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Abstract—We describe an algorithm for comparing two RNA secondary structures coded in the form of trees that introduces two new

operations, called node fusion and edge fusion, besides the tree edit operations of deletion, insertion, and relabeling classically used in

the literature. This allows us to address some serious limitations of the more traditional tree edit operations when the trees represent
RNAs andwhat is searched for is a common structural core of twoRNAs. Although the algorithm complexity has an exponential term, this

term depends only on the number of successive fusions that may be applied to a same node, not on the total number of fusions. The
algorithm remains therefore efficient in practice and is used for illustrative purposes on ribosomal as well as on other types of RNAs.

Index Terms—Tree comparison, edit operation, distance, RNA, secondary structure.
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1 INTRODUCTION

RNAS are one of the fundamental elements of a cell. Their
role in regulation has been recently shown to be far

more prominent than initially believed (20 December 2002
issue of Science, which designated small RNAs with
regulatory function as the scientific breakthrough of the
year). It is now known, for instance, that there is massive
transcription of noncoding RNAs. Yet current mathematical
and computer tools remain mostly inadequate to identify,
analyze, and compare RNAs.

An RNA may be seen as a string over the alphabet of
nucleotides (also called bases), {A, C, G, T}. Inside a cell,
RNAs do not retain a linear form, but instead fold in space.
The fold is given by the set of nucleotide bases that pair. The
main type of pairing, called canonical, corresponds to bonds
of the type A! U and G! C. Other rarer types of bonds
may be observed, the most frequent among them is G! U ,
also called the wobble pair. Fig. 1 shows the sequence of a
folded RNA. Each box represents a consecutive sequence of
bonded pairs, corresponding to a helix in 3D space. The
secondary structure of an RNA is the set of helices (or the
list of paired bases) making up the RNA. Pseudoknots,
which may be described as a pair of interleaved helices, are
in general excluded from the secondary structure of an
RNA. RNA secondary structures can thus be represented as
planar graphs. An RNA primary structure is its sequence of
nucleotides while its tertiary structure corresponds to the
geometric form the RNA adopts in space.

Apart from helices, the other main structural elements in
an RNA are:

1. hairpin loops which are sequences of unpaired bases
closing a helix;

2. internal loops which are sequences of unpaired
bases linking two different helices;

3. bulges which are internal loops with unpaired bases
on one side only of a helix;

4. multiloops which are unpaired bases linking at least
three helices.

Stems are successions of one or more among helices,
internal loops, and/or bulges.

The comparison of RNA secondary structures is one of

the main basic computational problems raised by the study

of RNAs. It is the problem we address in this paper. The

motivations are many. RNA structure comparison has been

used in at least one approach to RNA structure prediction

that takes as initial data a set of unaligned sequences

supposed to have a common structural core [1]. For each

sequence, a set of structural predictions are made (for

instance, all suboptimal structures predicted by an algo-

rithm like Zucker’s MFOLD [15], or all suboptimal sets of

compatible helices or stems). The common structure is then

found by comparing all the structures obtained from the

initial set of sequences, and identifying a substructure

common to all, or to some of the sequences. RNA structure

comparison is also an essential element in the discovery of

RNA structural motifs, or profiles, or of more general

models that may then be used to search for other RNAs of

the same type in newly sequenced genomes. For instance,

general models for tRNAs and introns of group I have been

derived by hand [3], [10]. It is an open question whether

models at least as accurate as these, or perhaps even more

accurate, could have been derived in an automatic way. The

identification of smaller structural motifs is an equally

important topic that requires comparing structures.
As we saw, the comparison of RNA structures may

concern known RNA structures (that is, structures that were

experimentally determined) or predicted structures. The
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objective in both cases is the same: to find the common parts
of such structures.

In [11], Shapiro suggested to mathematically model RNA
secondary structures without pseudoknots by means of
trees. The trees are rooted and ordered, which means that
the order among the children of a node matters. This order
corresponds to the 5’-3’ orientation of an RNA sequence.

Given two trees representing each an RNA, there are two
main ways for comparing them. One is based on the
computation of the edit distance between the two trees
while the other consists in aligning the trees and using the
score of the alignment as a measure of the distance between
the trees. Contrary to what happens with sequences, the
two, alignment and edit distance, are not equivalent. The
alignment distance is a restrained form of the edit distance
between two trees, where all insertions must be performed
before any deletions. The alignment distance for general
trees was defined in 1994 by Jiang et al. in [9] and extended
to an alignment distance between forests in [6]. More
recently, Höchsmann et al. [7] applied the tree alignment
distance to the comparison of two RNA secondary
structures. Because of the restriction on the way edit
operations can be applied in an alignment, we are not
concerned in this paper with tree alignment distance and
we therefore address exclusively from now on the problem
of tree edit distance.

Our way for comparing two RNA secondary structures is
then to apply anumberof tree edit operations inoneorbothof
the trees representing the RNAs until isomorphic trees are
obtained. The currently most popular program using this
approach is probably theViennapackage [5], [4]. The tree edit
operations considered are derived from the operations
classically applied to sequences [13]: substitution, deletion,
and insertion. In 1989, Zhang and Shasha [14] gave adynamic
programming algorithm for comparing two trees. Shapiro
and Zhang then showed [12] how to use tree editing to
compare RNAs. The latter also proposed various treemodels
that could be used for representing RNA secondary struc-
tures. Each suggested tree offers a more or less detailed view
of an RNA structure. Figs. 2b, 2c, 2d, and 2e present a few
examples of such possible views for the RNAgiven in Fig. 2a.
In Fig. 2, the nodes of the tree in Fig. 2b represent either
unpaired bases (leaves) or paired bases (internal nodes). Each

node is labeled with, respectively, a base or a pair of bases. A

node of the tree in Fig. 2c represents a set of successive

unpaired bases or of stacked paired ones. The label of a node

is an integer indicating, respectively, the number of unpaired

basesor theheightof the stackofpairedones.Thenodesof the

tree in Fig. 2d represent elements of secondary structure:

hairpin loop (H), bulge (B), internal loop (I), ormultiloop (M).

The edges correspond to helices. Finally, the tree in Fig. 2e

contains only the information concerning the skeleton of

multiloops of anRNA. The last representation, though giving

ahighly simplifiedviewof anRNA, is important nevertheless

as it is generally accepted that it is this skeleton which is

usually the most constrained part of an RNA. The last two

models may be enriched with information concerning, for

instance, the number of (unpaired) bases in a loop (hairpin,

internal, multi) or bulge, and the number of paired bases in a

helix. The first label the nodes of the tree, the second its edges.

Other types of information may be added (such as overall

composition of the elements of secondary structure). In fact,

one could consider working with various representations

simultaneously or in an interlocked, multilevel fashion. This

goes beyond the scope of this paper which is concerned with

comparing RNA secondary structures using any one among

the many tree representations possible. We shall, however,

comment further on this multilevel approach later on.

Concerning the objectives of this paper, they are twofold.

The first is to give some indications on why the classical edit

operations that have been considered so far in the literature

for comparing trees present some limitations when the trees

stand for RNA structures. Three cases of such limitationswill

be illustrated through examples in Section 3. In Section 4, we

then introduce two novel operations, so-called node-fusion

and edge-fusion, that enable us to address some of these

limitations and then give a dynamic programming algorithm

for comparing twoRNA structureswith these two additional

operations. Implementation issues and initial results are

presented in Section 4. In Section 5, we give a first application
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Fig. 1. Primary and secondary structures of a transfer RNA.

Fig. 2. Example of different tree representations ((b), (c), (d), and (e)) of

the same RNA (a).



of our algorithm to the comparison of two RNA secondary

structures. Finally, in Section 6, we sketch the main ideas

behind themultilevel RNA comparison approachmentioned

above. Before that,we start by introducing somenotation and

by recalling in the next section the basics about classical tree

edit operations and tree mapping.
This paper is an extended version of a paper presented at

the Workshop on Algorithms in BioInformatics (WABI) in

2004, in Bergen, Norway. A few more examples are given to

illustrate some of the points made in the WABI paper,

complexity and implementation issues are discussed in

more depth as are the cost functions and a multilevel

approach to comparing RNAs.

2 TREE EDITING AND MAPPING

Let T be an ordered rooted tree, that is, a tree where the

order among the children of a node matters. We define

three kinds of operations on T : deletion, insertion, and

relabeling (corresponding to a substitution in sequence

comparison). The operations are shown in Fig. 3. The

deletion (Fig. 3b) of a node u removes u from the tree. The

children of u become the children of u’s father. An insertion

(Fig. 3c) is the symmetric of a deletion. Given a node u, we

remove a consecutive (in relation to the order among the

children) set u1; . . . ; up of its children, create a new node v,

make v a child of u by attaching it at the place where the set

was, and, finally, make the set u1; . . . ; up (in the same order)

the children of v. The relabeling of a node (Fig. 3d) consists

simply in changing its label.
Given two trees T and T 0, we define S ¼ fs1 . . . seg to be

a series of edit operations such that, if we apply succes-

sively the operations in S to the tree T , we obtain T 0 (i.e., T

and T 0 become isomorphic). A series of operations like S
realizes the editing of T into T 0 and is denoted by T !S T 0.

We define a function cost from the set of possible edit

operations (deletion, insertion, relabeling) to the integers (or

the reals) such that costs is the score of the edit operation s.

If S is a series of edit operations, we define by extension that

costS is
P

s2S costs. We can define the edit distance between

two trees as the series of operations that performs the

editing of T into T 0 and such that its cost is minimal:

distanceðT; T 0Þ ¼ fminðcostSÞjT !S T 0g.

Let an insertion or a deletion cost one and the relabeling of

a node cost zero if the label is the same and one otherwise. For

the two trees of the figure on the left, the series relabelðA !
F Þ:deleteðBÞ:insertðGÞ realizes the editing of the left tree into

the right one and costs 3. Another possibility is the series

deleteðBÞ:relabelðA ! GÞ:insertðF Þ which also costs 3. The

distance between these two trees is 3.

Given a series of operations S, let us consider the nodes
of T that are not deleted (in the initial tree or after some
relabeling). Such nodes are associated with nodes of T 0. The
mapping MS relative to S is the set of couples ðu; u0Þ with
u 2 T and u0 2 T 0 such that u is associated with u0 by S.

The operations described above are the “classical tree edit

operations” that have been commonly used in the literature

for RNA secondary structure comparison. We now present a

few results obtained using such classical operations that will

allowus to illustrate a few limitations theymaypresentwhen

used for comparing RNA structures.

3 LIMITATIONS OF CLASSICAL TREE EDIT

OPERATIONS FOR RNA COMPARISON

As suggested in [12], the tree edit operations recalled in the

previous section can be used on any type of tree coding of

an RNA secondary structure.
Fig. 4 shows two RNAsePs extracted from the database [2]

(they are found, respectively, in Streptococcus gordonii and
Thermotoga maritima). For the example we discuss now, we
code the RNAs using the tree representation indicated in
Fig. 2b where a node represents a base pair and a leaf an
unpaired base. After applying a few edit operations to the
trees, we obtain the result indicated in Fig. 4, with deleted/
insertedbases ingray.Wehave surroundeda fewregions that
match in the two trees. Bases in the rectangular box at the
bottomof theRNAon the left are thusassociatedwithbases in
thebottomrightmost rectangular boxof theRNAon the right.
The same is observed for the bases in the oval boxes for both
RNAs. Suchmatches illustrate one of themainproblemswith
the classical tree edit operations: Bases in one RNA may be
mapped to identically labeled bases in the other RNA to
minimise the total cost, while such bases should not be
associated in terms of the elements of secondary structure to
which they belong. In fact, such elements are often distant
from one another along the common RNA structure. We call
this problem the “scattering effect.” It is related to the
definition of tree edit operations. In the case of this example
and of the representation adopted, the problem might have
been avoided if structural information had been used.
Indeed, the problem appears also because the structural
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Fig. 3. Edit operations: (a) the original tree T , (b) deletion of the node
labelled D, (c) insertion of the node labeled I, and (d) relabeling of a
node in T (the label A of the root is changed into K).



location of an unpaired base is not taken into account. It is

therefore possible to match, for instance, an unpaired base

from a hairpin loop with an unpaired base from a multiloop.

Using another type of representation, as we shall do, would,

however, not be enough to solve all problems as we see next.

Indeed, to compare the same two RNAs, we can also use a

more abstract tree representation such as the one given in

Fig. 2d. In this case, the internal nodes represent a multiloop,

internal-loop, or bulge, the leaves code for hairpin loops and

edges for helices. The result of the editionofT intoT 0 for some

cost function is presented in Fig. 5 (we shall comeback later to

the cost functions used in the case of suchmore abstract RNA

representations; for the sake of this example, wemay assume

an arbitrary one is used).

The problem we wish to illustrate in this case is shown

by the boxes in the figure. Consider the boxes at the bottom.

In the left RNA, we have a helix made up of 13 base pairs. In

the right RNA, the helix is formed by seven base pairs

followed by an internal loop and another helix of size 5. By

definition (see Section 2), the algorithm can only associate

one element in the first tree to one element in the second

tree. In this case, we would like to associate the helix of the

left tree to the two helices of the second tree since it seems

clear that the internal loop represents either an inserted

element in the second RNA, or the unbonding of one base

pair. This, however, is not possible with classical edit

operations.
A third type of problem one can meet when using only

the three classical edit operations to compare trees standing

for RNAs is similar to the previous one, but concerns this

time a node instead of edges in the same tree representa-

tion. Often, an RNAmay present a very small helix between

two elements (multiloop, internal-loop, bulge, or hairpin-

loop) while such helix is absent in the other RNA. In this

case, we would therefore have liked to be able to associate

one node in a tree representing an RNA with two or more
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Fig. 5. Illustration of the one-to-one association problem with edges. Result of the matching of the two RNAsePs, of Saccharomyces uvarum and of

Saccharomyces kluveri, using the model given in Fig. 2d.

Fig. 4. Illustration of the scattering effect problem. Result of the matching of two RNAsePs, of Streptococcus gorgonii and of Thermotoga maritima,

using the model given in Fig. 2b.



nodes in the tree for the other RNA. Once again, this is not
possible with any of the classical tree edit operations. An

illustration of this problem is shown in Fig. 6.
We shall use RNA representations that take the elements

of the structure of an RNA into account to avoid some of the
scattering effect. Furthermore, in addition to considering
information of a structural nature, labels are attached, in
general, to both nodes and edges of the tree representing an
RNA. Such labels are numerical values (integers or reals).
They represent in most cases the size of the corresponding
element, but may also further indicate its composition, etc.
Such additional information is then incorporated into the
cost functions for all three edit operations. It is important to
observe that when dealing with trees labeled at both the
nodes and edges, any node and the edge that leads to it (or,
in an alternative perspective, departs from it) represent a
single object from the point of view of computing an edit
distance between the trees.

It remains now to deal with the last two problems that
are a consequence of the one-to-one associations between
nodes and edges enforced by the classical tree edit
operations. To that purpose, we introduce two novel tree
edit operations, called the edge fusion and the node fusion.

4 INTRODUCING NOVEL TREE EDIT OPERATIONS

4.1 Edge Fusion and Node Fusion

In order to address some of the limitations of the classical tree
edit operations that were illustrated in the previous section,

we need to introduce twonovel operations. These are the edge
fusion and the node fusion. They may be applied to any of the
tree representations given in Figs. 2c, 2d, and 2e.

An example of edge fusion is shown in Fig. 7a. Let eu be an

edge leading to a node u, ci a child of u and eci the edge
between u and ci. The edge fusion of eu and eci consists in

replacing eci and eu with a new single edge e. The edge e links
the father of u to ci. Its label then becomes a function of the
(numerical) labels of eu, u and eci . For instance, if such labels
indicated the size of each element (e.g., for a helix, thenumber
of its stackedpairs, and for a loop, themin ,max or theaverage
of its unpaired bases on each side of the loop), the label of e
could be the sum of the sizes of eu, u and eci . Observe that
merging two edges implies deleting all subtrees rooted at the
children cj ofu for jdifferent from i. The cost of suchdeletions
is added to the cost of the edge fusion.

An example of node fusion is given in Fig. 7b. Let u be a
node and ci one of its children. Performing a node fusion of
u and ci consists in making u the father of all children of ci
and in relabeling u with a value that is a function of the
values of the labels of u, ci and of the edge between them.

Observe that a node fusion may be simulated using the
classical edit operations by a deletion followed by a
relabeling. However, the difference between a node fusion
and a deletion/relabeling is in the cost associated with both
operations. We shall come back to this point later.

Obviously, like insertions or deletions, edge fusions and
node fusions have of course symmetric counterparts, which
are the edge split and the node split.

Given two rooted, ordered, and labeled trees T and T 0,
we define the “edit distance with fusion” between T and T 0
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Fig. 7. (a) An example of edge fusion. (b) An example of node fusion.

Fig. 6. Illustration of the one-to-one association problem with nodes. The two RNAs used here are RNAsePs from Pyrococcus furiosus and

Metallosphaera sedula. Triangles stand for bulges, diamond stand for internal loops, and squares for hairpin loops.



as distancefusionðT; T 0Þ ¼ fminðcostSÞjT !S T 0gwith costs the
cost associated to each of the seven edit operations now
considered (relabeling, insertion, deletion, node fusion and
split, edge fusion and split).

Proposition 1. If the following is verified:

. costmatchða; bÞ is a distance,

. costinsðaÞ ¼ costdelðaÞ % 0,

. costnodefusionða; b; cÞ ¼ costnodesplitða; b; cÞ % 0, and

. costedgefusionða; b; cÞ ¼ costedgesplitða; b; cÞ % 0,

then distancefusion is indeed a distance.

Proof. The positiveness of distancefusion is given by the fact
that all elementary cost functions are positive. Its
symmetry is guaranteed by the symmetry in the costs
of the insertion/deletion and (node/edge) fusion/split
operations. Finally, it is straighforward to see that
distancefusion satisfies triangular inequality. tu
Besides the above properties that must be satisfied by the

cost functions in order to obtain a distance, others may be
introduced for specific purposes. Some will be discussed in
Section 5.

We now present an algorithm to compute the tree edit
distance between two trees using the classical tree edit
operations plus the two operations just introduced.

4.2 Algorithm

The method we introduce is a dynamic programming
algorithm based on the one proposed by Zhang and Shasha.
Their algorithm is divided in two parts: They first compute
the edit distance between two trees (this part is denoted by
TDist) and then the distance between two forests (this part
is denoted by FDist). Fig. 8 illustrates in pictorial form the
part TDist and Fig. 9 the FDist part of the computation.

In order to take our two new operations into account, we
need to compute a few more things in the TDist part.
Indeed, we must add the possibility for each tree to have a
node fusion (inversely, node split) between the root and one
of its children, or to have an edge fusion (inversely edge
split) between the root and one of its children. These
additional operations are indicated in the right box of Fig. 8.

We present now a formal description of the algorithm. Let
T be an ordered rooted tree with jT j nodes. We denote by ti
the ith node in a postfix order. For each node ti, lðiÞ is the

index of the leftmost child of the subtree rooted at ti. Let

T ði . . . jÞ denote the forest composed by the nodes ti . . . tj
(T & T ð0 . . . jT jÞÞ. To simplify notation, from now on, when

there is no ambiguity, i will refer to the node ti. In this case,

distanceði1 . . . i2; j1 . . . j2Þ will be equivalent to distanceðT ði1
. . . i2Þ; T 0ðj1 . . . j2ÞÞ.

The algorithm of Zhang and Sasha is fully described by

the following recurrence formula:

if ðði1 ¼¼ lði2ÞÞ and ðj1 ¼¼ lðj2ÞÞÞ

MIN

distanceð i1 . . . i2 ! 1 ; j1 . . . j2 Þ þ costdelði2Þ
distanceð i1 . . . i2 ; j1 . . . j2 ! 1 Þ þ costinsðj2Þ
distanceð i1 . . . i2 ! 1 ; j1 . . . j2 ! 1 Þ þ costmatchði2; j2Þ

8
><

>:

ð1Þ

else

MIN

distanceð i1 . . . i2 ! 1 ; j1 . . . j2Þ Þ
þ costdelði2Þ
distanceð i1 . . . i2Þ ; j1 . . . j2 ! 1 Þ
þ costinsðj2Þ
distanceð i1 . . . lði2Þ ! 1 ; j1 . . . lðj2Þ ! 1 Þ

þdistanceð lði2Þ . . . i2 ; lðj2Þ . . . j2 Þ

8
>>>>>>>><

>>>>>>>>:

ð2Þ

Part (1) of the formula corresponds to Fig. 8, while part (2)

corresponds to Fig. 9. In practice, the algorithm stores in a

matrix the score between each subtree of T and T 0. The space

complexity is thereforeOðjT j ( jT 0jÞ. To reach this complexity,

the computation must be done in a certain order (see

Section 4.3). The time complexity of the algorithm is

OðjT j (minðleafðT Þ; heightðT ÞÞ
( jT 0j (minðleafðT 0Þ; heightðT 0ÞÞÞ;

where leafðT Þ and heightðT Þ represent, respectively, the

number of leaves and the height of a tree T .
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Fig. 8. Zhang and Sasha’s dynamic programming algorithm: the tree distance part. The right box corresponds to the additional operations added to

take fusion into account.



The formula to compute the edit score allowing for both
node and edge fusions follows.

if ðði1 % lðikÞÞ and ðj1 % lðjk0 ÞÞÞ

MIN

distanceðfi1 . . . ik!1g; ;; fj1 . . . jk0 g; path0Þ þ costdelðikÞ
distanceðfi1 . . . ikg; path; fj1 . . . jk0!1g; ;Þ þ costinsðjk0 Þ
distanceðfi1 . . . ik!1g; ;; fj1 . . . jk0!1g; ;Þ þ costmatchðik; jk0 Þ
for each child ic of ik in fi1; . . . ; ikg; set il ¼ lðicÞ

distanceðfi1 . . . ic!1; icþ1 . . . ikg; path:ðu; icÞ; fj1 . . . jk0 g;
path0Þ

þcostnode fusionðic; ikÞðobs: :ik data are changedÞ
distanceðfil . . . ic!1; ikg; path:ðe; icÞ; fj1 . . . jk0 g; path0Þ

þcostedge fusionðic; ikÞ þ distanceðfi1 . . . il!1g;
;; ;; ;Þ

þdistanceðficþ1 . . . ik ! 1; ;; ;; ;Þ
ðobs: : ik data are changedÞ

for each child jc0 of jk0 in fj1; . . . ; jk0 g; set jl0 ¼ lðjc0 Þ
distanceðfi1 . . . ikg; path; fj1 . . . jc0!1; jc0þ1 . . . jk0 ;

path0:ðu; jc0 ÞÞ
þcostnode splitðjc0 ; jk0 Þ
ðobs: : jk0 data are changedÞ

distanceðfi1 . . . ikg; path; fjl0 . . . jc0 ; jk0 ; path0:ðe; jc0 ÞÞ
þcostedge splitðjc0 ; jk0 Þ
þdistanceð;; ;; fj1 . . . jl0!1g; ;Þ
þdistanceð;; ;; jc0þ1 . . . jk0!1; ;Þ
ðobs: : jk0 data are changedÞ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

else set il ¼ lðikÞ and jl0 ¼ lðjk0 Þ

MIN

distanceðfi1 . . . ik!1g; ;; fj1 . . . jk0 g; path0Þ þ delðikÞ
distanceðfi1 . . . ikg; path; fj1 . . . jk0!1g; ;Þ þ insðjk0 Þ
distanceðfi1 . . . il!1g; ;; fj1 . . . jl0!1g; ;Þ

þ distanceðfil . . . ikg; path; fjl0 . . . jk0 g; path0Þ

8
>>><

>>>:

ð4Þ

Given two nodes u and v such that v is a child of u,

node fusionðu; vÞ is the fusion of node v with u, and

edge fusionðu; vÞ is the edge fusion between the edges

leading to, respectively, nodes u and v. The symmetric
operations are denoted by, respectively, node splitðu; vÞ and
edge splitðu; vÞ.

The distance computation takes two new parameters
path and path0. These are sets of pairs ðe or u; vÞ which
indicate, for node ik (respectively, jk), the series of fusions
that were done. Thus, a pair ðe; vÞ indicates that an edge
fusion has been perfomed between ik and v, while for ðu; vÞ
a node v has been merged with node ik.

The notation path:ðe; vÞ indicates that the operation ðe; vÞ
has been performed in relation to node ik and the
information is thus concatenated to the set path of pairs
currently linked with ik.

4.3 Implementation and Complexity

The previous section gave the recurrence formulæ for
calculating the edit distance between two trees allowing for
node and edge fusion and split. We now discuss the
complexity of the algorithm. This requires paying attention
to some high-level implementation details that, in the case
of the tree edit distance problem, may have an important
influence on the theoretical complexity of the algorithm.
Such details were first observed by Zhang and Shasha. They
concern the order in which to perform the operations
indicated in (2) and (1) to obtain an algorithm that is time
and space efficient.

Let us consider the last line of (2). We may observe that
the computation of the distance between two forests refers
to the computation of the distance between two trees
T ðlði2Þ . . . i2Þ and T 0ðlðj2Þ . . . j2Þ. We must therefore memor-
ise the distance between any two subtrees of T and T 0.
Furthermore, we have to carry out the computation from
the leaves to the root because when we compute the
distance between two subtrees U and U 0, the distance
between any subtrees of U and U 0 must already have been
measured. This explains the space complexity which is in
OðjT j ( jT 0jÞ and corresponds to the size of the table used for
storing such distances in memory.

If we look at (1) now, we see that it is not necessary to
calculate separately the distance between the subtrees
rooted at i0 and j0 if i0 is on the path from lðiÞ to i and j0

is on the path from lðjÞ to j, for i and j nodes of,
respectively, T and T 0.

We define a set LRðT Þ of the left roots of T as follows:

LRðT Þ ¼ fkj1 ) k ) jT j and 6 9k0 > k such that lðk0Þ ¼ lðkÞg
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Fig. 9. Zhang and Sasha’s dynamic programming algorithm: the forest distance part.



The algorithm for computing the edit distance between t

and T 0 consists then in computing the distance between

each subtree rooted at a node in LRðT Þ and each subtree
rooted at a node in LRðT 0Þ. Such subtrees are considered

from the leaves to the root of T and T 0, that is, in the order
of their indexes.

Zhang and Shasha proved that this algorithm has a

time complexity in OðjT j (minðleafðT Þ; heightðT ÞÞ ( jT 0j (
minðleafðT 0Þ; heightðT 0ÞÞÞ, leafðT Þ designating the num-

ber of leaves of T and heightðT Þ its height. In the worst
case (fan tree), the complexity is in OðjT j2 ( jT 0j2Þ.

Taking fusion and split operations into account does

not change the above reasoning. However, we must now
store in memory the distance between all subtrees

T ðlði2Þ . . . i2Þ and T 0ðlðj2Þ . . . j2Þ, and all the possible values
of path and path0.

We must therefore determine the number of values that

path can take. This amounts to determine the total number
of successive fusions that could be applied to a given node.

We recall that path is a list of pairs ðe or u; vÞ. Let path ¼
fðe or u; v1Þ; ðe or u; v2Þ; . . . ; ðe or u; v‘Þg be the list for node i

of T . The first fusion can be performed only with a child v1
of i. If d is the maximum degree of T , there are d possible

choices for v1. The second fusion can be done with one of
the children of i or with one of its grandchildren. Let v2 be

the node chosen. There are d + d2 possible choices for v2.
Following the same reasoning, there are

Pk¼‘
k¼1 d

k possible

choices for the ‘th node v‘ to be fusioned with i.

Furthermore, we must take into account the fact that a

fusion can concern a node or an edge. The total number of

values possible for the variable path is therefore:

2‘ (
Yk¼‘

k¼1

Xj¼k

j¼1

dj ¼ 2l
Yk¼‘

k¼1

dkþ1 ! 1

d! 1
;

that is:

2‘ ( 1

d! 1

! "‘Yk¼‘

k¼1

ðdkþ1 ! 1Þ < 2l ( 1

d! 1

! "l

(d
ð‘þ1Þð‘þ2Þ

2 :

A node i may then be involved in Oðð2dÞlÞ possible

successive (node/edge) fusions.
As indicated, we must store in memory the distance

between each subtree T ðlði2Þ . . . i2Þ and T 0ðlðj2Þ . . . j2Þ for all
possible values of path and path0. The space complexity of

our algorithm is thus in Oðð2dÞ‘ ( ð2d0Þ‘ ( jT j ( jT 0jÞ, with d
and d0 the maximum degrees of, respectively, T and T 0.

The computation of the time complexity of our algorithm

is done in a similar way as for the algorithm of Zhang and

Shasha. For each node of T and T 0, one must compute the

number of subtree distance computations the node will be

involved in by considering all subtrees rooted in, respec-

tively, a node of LRðT Þ and a node of LRðT 0Þ. In our case,

one must also take into account for each node the possibility

of applying a fusion. This leads to a time complexity in

Oðð2dÞ‘ ( jT j (minðleafðT Þ; heightðT ÞÞ ( ð2d0Þ‘ ( jT 0j(
minðleafðT 0Þ; heightðT 0ÞÞÞ:

This complexity suggests that the fusion operations may

be used only for reasonable trees (typically, less than

100 nodes) and small values of l (typically, less than 4). It is

however important to observe that the overall number of

fusions one may perform can be much greater than l

without affecting the worst-case complexity of the algo-

rithm. Indeed, any number of fusions can be made while

still retaining the bound of

Oðð2dÞl ( jT j (minðleafðT Þ; heightðT ÞÞ ( jT 0j (minðleafðT 0Þ;
heightðT 0ÞÞÞ

so long as one does not realize more than l consecutive
fusions for each node.

In general, also, most interesting tree representations of
an RNA are of small enough size as will be shown next,
together with some initial results obtained in practice.

5 APPLICATION TO RNA SECONDARY STRUCTURES

COMPARISON

The algorithm presented in the previous section has been
coded using C++. An online version is available at http://
www-igm.univ-mlv.fr/~allali/migal/.

We recall that RNAs are relatively small molecules with
sizes limited to a few kilobases. For instance, the small
ribosomal subunit of Sulfolobus acidocaldarius (D14876) is
made up of 1,147 bases. Using the representation shown in
Fig. 2b, the tree obtained contains 440 internal nodes and
567 leaves, that is 1,007 nodes overall. Using the representa-
tion in Fig. 2d, the tree is composed of 78 nodes. Finally, the
tree obtained using the representation given in Fig. 2e
contains only 48 nodes. We therefore see that even for large
RNAs, any of the known abstract tree-representations (that
is, representations which take the elements of the secondary
structure of an RNA into account) that we can use leads to a
tree of manageable size for our algorithm. In fact, for small
values of l (2 or 3), the tree comparison takes reasonable
time (a few minutes) and memory (less than 1Gb).

As we already mentioned, a fusion (respctively, split) can
be viewed as an alternative to a deletion (respectively,
insertion) followed by a relabeling. Therefore, the cost
function for a fusion must be chosen carefully.
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To simplify, we reason on the cost of a node fusion

without considering the label of the edges leading to the

nodes that are fusioned with a father. The formal definition

of the cost functions takes the edges also into account.
Let us assume that the cost function returns a real

value between zero and one. If we want to compute the
cost of a fusion between two nodes u and v, the aim is to
give to such fusion a cost slightly greater than the cost of
deleting v and relabeling u; that is, we wish to have
costnode fusionðu; vÞ ¼ minðcostdelðvÞ þ t; 1Þ. The parameter t
is a tuning parameter for the fusion.

Suppose that the new node w resulting from the fusion of
u and v matches with another node z. The cost of this match
is costmatchðw; zÞ. If we do not allow for node fusions, the
algorithm will first match u with z, then will delete v. If we
compare the two possibilities, on one hand we have a total
cost of costnode fusionðu; vÞ þ costmatchðw; zÞ for the fusion,
that is, costdelðvÞ þ tþ costmatchðw; zÞ, on the other hand, a
cost of costdelðvÞ þ costmatchðu; zÞ. Thus, t represents the gain
that must be obtained by costmatchðw; zÞ with regard to
costmatchðu; zÞ, that is, by a match without fusion. This is
illustrated in Fig. 10.

In this example, the cost associatedwith thepathon the top

is costmatchð5; 9Þ þ costdelð3Þ. The path at the bottom has a cost

of costnode fusionð5; 3Þ ¼ costdelð3Þ þ t for the node fusion to

which is added a relabeling cost of costmatchð8; 9Þ, leading to a
total of costmatchð8; 9Þ þ costdelð3Þ þ t. A node fusion will

therefore be chosen if costmatchð8; 9Þ þ t > costmatchð5; 9Þ,
therefore if the score of a match with fusion is better by at

least t than a match without fusion.

We apply the same reasoning to the cost of an edge fusion.

The cost function for a node and an edge fusion between a

node u and a node v, with eu denoting the edge leading to u

and ev the edge leading to v is defined as follows:

costnode fusionðu; vÞ ¼ costdelðvÞ þ costdelðevÞ þ t

costedge fusionðu; vÞ ¼ costdelðuÞ þ costdelðeuÞ þ t

þ
X

csibling ofv

cost deleting subtree rooted at c:

The tuning parameter t is thus an important parameter

that allows us to control fusions. Always considering a cost

function that produces real values between 0 and 1, if t is

equal to 0:1, a fusion will be performed only if it improves

the score by 0:1. In practice, we use values of t between 0

and 0:2.
For practical considerations, we also set a further

condition on the cost and relabeling functions related to a

node or edge resulting from a fusion which is as follows:

costdelðaÞ þ costdelðbÞ % costdelðcÞ

with c the label of the node/edge resulting from the fusion

of the nodes/edges labeled a and b. Indeed, if this condition

is not fulfilled, the algorithm may systematically fusion the

nodes or edges to reduce the overall cost.
An important consequence of the conditions seen above

is that a node fusion cannot be followed by an edge fusion.

Below, the node fusion followed by an edge fusion costs:

ðcostdelðbÞ þ costdelðBÞ þ tÞ þ ðcostdelðABÞ þ costdelðaÞ þ tÞ:

Thealternative is todestroynodeB (togetherwith edge b) and

then to operate an edge fusion, the whole costing: ðcostdelðbÞ
þcostdelðBÞÞ þ ðcostdelðAÞ þ costdelðaÞ þ tÞ. The difference be-
tween these two costs is tþ costdelðABÞ ! costdelðAÞ, which is

always positive.

This observation allows to significantly improve the

performance in practice of the algorithm.
We have applied the new algorithm on the two RNAs

shown in Fig. 5 (these are eukaryotic nuclear P RNAs from

Saccharomyces uvarum and Saccharomyces kluveri) and coded

using the same type of representation as in Fig. 2d. We have

limited the number of consecutive fusions to one (l ¼ 1).

The computation of the edit distance between the two trees

taking node and edge fusions into account besides dele-

tions, insertions, and relabeling has required less than a

second. The total cost allowing for fusions is 6:18 with t ¼
0:05 against 7:42without fusions. As indicated in Fig. 11, the

last two problems discussed in Section 3 disappear thanks

to some edge fusions (represented by the boxes).
An example of node fusions required when comparing

two “real” RNAs is given in Fig. 12. The RNAs are coded

using the same type of representation as in Fig. 2d. The

figure shows part of the mapping obtained between the

small subunits of two ribosomal RNAs retrieved from [8]

(from Bacillaria paxillifer and Calicophoron calicophorum). The

node fusion has been circled.

ALLALI AND SAGOT: A NEW DISTANCE FOR HIGH LEVEL RNA SECONDARY STRUCTURE COMPARISON 11

Fig. 10. Illustration of the gain that must be obtained using a fusion

instead of a deletion/relabeling.



6 MULTILEVEL RNA STRUCTURE COMPARISON:
SKETCH OF THE MAIN IDEA

We briefly discuss now an approach which addresses in
part the “scattering effect” problem (see Section 2). This
approach is being currently validated and will be more fully
described in another paper. We therefore present here the
main idea only.

To start with, it is important to understand the nature of
this “scattering effect.” Let us consider first a trivial case: the
cost functions are unitary (insertion, deletion, and relabeling
each cost 1) and we compute the edit distance between two
trees composed of a single node each. The obtainedmapping
will associate the single node in the first tree with the single
one in the second tree, independently from the labels of the
nodes. This example can be extended to the comparison of
two trees whose node labels are all different. In this case, the
obtained mapping corresponds to the maximum home-
omorphic subtree common to both trees.

If the two RNA secondary structures compared using a
tree representation which models both the base pairs and
the nonpaired bases are globally similar but present some
local dissimilarity, then an edit operation will almost
always associate the nodes of the locally divergent regions

that are located at the same positions relatively to the global
common structure. This is a normal, expected behavior in
the context of an edition. However, it seems clear also when
we look at Fig. 4 that the bases of a terminal loop should not
be mapped to those of a multiple loop.

To reduce this problem, one possible solution consists of
adding to the nodes corresponding to a base an information
concerning the element of secondary structure to which the
base belongs. The cost functions are then adapted to take
this type of information into account. This solution,
although producing interesting results, is not entirely
satisfying. Indeed, the algorithm will tend to systematically
put into correspondence nodes (and, thus, bases) belonging
to structural elements of the same type, which is also not
necessarily a good choice as these elements may not be
related in the overall structure. It seems therefore preferable
to have a structural approach first, mapping initially the
elements of secondary structure to each other and taking
care of the nucleotides in a second step only.

The approach we have elaborated may be briefly
described as follows: Given two RNA secondary structures,
the first step consists in coding the RNAs by trees of type ðcÞ
in Fig. 2 (nodes represent bulges or multiple, internal or
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Fig. 12. Part of a mapping between two rRNA small subunits. The node fusion is circled.

Fig. 11. Result of the editing between the two RNAs shown in Fig. 4 allowing for node and edge fusions.



terminal loops while edges code for helices). We then
compute the edit distance between these two trees using the
two novel fusion operations described in this paper. This
also produces a mapping between the two trees. Each node
and edge of the trees, that is, each element of secondary
structure, is then colored according to this mapping. Two
elements are thus of a same color if they have been mapped
in the first step. We now have at our disposal an
information concerning the structural similarity of the two
RNAs. We can then code the RNAs using a tree of type ðbÞ.
To these trees, we add to each node the colour of the
structural element to which it belongs. We need now only to
restrict the match operation to nodes of the same color. Two
nodes can therefore match only if they belong to secondary
elements that have been identified in the first step as being
similar.

To illustrate the use of this algorithm, we have applied it
to the two RNAs of Fig. 4. Fig. 13 presents the trees of type
(Fig. 2c) coding for these structures, and the mapping
produced by the computation of the edit distance with
fusion. In particular, the noncolored fine dashed nodes and
edges correspond, respectively, to deleted nodes/edges.
One can see that in the left RNA, the two hairpin loops
involved in the scattering effect problem in Fig. 4 (indicated
by the arrows) have been destroyed and will not be mapped
to one another anymore when the edit operations are
applied to the trees of the type in Fig. 2b.

This approach allows to obtain interesting results.
Furthermore, it considerably reduces the complexity of
the algorithm for comparing two RNA structures coded
with trees of the type in Fig. 2b. However, it is important to
observe that the scattering effect problem is not specific of
the tree representations of the type in Fig. 2b. Indeed, the
same problem may be observed, to a lesser degree, with
trees of the type in Fig. 2c. This is the reason why we
generalize the process by adopting a modelling of RNA
secondary structures at different levels of abstraction. This
model, and the accompanying algorithm for comparing
RNA structures, is in progress.

7 FURTHER WORK AND CONCLUSION

We have proposed an algorithm that addresses two main
limitations of the classical tree edit operations for compar-
ing RNA secondary structures. Its complexity is high in
theory if many fusions are applied in succession to any
given (the same) node, but the total number of fusions that
may be performed is not limited. In practice, the algorithm
is fast enough for most situations one can meet in practice.

To provide a more complete solution to the problem of
the scattering effect, we also proposed a new multilevel
approach for comparing two RNA secondary structures
whose main idea was sketched in this paper. Further details
and evaluation of such novel comparison scheme will be the
subject of another paper.
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