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Abstract

Various methods have been recently employed to characterise the structure of bi-
ological networks. In particular, the concept of network motif and the related one of
coloured motif have proven useful to model the notion of a functional/evolutionary
building block. However, algorithms that enumerate all the motifs of a network
may produce a very large output and methods to decide which motifs should be
selected for downstream analysis are needed. A widely used such method is to as-
sess if the motif is exceptional, that is, over- or under- represented with respect to a
null hypothesis. Much effort has been put in the last thirty years to derive p-values
for the frequencies of topological motifs, i.e. fixed subgraphs. They rely either on
(compound) Poisson and Gaussian approximations for the motif count distribution
in Erdos-Rényi random graphs or on simulations in other models. In this paper, we
focus on a different definition of graph motifs that corresponds to coloured motifs.
A coloured motif is a connected subgraph with fixed vertex colours but unspeci-
fied topology. Our work is the first analytical attempt to assess the exceptionality
of coloured motifs in networks without any simulation. We first establish analyti-
cal formulae for the mean and the variance of the count of a coloured motif in an
Erdos-Rényi random graph model. Using simulations under this model, we fur-
ther show that a Pdélya-Aeppli distribution better approximates the distribution of
the motif count compared to Gaussian or Poisson distributions. The Pdélya-Aeppli
distribution, and more generally the compound Poisson distributions are indeed
well-designed to model counts of clumping events. Altogether, these results enable
to derive a p-value for a coloured motif, without spending time on simulations.

1 Introduction

Descriptions of biological networks serve two main purposes. On the one hand, it enables
to address questions related to the evolution of the network, that is, how such a complex



structure has been set up in the course of evolution. On the other hand, structural analy-
sis can be seen as a first necessary step prior to a dynamical analysis which in turn enables
to simulate networks and to study their response to perturbation. Usually, three main
classes of biological networks are considered (Alm and Arkin (2003)): protein interaction,
gene regulatory and metabolic. When analysing their structure, these networks are usu-
ally modelled as graphs where vertices represent molecules (metabolites, genes, proteins)
and edges (directed or undirected) represent interactions between these molecules (the
direction, when it is known, indicating which molecule is acting upon the other). For
instance, in the case of a gene regulatory network, vertices correspond to genes and there
is a directed edge from a gene coding for a transcription factor to every gene that this
transcription factor regulates.

The structure of a biological network may be apprehended by using a variety of mea-
sures, such as vertex degree (Jeong et al. (2000)), degree correlation (Maslov and Sneppen
(2002)) or average shortest path length (Wagner and Fell (2001)).

In this paper, we focus on the concept of motif. A network motif has been initially de-
fined as a pattern of interconnections which occurs unexpectedly often in a network (Milo
et al. (2002), Shen-Orr et al. (2002)). The assumption generally made is that subnet-
works sharing the same topology will be functionally similar. Over- (respectively under-)
represented subnetworks may therefore correspond to conserved (resp. avoided) and thus
important (resp. vital/detrimental) cellular functions. In the context of regulatory net-
works, simple patterns such as loops may be interpreted as logical circuits controlling the
dynamic behaviour of a network. If the over- and under-representation of network motifs
is often assessed via simulations of random networks in practice, approximations of the
subgraph count distribution in various random graph models have been proposed in the
literature. Some of these approximations can be found in the book Janson et al. (2000)
or in more recent studies such as Stark (2001), Itzkovitz et al. (2003), Camacho et al.
(2007), Picard et al. (2008).

A limitation of the notion of topological motif is that in many cases, the same subgraph
may in fact correspond to different functions, depending on the nature of the vertices that
compose it. This is typically the case for metabolic networks whose fullest representation
is in terms of a bipartite graph with two sets of vertices, one corresponding to reactions and
the other to chemical compounds those reactions require as input or produce as output.
Topological motifs which neglect vertex labels (for the reactions or/and the compounds)
may associate completely different chemical transformations, while motifs that took such
labels into account but enforced topological isomorphism would miss the fact that some
sets of similar transformations may occur in different order. A biological example of
the latter is given in the simple case of linear sets of transformations in Figure 1 where
rectangles are reactions and circles are compounds. More complex examples are discussed
in Lacroix et al. (2006).

Moreover, in some situations, as for example in the case of protein interaction networks,
the topology of the network is not fully known. Indeed, high-throughput experiments used
to obtain large-scale protein interaction data are notoriously noisy, that is, they may detect
interactions when there is none (false positive) and they may miss existing interactions
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Figure 1: Similar sets of transformations in the metabolic network of the bacterium
Escherichia coli.

(false negative). In this context, it may be inadequate to look for exact repetitions of a
pattern. An alternative definition has thus been proposed, where a motif is defined by
using the labels of its vertices and only connectedness of the induced subgraph is required
(Lacroix et al. (2006)).

A coloured motif is defined as a multiset of colours (vertex labels), i.e. a motif may
contain colours whose multiplicity are greater than 1. The cardinality of a motif, i.e. of
the multiset, will be called the size of a motif. An occurrence of a motif is defined as a
connected subgraph whose labels match the motif.

The enumeration of coloured motifs is a non-trivial task which has been the subject of
several works (Lacroix et al. (2006), Hermelin et al. (2007)) which allow to establish the
complexity of the problem and provide algorithms to efficiently detect all the occurrences
of a motif in a graph. In practice, current methods now allow to enumerate all the motifs
of size 7 of a graph representing the metabolic network of a bacterium in less than two
hours. Beyond the time complexity of the task, a major challenge that remains open
is to make sense of the potentially very large output of such an enumeration procedure,
especially when the focus is not on a single motif but on all motifs of a given size. Ideally,
one would need a method to rank the motifs according to their biological relevance in
order to prioritise a small number of motifs for downstream analysis. However, the notion
of biological relevance is generally ill-defined, and a classically used approximation is its
statistical significance (or exceptionality).

The exceptionality of a coloured motif, that is the over- or under- representation
of the motif with respect to a null model, can be assessed by comparing the observed
count of occurrences of a motif to the expected count of the same motif under a null



hypothesis. Up to now, this procedure was performed (for instance, in MOTUS (Lacroix
et al. (2008), http://pbil.univ-1lyonl.fr/software/motus/) using simulations: a
large number of random graphs were generated and the motif of interest was sought in
each one, generating an empirical distribution of the motif count to which the observed
count could be compared in order to derive a z-score and a p-value. The main limitation
of this procedure is that it adds a multiplicative factor to the time complexity of the
algorithm. Moreover, it is not trivial to choose the optimal number of simulations to
perform in order to get a satisfactory estimation of the p-value. As a rule of thumb, in
order to estimate quite accurately a p-value of 1 over 10%, at least 10°"2 simulations should
be performed.

In this paper, we propose a new approach for assessing the exceptionality of coloured
motifs which does not require simulations and therefore circumvents the previously men-
tioned limitations. We were able to establish exact analytical formulae for the mean and
the variance of the count of a coloured motif in an Erdos-Rényi (ER) random graph
model. Thanks to these results, one can now derive a z-score for each motif and therefore
rank them according to their exceptionality. We then worked on modelling the complete
distribution of the count of a coloured motif in an ER random graph model. To this
purpose, we performed a large number of simulations, using different colour frequencies
for the motif and different number of vertices and edges for the graph. We could establish
that the Poisson distribution was not appropriate whereas the Polya-Aeppli distribution
was a good and better approximation than the commonly used Gaussian distribution.
The choice of a Pélya-Aeppli distribution was driven by the following facts: (i) motif
occurrences overlap in a network, as shown in Figure 1, (ii) compound Poisson distribu-
tions are particularly adapted to model counts of clumping events (Johnson et al. (1992),
chap. 9), (iii) Pélya-Aeppli approximations are efficient for the count of words in letter
sequences (Schbath (1995)). These results can in turn be used to derive a p-value for each
motif, and therefore to introduce a cut-off for deciding which motifs should be selected
for downstream analysis.

To our knowledge, there has been no previous work on the significance of coloured
motifs in random graphs. This is the reason why we started by focusing on the more
general random graph model that is available. We are aware that this may not be the
most suitable model to describe the structure of a biological network. However, we argue
that this work provides a first necessary basis which can later be extended to richer
models, such as the promising mixture of Erdos-Rényi models proposed by Daudin et al.
(2008).

2 Definitions and notations

Coloured random graph model. We consider a random graph G with n vertices
{Vi,...,V,}. We assume that random edges are independent and distributed according
to a Bernoulli distribution with parameter p €0, 1] (so-called Erdos-Rényi model). More-
over, vertices are randomly and independently coloured as follows. Let C be a finite set
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Figure 2: Example of a graph and a motif. The motif m occurs three times in the graph,
at positions {2,4,5,9},{1,3,7,8} and {3,6,7,8}.

of r different colours and f a probability measure on C: f(c) is then the probability for a
vertex to be coloured with ¢ € C.

In a metabolic network, the colours of reaction vertices can represent classes of chem-
ical transformations; in regulation networks, the colours of gene vertices can represent
functional classes. For defining these classes, the EC number hierarchy (http://www.
chem.qgmul.ac.uk/iubmb/enzyme/) or Gene Ontology (http://www.geneontology.org/
GO.doc.shtml) are classically used.

Coloured motif. We consider motifs as introduced in Lacroix et al. (2006): a (coloured)
motif m of size k is a multiset of k colours {my,...,my} € C*. Colours from a motif may
not be different, i.e. one may have m; = m; for some 1 < 4,57 < k; We then denote by
$m(c) the multiplicity of the colour ¢ in m. When there is no ambiguity, sy, (c) will simply
be denoted by s(c). The notion of multiplicity of a single colour in m will be extended to
a multiset of colours in Section 3.2.

Motif occurrences. We now define an occurrence of such a coloured motif. To this
purpose, we introduce the following notation. If 7,179, ..., are k different indices from
{1,...,n}, then G(iy,is,...,7) represents the subgraph of G induced by the vertices
{Viys--., Vi, }. Let Iy be the set of all the subsets of size k from {1,...,n}. We say that
a motif m = {my,...,my} occurs at position o« = {iy,...,ix} € I if and only if G(«)
is connected and the colours of G(«), denoted by C(«), are exactly {my,...,my}. I
corresponds then to the set of possible positions for the occurrence of a motif of size k.
Figure 2 gives an example of a motif and its occurrences.

Number of occurrences. We introduce the random indicator variable Y, (m) which
equals one if motif m occurs at position a € I in G and zero otherwise:

Yo (m) = I{m occurs at position a}.
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Y, (m) is then a Bernoulli random variable whose expectation is denoted by u(m):
p(m) = EY,(m) = P(m occurs at position «).

The probability u(m) for m to occur at position a will be given in Section 3.1.
The number of occurrences of the motif m in the graph G, denoted by N(m), is
defined by:

N(m) = 3" ¥, (m). (1)

a€Ely

3 Mean and variance for the count

This section will provide analytical formulae for the mean and the variance of the number
of occurrences of a coloured motif in a random graph. It involves the computation of
some probabilities of connectedness. The generalization to the number of occurrences of
a set a coloured motifs will be done in the supplementary material.

3.1 Mean number of occurrences

The mean number of occurrences of the motif m in the graph G simply follows from the
count expression (1):

SN m) = S Y m) - () um

where p(m) is the occurrence probability of the motif and is given below by equation (3).

Occurrence probability. The probability x(m) for m to occur at position a = (i1, . . ., ix)
is simply equal to the product of two probabilities: the probability that G(«) is connected
and the probability to assign colours {my, ..., my} to vertices {V;,,..., Vi }. The latter,
denoted by 7(m), follows from the multinomial distribution:

ptm) = =TT som) ©)

—

eC

(o}

leading to
p(m) = g(k, p) x ~(m) (3)

where g(k,p) denotes the probability for a random graph (Erdés-Rényi model) with k
vertices and edge probability p to be connected (by definition, 0! = 1).



Connectivity probability The probability g(k,p) is calculated recursively (Gilbert
(1959)) as follows:

g(k,p) =1- ki( ) p)(1—p) Y (4)

=1

where g(1,p) = 1. For instance, for 2 < k < 5, which is typically the range for the motif
size in practice, we have:

9(2,p) = b,

93.p) = 3p°—2p°,

g(4,p) = 16p® —33p* + 24p° — 6p°,

g(5,p) = 125p* — 528p° + 970p° — 980p™ + 570p° — 180p° + 24p'°.

3.2 Variance of the number of occurrences

Getting the variance is much more involved. We start from VarN(m) = EN?(m) —
(EN(m))? and we have to compute the moment of order two:

EN*(m) =) ) E[Y m)].

a€ely BET

First, the sums over o and (3 are calculated according to the number ¢ of vertices shared
by the subgraphs G(«) and G(f):

EN?(m Z > E m)].
(=0 |ang|=¢

Second, we use the fact that Y,(m) and Y3(m) are indicator variables which leads to
E[Y,(m)Ys(m)] = P(Y,(m) = 1 and Y3(m) = 1). These random variables are not inde-
pendent but the above probability can be written as

E[Yo(m)Ys(m)] = K(a, 5) X Qm(a, 3) (5)
with

K(a,8) = P(G(«) and G(f3) are connected)
Qm(a, p P(C(a) =C(B) = {mq,...,mg}).

The terms K (a, 3) and Qm(q, 3) are now separately calculated.



Computation of Q,(a,3) Let ¢ = |a N (]; the subgraphs G(a) and G(3) have thus
¢ vertices in common, with 0 < ¢ < k. Let m* C m such that |m*| = ¢ and denote
m~ = m\m*; m* represents the colours of the ¢ vertices shared by G(«) and G(3). The
multiplicity of colour ¢ € C in m* (respectively in m™) is denoted by s*(c) (resp. s (c)).
To calculate P(C'(a) = C(8) = m), we start by choosing the ¢ colours m* of G(«a) NG(3)
[event with probability v(m*)], then the (k—¢) remaining colours m™~ are spread over both
G(a)\(G(a) NG(B)) [event with probability v(m™)] and G(5)\(G(a) NG(B)) [event with
probability v(m™)]. Finally, one just has to sum over all possible different m* C m which
is equivalent to summing over all m* C m and dividing each term by the multiplicity of
m* in m. This leads to

Qi) = Y b L ©)

m*Cm

where s(m*) = sy,(m*) is the multiplicity of m* in m. For instance, if C = {1,2,3},
m = {1,3,1,2} and ¢ = 2, then the multiplicity of m* = {1,3} in m equals 2 whereas
the multiplicity of m* = {1,1} equals 1.

Computation of K(a,3) Let again ¢ = [anNfg|. If £ =0 (i.e. G(a) and G(f) are
disjoint) or £ =1 (i.e. G(«) and G(B) have a unique vertex in common) then the events
{G(«) is connected} and {G(() is connected} are independent leading to

K(a,B) = g*(k,p), ifl=0orL (7)
Another easy case is when ¢ = k because it means that 3 = « and therefore

K(o, 8) = g(k,p), L=k (8)

For the other cases, no general formulae have been found so far but, for small values of
k, one can automatically enumerate all the solutions thanks to the edge binary tree, as
described below. As an illustration, the case k = 3 (and ¢ = 2) will be detailed.

The principle is to work conditionally to the subgraph G(a) N G(f):

P(G(«) and G(B3) are connected) =
ZP(G(Q) NG(B) = G") x [P(G(a) connected | G(a) NG(B) = G')]? 9)
o

where GG’ is any subgraph of ¢ vertices. Since k is typically small, both probabilities can
be computed by enumerating all possible subgraphs G’ and G(«). This can be done by
traversing the complete edge binary tree associated to the k(k — 1)/2 potential edges of
G(«) that is, to the binary tree whose branches are labelled according to the presence
or absence of edges in the subgraph G(a). This tree is composed of k(k — 1)/2 levels,
one for each potential edge and each internal vertex in this tree has two sons: the left
one corresponds to the presence of the corresponding edge in the graph whereas the
right one corresponds to its absence. It follows that each path from the root to a leaf
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corresponds to one of the 28+=1/2 possible graphs of size k. Figure 3 gives an example
for k = 3. Vertices are labelled {i,j,u}, the higher level corresponds to the edge (3, j),
the middle one corresponds to the edge (i,u) and the lower level corresponds to the edge
(7,u). Leaves corresponding to connected graphs are drawn with a square. In practice,
the connectedness of a graph can be checked thanks to its adjacency matrix to the power
k — 1. Indeed a graph of size k with adjacency matrix A is connected if and only if A*~!
contains no zero (every vertex can be reached from any vertex in at most k — 1 steps).
Additionally, the binary tree is built such that all pairs of common vertices between G/(«)
and G(f3) are at the top levels. The probability of each connected graph of size k can then
be easily calculated when traversing the tree and likewise for both probabilities appearing
in Equation (9).

As an illustration, we now detail the computation for k = 3 and ¢ = 2. Let ¢ and
J be the two common vertices between G(«) and G(3), and let u be the third vertex of
G(a) (o = {i,j,u}). The edge binary tree is given by Figure 3. In this case, there are
only two subgraphs G’ with ¢ = 2 vertices: either i and j are connected (probability p)
or they are not connected (probability 1 — p). In Figure 3, we indicate with a dashed
horizontal line the separation between edges in G’ (the conditioning event) and edges in
G(a)\G'. Overall, with £ = 3, there are four possible connected subgraphs G(«): the
triangle (labelled by ’a’) and the three possible 'V’ (labelled by ’b’, ’¢’, and 'd’). The
probability that G(«) is connected given ¢ « j is obtained from cases ’a’ (proba. p?), b’

(proba. p(1 — p)) and ’¢’ (proba. p(1 — p)):
P(G(a) connected | i < j) = p* + 2p(1 — p) = 2p — p*.

The probability that G(«) is connected given that 7 is not connected with j is obtained
from case 'd’ (proba. p?), leading to

P(G(a) and G(B) are connected) = p x [2p — p?]* + (1 — p) x [p*]?
4p® — 3p*.

Using this algorithm, we find the following results for k = 3 and k = 4 (k = 2 can be
processed with the trivial formulae (7) or (8)):

k=3and (=2 : K(a,p)=4p*—3p*
k=4and (=2 : K(a,fB)=64p° — 160p° + 100p” + 77p® — 136p° + 68p'® — 12p'!
k=4and (=3 : K(a,fp)=27p" —60p° + 46p° — 12p".

Finally we obtained analytical formulae for the variance.

4 Towards the motif count distribution: a simulated
approach

Aim. No theoretical results exist so far on the distribution of coloured motifs in ran-
dom graphs. In this paper, we propose an approximation for this distribution. Thanks

9
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Figure 3: Complete edge binary tree for vertices ¢, j and u. Branches are labelled according
to the presence or absence of edges: label 75 for instance means that 7 and j are connected,
whereas ij means the opposite. Leafs which correspond to connected subgraphs are
represented by a square.

to simulations, we first studied the quality of the normal approximation which is classi-
cally assumed, especially when using z-scores (Milo et al. (2002), Lacroix et al. (2006)).
However, network motif occurrences tend to overlap in networks. It is well-known from
probability theory that compound Poisson distributions are more relevant than Gaussian
distributions to model the count of rare and clumping events. Besides, a compound Pois-
son approximation for the count of particular subgraphs (topological network motifs) has
been proposed by Stark (2001) under certain asymptotic conditions on the ER random
graph model. Moreover, by analogy with pattern occurrences in letter sequences (Schbath
(1995)), Picard et al. (2008) recently investigated a particular compound Poisson approx-
imation, namely a Pdlya-Aeppli approximation, and concluded that this distribution fits
well the count of topological network motifs. The Pdlya-Aeppli distribution (denoted by
PA) with parameters (A, a) is the distribution of ZCC:1 K. where the number of clumps
C' is Poisson distributed (C' ~ P (X)) and the size K, of the clumps is geometrically dis-
tributed (P(K. = k) = (1 — a)a®). Its mean is equal to A\/(1 — a) and its variance equals
AM1+a)/(1—a)?. We have then also considered the Pdlya-Aeppli approximation. We did
not investigate the Poisson approximation because, as we can see on Table 1, the variance
of the count (whatever the coloured motif) is quite different from the mean count.

Simulation design. We have simulated 10,000 Erdos-Rényi random graphs with n
vertices (n € {100,500, 1000}) and edge probability p € {0.05,0.01,0.005}. Vertices have

10
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Figure 4: Empirical distributions for the count of motifs {1,2,3}, {1,1,5}, {2,4,4} and
{3,4,5} in random graphs with n = 500 and p = 0.01. The empirical means are respec-
tively 615, 61, 15 and 2. The red (respectively green) curves correspond to the ad-hoc
normal distributions (resp. Pélya-Aeppli distributions).

been randomly coloured with 5 colours (C = {1,2,3,4,5}) and according to the following
colour frequencies: f = (50,25,10,5,1)/91. These choices for n, p and f allow to get
coloured motifs of size 3 with a wide range of expected counts. We have then selected
14 motifs of size 3 to cover both this variety of counts and different multiplicity pat-
tern: {1,1,1}, {1,2,2}, {1,2,3}, {1,1,4}, {1,3,4}, {1,1,5}, {2,4,4}, {4,4,4}, {2,4,5},
(3,4,5}, {1,5,5}, {3,5,5}, {4,5,5} and {5,5,5}.

For each motif and each couple (n,p), we then obtained an empirical distribution which
has been compared with both the normal distribution A (EN (m),\//a\rN (m)) and the
Pélya-Aeppli distribution PA(X, @) with A = (1 — a)EN(m) and @ = [@N(m) -
EN(m)]/ [\//EH"N (m) + EN(m)] (see Figure 4 for 4 representative examples).
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Quality of approximation. To measure this quality, we adopted two criteria: (1)
the Kolmogorov-Smirnov distance which measures the maximal difference between the
empirical cumulative distribution function (cdf) F' and the cdf of the normal or the Pélya-
Aeppli distribution. The closer to 0 the KS distance, the better the approximation. (2)
1 minus the empirical cdf calculated at the 99% and 99.9% quantiles of the normal or of
the Pdlya-Aeppli distribution. The closer to 1% and 0.1% these values, the better the
approximation.

Results. Results for different values of n and p are very similar. We only present here the
ones corresponding to n = 500 and p = 0.01 because these values are very close to those
observed in real cases such as the metabolic network of Fscherichia coli as considered
in Lacroix et al. (2006). Nevertheless, all results are presented in the supplementary
material.

We can first notice just by eye (see Figure 4) that the normal distribution seems
satisfactory for frequent motifs but the rarer the motif, the worse the goodness-of-fit.
The Pdélya-Aeppli distribution seems to fit quite correctly the count distribution whatever
the motif. These initial impressions are emphasised when we look at the Kolmogorov-
Smirnov distances (see Table 1): the ones for the Pélya-Aeppli distribution are always
smaller than those for the normal distribution and sometimes much smaller. In fact, the
distance to the normal distribution is quite large for very rare motifs (typically when
EN(m) < 10). If we now concentrate on the distribution tails by looking at the empirical
probabilities to exceed the 99% or 99.9% quantiles gy and gp4 , we can also notice that
they are closer to 1% or 0.1% for the Pdlya-Aeppli distribution than for the normal
distribution. For extremely rare motifs, quantiles ¢p4 for both 99% and 99.9% could
not be correctly calculated because the corresponding Pdélya-Aeppli distribution is both
discrete and concentrated around 0. The values for the empirical tails provided in the table
are therefore not meaningful in such cases, but thanks to the very small KS distances, we
can check that the approximation is still good. Finally, observe that most of the time the
normal distribution underestimates the quantile (the empirical right tail is overestimated)
leading to false positives.

5 Discussion and conclusion

In this paper, we proposed a new way to assess the exceptionality of coloured motifs in
networks which does not require to perform simulations. Indeed, we were able to estab-
lish analytical formulae for the mean and the variance of the count of a coloured motif in
an Erdos-Rényi random graph model. Furthermore, using simulations, we showed that
the motif count distribution can be quite accurately approximated with a Polya-Aeppli
distribution, and that neither the Gaussian nor the Poisson distributions are relevant.
Altogether, these results now allow to derive a p-value for a coloured motif without per-
forming simulations. Clearly, when several motifs have to be tested, which is the case
in the context of motif discovery, one has to control for multiple testing. A conserva-
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a=1% a=0.1%
motif m | EN(m) VarN(m) EN(m) VarN(m) a A | KSy KSpa av 1= F(an) gpa 1—F(gpa) av 1= F(gn) gpa 1— F(gpa)

(%) (%) (%) (%) (%) (%)
11 1023.65 27462.66 1021.07 2744653 | 0.93 73.37 | 240 078 | 1407.4 1.6 1436 T1 1533.9  0.23 1501 0.12
122 767.74 14941.43 766.05 14660.79 | 0.90 76.08 | 214 0.65 | 1047.7 1.5 1068 1.0 1140.2 025 1181 0.07
123 614.19 8546.68 615.26 8493.22 | 0.86 83.12 | 1.75 0.68 | 829.6 1.4 845 0.8 900.0  0.18 929 0.08
114 307.09 5729.89 307.77 5807.09 | 0.90 30.98 | 3.20 0.71 | 485.0 1.5 505 0.8 543.3  0.28 583 0.08
134 122.84 1305.02 123.06 1311.64 | 0.83 21.11 | 343 0.78 | 207.3 1.8 219 0.9 235.0  0.37 257  0.12
115 61.41 1180.68 61.72 1147.95 | 0.90 6.30 | 572 0.98 | 140.5 2.3 160 0.8 166.4  0.57 205 0.06
244 15.35 85.99  15.29 85.57 | 0.70 4.63 | 873 1.07 36.8 24 43 0.8 439  0.81 55  0.12
245 6.14 27.76  6.20 2845 | 0.64 222 | 1272 1.27 186 25 23 0.8 227  1.09 32 0.10
345 2.46 6.63 251 658 | 045 1.39 | 17.97 0.3 8.5 1.9 11 0.5 104 077 15 0.09
155 1.23 6.94  1.22 674 | 0.69  0.37 | 34.23 5.75 72 33 12 0.6 9.2 156 20  0.05
444 1.02 2.46  1.02 251 | 042 059 | 27.39  3.80 47 24 7 0.5 59 148 10 0.09
355 0.25 0.50 0.25 050 | 0.34  0.16 | 48.47 0.3 1.9 25 3 0.4 2.4 0.96 6 205
455 0.12 020  0.13 020 | 023 0.09 | 51.63 0.16 1.2 06 2 0.1 1.5 065 4 0.03
555 0.008 0.01  0.007 0.008 | 0.035 0.007 | 52.61 2e-03 02  0.03 0 003 0.3  0.03 1 2e05

Table 1: Quality of approximation of the count distribution for n = 500 and p = 0.01. The empirical mean EN ( ),
variance VarN (m) and cumulative distribution function F have been obtained thanks to 10,000 random graphs. (@, \) are
the parameters of the Pdélya-Aeppli distribution. KSy and KSp4 are the Kolmogorov-Smirnov distances. For a@ = 1%
then 0.1%, g is the 1 — a quantile of the normal distribution (idem for the Pélya-Aeppli distribution).



tive strategy that is classically used and that we would recommend is then to apply a
Bonferroni correction.

In this work, we did not investigate the case of long motifs, but we can anticipate that
motifs containing submotifs which are exceptional, will tend to be exceptional themselves.
This type of phenomenon is also observed for patterns in sequences and a classical way
to deal with it is to control for the number of sequence patterns of size k — 1 (by using
a Markov model of order k — 2), when assessing the exceptionality of patterns of size k.
However, in the case of networks, the problem is far from trivial and it is unclear, even
for small values of k if the space of random graphs verifying these constraints will not be
too small. In the worst case, this space may even be reduced to the observed graph itself.

Also in the case of very rare motifs, the expected distribution of the count is essentially
concentrated around 0. Therefore, a single occurrence of such a motif will often be
sufficient for it to be considered as exceptional. If we now consider the extreme case of a
coloured graph where each vertex is assigned a different colour, then all possible motifs will
be very rare and therefore, they may all be detected as exceptional. In practical cases, such
as for the network representing the metabolic network of the bacterium Fscherichia coli,
the situation is less dramatic but indeed many colours are present only once. This issue
may be partially addressed by considering a random graph model where the colours and
the topology are not independent anymore. This would allow to discriminate between
infrequent poorly connected colours and infrequent highly connected colours. Motifs
containing the latter type of colours would be expected to have more occurrences and
should therefore not be systematically considered as exceptional when they have a single
occurrence.

More generally, we considered in this paper a very simple random graph model. Even
though we think this work was necessary to establish a framework for accessing the ex-
ceptionality of coloured motifs, an important step is now to extend these results to other
models of random graphs which better represent the structure of real networks. Differ-
ent types of models have been proposed in the literature for this purpose: for instance,
small-world networks, scale-free networks, preferential attachment models and fixed degree
distribution models. However, these models do not provide the probabilistic distribution
on edges which is required to compute the occurrence probability of a motif and the prob-
ability of two non disjoint occurrences. Moreover, it has been shown that subnetworks
of scale-free networks loose the scale-free property (Stumpf et al. (2006)). This is a real
drawback for modelling biological networks because they usually correspond to the par-
tial knowledge we have of a system and are therefore far from complete. An interesting
issue would be to generalise our work to a mixture of ER random graph models. These
models seem indeed very flexible and are able to fit nicely biological networks (Daudin
et al. (2008)).

Finally, we think there is still room for improvement on the approximation of the motif
count distribution. Indeed, no theoretical evidence has been found so far supporting the
use of a geometric distribution for the clump size. Analytically getting the third moment
and eventually the fourth moment of the count could certainly allow to investigate other
distributions.
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Supplementary material

Occurrences of multiple motifs

We now give additional elements for the calculation of the first two moments of the count of
a set of coloured motifs. These formulae appear to be useful when one allows some colours
of the motif to be "blurred” as in Lacroix et al. (2006). For instance, we could look for the
“composite” motif {red, blue} where blue means either light blue or dark blue. A simple
way to address the problem would be to use the same formulae as before but changing
the set of colours (in the above example, light blue and dark blue would be changed to
blue). However, this method does not enable to address the case of a motif containing
colours belonging to the two sets, for instance the motif {red, blue, light blue}. A general
solution is to describe the motif as the union of several “single” motifs. For instance,
{red, blue, light blue} := {red, dark blue, light blue} U {red, light blue, light blue}.

Formally, denote by M a set of coloured motifs. The number of occurrences of M
in the graph G is the sum of the counts N(m) for m € M. Consequently, the expected
count EN (M) is also the sum of the expected counts EN(m), m € M. The novelty only
appears for the variance because it involves covariance terms:

VarN(M) = Y Var(N(m))+ Y Cov(N(m), N(m)).

meM m#m’eM

Getting the covariance Cov(/N(m), N(m’) requires to calculate P(Y,(m) = 1 and Yz(m') =
1) for a, 8 € I}, and m # m’ € M. Similarly to equation (5), this probability is equal to
K(a, ) X Qmm (a, B) where K(a, 3) has been previously introduced and Qum ms (v, 5) =
P(C(a) = m,C(B) = m'). The latter quantity is null when ¢ := |a N G| > |m N m’|.
When ¢ < i mNm’'|, Qmum (e, 3) is calculated in the same way as Qm(a, 5) (see Eq. (6))
and we get:

Qv (0, ) = 3 y(m*)y(m™ )y (m'~)

m*C{mnNm’'},|m*|={

where m* is still the multiset of colours of the ¢ common vertices and m~ and m’~ are
the remaining colours from m and m’.

Approximation quality

Tables 2, 3 and 4 give the results about the approximation quality for n = 100 (p €
{0.05,0.01,0.005}), n = 500 (p € {0.05,0.005}) and n = 1000 (p € {0.05,0.01,0.005}).
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a=0.1%

m | EN(m) VarN(m) EN(m) VarN(m) a X | KSy KSpa| av 1-F(an) apa 1—F(apa)
(%) (%) %) %)
111 194.46 4868.66 194.42 4827.85 0.92 15.05 5.03 1.23 | 409.1 0.63 461 0.15
122 145.85 2646.09 145.81 2685.28 0.90 15.02 4.42 0.49 | 305.9 0.54 344 0.07
123 116.68 1520.30 117.19 1551.07 0.86 16.46 3.68 0.90 238.9 0.28 266 0.07
114 58.34 1023.94 58.29 1030.84 0.90 6.24 6.05 0.49 | 157.5 0.65 194 0.06
134 23.36 234.83 23.42 241.19 0.82 4.14 8.70 0.66 71.4 0.78 92 0.08
115 11.67 211.46 11.57 208.10 0.89 1.22 19.17 6.76 56.1 1.32 91 0.07
244 2.92 15.63 2.90 15.09 0.68 0.93 20.49 3.94 14.9 1.52 25 0.11
245 1.17 5.08 1.16 5.01 0.62 0.44 33.31 1.06 8.1 1.26 16 0.08
345 0.47 1.22 0.47 1.22 0.44 0.26 43.07 0.39 3.9 1.46 8 0.08
155 0.23 1.28 0.23 1.30 0.69 0.07 49.95 1.28 3.8 2.00 13 0.05
444 0.19 0.46 0.19 0.42 0.38 0.11 49.44 1.11 2.2 0.77 6 0.05
355 0.05 0.09 0.04 0.08 0.28 0.03 53.10 0.04 0.9 0.85 3 0.02
455 0.02 0.04 0.02 0.03 0.16 0.02 53.24 4e-03 0.6 0.33 2 0.01
555 0.002 0.002 0.002 0.002 0.05 0.002 51.40 le-03 0.1 0.01 1 2e-05
111 8.00 29.43 8.00 29.64 0.57 3.40 11.33 2.02 24.8 0.90 32 0.09
122 6.00 16.99 5.94 16.74 0.48 3.11 11.83 0.53 18.6 0.65 24 0.04
123 4.80 11.77 4.75 11.90 0.43 2.71 13.46 0.78 15.4 0.62 20 0.06
114 2.40 6.87 2.36 6.73 0.48 1.23 19.06 1.62 10.4 0.97 16 0.04
134 0.96 2.02 0.95 1.96 0.35 0.62 28.54 0.44 5.3 0.74 9 0.02
115 0.48 1.36 0.48 1.33 0.47 0.25 43.23 0.40 4.0 0.76 9 0.05
244 0.12 0.19 0.11 0.17 0.20 0.09 51.97 0.30 1.4 0.53 4 0.01
245 0.05 0.07 0.05 0.07 0.20 0.04 53.33 0.02 0.9 0.87 3 0.01
345 0.02 0.02 0.02 0.02 0.10 0.01 53.17 3e-03 0.5 0.16 2 2e-05
155 0.01 0.02 0.008 0.01 0.17 0.006 52.35 0.05 0.3 0.16 2 NA
444 0.008 0.01 0.006 0.007 0.08 0.005 52.27 0.01 0.3 0.03 1 0.01
355 0.002 0.002 0.002 0.002 0.047 0.002 51.51 9e-04 0.1 0.01 1 2e-05
455 0.001 0.001 0.001 0.001 <0 0.001 51.21 - 0.1 2e-05 - -
555 6e-05 7e-05 0 0 - - - - - - - -
111 2.00 4.42 2.01 4.48 0.38 1.243 20.04 2.67 8.5 0.88 13 0.03
122 1.50 2.73 1.49 2.69 0.28 1.07 22.97 0.93 6.6 0.70 10 0.01
123 1.20 2.00 1.17 1.93 0.25 0.89 23.93 0.38 5.4 0.64 8 0.02
114 0.60 1.10 0.59 1.11 0.30 0.41 36.44 1.05 3.9 1.23 7 0.02
134 0.24 0.36 0.24 0.36 0.20 0.19 47.88 0.14 2.1 0.39 4 0.03
115 0.12 0.22 0.13 0.24 0.29 0.09 51.52 0.17 1.6 0.85 4 0.05
244 0.03 0.04 0.027 0.03 0.12 0.02 53.45 0.02 0.6 0.28 2 2e-05
245 0.01 0.01 0.01 0.01 0.08 0.01 52.90 0.02 0.4 0.07 1 0.02
345 0.005 0.005 0.005 0.005 <0 0.005 52.30 - 0.2 2e-05 - -
155 0.002 0.003 0.004 0.008 0.30 0.003 51.63 0.01 0.3 0.08 1 0.04
444 0.002 0.002 0.002 0.002 <0 0.002 51.58 - 0.1 2e-05 - -
355 0.0005 0.0005 3e-04 0.0003 <0 0.0003 50.66 - 0.05 2e-05 - -
455 0.0002 0.0002 4e-04 0.0004 <0 0.0004 50.76 - 0.06 2e-05 - -
555 2e-05 2e-05 0 0 - - - - - - - -

Table 2: Quality approximation of the count distribution for n = 100 and p = 0.05
(top), p = 0.01 (middle), p = 0.005 (bottom). The empirical mean EN(m), variance
VarN (m) and cumulative distribution function F have been obtained thanks to 10,000
random graphs. (a, X) are the parameters of the Pélya-Aeppli distribution. KS are the
Kolmogorov-Smirnov distances. For @ = 0.1% ¢y is the 1 — a quantile of the normal
distribution (idem for the Pdlya-Aeppli distribution). NA indicates numerical problems

to compute the PA distribution, whereas

Y

Y

calculated (@ < 0 or null empirical mean and variance).
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a=0.1%

m | EN(m) VarN(m) EN(m) VarN(m) | @ X | KSy  KSpa v 1-Flw) apa  1-Flgpa)
(%) (%) (%) (%)
111 24904.19 10415630 24941.43 10463804 0.99 118.62 2.36 NA | 34937.6 0.25 NA NA
122 18678.15 5778818 18675.54 5816997 0.99 119.53 1.74 NA 26128.7 0.18 NA NA
123 14942.52 2922292 14914.40 2934663 0.99 150.83 0.40 NA 20208.2 Te-02 NA NA
114 7471.26 2112934 7479.15 2103159 0.99 53.00 1.75 NA 11960.7 0.25 NA NA
134 2988.50 429279.6 2982.40 420630.6 0.99 42.00 2.53 NA 4986.6 0.32 NA NA
115 1494.25 451540.6 1497.61 454673.2 | 0.99 9.83 3.68 1.68 3581.3 0.44 4208 0.04
244 373.56 23775.19 373.30 23459.00 0.97 11.69 5.22 1.32 846.6 0.63 977 0.16
245 149.42 6427.06 149.36 6412.56 | 0.95 6.80 5.66 0.56 396.8 0.77 485 0.11
345 59.77 1180.90 59.57 1159.17 | 0.90 5.82 6.24 0.47 164.8 0.73 205 0.11
155 29.88 1225.46 30.29 1242.37 | 0.95 1.44 18.73 16.78 139.2 1.63 220 0.10
444 24.90 350.77 24.80 345.33 | 0.87 3.32 11.04 4.33 82.2 1.25 110 0.22
355 5.98 57.78 5.98 56.56 | 0.81 1.14 17.66 7.55 29.2 1.40 48 0.10
455 2.99 17.18 3.00 16.90 | 0.70 0.91 20.63 4.78 15.7 1.58 27 0.13
555 0.20 0.48 0.20 0.49 | 0.42 0.12 49.01 1.27 2.3 0.87 6 0.10
111 256.77 2619.15 256.74 2596.12 | 0.82 46.21 3.30 0.99 414.2 0.35 435 0.13
122 192.58 1433.80 192.47 1412.41 0.76 46.17 3.17 0.85 308.6 0.29 324 0.10
123 154.06 890.78 154.35 893.83 | 0.70 45.46 2.84 0.45 246.7 0.24 259 0.04
114 77.031 564.99 76.36 558.69 0.76 18.36 5.14 1.25 149.4 0.52 165 0.07
134 30.81 141.53 30.57 140.58 | 0.64 10.92 5.84 0.51 67.2 0.51 7 0.03
115 15.41 114.06 15.36 111.20 | 0.76 3.73 9.10 0.33 47.9 0.77 63 0.02
244 3.85 10.74 3.80 10.73 | 0.48 1.98 15.18 1.72 13.9 1.05 19 0.07
245 1.54 3.77 1.55 3.66 | 0.40 0.92 23.09 0.46 7.5 0.77 12 0.04
345 0.62 1.06 0.61 1.04 | 0.26 0.45 35.66 0.51 3.8 0.86 7 0.03
155 0.31 0.96 0.30 0.91 | 0.50 0.15 47.67 1.27 3.2 1.42 8 0.04
444 0.26 0.42 0.25 0.40 | 0.24 0.19 47.39 0.95 2.2 0.60 5 0.02
355 0.06 0.09 0.06 0.08 | 0.16 0.05 53.37 0.03 0.9 0.80 3 2e-05
455 0.03 0.04 0.03 0.04 | 0.10 0.03 53.58 0.03 0.7 0.32 2 0.01
555 0.002 0.002 0.002 0.003 | 0.13 0.002 51.38 0.01 0.2 0.01 1 0.01

Table 3: Quality approximation of the count distribution for n = 500 and p = 0.05 (top),

p = 0.005 (bottom). The empirical mean EN (m), variance VarN (m) and cumulative

distribution function F' have been obtained thanks to 10,000 random graphs. (a, A) are the
parameters of the Pélya-Aeppli distribution. KS are the Kolmogorov-Smirnov distances.
For a = 0.1% gy is the 1 — «a quantile of the normal distribution (idem for the Pdlya-
Aeppli distribution). NA indicates difficulties to compute the P.A distribution (empirical
mean greater than 1500).
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a=0.1%

m | EN(m) VarN(m) EN(m) VarN(m) a X | KSy KSpa av  1-F(av) gpa  1-Flgpa)
(%) (%) (%) (%)
111 199833.7 314809999 199562.5 317861578 0.999 250.42 1.17 NA 254657.2 0.31 NA NA
122 | 149875.2 175755625 149798.2 179968751 | 0.998  249.16 1.21 NA | 191254.5 0.21 NA NA
123 119900.2 86883859 120091.4 85519373 0.997 336.81 0.64 NA 148668.9 0.16 NA NA
114 59950.1 63565443 59924 64198229 | 0.998 111.76 1.27 NA 84684.1 0.21 NA NA
134 | 23980.04 12670746 24019.74 12797890 0.996 89.99 1.62 NA 35074.8 0.23 NA NA
115 | 11990.02 13673678 11987.86 13594556 | 0.998 21.12 2.31 NA 23381.8 0.27 NA NA
244 2997.50 682659.7 3000.27 697930.4 | 0.991 25.68 4.18 NA 5581.9 0.51 NA NA
245 1199.00 176888.0 1201.13 179141.7 | 0.987 16.00 3.85 0.56 2509.1 0.53 2819 0.05
345 479.60 31096.36 481.62 31496.74 | 0.970 14.51 3.96 0.46 1030.1 0.54 1166 0.08
155 239.80 29743.89 240.65 29747.06 0.984 3.86 8.55 2.36 773.6 1.19 1024 0.16
444 199.83 8536.03 199.96 8581.79 | 0.954 9.11 6.80 1.95 486.2 0.87 575 0.19
355 47.96 1300.61 48.33 1323.87 | 0.929 3.40 9.53 2.86 160.8 1.12 216 0.17
455 23.98 359.80 24.17 368.78 | 0.877 2.97 10.64 3.34 83.5 1.29 114 0.20
555 1.60 7.15 1.61 7.37 | 0.641 0.58 27.84 8.08 10.0 1.23 19 0.20
111 8213.85 682747.2 8197.27 683834.4 0.98 194.20 1.58 NA 10752.7 0.23 NA NA
122 6160.39 374345.9 6164.75 374787.5 0.97 199.52 1.12 NA 8056.6 0.18 NA NA
123 4928.31 200136 4927.37 204984.5 0.95 231.32 1.05 NA 6326.5 0.11 NA NA
114 2464.16 139786.6 2460.80 138179.1 0.96 86.11 1.72 NA 3609.5 0.18 NA NA
134 985.66 29788.37 984.84 29629.79 0.93 63.36 2.19 0.53 1516.8 0.22 1580 0.09
115 492.83 29351.43 494.34 29697.4 0.97 16.19 3.28 0.75 1026.9 0.31 1152 0.07
244 123.21 1772.00 123.54 1739.11 0.87 16.39 4.25 0.65 252.4 0.48 282 0.06
245 49.28 523.43 49.58 530.73 0.83 8.47 5.93 0.68 120.8 0.58 143 0.09
345 19.71 108.05 19.80 108.17 0.69 6.13 7.79 0.65 51.9 0.72 63 0.09
155 9.86 119.19 9.87 117.56 0.84 1.53 18.36 12.03 43.4 1.29 67 0.09
444 8.21 36.60 8.29 36.64 0.63 3.06 12.01 2.69 27.0 1.08 36 0.14
355 1.97 6.83 1.98 6.94 0.55 0.88 23.34 2.74 10.1 0.95 17 0.11
455 0.99 2.35 0.98 2.31 0.40 0.58 28.66 1.21 5.7 1.05 10 0.07
555 0.07 0.10 0.06 0.09 0.17 0.05 53.16 0.18 1.0 0.30 3 2e-05
111 2060.35 55750.96 2058.76 55507.45 0.93 147.26 2.06 NA 2786.8 0.27 NA NA
122 1545.26 30335.99 1544.53 30678.85 0.90 148.06 1.34 NA 2085.8 0.17 NA NA
123 1236.21 17343.32 1235.04 17059.00 0.86 166.76 1.36 0.59 1638.6 0.17 1668 0.09
114 618.11 11620.72 617.55 11686.33 0.90 61.99 2.67 0.79 951.6 0.25 991 0.10
134 247.24 2644.45 246.68 2612.29 0.83 42.57 2.99 0.71 404.6 0.33 427 0.11
115 123.62 2393.86 124.32 2378.23 0.90 12.35 4.33 0.49 275.0 0.45 315 0.08
244 30.90 174.02 30.94 174.27 0.70 9.33 6.19 0.52 71.7 0.61 83 0.13
245 12.36 56.14 12.49 55.82 0.63 4.57 9.63 1.02 35.6 0.66 45 0.11
345 4.94 13.38 5.00 13.45 0.46 2.71 12.90 1.18 16.3 0.62 22 0.08
155 2.47 14.03 2.43 13.40 0.69 0.74 27.60 7.84 13.7 1.56 24 0.06
444 2.06 4.97 2.07 4.99 0.41 1.21 20.01 3.06 9.0 1.19 13 0.08
355 0.49 1.02 0.49 0.99 0.34 0.32 40.73 0.63 3.6 0.94 7 0.04
455 0.25 0.40 0.24 0.39 0.22 0.19 47.91 0.11 2.1 0.42 5 2e-05
555 0.02 0.02 0.01 0.02 0.04 0.01 53.22 0.01 0.4 0.05 1 0.01

Table 4: Quality approximation of the count distribution for n = 1000 and p = 0.05
(top), p = 0.01 (middle), p = 0.005 (bottom). The empirical mean EN(m), variance
VarN (m) and cumulative distribution function F have been obtained thanks to 10,000
random graphs. (@, /):) are the parameters of the Pdélya-Aeppli distribution. KS are
the Kolmogorov-Smirnov distances. For a = 0.1% ¢y is the 1 — a quantile of the normal
distribution (idem for the Pélya-Aeppli distribution). NA indicates difficulties to compute
the P.A distribution (empirical mean greater than 1500).
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