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Abstract. The problem of sorting a signed permutation by reversals
is inspired by genome rearrangements in computational molecular biol-
ogy. Given two genomes represented as two signed permutations of the
same elements (e.g. orthologous genes), the problem consists in finding
a most parsimonious scenario of reversals that transforms one genome
into the other. We propose a method for sorting a signed permutation
by reversals in time O(n

√
n log n). The best known algorithms run in

time O(n2), the main obstacle to an improvement being a costly opera-
tion of detection of so-called “safe” reversals. We bypass this detection
and, using the same data structure as a previous random approximation
algorithm, we achieve the same subquadratic complexity for finding an
exact optimal solution. This answers an open question by Ozery-Flato
and Shamir whether a subquadratic complexity could ever be achieved
for solving the problem.

1 Introduction

The problem of sorting a signed permutation by reversals is inspired by a prob-
lem of genome rearrangement in computational biology. Genome rearrangements
such as reversals may change the order of the genes (or of other markers) in a
genome, and also the direction of transcription. We identify the genes with the
numbers 1, . . . , n, with a plus or minus sign to indicate such direction. Their
order will be represented by a signed permutation of {±1, . . . ,±n}, that is a
permutation π of {±1, . . . ,±n} such that π[−i] = −π[i], where π[i] denotes
the ith element in π. In the following, we indicate the sign of an element in a
permutation only when it is minus.

The reversal of the interval [i, j] ⊆ [1, n] (i < j) is the signed permutation ρ =
1, . . . , i,−j, . . . ,−(i + 1), j + 1, . . . , n. Note that πρ is the permutation obtained
from π by reversing the order and flipping the signs of the elements in the
interval. If ρ1, . . . , ρk is a sequence of reversals, we say that it sorts a permutation
π if πρ1 · · · ρk = Id (Id is the all positive identity permutation 1, . . . , n). We
denote by d(π) the number of reversals in a minimum size sequence sorting π.
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The problem of sorting by reversals has been the subject of an extensive
literature. For a complete survey, see [2]. The first polynomial algorithm was
given by Hannenhalli and Pevzner [4], and ran in O(n4). After many subsequent
improvements, the currently fastest algorithms are those of Kaplan, Shamir and
Tarjan [5] running in O(n2), a linear algorithm for computing d(π) only (it
does not give the sequence of reversals) by Bader, Moret and Yan [1], and an
O(n

√
n log n) random algorithm by Kaplan and Verbin [6] which gives most

of the time an optimal sequence of reversals, but fails on some permutations
with very high probability. A reversal ρ is said to be safe for a permutation π if
d(πρ) = d(π)−1. The bottleneck for all existing exact algorithms is the detection
of safe reversals. Many techniques were invented to address this problem, but
none has a better time complexity than linear, immediately implying a quadratic
complexity for the whole method. In a recent paper [7], Ozery-Flato and Shamir
compiled and compared the best algorithms, and wrote that: “A central question
in the study of genome rearrangements is whether one can obtain a subquadratic
algorithm for sorting by reversals”.

In this paper, we give a positive answer to Ozery-Flato and Shamir’s question.
A good knowledge of the Hannenhalli-Pevzner theory and of the data structure
used by Kaplan-Verbin is assumed.

In the next section, we briefly describe the usual tools (in particular the
omnipresent breakpoint graph) for dealing with permutations and reversals. We
mention some operations for sorting by reversals without giving any details (con-
cerning, for instance, hurdle detection and clearing for which linear methods
exist). The aim of this paper is to deal only with the most costly part of the
method, that is sorting a permutation without hurdles. We introduce a new
and elegant way of transforming the breakpoint graph of a permutation π by
applying reversals either on π or on its inverse permutation π−1. In section 3,
we describe the method to optimally sort by reversals. With any classical data
structure, the time complexity of this algorithm is O(n2), but even in this case
it presents a special interest because it bypasses the detection of safe reversals
which is considered as the most costly operation. Then in the last section, we
indicate the data structure used to achieve subquadratic time complexity.

2 Mathematical Tools

To simplify exposition, we require that the first and last elements of a permu-
tation remain unchanged. We therefore adopt the usual transformation which
consists in adding the elements 0 and n + 1 to {1, . . . , n}, with π[0] = 0, and
π[n+1] = n+1. The obtained permutation is called an augmented permutation.
In this paper, all permutations are augmented, and we omit to mention it from
now on. The inverse permutation π−1 of π is the (signed) permutation such that
ππ−1 = Id.

2.1 Breakpoint Graphs for a Permutation and Its Inverse
The breakpoint graph BG(π) of a permutation π is a graph with vertex set V
defined as follows: for each integer i in {1, . . . , n}, let ia (the arrival) and id
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(the departure) be two vertices in V ; add to V the two vertices 0d and (n + 1)a.
Observe that all vertex labels are non negative numbers. For simplicity and to
avoid having to use absolute values, we may later refer to vertex (−i)x (for x = a
or d). This will be the same as vertex ix. The edge set E of BG(π) is the union
of two perfect matchings denoted by R, the reality edges and D, the dream edges
(in the literature, reality and dream edges are sometimes called reality and desire
edges, or, in a more prosaic way, black and gray edges):

– R contains the edges (π[i])d(π[i + 1])a for all i ∈ {0, . . . , n};
– D contains an edge for all i ∈ {0, . . . , n}, from id if π−1[i] is positive, from

ia if π−1[i] is negative, to (i + 1)a if π−1[i + 1] is positive, and to (i + 1)d if
π−1[i + 1] is negative.

The reality edges define the permutation π (what you have), and the dream
edges define Id (what you want to have). Reality edges always go from a de-
parture to an arrival, but in dreams, everything can happen. An example of a
breakpoint graph for a permutation is given in Figure 1.

To avoid case checking, in the notation of an edge, the mention of departures
and arrivals may be omitted. For instance, i(i + 1) is a dream edge, indicating
nothing as concerns the signs of π−1[i] and π−1[i + 1].
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Fig. 1. The breakpoint graph of the permutation 0 − 4 − 6 3 7 2 − 5 1 8. The bold
edges are reality edges, and the thin ones are dream edges. The permutation should
be read clockwise from 0 to n + 1. This circular representation makes the cycles in the
graph more visible. The edges that cross in the drawing correspond to crossing edges
according to the definition.

A reality edge (π[i])d(π[i + 1])a is oriented if π[i] and π[i + 1] have opposite
signs, and unoriented otherwise. A dream edge i(i + 1) is oriented if π−1[i] and
π−1[i + 1] have opposite signs (that is, if the edge joins two departures or two
arrivals), and unoriented otherwise. In the example of Figure 1, (0, 4), (6, 3),
(2, 5) and (5, 1) are oriented reality edges, while (3, 4), (6, 7) are oriented dream
edges.

To every dream edge i(i + 1), we associate the interval [|π−1[i]|, |π−1[i + 1]|]
(or [|π−1[i + 1]|, |π−1[i]|] if |π−1[i]| > |π−1[i + 1]|). Two dream edges are said to
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cross if their associated intervals intersect but one is not contained in the other.
Only dream edges may cross in a breakpoint graph.

Dream and reality edges are trivially and uniquely decomposed into cycles
(the sets of both types of edges are perfect matchings of the vertices). By the
cycles of a permutation π, we mean the cycles of R ∪ D in BG(π). We call the
size of a cycle the number of dream edges it contains (it is half the usual length
of a cycle). Two cycles are said to cross if two of their edges cross.

A component C of BG(π) is an inclusionwise minimal subset of its cycles,
such that no cycle of C crosses a cycle outside C. A component is said to be
oriented if it contains a cycle with an oriented edge, and unoriented otherwise.
A hurdle is a special type of unoriented component. We do not define it more
precisely, since we deal only with permutations without unoriented components,
therefore without hurdles. See for example [5] for a complete description of what
a hurdle is, and how to cope with hurdles when there are some. In the example
of Figure 1, there is a single oriented component.

The following operation establishes the correspondence between dream and
reality in BG(π) and BG(π−1). Let (BG(π))−1 be the graph resulting from
applying the following transformations to BG(π):

– change each vertex label ia into id and id into ia whenever π−1[i] is negative;
– change each vertex label (π[i])a into ia, and (π[i])d into id;
– change dream into reality and reality into dream.

The result of such a transformation applied to the example of Figure 1 is
given in Figure 2.
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Fig. 2. A breakpoint graph and its inverse. The correspondence of the cycles in shown.

Lemma 1. (BG(π))−1 = BG(π−1).

Proof. By definition, (BG(π))−1 and BG(π−1) have the same vertex set. There
is a reality edge (π[i])d(π[i + 1])a in BG(π) for all i ∈ {0, . . . , n}. In (BG(π))−1,
it becomes a dream edge from id if π[i] is positive or from ia if π[i] is negative, to
(i+1)d if π[i+1] is positive or to (i+1)a if π[i+1] is negative. This corresponds
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exactly to the definition of a dream edge of BG(π−1). Furthermore, there is a
dream edge i(i + 1) in BG(π) for all i ∈ {0, . . . , n}. In (BG(π))−1, it becomes a
reality edge from (π−1[i])d to (π−1[i + 1])a.

Therefore, (BG(π))−1 and BG(π−1) have the same sets of dream and reality
edges. &'

Observe that as a consequence, a cycle of π is also a cycle of π−1.

2.2 Sorting Simple Permutations

A simple permutation is a permutation whose breakpoint graph contains only
cycles of size 1 and 2 (called 1-cycles and 2-cycles). When dealing with simple
permutations, we use “cycle” to mean 2-cycle, and “adjacency” to mean 1-cycle.
Simple permutations are worth studying because of the following result.

Lemma 2. [4] For any permutation π, there is a simple permutation π′ such
that d(π) = d(π′), and it is possible to deduce an optimal solution S for sorting
π from any optimal solution S′ for sorting π′. Transformations from π to π′,
and from S′ to S are achievable in linear time.

Let π be a simple permutation. The number of (2-)cycles is denoted by c(π).
By Lemma 1, c(π) = c(π−1). The following is an easy but useful remark.

Lemma 3. For any reversal ρ, ρ = ρ−1, and if πρ1 · · · ρk = Id, where ρ1, . . . , ρk

are reversals, then π−1 = ρ1 · · · ρk, π−1ρk · · · ρ1 = Id, and ρ1 · · · ρkπ = Id.

Hannenhalli and Pevzner [4] proved the following fundamental result, which
is the basis of the theory for sorting by reversals. We restrict ourselves to permu-
tations without unoriented components, because the best algorithms all begin
with a procedure to clear unoriented components in linear time, and we have
nothing to add to this procedure. Therefore, we suppose unoriented components
have already been cleared.

Lemma 4. [4] If π is a simple permutation without unoriented components,
d(π) = c(π).

This means that any optimal solution has to decrease the number of cycles
by one at each step. The effect of the reversal of an interval [i, j] on a breakpoint
graph is to delete the two reality edges π[i]π[i + 1] and π[j]π[j + 1], and to
replace them by two new reality edges π[i](−π[j]) and (−π[i + 1])π[j + 1]. The
only way to decrease the number of cycles is to apply an inversion on the two
reality edges of a unique cycle, and to replace them by two edges parallel to the
two dream edges of the cycle, thus creating two adjacencies. In consequence, any
reversal of an optimal sequence is associated with a cycle (the one it breaks).
The set of reversals of any optimal sequence is therefore in bijection with the set
of cycles of π. In the sequel, we use the same notation for reversals and cycles
of π. For instance, we consider the permutation πρ, for ρ a cycle of π. This
means that if the two reality edges of ρ are π[i]π[i + 1] and π[j]π[j + 1], then
the associated reversal ρ is the reversal of the interval [i, j]. We see in the next
section the conditions for a reversal associated with a cycle to effectively create
two adjacencies.
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2.3 Contraction and Removal of Cycles

In what follows, permutations are always considered to be both without unori-
ented components and simple (the appropriate linear time tranformations are
described in [3–5, 7]). Two edges are said to have the same orientation if they
are both oriented or both unoriented.

Lemma 5. In any cycle of a permutation, the two dream edges have the same
orientation, and the two reality edges have the same orientation.

Proof. Suppose two dream edges e, f of a same cycle had a different orientation,
say e joins two departures, and f joins a departure and an arrival. The cycle
would therefore have three departures and one arrival, which is impossible since
reality edges always join one departure and one arrival. All the similar and dual
cases are treated in the same way. &'

A cycle is said to be contractible if its dream edges are oriented. In the
example of Figure 1, cycle D is contractible as both (3, 4) and (6, 7) are oriented
dream edges.

A cycle is said to be removable if its reality edges are oriented. In the example
of Figure 1, cycles A and C are removable because, respectively, (0, 4) and (5, 1),
(6, 3) and (2, 5), are oriented reality edges. Cycle B is neither removable nor
contractible as none of its edges is oriented.

It is straightforward from the definitions and from Lemma 1 that a cycle ρ is
removable in π if and only if it is contractible in π−1. Indeed, if a reality edge is
oriented in BG(π), it becomes an oriented dream edge in BG(π)−1 = BG(π−1),
and vice-versa. The following lemma is another important result in the theory
of sorting by reversals.

Lemma 6. [4] A cycle ρ of π is contractible if and only if c(πρ) = c(π) − 1.

Observe that this does not mean that d(πρ) = d(π)−1, because πρ may have
unoriented components, and in this lies all the difficulty of sorting by reversals.
From this and from Lemmas 1 and 3, we deduce immediately:

Lemma 7. A cycle ρ of π is removable if and only if c(ρπ) = c(π) − 1.

Let ρ be a cycle of π, with reality edges (π[i])d(π[i+1])a and (π[j])d(π[j+1])a

(suppose i < j). Let BG(π)/ρ be the graph obtained from BG(π) by:

1. deleting the two reality edges of ρ, and replacing them by two edges parallel
to the two dream edges of ρ;

2. changing the vertex label (π[r])a into (π[r])d and the vertex label (π[r])d

into (π[r])a for every r ∈ [i + 1, j].

We call this operation the contraction of ρ in BG(π).

Lemma 8. [4] If a cycle ρ of a permutation π is contractible, then BG(π)/ρ =
BG(πρ).
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It is possible to write a similar “dual” lemma for removability. Let BG(π)\ρ =
(BG(π)−1/ρ)−1. We call this operation the removal of ρ in BG(π). It is clear
that it consists in deleting the two dream edges of ρ, replacing them by two
edges parallel to the two reality edges of ρ (thus obtaining two adjacencies), and
changing the labels r of the vertices for every r ∈ [|π[i + 1]|, |π[j]|].

Lemma 9. If a cycle ρ of a permutation π is removable, then BG(π) \ ρ =
BG(ρπ).

The proof is straightforward from the previous Lemma together with Lem-
ma 1. Contracting a contractible cycle in a breakpoint graph corresponds there-
fore exactly to applying the corresponding reversal to the permutation. In a sim-
ilar way, removing a removable cycle corresponds to applying the corresponding
reversal to the inverse of the permutation. In other words, contracting a cycle is
changing the reality to make it closer to your dreams, and removing a cycle is
changing your dreams to make them closer to the reality.
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Fig. 3. Removal of a cycle in the permutation of Figure 2, and contraction of the same
cycle in the inverse permutation.

The following facts about contraction and removal can easily be verified.

Lemma 10. Let ρ, ρ′ be two distinct cycles in π. If ρ is contractible, then ρ′ is
removable in π if and only if it is removable in πρ. Conversely, if ρ is removable,
ρ′ is contractible in π if and only if it is contractible in ρπ. Moreover, if ρ is
removable in π, then two edges distinct from the edges of ρ cross in π if and only
if they cross in ρπ.

Proof. Let (π[r])d(π[r + 1])a be a reality edge of ρ′ in π. If r is in the interval of
the reversal ρ, then (π[r + 1])d(π[r])a is a reality edge in πρ, and both π[r] and
π[r + 1] changed sign. Otherwise, (π[r])d(π[r + 1])a is still a reality edge in πρ,
and π[r] and π[r +1] have same sign. In both cases, the edge preserves the same
orientation. Consequently, ρ′ is removable in π if and only if it is removable in
πρ. The dual statement is deducible from Lemmas 1 and 9.

Finally, we prove the last statement: let i(i + 1) and j(j + 1) (suppose
|π−1[i]| < |π−1[j]|) be two dream edges of π. Let i′(i′ + 1) and j′(j′ + 1) be
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the same dream edges in ρπ, that is after the deletion of the cycle ρ in π (labels
of the vertices may have changed). The edge i(i + 1) corresponds to the real-
ity edge π−1[i]π−1[i + 1], and the edge i′(i′ + 1) corresponds to the reality edge
(ρπ)−1[i′](ρπ)−1[i′+1] = π−1ρ[i′]π−1ρ[i′+1]. However, the numbers of the labels
of the vertices do not change when contracting a cycle (see Lemma 8), therefore
we have that |π−1ρ[i′]| = |π−1[i]| and |π−1ρ[i′ + 1]| = |π−1[i + 1]|. The same
applies with j. This means that |π−1[i]| < |π−1[j]| < |π−1[i + 1]| < |π−1[j + 1]|
if and only if |(ρπ)−1(i′)| < |(ρπ)−1(j′)| < |(ρπ)−1(i′ + 1)| < |(ρπ)−1(j′ + 1)|,
which proves that the dream edges cross in ρπ if and only if they cross in π. &'

3 Constructing the Sequence of Reversals

We can sort each oriented component of π separately (again, see [4]). We there-
fore suppose without loss of generality that there is only one component in
BG(π). We call a valid sequence of a permutation π an ordering of a subset of
its 2-cycles ρ1, . . . , ρk, such that for all i ∈ {1, . . . , k}, ρi is a removable cycle of
ρi−1 . . . ρ1π. In other words, ρ1, . . . , ρk is valid if c(ρk · · · ρ1π) = c(π) − k.

A valid sequence is said to be maximal if no cycle of ρk · · · ρ1π is removable.
It is total if k = c(π), that is if ρk · · · ρ1π = Id.

The algorithm for sorting a simple permutation is the following:

1. compute a maximal valid sequence of π;
2. increase the size of the sequence by adding some cycles inside it while it is

not total.

Observe that the above algorithm constructs a sequence of removable instead
of contractible cycles. The latter would seem to be a more direct way of doing
the same thing. It is probably possible to do so by directly contracting instead
of removing cycles (that is, by sorting π instead of π−1). However, we believe
the proofs are much easier in this case because the structure of the breakpoint
graph is much more stable after a removal than after a contraction.

The first step of the algorithm consists in simply detecting removable cycles
and removing them while there exist removable cycles in the result. We now
concentrate on the second step, which consists in, given a maximal valid sequence
ρ1, . . . , ρk, adding some cycles to it.

We prove the following result:

Theorem 1. If S is a maximal but not a total valid sequence of reversals for
a permutation π, there is a nonempty sequence S′ of reversals such that S may
be split into two parts S = S1, S2, and S1, S′, S2 is a maximal valid sequence of
reversals for π.

Proof. Let S = ρ1, . . . , ρk be a maximal valid sequence of π. Let C be the set of
cycles of the permutation ρk · · · ρ1π (it is composed of all the cycles of π minus
the cycles in S). The set C is a union of unoriented components (all reality edges
are unoriented else there would remain a removable cycle, therefore all have
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same orientation making all dream edges unoriented). Since there is only one
component in BG(π), one cycle of S has to cross one cycle of C. Choose such a
cycle ρl in S, such that l is maximum for this property. Let S1 = ρ1, . . . , ρl−1 and
S2 = ρl, . . . , ρk. These will be the way of splitting S in two, as described in the
theorem. Let π1 = ρl−1 · · · ρ1π (this is the permutation obtained by removing
the cycles of S1 in π).

We first prove some lemmas.

Lemma 11. At least one cycle of each component of C crossed by ρl is removable
in π1.

Proof. Since a removal does not change the orientation of the dream edges
(Lemma 10), and C is unoriented in ρk · · · ρ1π, no cycle of C is contractible
in π or in π1. Let ρ be a cycle of C intersecting ρl in π1. Let π1[j]π1[j′] (j < j′)
be a dream edge of ρ crossing ρl. Choose a reality edge π1[i]π1[i + 1] of ρl such
that j < i and j′ > i + 1. Since π1[j]π1[j′] is unoriented, π1[j] and π1[j′] have
the same sign. Since ρl is removable in π1, the reality edge π1[i]π1[i + 1] is
oriented and π1[i] and π1[i + 1] have opposite signs. Among the reality edges
(π1[r])d(π1[r + 1])a for r ∈ [j, j′], there is therefore a positive even number of
oriented ones (there has to be an even number of changes of sign, and at least
one between i and i + 1). Thus at least one removable cycle distinct from ρl has
to cross ρ. By the maximality of l, this cycle is in C. &'

Let S′ = ρ′1, . . . , ρ
′
p be a valid sequence of cycles of C in π1, such that C \

{ρ′1 . . . ρ′p} contains no removable cycle in ρ′p . . . ρ′1π1.

Lemma 12. The cycle ρl is removable in ρ′p · · · ρ′1π1.

Proof. Let π′ = ρ′p−1 · · · ρ′1π1. Let π′[i]π′[i+1] and π′[j]π′[j+1] be the two reality
edges of ρ′p in π′. Let M be the number chosen among π′[i], π′[i+1], π′[j], π′[j+1]
with highest absolute value, and m be the number with lowest absolute value.
Since ρ′p is removable in π′, π′[i] and π′[i + 1] have opposite signs, and π′[j] and
π′[j + 1] also have opposite signs. Recall that no cycle of C is contractible in π,
so none is in π′, from Lemma 10. Then the two dream edges π′[i]π′[j + 1] and
π′[j]π′[i+1] of ρ′p are unoriented. In consequence π′[i] and π′[j+1] have the same
sign, and π′[j] and π′[i+1] also have the same sign. Note that π′[j+1] = π′[i]+1
and π′[i + 1] = π′[j] + 1, so M and m cannot be adjacent in the graph, and
they have opposite signs. Now remove cycle ρ′p from π′. Removing a cycle is
deleting the dream edges and replacing them by two edges parallel to the reality
edges, and changing the labels of the vertices of the graph whose absolute values
are between |m| and |M |, excluding m and M themselves (see Lemma 9). In
the obtained graph, both M and m participate in two adjacencies, and they
have opposite signs. In consequence, there is an odd number of changes of signs
between M and m, therefore an odd number of oriented reality edges. Since
oriented reality edges belong to a removable 2-cycle (they only go by pairs), at
least one of these 2-cycles crosses ρ′p in π′. Since there is no removable cycle of
C in ρ′pπ

′ (by hypothesis), and ρl is the only cycle outside C that may cross a
cycle of C, this removable cycle is ρl. &'
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Lemma 13. The sequence S1, S′, S2 is a valid sequence of π.

Proof. We already know that ρ1, . . . , ρl−1, ρ′1, . . . , ρ
′
p, ρl is a valid sequence, by

Lemma 12. Let now π1 = ρl · · · ρ1π, and π2 = ρlρ′p · · · ρ′1ρl−1 . . . ρ1π. Let D1 be
the component of BG(π1) induced by the cycles ρl+1, . . . , ρk in π1. Since each
component of a breakpoint graph may be sorted separately, we can say that
ρl+1, . . . , ρk is a total valid sequence for D1. Let now D2 be the component of
BG(π1) induced by the cycles ρl+1, . . . , ρk in π2. A cycle ρi is contractible in
D1 if and only if it is contractible in D2, and two cycles cross in D1 if and only
if they cross in D2 (they differ only by some removals, which do not change
contractibility, nor “crossingness”). Then ρl+1, . . . , ρk is a total valid sequence
for D2. Finally, ρ1, . . . , ρl−1, ρ′1, . . . , ρ

′
p, ρl, . . . , ρk is valid in π. &'

This concludes the proof of Theorem 1 because we have a valid sequence
S1, S′, S2, and S′ is non empty (see Lemma 11). &'

In the example of Figure 1, with the labels of the cycles as indicated in
Figure 2, the algorithm may work as follows: cycle C is removed, then cycle
D. The sequence C, D is maximal since A and B are not removable in DCπ.
It is not total, so we must find the last cycle in the ordered sequence {C, D}
which crosses a cycle in {A, B}. This is cycle C which crosses B (C is thus ρl,
S1 = ∅ and S2 = {C, D}). In BG(π) \ {C, D}, only A is removable in π. We
therefore remove A. This makes B removable and we remove it. There are no
more removable cycles in BG(π) \ {C, D} (indeed, there are no more cycles), so
A, B, C, D is a total valid sequence and DCBAπ = Id.

Observe that in the case of this example, by working directly on π−1, it is
easy to find that D, C, B, A is a total valid sequence.

4 Complexity

With a classical data structure, applying a reversal and picking a contractible (or
removable) cycle is achievable in linear time. As a consequence, any algorithm
that has to apply a reversal at each step, even bypassing the search for a safe
reversal, will run in O(n2). This is the case for our algorithm. In practice, even
an O(n2) implementation should be an improvement on the existing algorithms.
For small permutations, such quadratic implementation is even probably better
than the use of another data structure. However, it is an important mathematical
question whether sorting a signed permutation by reversals can be done in a
theoretical subquadratic time complexity. We therefore use a more sophisticated
implementation to make it run exactly in O(n

√
n log n).

In 2003, Kaplan and Verbin [6] invented a clever data structure which allows
to pick a contractible reversal and apply it in sublinear time. We use the same
data structure, just adding some flags in order to be able to perform all the
additional operations we need. Furthermore, we use the structure to represent
the permutation π−1 instead of π. Indeed, we are looking for removable cycles
in π, that is for contractible ones in π−1. As in [6], we split the permutation into
blocks of size O(

√
n log n). We assign a flag to each block, turned “on” if the
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block should be read in the reverse order, changing the sign of the elements. We
also add to each block a balanced binary tree (such as a splay tree for instance),
where the elements of the blocks are stored in the nodes, sorted by increasing
position of their successor in π−1. This means that π−1[i] is before π−1[j] if
π(π−1[i] + 1) < π(π−1[j] + 1). Each node of the tree corresponds to a dream
edge of π−1 (each 2-cycle is represented by two nodes). Each node keeps the
information on the orientation of the associated dream edge (that is, on the
contractibility and therefore also on the removability in π of the cycle in which
the edge participates), and a “running total” storing the number of oriented
edges in the subtree.

Up to this point, we have described exactly the data structure of Kaplan and
Verbin. We now add some flags and numbers to the nodes of the trees in order
to perform our own queries. Let C be a subset of the 2-cycles of π−1. At the
beginning, C is all the 2-cycles in BG(π). To each node, a new flag is added,
turned “on” if the corresponding edge is in a cycle of C, and a “running total”
stores the number of oriented edges that belong to C in the subtree. Figure 4
gives a representation of the data structure applied to the inverse permutation
of Figure 2 (right side), split in two blocks. Observe that we do not need to know
the number of all oriented edges, only of those which are in C.
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Fig. 4. The data structure for the permutation of Figure 2 (right side) at the beginning
of the algorithm (all edges are in C), if the permutation is split into two blocks.

In this way, the following queries are achievable in the same way, and same
complexity, as in [6].

Lemma 14. [6] It is possible to know in constant time whether there is a re-
movable cycle in π, and to pick one such cycle in time O(log n).
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With the additional flags, and proceeding exactly in the same way, we have
that:

Lemma 15. It is possible to know in constant time whether there is a removable
cycle of π in C, and if there is any, to pick one such cycle in time O(log n).

Lemma 16. It is possible to contract a cycle and maintain the data structure
in time O(

√
n log n).

Proof. All we have to maintain as information besides what was done in [6] is
whether an edge is in C. In order to do this, we just need to remove an edge from
C when it is contracted and then to update the running totals. The number of
elements of C is thus decreased by one in all the blocks containing the contracted
cycle, and we calculate the difference between the number of elements in C and
the former number of contractible cycles in C at each flipped block. &'

Figure 5 represents the data structure at a later step in the algorithm. As
described before, the algorithm picks cycles C and D, removes them, and since
there is no other removable cycle, replaces them. The result of this is shown in
the figure.
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Fig. 5. The data structure for the permutation of Figure 2 (right side) at a later step
of the algorithm, when cycles C and D have been removed, and then replaced (but
remain removed from C).

Theorem 2. There exists an algorithm which finds a total sorting sequence in
time O(n

√
n log n).

Proof. We first find a maximal valid sequence ρ1, . . . , ρk. This takes O(k
√

n logn)
time. If the sequence is total, we are done. Otherwise, we are left with a set C
of unremoved cycles.
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We must then identify ρl in the sequence such that there is a removable
cycle in C in ρl−1 . . . ρ1π, with l maximum for this property. This can be done
by putting back (applying the reversals again) one by one the removed cycles
ρk, . . . , ρl, checking at each step (in constant time) if there is a removable cycle
in C, and stopping as soon as one is found. This is achievable in time O((k −
l)
√

n log n). The sequence ρk, . . . , ρl is a sequence of safe contractible reversals
for π−1, and is fixed once for ever. It will represent the last reversals of the final
sequence. It is not modified nor looked at anymore in the algorithm, and this
allows to maintain the complexity.

We then have to remove, while there are any, removable cycles in C. This leads
to the sequence ρk+1, . . . , ρk′ which we insert after the sequence ρ1, . . . , ρl−1,
while at the same time deleting it from C in the same way we have already seen.
If ρ1, . . . , ρl−1, ρk+1, . . . , ρk′ , ρl, . . . , ρk is total, we are done. Otherwise, we start
again replacing the removed cycles one by one in the reverse order but starting
this from k′ (the sequence ρl, . . . , ρk is not touched anymore). We do so until
there is a removable cycle in the new C, and start again while C is not empty.

Each cycle in the sequence is removed once, and replaced at most once in the
whole procedure. The total complexity is then O(n

√
n logn). &'

The remaining bottleneck of the new algorithm is now the complexity at each
step of applying a reversal to a permutation and of keeping the set of contractible
or removable cycles. This is what has to be improved in the future if one wishes
to obtain a lower theoretical complexity for sorting a signed permutation by
reversals.
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