceedings of the

4th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, in: Lecture Notes in Computer Science,
vol. 2129, Springer-Verlag, 2001.

[8] D.L. Swofford, G.J. Olsen, P.J. Waddell, D.H. Hillis, Phylogenetic inference, in: D. Hillis, C. Moritz, B. Mable (Eds.), Molecular Systematics,
Sinauer Associates, 1996, pp. 407–513.

