
Discrete Applied Mathematics 155 (2007) 881–888
www.elsevier.com/locate/dam

Advances on sorting by reversals

Eric Tanniera, Anne Bergeronb, Marie-France Sagota

aINRIA Rhône-Alpes, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard, 69622 Villeurbanne cedex, France
bLaboratoire de combinatoire et d’informatique mathématique, Université du Québec à Montréal, Canada

Received 13 July 2004; received in revised form 1 February 2005; accepted 17 February 2005
Available online 17 October 2006

Abstract

The problem of sorting signed permutations by reversals is inspired by genome rearrangement problems in computational molecular
biology. Given two genomes represented as signed permutations of the same elements (e.g. orthologous genes), the problem consists
in finding a most parsimonious scenario of reversals that transforms one genome into the other. Following the first polynomial
solution of this problem, several improvements, simplifications, generalizations, tutorials or surveys have been published on the
subject. While the reversal distance problem—i.e. the problem of computing the minimum number of reversals in a sorting sequence,
without giving the sequence itself—seems to be well explored, the problem of giving a scenario realizing the distance still raises
some open questions, one of which by Ozery-Flato and Shamir about whether an algorithm with subquadratic time complexity could
ever be achieved for solving the problem. We give a positive answer to this question by describing an algorithm of time complexity
O(n3/2√log n).
© 2006 Elsevier B.V. All rights reserved.

Keywords: Reversal sorting; Genome rearrangement; Computational biology

1. Introduction

The problem of sorting a permutation by reversals is inspired and motivated by comparative genomics. Given two
or more ordered sets of genes, or other markers on a genome, biologists use methods that solve this problem to estimate
an evolutionary distance (number of global mutation events) between genomes, to infer the localization of evolutionary
breakpoints along a DNA molecule, or to reconstruct ancestral genomes.

Genome rearrangements such as reversals may change the order of the genes in a genome, and also the direction of
transcription. We identify the genes with the integers 1, . . . , n, with a plus or minus sign to indicate their direction. The
order and direction of genomic markers will be represented by a signed permutation of {1, . . . , n}, that is a bijective
function � over [−n, n]\{0} such that �−i =−�i , where �i = �(i).

To simplify exposition, we adopt the usual extension which consists in adding �0 = 0, and �n+1 = n + 1 to the
permutation. We usually denote a signed permutation by simply writing (0 �1 . . . �n n+1). The identity permutation
(0 1 . . . n+ 1) is denoted by Id. The inverse permutation �−1 of � is the (signed) permutation such that � · �−1 = Id.

The reversal of the interval [i, j] ⊆ [1, n] (i�j) is the signed permutation �i,j = (0 . . . i − 1 − j . . . − i j +
1 . . . n+ 1). Note that � · �i,j is the permutation obtained from � by reversing the order and flipping the signs of the

E-mail addresses: Eric.Tannier@inria.fr (E. Tannier), bergeron.anne@uqam.ca (A. Bergeron), Marie-France.Sagot@inria.fr (M.-F. Sagot).

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.02.033

http://www.elsevier.com/locate/dam
mailto:Eric.Tannier@inria.fr
mailto:bergeron.anne@uqam.ca
mailto:Marie-France.Sagot@inria.fr

882 E. Tannier et al. / Discrete Applied Mathematics 155 (2007) 881–888

elements in the interval [i, j]:
� · �i,j = (�0 . . . �i−1 − �j . . . − �i �j+1 . . . �n+1).

If �1, . . . , �k is a sequence of reversals, we say that it sorts a permutation � if � ·�1 · · · �k= Id. The length of a smallest
sequence of reversals that sorts � is called the reversal distance of �, and is denoted by d(�).

The problem of sorting by reversals has been the subject of an extensive literature. For an introduction and a general
survey—oriented more specifically towards the distance computation problem—see [3]. The first polynomial algorithm
was given by Hannenhalli and Pevzner [4], and took O(n4) time to give a sequence of reversals that optimally sorts
a signed permutation. After many subsequent improvements on the running time, the currently fastest algorithms are
those of Kaplan et al. [5], and another by Berman and Hannenhalli [2], both running in O(n2). Bader et al. [1] designed
a linear time algorithm for computing d(�), without giving the sequence of reversals. Noting that the most costly part
of the algorithms that give a sequence is to check for very unfrequent configurations, Kaplan and Verbin [6] presented a
random algorithm which runs in O(n3/2√log n), and gives, most of the time, an optimal sequence of reversals, but fails
with very high probability on some precise permutations. In a recent paper [7], Ozery-Flato and Shamir compiled and
compared the best algorithms, and wrote that: “A central question in the study of genome rearrangements is whether
one can obtain a subquadratic algorithm for sorting by reversals”.

In this paper, we give a positive answer to Ozery-Flato and Shamir’s question. Inspired by the relations between the
classical approaches [2,4,5], the data structure given in [6], and some remarks we first made in [9], we describe how it
is possible to bypass the usual costly tests and give an optimal solution in time O(n3/2√log n).

Sorting a signed permutation � by reversals involves two successive procedures on what is called the overlap graph
of �. The first one consists in transforming the overlap graph such that all its connected components become oriented.
This can be done in linear time [1,3]. The computational bottleneck of the sorting by reversals problem occurs in the
second procedure: sorting the oriented components. This paper addresses this problem.

In the next section, we define overlap graphs and basic operations on them. We next state, in a graph theoretical
framework, a theorem by Hannenhalli and Pevzner that is the cornerstone of all sorting strategies. In Section 3, we give
a new proof of this theorem that yields a constructive algorithm to sort oriented components without testing beforehand
the safety of a reversal. However, with any classical data structure, such as vector arrays to represent permutations, the
time complexity of this new algorithm is still O(n2), even if this bound is achieved much more naturally. In Section 4,
we show that the data structure introduced in [6] can be adapted to achieve an overall subquadratic time complexity.

2. Ingredients

2.1. The overlap graph of a permutation

Let � be a signed permutation on {0, . . . , n + 1}. For each integer i ∈ {0, . . . , n}, the pair �i�i+1 is called an
adjacency if �i + 1 = �i+1, and a breakpoint otherwise. To each �i , i ∈ {0, . . . , n + 1}, are associated two points,
named �−i and �+i , except for 0 and n + 1, for which we define only the points 0+ and (n + 1)−. These points are
ordered in the following way: �−i < �+i if �i is non negative, and �+i < �−i otherwise, and �x

i < �y
j whenever i < j for

any combination of x, y ∈ {+,−}.
If i ∈ {0, . . . , n}, vi will denote an arc between the points �+i and �−i+1. Thus, there are n+ 1 arcs and each point is

the endpoint of a unique arc. Such arcs will be referred to as the arcs of �. Two arcs are said to overlap if the intervals
they span (that is the set of points between the endpoints in the given order) intersect but none is contained in the other.
Note that any arc v naturally induces a reversal �(v) = �i,j : [i, j] contains all the numbers k such that k+ and k−
are between the endpoints of v. The arc vi is said to be oriented if �i and �i+1 have different signs, and unoriented
otherwise.

The overlap graph OV(�) of a permutation � is the graph whose vertices are the n + 1 arcs vi of �, and in which
there is an edge between vertices vi and vj if they overlap. The overlap graph of a permutation has thus oriented and
unoriented vertices. Isolated vertices are unoriented, and correspond to adjacencies of the permutation.

A component of � is a connected component of OV(�). It is oriented if one of its vertices is oriented, and unoriented
otherwise. For simplicity, when we speak of unoriented components of graphs or permutations, we exclude isolated
vertices (they correspond to adjacencies of the permutation).

An example of overlap graph is given in Fig. 1. In this example, there is a unique component, which is oriented.

E. Tannier et al. / Discrete Applied Mathematics 155 (2007) 881–888 883

0 13 6 5 −2 74
7−0+ 3+3− 6− 2+ 4+5−6+ 4−5+ 2−

v2

v3

v4v5

v6

v0

v1

1+1−

Fig. 1. The permutation (0 3 1 6 5 − 2 4 7), with associated points and arcs; the overlap graph of the permutation, in which oriented vertices are
filled in black, and unoriented ones in white.

0 13 −6 7−5 42
7−0+ 3+3− 6−2+ 4+5− 6+ 4−5+2−1+1−

v2

v3

v4
v5

v6

v0

v1

Fig. 2. The reversal �(v1) = �3,5 in permutation (0 3 1 6 5 − 2 4 7) of Fig. 1, and the corresponding local complementation of vertex v1 in the
overlap graph.

A graph with oriented and unoriented vertices is not necessarily the overlap graph of a permutation. However, the
graph theoretical definitions and results of the next section are general, and will hold in particular for overlap graphs
of permutations.

2.2. The local complementation of a graph

Let G be a graph whose vertices are labelled as oriented or unoriented. If V is a subset of the vertices of G, the
subgraph induced by V is the graph with vertex set V , with an edge between two vertices if and only if it is an edge
of G.

The local complementation of the subgraph induced by V is the operation which consists in adding an edge between
x, y ∈ V if there is no edge x, y ∈ G, deleting x, y if there is an edge x, y in G, and changing the orientation of all
vertices in V .

Given a vertex v, we denote by �(v) the neighbourhood of v, that is, the set of vertices adjacent to v, and �+(v)=
�(v) ∪ {v} the closed neighbourhood of v.

If v is an oriented vertex, we denote by G/v the result of the local complementation of �+(v), which we simply call
the local complementation of v. Note that in G/v, v is unoriented and isolated. An example of local complementation
is given in Fig. 2.

884 E. Tannier et al. / Discrete Applied Mathematics 155 (2007) 881–888

The relation between sorting by reversals and local complementation is given by the following lemma (see [4,5]).

Lemma 1. For a permutation �, and an oriented vertex v of the overlap graph, OV(� · �(v))= OV(�)/v.

2.3. The theorem of Hannenhalli and Pevzner

We finish this section by stating a version of Hannenhalli and Pevzner’s theorem [4], which is the basis of the sorting
by reversals theory. We split the result into two because we give an alternate proof of the first part of the theorem along
the lines of this paper, and we restrict the result to permutations without unoriented component.

Theorem 1 (Hannenhalli and Pevzner [4]). If G is a graph without unoriented component, then there exists an oriented
vertex v such that G/v has no unoriented component.

An oriented vertex v in G such that there is no unoriented component in G/v, is called safe. The relation to sorting
by reversals is given by the following:

Theorem 2 (Hannenhalli and Pevzner [4]). If v is a safe vertex of the overlap graph of a permutation �, then d(� ·
�(v))= d(�)− 1.

Theorem 2 means that, in order to sort a permutation � whose unoriented components have been cleared, we just
have to find a safe vertex at each step, and we know that it exists from Theorem 1. This may be achieved by choosing
an oriented vertex, applying the local complementation, and testing if there is an unoriented component in the resulting
graph; if there is one, we undo the local complementation, and try another oriented vertex. This yields an O(n3)

algorithm, and was the principle of Hannenhalli and Pevzner’s one. Faster techniques have been discovered, surveyed
in [7], to find a safe vertex in linear time, providing O(n2) algorithms. Our method consists in bypassing the safety test
of oriented vertices, and making some repairs later if a vertex chosen at some point was not safe. This further decreases
the complexity.

3. New recipe

We provide a new proof of Theorem 1, with a slight detour. We use a graph theoretical proof, because the result holds
for general graphs with oriented and unoriented vertices, and we apply it in the next section to the particular case of
overlap graphs of permutations.

We proceed by constructing a sequence of vertices of a graph, such that at each step, the vertex we select is oriented,
and after the last step, the graph has only unoriented isolated vertices. The local complementation always acts on a
single component, so each component is treated separately, and we may suppose, without loss of generality, that the
graph has only one component.

Let G be a graph with n vertices. A sequence of oriented vertices for G is a sequence v1, . . . , vk , such that for all
i ∈ {1, . . . , k}, vi is an oriented vertex in G/v1/ . . . /vi−1.

A sequence of oriented vertices is said to be maximal if no vertex of G/v1/ . . . /vk is oriented. It is total if it is maximal
and every vertex of G/v1/ . . . /vk is isolated. We prove that there always exists a total sequence in any connected graph
with at least one oriented vertex. This is equivalent to Theorem 1.

3.1. The main step

The algorithm for constructing a total sequence is based on a technique that, given a maximal but not total sequence
of reversals, increases the length of the sequence by adding some vertices, not at the end since it is not possible by
definition, but within the sequence.

Theorem 3. If S is a maximal but not a total sequence of oriented vertices for a graph G with a unique oriented
component, then there exists a nonempty sequence S′ of vertices of G such that S may be split into two parts S=S1, S2,
and S1, S

′, S2 is a sequence of oriented vertices for G.

E. Tannier et al. / Discrete Applied Mathematics 155 (2007) 881–888 885

U

O

vl

w1

L

w2

w2

Fig. 3. An example of the decomposition of the graph G1, with two possible choices of w2. Oriented vertices are filled in black, and unoriented ones
in white. The subgraph induced by O is the same after the complementation of vl as the one obtained after the complementation of w1, w2, vl .

Proof. Let S = v1, . . . , vk be a maximal sequence of oriented vertices of G. Let U be the set of nonisolated vertices in
G/v1/ . . . /vk . The vertices of U all belong to unoriented components of G/v1/ . . . /vk . Since by hypothesis there is
only one component in G, there is a vertex vl in the sequence, such that all vertices of U are in unoriented components
in G/v1/ . . . /vl , but not in G/v1/ . . . /vl−1. Let S1=v1, . . . , vl−1 and S2=vl, . . . , vk . This will be the way of splitting
S in two, as described in the statement of the theorem. We will show that it is always possible to apply two local
complementations to vertices of U, and that S2 is a sequence of oriented vertices in the resulting graph.

Let G1 = G/v1/ . . . /vl−1. Let O be the set of vertices in oriented components of G1/vl , and L be the subset of
vertices of O adjacent to vl in G1. In G1, the following properties are straightforward consequences of the definition
of local complementation, and are illustrated by Fig. 3.

(1) A vertex of U is oriented if and only if it is adjacent to vl .
(2) There are all possible edges between �(vl) ∩ U and L.
(3) There is no edge between vertices of U\�(vl) and the vertices outside U, and there is no edge between vertices of

O\L and the vertices outside O.

There is at least one vertex w1 in �(vl) ∩ U such that �+(vl) �= �+(w1): if not, then the local complementation of
any oriented vertex in U has the same effect than the local complementation of vl , and in G1/vl , all vertices of �(vl)

are isolated, thus not in U; this contradicts the definition of vl .
Thus, there exists w2 ∈ U , either in �+(vl)\�+(w1), or in �+(w1)\�+(vl).
In G1/w1, vl is unoriented and adjacent to w2, and w2 is oriented. The properties (1)–(3) still hold (note that �(vl)

changes but the set of vertices L is invariant), vl has no neighbour in O and the subgraph induced by L is the complement
of what it is in G1.

In G1/w1/w2, properties (1)–(3) still hold, vl is oriented, and the subgraph induced by L is complemented again, so
it is identical in G1/w1/w2 to what it is in G1; therefore the subgraph induced by O is also identical in G1/w1/w2 to
what it is in G1, and S2 is a sequence of oriented vertices in G1/w1/w2, since it is one in G1.

Then S1, w1, w2, S2 is a sequence of oriented vertices of G, and this concludes the proof. �

3.2. The algorithm

Theorem 3 and its proof provides a way to construct a total sequence of oriented vertices, by constructing a maximal
sequence, and then augmenting it until it is total. This yields an algorithm of time complexity O(n2) for arbitrary graphs.
For graphs that are overlap graphs of signed permutations, it will be possible to reduce this complexity.

We therefore return to permutations, and we first write the algorithm to sort a permutation efficiently. It relies on
Theorem 3 and its proof, but does not need an explicit representation of the overlap graph, that can have O(n2) edges.

886 E. Tannier et al. / Discrete Applied Mathematics 155 (2007) 881–888

1

23

0

0 -3 1 2 4

1

23

0

0 -1 3 2 4

1

23

0

1

23

01

23

0

0 -3 -2 -1 4

Step 1: S1 = 0 S2 = empty Step 2: S1 = empty S2 = 0

Step 3: S1 = 1 S2 = 0 Step 4: S1 = 1,2 S2 = 0

Step 0: S1 = empty S2 = empty

Last step: Solution = 1,2,0

1

23

0

0 −1 3 2 4

0 1 2 3 4

0 1 3 2 4

Fig. 4. The trace of the algorithm on the permutation (0 − 1 3 2 4). The overlap graph is drawn as a help to visualize components, but note that it
is not computed in the algorithm. It will be handled by the data structure we present in Section 4.

Sequence augmentation sorting algorithm:

Init. Clear the unoriented components of the initial permutation yielding �.
V is the set of all arcs of �.

S1, the left sequence, is the empty set.

S2, the right sequence, is the empty set.
(1) While there is an oriented arc v in V , add the corresponding reversal �(v) at the end of the sequence S1, and apply

it to the current permutation (�← � · �(v)). Remove v from V , as well as other possible adjacencies created by
the application of �(v).
If the first element of S2 is not oriented, go one step back.1

(2) If V is empty, go to step (3);
else suppose S1 = �1, . . . , �k . (Re-)Apply the reversals of S1 in the reverse order: � := � · �k · · · �l , until there is
an oriented arc in V . Remove �l , . . . , �k from S1; add �l , . . . , �k at the beginning of S2. Gotostep.

(3) The sequence S1, S2 sorts �.

For the permutation (0 − 1 3 2 4), the algorithm works as follows (see Fig. 4): the unsafe reversal �(v0) is applied,
then re-applied because no other arc is oriented (v0 = vl); then �(v1) is applied, followed by �(v2), and �(v3). Since
v0 is not oriented and there is no other oriented arc in V , it goes one step back, and the sequence �(v1), �(v2), �(v0)

sorts the permutation.

4. Complexity

In the sequence augmentation sorting algorithm, any reversal is applied at most twice, once at Step 1 when it is in V ,
and perhaps once backwards at Step 2. When it is removed from V , it cannot be applied anymore. The complexity is
therefore determined by the time necessary to detect and choose an oriented arc, and apply the corresponding reversal
to the permutation. With a classical data structure, using for instance a vector array to represent the current permutation,
this is easily achievable in linear time. As a consequence, the algorithm, as well as any algorithm for sorting by reversals
that has to apply a reversal at each step, will run in O(n2).

1 This is the case when the last arc of S1 has the same neighbourhood in OV(�) as the first arc in S2. Then it makes no difference between leaving
one or the other in the final sequence.

E. Tannier et al. / Discrete Applied Mathematics 155 (2007) 881–888 887

In practice, even this O(n2) implementation should be an improvement on the existing algorithms. For small permu-
tations, such quadratic implementation is probably better than one that would be subquadratic but use another complex
data structure. However, it is an important mathematical question whether sorting a signed permutation by reversals
can be done in a theoretical subquadratic time complexity. We therefore use a more sophisticated implementation to
make it run in O(n3/2√log n).

In [6], Kaplan and Verbin described a clever data structure which allows to choose an oriented arc and apply the
corresponding reversal in sublinear time. We use the same data structure, just adding some flags in order to be able
to choose an oriented arc in a specific subset of the arcs, whereas the original structure is designed to choose one at
random in the whole set of arcs.

As in [6], we store the permutation in a vector array split into blocks, each of size at least 1
2

√
n log n and at most

2
√

n log n. We assign a flag to each block, raised if the block should be read in the reverse order, changing the sign of
the elements. In this way, a reversal can be achieved in O(

√
n log n). The procedure is as follows:

(1) split at most two blocks so that the endpoints of the reversal correspond to endpoints of blocks;
(2) reverse the order of the blocks between the endpoints of the reversal;
(3) reverse the flag of each block between the endpoints of the reversal;
(4) concatenate and split blocks in such a way that the size of each block lies within the interval [12

√
n log n, 2

√
n log n].

We must now show that it is possible to choose an oriented arc in sublinear time. In order to do so, we assign to each
block a balanced binary tree, whose nodes store the elements of the block. The nodes of the tree are ordered such that
in any subtree, all the nodes to the left of the root precede the root, and all the nodes to the right of the root come after.
A node i precedes a node j in the tree, according to the position of their successor in �, that is |�−1

i+1|< |�−1
j+1|. Given a

node i, it is possible to split the tree in two by a rotation procedure that takes O(log n) time [8]. This procedure yields
two balanced trees, one that contains all the nodes that precede i, and the other all the nodes that come after i. It is
also possible, in O(log n) time, to concatenate two trees in a balanced tree, if all elements of the first one precede all
elements of the second one.

Each node i of the tree corresponds to an arc vi of the permutation �. The node i stores the orientation of the arc vi ,
the number of oriented arcs in the subtree rooted at node i, and a flag that indicates whether this subtree is reversed or
not, that is, its nodes should be ordered backwards with respect to the original order, and all nodes change orientation.
The “reversed” property is propagated to all subtrees, and cancelled when reaching a subnode whose flag is raised.

We now have to show how to maintain this structure while performing a reversal. Let us return to the reversal
procedure step by step:

1. after splitting blocks, we must reconstruct from scratch the associated trees;
2, 3. after reversing the order and flags of the blocks inside the reversal, we process every tree, even those outside the

reversal, separately. Each tree T is split into three parts T1, T2 and T3, with T1 containing all elements of T that
occur before the first endpoint of the reversal, T2, the elements of T that occur within the reversal, and T3, the
elements of T that occur after the second endpoint of the reversal.
• If T is a tree corresponding to a block outside the reversal, flip the flag at the root of T2, and concatenate T1, T2

and T3;
• If T is a tree corresponding to a block inside the reversal, flip the flag at the root of T1 and T3, and concatenate

T1, T2 and T3;
4. after concatenating and splitting blocks, reconstruct from scratch the associated trees.

In this way, it is possible to apply a reversal and maintain the data structure in time O(
√

n log n).
Up to this point, we have described exactly the data structure of Kaplan and Verbin. We now add flags and numbers

to the nodes of the trees in order to perform our own queries. Let V be a subset of the arcs of �. At the beginning, V

is the set of all arcs of �. To each node of each tree, a new flag is added, raised if the corresponding arc is in V , and a
“running total” stores the number of oriented arcs that belong to V in the subtree. Fig. 5 gives a representation of the
data structure applied to the permutation of Fig. 1 split in two blocks. Observe that we do not need to know the total
number of oriented arcs, but only the number of those that are in V .

In this way, it is possible to know in constant time whether there is an oriented arc in V , and to choose one in time
O(log n).

888 E. Tannier et al. / Discrete Applied Mathematics 155 (2007) 881–888

0 1

0

0

0

x

oriented

1

or

total

2

flag: oriented edge

1

1

4

12

4

or

or

3 6 5 −2 4 7

1

3

6

0 2

V

V

V

V

V

flag: edge in V

5

4-2
0

1

V

V

V

1

1

flags: number of edges of V in subtree

Fig. 5. The data structure for the permutation of Fig. 1 at the beginning of the algorithm (all nodes are in V), if the permutation is split into two
blocks.

Finally, we can state the last theorem, which answers Ozery-Flato and Shamir’s question [7] on whether it is possible
to improve the lower bound on the running time of the algorithms for sorting by reversals.

Theorem 4. The sequence augmentation sorting algorithm finds a sequence of reversals sorting a permutation in time
O(n3/2√log n).

The remaining bottleneck of the new algorithm is now the complexity at each step of applying a reversal to a
permutation and keeping the set of oriented arcs. This is what has to be improved in the future if one wishes to obtain
a lower theoretical complexity for sorting a signed permutation by reversals.

Acknowledgments

This work was supported by the French Program Bioinformatique Inter-EPST 2002 “Algorithms for Modelling and
Inference Problems in Molecular Biology”.

References

[1] D.A. Bader, B.M.E. Moret, M.Yan, A linear-time algorithm for computing inversion distance between signed permutations with an experimental
study, in: Proceedings of the Workshop on Algorithms and Data Structures, 2001, pp. 365–376.

[2] P. Berman, S. Hannenhalli, Fast sorting by reversals, in: Proceedings of the CPM’96, Lecture Notes in Computer Science, vol. 1075, Springer,
Berlin, 1996, pp. 168–185.

[3] A. Bergeron, J. Mixtacki, J. Stoye, The inversion distance problem, in: O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Chapter 10,
Oxford University Press, Oxford, 2005, pp. 262–290.

[4] S. Hannenhalli, P. Pevzner, Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals), J. Assoc.
Comput. Mach. 46 (1999) 1–27.

[5] H. Kaplan, R. Shamir, R.E. Tarjan, Faster and simpler algorithm for sorting signed permutations by reversals, SIAM J. Comput. 29 (1999)
880–892.

[6] H. Kaplan, E. Verbin, Efficient data structures and a new randomized approach for sorting signed permutations by reversals, in: Proceedings of
the CPM’03, Lecture Notes in Computer Science, vol. 2676, Springer, Berlin, 2003, pp. 170–185.

[7] M. Ozery-Flato, R. Shamir, Two notes on genome rearrangement, J. Bioinformatics Computat. Biology 1 (2003) 71–94.
[8] D.D. Sleator, R.E. Tarjan, Self-adjusting binary search trees, J. Assoc. Comput. Mach. 32 (1985) 652–686.
[9] E. Tannier, M.-F. Sagot, Sorting by reversals in subquadratic time, in: Proceedings of the CPM’04, Lecture Notes in Computer Science,

vol. 3109, Springer, Berlin, 2004, pp. 1–13.

	Advances on sorting by reversals
	Introduction
	Ingredients
	The overlap graph of a permutation
	The local complementation of a graph
	The theorem of Hannenhalli and Pevzner

	New recipe
	The main step
	The algorithm

	Complexity
	Acknowledgments
	References

