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Abstract

We propose a new algorithm for identifying cis-regulatory modules in genomic se-
quences. The proposed algorithm, named RISO, uses a new data structure, called box-
link, to store the information about conserved regions that occur in a well-ordered and
regularly spaced manner in the dataset sequences. This type of conserved regions, called
structured motifs, is extremely relevant in the research of gene regulatory mechanisms
since it can effectively represent promoter models. The complexity analysis shows a time
and space gain, over the best known exact algorithms, that is exponential in the spac-
ings between binding sites. A full implementation of the algorithm was developed and
made available online. Experimental results show that the algorithm is much faster than
existing ones, sometimes by more than four orders of magnitude. The application of the
method to biological datasets shows its ability to extract relevant consensi.
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Availability: http://algos.inesc-id.pt/∼asmc/software/riso.html.

1 Introduction

An important part of gene regulation is mediated by specific proteins, called transcription
factors (TFs), which influence the transcription of a particular gene by binding to specific sites
on DNA sequences, called transcription factor binding sites. Such binding sites are relatively
short stretches of DNA, normally 5 to 25 nucleotides long, and are located in the so-called
promoter regions. Most of these regions are located in the non-coding sequences upstream
of genes, but some are also found downstream, and even within the non-coding parts of a
gene. In prokaryotic organisms the binding sites are located predominantly in the immediate
vicinity of the gene, which usually extends about 300 to 600 nucleotides upstream of the
transcription start site. However, in eukaryotic organisms the binding sites of cooperating
TFs are usually organized into short sequence units, called cis-regulatory modules (CRMs),
distributed over very large distances. There is no clear-cut defined boundary for promoter
regions which may extend further upstream to more than 2000 bases, as observed in some sea
urchin promoters [15].
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Promoter prediction necessarily needs a model of promoter organization and its conspicu-
ous features. In fact, strong and weak points of promoter prediction methods are determined
to a large extent by the accuracy of the underlying promoter model with respect to the bio-
logical organization. A detailed explanation on possible models for prediction and recognition
of eukaryotic promoters can be found in the literature [32]. Therein, an eukaryotic promoter
is viewed as being composed of three CRMs with different functions, each one having one
or more TF binding sites. The first one, the core promoter, is the region that suffices to
determine the precise transcription start site. The second one, the proximal promoter, is
the region that is capable of initiating basal transcription. Finally, the distal promoter, also
called enhancer, is the transcription regulatory region that can be located farther from the
core promoter and has for main function stimulating transcription.

The DNA sites involved in gene regulation can be identified by searching for well conserved
regions in a set of non-coding DNA sequences. Such well conserved regions, also known as
consensus regions, are called motifs and can be found by comparison of non-coding sequences
of a given organism, or by comparison of non-coding sequences of related genes in different
organisms. In the first approach, frequently occurring patterns are likely to correspond to
binding sites of a common TF. The second approach is called phylogenetic footprinting [8]
and requires careful identification of the appropriate genes to use.

There are two central problems concerning motifs in sequences: localization and extrac-
tion [7]. The goal of the motif localization problem is to find the positions in a sequence of
the occurrences of a given motif [19]. The task addressed in this paper is the motif extraction
problem and aims to identify de novo binding site consensi from a set of non-coding DNA
sequences. Given the flexibility of regulatory mechanisms, it is essential to develop computer-
assisted motif recognition methods capable of detecting different kinds of regulatory signals
and adapting to different promoter models. The impact of this task in the Bioinformatics
community is enormous. Promoter regions can play an important role in gene function and
may offer some clues to the function of completely anonymous proteins. Prediction of the
functionality of a promoter may also yield initial indications for gene therapy approaches,
while analysis of the combinatorics of their elements is essential for understanding cell devel-
opment.

Identifying promoter sequences is notoriously difficult for both prokaryotic and eukaryotic
organisms. There are two major challenges in this task. First, there is a constraint of
algorithmic nature, meaning that, in general, the proposed methods can only be applied to sets
of sequences restricted in their length and number. Second, there is a weakness in the models
employed for promoter regions, leading to poor promoter prediction methods. Nevertheless,
the subject has gained a renewed interest in the last few years, with the sequencing of the
genome of vertebrates such as man and mouse. The literature on the topic of DNA binding
site sequence detection is extensive, and there are two surveys on the subject [3, 30]. In
the following we concentrate on briefly surveying methods that extract conserved single or
multiple binding sites, possibly located at constrained distances from one another in a set of
sequences which potentially contain a cis-regulatory region.

The first methods for detecting promoter regions in DNA sequences [23, 27] looked only
for a unique binding site, called single motif. In the search for more complex cis-regulatory
models methods have appeared that extract DNA sites composed by two binding sites [4,29].
The first attempts to identify several binding sites, called multiple motifs, consisted in crossing
compatible single motifs [2,9,10], which takes time at least quadratic in the number of single
motifs and their occurrences. To address this problem, the lists for single motifs were trimmed
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by statistical significance before the crossing operation. However, a motif composed of several
binding sites may be statistically significant even though none of the sites taken individually
are. Indeed, one of the main interests in seeking for multiple motifs lies exactly in this fact.

There are few realistic methods in the literature which attempt to find a modular organi-
zation of binding sites for TFs that cooperate in the regulation of genes. Some probabilistic
methods were proposed to identify CRMs and their component TFs using only the raw se-
quence data as input [24, 25]. The main problem of these methods is that in the attempt
to reduce false positives they also eliminate true positive motifs. Moreover, an exact algo-
rithm [17] was also proposed to flexibly identify motifs composed of any number of binding
sites, possibly distributed over different CRMs. The main drawback of this method is its in-
capacity to deal with large amounts of genomic data since its complexity grows rapidly both
in time and in space. The prime objective of this paper is to address the challenge related to
the high computational complexity of this approach.

The main contribution of this work is a new algorithm, named RISO, to identify CRMs
from a set of promoter regions of co-regulated genes. The new method achieves an exponen-
tial time and space gain, in the worst case analysis, relatively to the best exact algorithm for
the problem of multiple motif extraction [17]. Clearly, time and space savings of this mag-
nitude are of the utmost importance when searching through genomic data. In practice, the
exponential gain reflects that the extraction remains independent of the distances between
the binding sites that build up the multiple motif. This improvement is very important to
find eukaryotic TFs since the promoter model can be very complex with consensus sequences
observed over very large and variable distances. The most important acceleration element of
the proposed algorithm is a new data structure, called box-link, which stores the information
about how to jump within the DNA sequences from site to site in the multiple motif. The
algorithm uses a factor tree [1], also known in the literature as truncated suffix tree [6], which
is a suffix tree [18,26,31] built only up to a certain level, leading to significant space savings.

In Section 2 we present related work, describing two algorithms for the extraction of
structured motifs [17] and the factor tree data structure [1, 6]. In Section 3 we present the
main contribution of this paper, the box-link data structure and the new algorithm to extract
structured motifs [5]. A complete complexity analysis of the algorithms for the extraction
of structured motifs is presented in Appendix, which can be skipped in a first reading. We
demonstrate our results on simulated and real data in Section 4.

2 Previous work

We start this section with an overview of the computational model used to identify cis-
regulatory regions, the structured motifs, first presented by Marsan and Sagot [17]. We then
present two algorithms devised by the same authors [17] for its extraction from a set of DNA
sequences. We end this section by presenting the factor tree data structure [1, 6].

2.1 Model overview

A single model, or simply a model, is a non-empty string over the alphabet Σ={A,C,G,T}.
From this point on, we denote the length of a single model m by k. A measure of the difference
between two sequences of the same length over Σ is given by the Hamming distance, which
is defined as the minimum number of substitutions needed to transform one sequence into
another. A model m is said to have an e-occurrence, or simply an occurrence, in the input
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sequences, if there is one word u in the input sequences such that the Hamming distance
between u and m is less than or equal to e. A model is said to be a valid model, or simply
a motif, if it has an occurrence in at least q input sequences, where q is called the quorum.
Motifs are used to describe highly conserved strings in a set of DNA sequences which, in the
case of sequences from co-regulated genes, are candidates for binding sites.

Definition 1 A structured model is a pair (m, d) where m = (mi)1≤i≤p is a p-tuple of single
models and d = (dmini , dmaxi)1≤i<p is a (p − 1)-tuple of pairs, denoting p − 1 intervals of
distance between the p single models.

Each element mi of a structured model is called a box and we denote its length by ki.

Definition 2 Given a p-tuple (ei)1≤i≤p of allowed substitutions, a structured model (m, d)
is said to have an (ei)1≤i≤p-occurrence in the input sequences if, for all 1 ≤ i ≤ p, there is an
ei-occurrence ui of mi such that: (i) u1, . . . , up are in the same input sequence; (ii) the space
between the end position of ui and the start position of ui+1 in the sequence is in [dmini , dmaxi ],
for all 1 ≤ i < p.

Definition 3 A structured model is said to be a valid structured model, or a structured motif,
if it has an (ei)1≤i≤p-occurrence in at least q input sequences.

As expected, structured motifs try to capture highly conserved complex regions in a set of
DNA sequences which, in the case of sequences from co-regulated genes, simulate functional
combinations of transcription factor binding sites.

2.2 Extraction of structured motifs

The two algorithms devised by Marsan and Sagot [17] to extract structured motifs from
upstream sequences of co-regulated genes use, as the basic data structure, a suffix tree. A
suffix tree for a string is a tree where the branches spell all the suffixes of the string. Such a
data structure exposes the internal structure of a string and can be used to solve many string
problems. For more details see for instance [11]. The construction of a suffix tree in linear
time is a problem already addressed by Weiner [31], McCreight [18] and, more recently, by
Ukkonen [26]. The suffix tree construction for a set of N input sequences, called a generalized
suffix tree, can be easily achieved by consecutively building the suffix tree for each string of
the set. The resulting suffix tree is built in time proportional to the sum of all the string
lengths. An usual way to distinguish the input strings of a generalized suffix tree is by storing
at each tree node v a Boolean array, called the Colorsv array [13] (usually implemented as a
bit vector with dimension N). This array indicates the strings in the input set that contain
the substring labeling the path from the root to the tree node v.

Both algorithms have the same pre-processing phase, which consists in building the gen-
eralized suffix tree and adding the Colors array to all its nodes. The only difference resides
in the extraction phase. The extraction of structured motifs is based on an algorithm devised
by Sagot to extract single motifs [23]. Given a maximum number e of substitutions allowed,
it has been shown by Sagot that extracting all k-size single motifs can be done by simultane-
ously and recursively traversing, in a depth-first way, the lexicographic tree M of all possible
valid models and the suffix tree T of all input sequences. Observe that, when substitutions
are allowed, models that are not represented in the suffix tree may be valid models. In this
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case, the models that need to be checked for validity are all sequences with Hamming distance
at most e from the suffixes of the tree T . Moreover, M is the tree of all these models pruned
at the nodes where the quorum is no longer verified. In practice, M is never built but can
be virtually traversed by a more complex traversal over T . Moreover, if no substitutions are
allowed and the quorum equals 1 then M and T present the same models.

Before presenting the extraction phase for both algorithms we need to introduce the
following definition.

Definition 4 A e-node-occurrence of a model m is a pair (v, ev) such that: (i) v is a node
in the suffix tree T ; (ii) ev is the Hamming distance between the label of the path from the
root to v and m; (iii) ev ≤ e.

Whenever e is understandable from context we use node-occurrence instead of e-node-
occurrence and we denote it only by v. Clearly, when substitutions are allowed (e > 0) a
model can have more than one node-occurrence in T .

2.2.1 Jumping in the suffix tree

We now describe the first published algorithm to extract structured motifs [17]. For the sake
of exposition, we assume that all boxes of the structured motifs have the same size k, with
distances between them over the interval [dmin, dmax], and maximum allowed error e per box.
Moreover, we consider only structured motifs with two boxes.

The extraction of structured motifs starts by finding single motifs of length k [23], one at
a time. Once a single valid model m1 is obtained the extraction of all single models m2 with
which m1 could form a valid structured model ((m1, m2), (dmin, dmax)) starts. The extraction
of the second box m2 is done as follows. For each node-occurrence v of a first box m1 (depicted
as thick lines in Figure 1a), a jump is made in the suffix tree to the descendants of v situated
at distances [dmin, dmax] from v. The nodes reached in this way are the potential start node-
occurrences of the second boxes (Figure 1b). Single extractions of all possible second boxes
proceed from these nodes (Figure 1c).

The ExtractMotifs algorithm for p boxes is presented in Algorithm 1. It makes use of
the PotentialStarts variable, which stores the potential start node-occurrences of the next
box being extracted (Figure 1b), and the KeepMotif function, which stores all information
concerning valid motifs.

2.2.2 Jumping in the suffix tree using suffix-links

The second published algorithm to extract structured motifs [17] capitalizes on the suffix-link
data structure of suffix trees. This algorithm achieves an exponential worst case time gain
relatively to Algorithm 1 presented in Section 2.2.1.

For clarity of exposition, we consider only structured motifs with two boxes. Moreover, we
assume again that each box has the same size k, distanced from the next box by some value
in the interval [dmin, dmax], and the same maximum allowed error e per box. The extraction
of structured motifs starts by extracting single motifs of length k [23], one at a time. For
each node-occurrence v of a first box m1 (Figure 2a), a jump is made in the suffix tree to the
descendants of v situated at distances [k + dmin, k + dmax] from v (Figure 2b). The content
of the Boolean Colors array of the nodes reached at these lower levels is grabbed and carried
along the unique path of suffix-links that leads back to a node at level k (Figure 2c). Back

5



a)

c)

size(m2)=k

b)

d

size(m1)=k

ex
tra
ct
io
n

ju
m
p

ex
tra
ct
io
nPotentialStarts

Figure 1: Extracting structured motifs jumping down in the tree.

at level k, the grabbed information is used to temporarily update the Boolean Colors of the
suffix tree (Figure 2d). The extraction of the second box m2 of a potentially valid structured
model then proceeds in the same way (Figure 2e) over the previously updated tree. Once the
operation of extracting all possible valid motifs 〈(m1,m2),(dmin, dmax)〉 has ended, the suffix
tree is restored to its previous state. The construction of another single motif m1 then follows
and the process continues until all valid structured motifs are extracted.

This second algorithm to extract structured motifs restricts the single extraction of all
boxes composing the structured models to the first k levels of the tree. Comparing with
Algorithm 1 presented in Section 2.2.1, it merges at a higher level some branches of lower
levels, simplifying the process of the numerous single extractions and leading to an exponential
time gain, as we shall see in the Appendix. On the other hand, more space is needed by the
second algorithm to restore the tree after each modification it undergoes. The algorithm uses
a family of L(i) arrays for that purpose. Notice that, in a general case of p boxes, up to
(p− 1) arrays are needed. In fact, the L(i) array, 1 < i ≤ p, stores the state of the nodes at
level k for the (i− 1)-th box, and there is no need to store it for the first box.

Another subtle detail shows up in this second algorithm when p > 2. Note that if we
descend to lower levels directly from node-occurrences at level k for boxes i > 2, like we do
for i = 2 (Figure 2b), we would not miss any potential end node-occurrence but we could get
more (notice that the suffix tree gets sparser at lower levels). For that reason, we need to keep
for each box i, with 1 < i < p, and for each node vk, at level k, reached from the following up
of the suffix-links from nodes at [ik+(i−1)dmin, ik+(i−1)dmax] levels to level k (Figure 2c),
a list Lptrvk(i) of pointers to the correspondent nodes at [ik + (i− 1)dmin, ik + (i− 1)dmax]
levels.

The ExtractMotifs algorithm for p boxes is presented in Algorithm 2 and it makes use of the
following variables and functions. The variable PotentialEnds stores the potential end node-
occurrences of the next box being extracted (Figure 2b). The variable NextEnds stores the
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Algorithm 1 ExtractMotifs, structured motif extraction jumping in the suffix tree

ExtractMotifs(model m, box i)

1. for each node-occurrence v of m

2. if (i > 1)
put in PotentialStarts the children of v at [(i−1)k+(i−1)dmin, (i−1)k+(i−1)dmax]

3. else put v in PotentialStarts

4. for each motif mi obtained by traversing T from the node-occurrences in PotentialStarts

5. if (i < p) ExtractMotifs(m1 . . . mi, i + 1)
6. else KeepMotif(〈(m1, . . . , mp), (dmin, dmax)〉)

nodes at level k needed to update the suffix tree (Figure 2d). The variables L(i), 1 < i ≤ p,
store information to restore the suffix tree after each update it undergoes. The variables
Lptrvk(i), 1 < i < p, store pointers from level k to lower levels from where to proceed with
the descent. The function UpdateTree updates the Boolean arrays from the nodes in NextEnds
to the root in the following way: if nodes z and ẑ have the same parent z, then Colorsz =
Colorsz + Colorsz (Colors are usually implemented as a bit vector, so this means the bitwise
OR operation). Any arc from the root that does not have a node in NextEnds is not part
of the updated tree, nor are the subtrees rooted at its node in NextEnds. The function
RestoreTree restores the Boolean arrays from the nodes in L(i) to the root in the following way:
if nodes z and ẑ have the same parent z, then Colorsz = Colorsz + Colorsz. Any arc from
the root is part of the restored tree. The function KeepMotif stores all information concerning
valid motifs.

2.2.3 Extending the algorithms

The algorithms so far presented assumed that all single motifs mi of a structured motif (m, d)
have a unique fixed size k, the same substitution rate e and identical values for (dmin, dmax).
The original proposal of these algorithms [17] presents extensions to handle boxes with vari-
able length ki, variable substitution rate ei and variable intervals of distance (dmini , dmaxi).
Another proposed constraint imposes the frequency of one or more nucleotides in a box (or
among all boxes) to be below or above a certain threshold.

2.3 Factor tree

Factor trees are a data structure to index strings [1, 6] very similar to suffix trees. This data
structure, also called k-factor tree, indexes the substrings of a string whose length does not
exceed k, and only those. A factor tree is simply a suffix tree pruned at depth k. As an
example, consider the 5-factor tree for string S =AGACAGGAGGC$ presented in Figure 3
(left). Note that the 5-factor tree does not have any leaf with a collapsed start position, since
there is no common substring of size 5 in the string S =AGACAGGAGGC$. However, if we
consider k = 3, the substring AGG occurs twice in the string S, at positions 5 and 8, and we
obtain a 3-factor tree with collapsed start positions, as depicted in Figure 3 (right).

As for suffix trees, the time and space complexities for constructing factor trees are linear

7



ex
tra
ct
io
n

up
da
te

d) e)

ksize(m2)=k

ex
tra
ct
io
n

ju
m
p

su
ffi
x−
lin
ks

PotentialEnds

a)

c)

k

b)

size(m1)=k

k + d

NextEnds

Figure 2: Extracting structured motifs following suffix-links.

in the length of the string [1]. However, applications such as the extraction of single or
structured motifs, where the length of the models to be searched in the suffix tree is limited,
can obtain a considerable gain in terms of space and time by the use of factor trees. Compared
with a suffix tree, the k-factor tree offers a substantial gain in terms of space complexity for
small values of k, as well as a gain in time when used for enumerating all occurrences of a
pattern in a text indexed by such a k-factor tree. For more details see [1].

To implement the factor tree construction algorithm a new codification is used [1], based
on an Improved Linked List Implementation, proposed by Kurtz [16] for suffix trees, called
the illi coding. Fundamentally, the coding is changed so that it efficiently handles the fact
that a leaf in the factor tree may store more than one position (c.f. positions 5 and 8 in
Figure 3). Whenever a new position is added to an already existing leaf we say that the leaf
is being updated.

In Section 3.1, we are going to use listleaf to store the leaves of the factor tree as they
are inserted or updated. Clearly, the illi coding provides this listleaf straightforwardly. As
an example, recall Figure 3 (right) and note that the listleaf of the depicted factor tree is
{1,2,3,4,(5,8),6,7,(5,8),9,10,11,12}. It is obvious that the length of listleaf is the length of the
input sequence.
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Algorithm 2 ExtractMotifs, structured motif extraction using suffix-links

ExtractMotifs(model m, box i)

1. for each node-occurrence v of m

2. if (i == 2) put in PotentialEnds the children w of v at [2k + dmin, 2k + dmax]
3. else if (i > 2)
4. for each pointer v %→ z in Lptrvk(i− 1)
5. put in PotentialEnds the children w of z at [ik + (i− 1)dmin, ik + (i− 1)dmax]
6. for each node-occurrence w in PotentialEnds

7. follow suffix-link to node z at level k

8. put node z in L(i)
9. if (1 < i < p) put pointer z %→ w in Lptrvk(i)

10. if (first time z is reached) Colorsz =
−→
0 and put z in NextEnds

11. Colorsz = Colorsz + Colorsw

12. UpdateTree(T , NextEnds)
13. for each motif mi obtained by traversing T from the root

14. if (i < p) ExtractMotifs(m1 . . . mi, i + 1)
15. else KeepMotif(〈(m1, . . . ,mp), (dmin, dmax)〉)
16. RestoreTree(T , L(i))

3 Extraction of structured motifs using box-links

We now introduce the main contribution of this paper, the box-link data structure. We will
first sketch the core ideas of the concept, hoping that it will convey a general idea of its usage.
The construction of the box-links from the input sequences is straightforward and we shall
examine an algorithm for that purpose quite carefully in Section 3.2. Then, in Section 3.3,
we present the algorithm to extract structured motifs using the new data structure. Finally,
in Section 3.4 we introduce some extensions to the proposed algorithm.

3.1 Box-link data structure

A box-link stores the information needed to jump from box to box in a structured model.
Its name comes from the fact that it links all p boxes of a possibly valid structured model.
Informally, a box-link is a tuple of tree nodes, corresponding to jumps in the factor tree from
box to box in a structured model. To illustrate the general idea behind box-links, suppose
we have the input sequence AAACCCCCGGGGGT and we are extracting structured models
with p = 3 boxes of the same size k = 3, and the same distance d = 2 between them. Under
these conditions, there are only two box-links for the given input sequence, since there are at
most two structured models. Box-links in these conditions are illustrated in Figure 4. Note
that only a 3-factor tree is needed to solve this problem.

For the sake of simplicity we assume that all p boxes of a structured model are of the
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same size k with distances between them ranging over the interval [dmin, dmax]. A box-link
is defined as follows.

Definition 5 Let Lk be the set of leaves at depth k of a k-factor tree T for a string S and
Li

k denote all possible i-tuples over Lk. A box-link of size i, with 1 ≤ i < p, is a (i + 1)-tuple
in Li+1

k such that there is a substring S′ of S where: (i) the length of S′ is ik + (i− 1)d; (ii)
the k-length substring of S′ ending at position jk + (j − 1)d, with 1 ≤ j ≤ i, is the path in
T spelled from the root to the j-th leaf of the box-link tuple.

The key idea is that there is a box-link from a leaf l1 to a leaf l2, if when jumping down
the suffix tree from l1 at depth k (Figure 5a), and following the unique path of suffix-links
from all children of l1 at depth 2k + d, we reach l2 again at level k (Figure 5b). Clearly, there
may exist several leaves l2 fulfilling the previous condition. Figure 5 depicts the differences
between Algorithm 2 presented in Section 2.2.2, to extract structured motifs using suffix-links
(Figure 5b), and the one using box-links (Figure 5c). The information taken from level 2k+d
to level k of the suffix tree is the Colors of the nodes reached at depth 2k + d. To store all
this information a box-link b has to be endowed with a Boolean array defined as:

Colorsb[i] =
{

1 if the box-link b links boxes of the i-th input sequence
0 otherwise .
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3.2 Box-link construction

The algorithm that builds box-links takes into account that some box-links may collapse from
some box on, placing them in a same equivalence class, and leading to a time complexity that
is negligible when compared to the time spent extracting structured motifs.

Consider once again the case where we have all p boxes of the same size k with distances
between them over the interval [dmin, dmax]. It should be clear (see Figure 6 for an illustration)
that a box-link that links boxes distanced by dmin, from first to second box, and dmin + 1,
from second to third box, is equivalent, from the third box on, to a box-link that links boxes
distanced by dmin + 1, from first to second box, and dmin, from second to third box. In fact,

dmin + 1

dmin

dmin

dmin + 1

. . .

Figure 6: Merge of equivalent box-links from the third box on.

we consider that both box-links collapse in the same box-link from the third until the last
box. The algorithm we propose takes this into account by placing box-links in equivalence
classes.

In order to define the method used to construct box-links, presented in Algorithm 3, we
have to make use of two variables. First, the variable listleaf has the list of all leaves as
they were inserted or updated in the factor tree, which can be easily obtained during the
construction of the factor tree, as explained in Section 2.3. In fact, for the sake of exposition,
listleaf can be viewed as a family of variables (listleaf i

)1≤i≤N (one for each input sequence),
where each listleaf i

has the same length as the i-th input sequence. Observe that the factor
labelling the path from the root to the j-th leaf of listleaf i

corresponds to the j-th at most k-
length factor of the i-th input string. Second, the variable [bj ]g represents the equivalence class
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of j-size box-links that have the sum of all j distances between boxes equal to g. Additionaly,
we need to define the function AddBoxLink. AddBoxLink(b,v,i) adds a box-link between an existing
(j−1)-size box-link b and a leaf v for the i-th input sequence. However, it only creates a new
box-link if a box-link does not exist yet between box-link b and node v (merging in this way
equivalent box-links). Either way, creating or not a new box-link, the AddBoxLink function sets
the Boolean Colors array entry i to 1.

Algorithm 3 BoxLink, box-link construction

BoxLink(boxes p, box size k, box distance d, list of leaves listleaf )

1. for (i from 1 to N)
2. while (size of listleaf i

≥ pk + (p− 1)dmin)
3. [b0]0 = AddBoxLink(nil, listleaf i

[0], i)
4. for (j from 1 to p− 1)
5. for (g from (j − 1)dmin to (j − 1)dmax)
6. for (h from dmin to dmax)
7. if (size of listleaf i

≥ pk + (g + h + (p− j − 1)dmin))
8. [bj ]g+h = AddBoxLink([bj−1]g, listleaf i

[jk + g + h], i)
9. remove the first leaf of listleaf i

Algorithm 3 requires some explanation. The first step iterates over all input sequences,
while the second step iterates over all positions of an input sequence, guaranteeing that there
are box-links to build from that position on. Step 3 builds a dummy box-link to start the
construction process and it could be viewed as a 0-size box-link, that is, a 1-tuple which
contains only the starting leaf. The fourth step iterates over all p − 1 distances between
boxes of the structured model. Observe that to build all (p − 1)-size box-links we need to
build all j-size box-links, with 1 ≤ j < p − 1. The fifth step iterates over all possible source
positions for the next link to build, and for each such source step 6 runs over the possible
target positions. The instruction in line 7 guarantees the existence of such target and step 8
builds the box-link itself based on the previous data. The last step advances the algorithm
one position in the input sequence.

3.3 Jumping in the factor tree using box-links

Assume we have all p boxes of the same size k with distances between them over the interval
[dmin, dmax]. The ExtractMotifs algorithm using box-links is very similar to the one proposed
with the use of suffix-links [17]. First, a factor tree T is built, up to the level k, for all input
sequences. The factor tree is then modified to store at each node the Colors array, and box-
links are added to the leaves of the factor tree. After this pre-processing phase the extraction
begins. The pseudo-code for the extraction is presented in Algorithm 4. The variables and
functions used by this algorithm are the same as for Algorithm 2 (Section 2.2.2).

The correctness of Algorithm 4 follows straightforwardly from the correctness of Algo-
rithm 2, presented in the original paper by Marsan and Sagot [17], since box-links mimic the
behavior of jumping down the tree and following up the suffix-links.
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Algorithm 4 ExtractMotifs, structured motif extraction using box-links

ExtractMotifs(model m, box i)

1. for each node-occurrence v of m

2. for each leaf z such that there is a box-link b〈v,z〉 from v to z

3. put z in L(i)

4. if (first time z is reached) Colorsz =
−→
0 and put z in NextEnds

5. Colorsz = Colorsz + Colorsb〈v,z〉

6. UpdateTree(T ,NextEnds)

7. for each motif mi obtained by traversing T from the root

8. if (i < p) ExtractMotifs(m = m1 . . .mi,i + 1)

9. else KeepMotif(m = 〈(m1, . . . , mp),(dmin, dmax)〉)
10. RestoreTree(T ,L(i))

3.4 Extending the algorithm

All extensions presented in Section 2.2.3, to enhance the algorithms for extracting structured
motifs, are easily translated into the algorithm based on box-links introduced in this chapter.
The only exception is when handling boxes of variable length, which we now discuss.

In order to deal with boxes of variable size one needs to slightly modify the notion of
box-link. In fact, when dealing with boxes of variable length, the label of a tree arc between
two nodes may have more than one symbol, since the factor tree is a compact tree, and so it
may represent more that one box (of different sizes). This property of factor trees requires
box-links to be endowed with some extra structure when dealing with boxes of variable length.
A straightforward way to deal with this problem is to store information about the size of the
boxes the box-link concerns, in addition to the input sequence where it occurs. This can be
easily achieved by promoting the Boolean array Colors, of size N , to a Boolean matrix, of
size Γ×N , where Γ = kmax − kmin + 1.

The algorithm to build box-links requires few changes when we wish to consider structured
motifs composed of boxes with different sizes. We only need to add two loops similar to the
ones in steps 5 and 6 of the Algorithm 3, but now accounting for variations on the size of the
boxes. Moreover, few changes are required to Algorithm 4. The main change comes from the
fact that the operations of following box-links to find a box i, once boxes 1 to i− 1 have been
found, is done for all possible allowed lengths for the previous boxes, as already proposed by
Marsan and Sagot [17].
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4 Experimental results

This section presents results obtained by RISO1, the C implementation of the new algorithm
proposed in this paper, as well as benchmark comparisons with SMILE2, the C implementation
of the algorithm presented in [17].

Two implementations of RISO are available. One conforms to the description of this
paper, building box-links in the pre-processing phase: RISO-Static. Another one builds box-
links during the extraction phase: RISO-Dynamic. The former has the claimed exponential
time gain, relatively to SMILE, with some space cost for storing box-links. The latter has
the advantage that it only requires the space of the generalized factor tree furnished with
Colors arrays, with an extra time cost for computing box-links during the extraction phase.

In both implementations of RISO an optimization was made by pruning from the factor
tree all nodes that cannot be part of a structured motif. Such nodes are the ones that have
path-labels Si[n − j..n], where pk + (p − 1)dmin < j ≤ 0, for all 1 ≤ i ≤ N (remember that
n is the average size of an input string Si). In practice, this optimization leads to important
time savings when there is a large number of boxes and when dealing with boxes separated
by large distances.

The results presented were obtained using an Intel Pentium IV at 2.4GHz with 1GB of
RAM.

4.1 Measuring statistical significance

Once all structured motifs have been extracted, they are classified according to their statistical
significance in order to assess their biological relevance. We used for such evaluation the same
procedure as in Marsan and Sagot [17], a data shuffling approach [14]. In order to obtain
the statistical significance of the models found, a χ2 test, with one degree of freedom, is
performed on two contingency tables: one table expressing what was observed, and another
corresponding to what is expected under the null hypothesis [20]. To derive the values in the
contingency table for the null hypothesis several random shufflings are performed preserving
the "-mer frequency distribution of the input sequences (an "-mer is a substring of length ").
Both the number of shufflings and " are values given by the user (in general, 100 shufflings
conserving di/tri-nucleotides are considered). This process estimates the probability of getting
the models observed under the null hypothesis.

4.2 Human simulated data

To confirm the claimed exponential gain of RISO over SMILE we performed several experi-
ments over a dataset of 1000 sequences of size 1000 obtained using the Regulatory Sequence
Analysis (RSA) tools3. These DNA sequences were generated by a Markov chain with order
5, calibrated on intergenic oligonucleotide frequencies for the human DNA, with no planted
motifs. We used this data to experimentally verify the exponential gain of RISO over SMILE,
which reflects that the extraction remains independent of the distances between the binding

1Online version and sources of RISO implementation are available at
http://algos.inesc-id.pt/∼asmc/software/riso.html.

2Online version and sources of SMILE implementation are available at
http://www-igm.univ-mlv.fr/∼marsan/smile english.html.

3Available at http://rsat.scmbb.ulb.ac.be/rsat/.
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sites that build up the multiple motif. Figure 7 contains a summary of the experiments as
well as the results obtained in this context.
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Figure 7: Ten experiments were performed by running SMILE, RISO-Dynamic and RISO-
Static over the human simulated dataset. We looked for a dyad consisting of two monad
patterns both of size 3 (k1 = k2 = 3), the first one allowing 1 error and the second one
allowing no errors (e1 = 1 and e2 = 0). We wanted these monads to occur at a minimum
distance 15 (dmin = 15) and a maximum distance 25, 35, 45, 55, 65, 75, 85, 95, 105 and 115
(dmax = 25, 35, 45, 55, 65, 75, 85, 95, 105, 115), for the 10 different experiments, respectively.
We required a minimum quorum of 100% (q = 1000 in 1000 sequences). Extraction times of
RISO and SMILE for this set up are presented in a logaritmic scale.

The extraction time of SMILE and RISO, as well as the gain of RISO over SMILE, for the
10 experiments presented in Figure 7, are presented in Table 1. The first column of RISO-
Static concerns the pre-processing time spent to build the box-links, whereas the second
column concerns the extraction time of RISO-Static. As expected, fixing dmin = 15 and
varying dmax from 25 to 115 in 10 different experiments the extraction time of RISO-Static
remained 0.18 seconds in all experiments whereas the extraction time of SMILE varied from
709.62 seconds to 2322.91 seconds, as shown in Table 1. The last experiment reflects that
RISO performed 12905 times better than SMILE, and this speedup would increase without
bounds as dmax grows. In terms of space, SMILE required 20MB whereas RISO-Static required
6MB (with just 1MB to store box-links in all 10 experiments). RISO-Dynamic performed
about 140 times better than SMILE in the 10 experiments.

4.3 Real data

RISO can be applied to real data as a method to give evidence that some cis-regulatory region
occurs in a set of DNA sequences. Such procedure assumes some knowledge of the data, which
is reflected in an effective choice of the parameters. When no previous knowledge of the data
is available, the only way to proceed is via trial and error over the values of the parameters.

We applied SMILE and RISO to several biological datasets where there are known struc-
tured regulatory motifs. In the following we present three of these experiments.
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Table 1: Gain of RISO over SMILE for the 10 experiments presented in Figure 7.

Allowed distance Extraction time (seconds) Gain
between boxes SMILE RISO-Dyn RISO-Sta SMILE/RISO

15..25 709.62 5.08 2.38 0.18 3942
15..35 1044.00 7.00 4.11 0.18 5800
15..45 1289.53 8.78 5.25 0.18 7164
15..55 1488.02 10.59 6.60 0.18 8267
15..65 1653.87 12.42 7.64 0.18 9188
15..75 1823.30 14.22 8.63 0.18 10129
15..85 1946.17 16.12 9.85 0.18 10812
15..95 2070.23 17.59 10.79 0.18 11501
15..105 2193.62 19.33 12.14 0.18 12187
15..115 2322.91 21.62 12.81 0.18 12905

4.3.1 The Galp4 promoter in S. cerevisiae

The first biological dataset is formed from a collection of 68 genes of S. cerevisiae that are
known to be regulated by zinc cluster factors [29]. The upstream sequences were retrieved
from positions −1 to −1000 relative to the ORF start positions. We wanted to detect a dyad
signal corresponding to the nucleotides that enter into direct contact with Gal4p [28,29]. The
known motif for Gal4p is the long motif CGGrnnrcynyncnCCG [28] highly degenerated in the
11 middle nucleotides. Therefore, we looked for dyad signals considering the degenerated part
as a distance between two distinct monads, as previously done in [29]. For the dyad analysis
of the Zn cluster data, we tested two models. A first model with two boxes with size 3 (k1 =
k2 = 3) and distance 11 (dmin1 = dmax1 = 11), allowing 1 error in both boxes (e1 = e2 = 1),
and a second one with two boxes with size 4 (k1 = k2 = 4) and distance 9 (dmin1 = dmax1 = 9),
allowing 2 errors in both boxes (e1 = e2 = 2). For the first model the algorithm detected,
with a quorum of 100% (68 in 68 sequences), the known motif CGGn11CCG. This consensus
was classified as the 6th most statistical significant among 4084 extracted motifs. For the
second model the consensus CGGAn9TCCG was detected, with a quorum of 100% (68 in
68 sequences), and with highest statistical significance within 65536 extracted motifs. In
fact, these dyads are related to each other, and can be assembled to a common pattern
CGGan9tCCG. In terms of performance, RISO-Static performed 833 times better than SMILE
in the first experiment, and it performed 402 times better in the second one. We stress that
the pre-processing time spent to build box-links by RISO-Static was 0.02 and 0.31 seconds in
the first and second experiment, respectively. The results are sumarized in Table 2.

Table 2: Dyad analysis of the Zn cluster data.

Extraction Time (seconds) Extracted
SMILE Riso-Dyn Riso-Sta motif

33.31 0.16 0.04 CGGn11CCG
1201.50 3.27 2.99 CGGAn9TCCG
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4.3.2 Transcription activation of CRP in E. coli

The second dataset is composed of 72 sequences from E. coli that are known to be regu-
lated by the CRP (Cyclic-AMP Receptor Protein) protein. The CRP complex binds as a
dimer and activates transcription by contacting RNA polymerase directly. Although there
is great diversity in the way that CRP-dependent promoters are organized, the most com-
monly found arrangement is for transcription initiation to be dependent on a single CRP
dimer, centered between base pairs −41 and −42 upstream from the transcription start site,
with the downstream subunit of the CRP dimer overlapping the core promoter −35 region.
According to the literature [22], the consensus for the activating regions of the CRP pro-
tein is given by the palindromic sequence TGTGAn6TCACA. The core promoter for RNA
polymerase contact is given by the consensus sequence TTGACAn16..18TATAAT [21]. Fol-
lowing biologists instructions we looked for structured motifs composed of three and four
boxes. In particular, we looked for motifs composed of four boxes and searched for evidence
of non-overlapping boxes in the −35 region of the core promoter. However, we only found
the most common triad described in the literature. In Table 3 we present the tests for the
following models. First, a model to look for the CRP site only, with two boxes of size 5
(k1 = k2 = 5), each one allowing 1 error (e1 = e2 = 1), separated by 5 to 7 nucleotides
(dmin1 = 5, dmax1 = 7). The consensus TGTGAn5..7TCACA was extracted, requiring a quo-
rum of 63% (46 in 72 sequences), from within 117 extracted models. Among the four models
classified with highest statistical significance we found all extracted models with first box
TGTGA. The first in the rank was our consensus for the CRP site, TGTGAn5..7TCACA.
Second, we looked for the whole complex with CRP and core promoter sites, searching for a
model with three boxes of size 5 (k1 = k2 = k3 = 5), with the first box separated by 5 to 7
and the second box separated by 15 to 23 (dmin1 = 5, dmax1 = 7 and dmin2 = 15, dmax2 = 23)
nucleotides. We allowed 1 error for the first and second box and 2 errors for the third
box (e1 = e2 = 1 and e3 = 2). By requiring a quorum of 56% (41 in 72 sequences), the
consensus TGTGAn5..7TCACAn15..23TATAA was found from within 6603 extracted motifs.
The statistical significance of this motif was in the best one-third of all extracted motifs,
being the best scored motif TGTGAn5..7TTCACn15..23TACAT. RISO was 4.2 times faster
than SMILE in the first experiment and it was 1.6 times faster than SMILE in the second
one. We stress that the consensus TGTGAn5..7TCACAn15..23TATAA was found, whereas
TGTGAn5..7TCACAn15..23ATAAT was not. This is a clear indication that the third box
of the structured model is more degenerated, confirming an assumption that the biologists
gave us in first hand. In fact, we only found TGTGAn5..7TCACAn15..23TATAAT allowing 3
substitutions in the third box and requiring a smaller quorum, which does not give us more
useful information than the one we already have with the experiment described in Table 3.

Table 3: Analysis of the E. coli data.

Extraction Time (seconds) Extracted
SMILE RISO-Dyn motif

20.89 5.03 TGTGAn5..7TCACA
53.32 32.67 TGTGAn5..7TCACAn15..23TATAA
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4.3.3 The RNA polymerase σ70 factor in the whole genome of B. subtilis

In the third dataset we used non-coding sequences located between two divergent genes, that
is, between genes transcribed in divergent directions (one on each strand), and extracted
from the whole genome of B. subtilis. This set contains 1062 sequences for a total of 196736
nucleotides and was initially used to test the SMILE algorithm [17]. We wanted to de-
tect a dyad signal corresponding to the sites recognized by the RNA polymerase σ70 factor
(TTGACAn16..18TATAAT) [12,17]. The results are summarized in Table 4. We tested a model
with two boxes of size 6 (k1 = k2 = 6), allowing 1 mismatch in both boxes (e1 = e2 = 1),
separated by 16 to 18 nucleotides (dmin1 = 16 and dmax1 = 18). Requiring a quorum of 12%
(128 in 1062 sequences), the consensus TTGACAn16..18TATAAT was found with the highest
statistical significance from within 6419 extracted motifs. This structured motif appeared in
135 of the 1062 sequences. In terms of performance, RISO-Static was 7.7 times faster than
SMILE, and we stress that the time spent to build box-links was only 1.86 seconds.

Table 4: Analysis of the B. subtilis data.

Extraction Time (seconds) Extracted
SMILE RISO-Dyn RISO-Sta motif

349.44 47.42 45.33 TTGACAn16..18TATAAT

5 Conclusion

We presented a new algorithm and data structure for the extraction of structured motifs
in DNA sequences. A complete complexity analysis of the new algorithm was presented
showing an exponential time and space gain, in the worst case, relatively to the best known
exact algorithms for extracting structured motifs [17]. The only added cost comes from the
computation of box-links but this time is negligible in comparison with the time required
to perform the extraction of the structured motifs. Moreover, the proposed algorithm only
requires the creation of a suffix tree pruned at the level of the largest box of the structured
motif, saving much space in comparison with the algorithms proposed in [17] that are based
on the full suffix tree.

An online version, together with the sources, of the new algorithm was made available at
http://algos.inesc-id.pt/∼asmc/software/riso.html. Experimental results show that
RISO is much faster than SMILE [17], in some cases, more than four orders of magnitude
faster. The application of RISO to biological datasets shows the ability of the method to
extract relevant consensi. To conclude, the exponential time and space gain of the algorithm
reflects the possibility of parsing and extracting motifs from full genomic sequences.

Future work can progress in several directions. The algorithm can be easily extended to
allow motif hits located in both strands without changing the asymptotic complexity. This
extension only requires parsing two times each string, one for each strand, and making a
minor change in the factor tree coding. It would also be valuable to combine our approach
with probabilistic ones, possibly by modeling each motif within a structured motif using the
standard position specific scoring matrix (PSSM) representation. We are also exploring the
use of our algorithm as part of a framework to unveil the complex gene regulatory network
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underlying the yeast response to the 2,4-D herbicide and to a new antimalarial/antitumor
drug artesunate.
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[27] J. van Helden, B. André, and J. Collado-Vides. Extracting regulatory sites from the
upstream region of yeast genes by computational analysis of oligonucleotide frequencies.
J. Mol. Bio, 281(5):827–842, 1998.

[28] J. van Helden, A. F. Rios, and J. Collado-Vides. Comparative amino acid sequence analy-
sis of the C6 zinc cluster family of transcriptional regulators. Nuc. Ac. Res., 24(23):4599–
4607, 1996.

[29] J. van Helden, A. F. Rios, and J. Collado-Vides. Discovering regulatory elements in non-
coding sequences by analysis of spaced dyads. Nuc. Ac. Res., 28(8):1808–1818, 2000.

20



[30] A. Vanet, L. Marsan, and M.-F. Sagot. Promoter sequences and algorithmical methods
for identifying them. Research in Microbiology, 150(9-10):779–799, 1999.

[31] P. Weiner. Linear pattern matching algorithms. In Proc. SWAT’73, pages 1–11, 1973.

[32] T. Werner. Models for prediction and recognition of eukaryotic promoters. Mamm. Gen.,
10(2):168–175, 1999.

A Complexity analysis

A.1 Constant distance between boxes

Herein we establish the time and space complexity for Algorithm 1, Algorithm 2 and Algo-
rithm 4. Even though such results for Algorithm 24 have already been shown by Marsan and
Sagot [17], we present a detailed proof for the time complexity since it gives additional insight
on other results that will be presented later. Moreover, since the complexity is non trivial to
compute we start by considering dmin = dmax = d.

We denote by nl the number of nodes at depth l of the suffix tree and by ν(e, k) the
number of distinct words that are at a Hamming distance at most e from a k-long word. The

following upper bound for ν(e, k) holds: ν(e, k) =
∑e

i=0

(
k
i

)
(|Σ| − 1)i ≤ ke|Σ|e. We recall

that N is the number of input sequences and n is the average size of an input sequence.

Proposition 1 Algorithm 1 takes O(Nnpk+(p−1)dν
p(e, k)) time and O(N2n) space.

Proof: The proof of time and space complexities can be found in [17]. !

Proposition 2 Algorithm 2 takes O(Nsp(k, d)νp(e, k) + Nnpk+(p−1)dν
p−1(e, k)) time, where

sp(k, d) = min{np
k, npk+(p−1)d}, and O(N2n + Npnk) space.

Proof: We can parcel out the complexity of Algorithm 2 into three parts: (i) the total number
of operations needed to build the p parts of all structured motifs; (ii) the total number of
operations needed to update T , for all parts of a structured motif; (iii) the total number of
operations needed to restore T .

In order to compute (i) we have to calculate the cost of all visits we make to nodes between
the root and level k (the deeper level ever reached).

Start by noticing that when spelling all parts of a motif we are working with nodes between
the root and level k only, and because suffix trees are compact, being at least binary, there
are at most 2nk such nodes. Hence, the total number of visits we make to nodes between the
root and level k is upper bounded by twice the total number of visits we make to nodes at
level k.

Moreover, when no substitutions are allowed, there are at most sp(k, d) ways of spelling
all structured motifs. In this case, the number of visits to nodes at level k can be given by∑p

i=1 min
{
ni

k, nik+(i−1)d

}
≤ min

{∑p
i=1 ni

k,
∑p

i=1 nik+(i−1)d

}
= O(min

{
2np

k, 2npk+(p−1)d

}
) =

O(sp(k, d)). However, when up to e substitutions are allowed, a node at level k may be visited
4The time complexity result is different from what is presented by Marsan and Sagot [17] due to an

acknowledged imprecision in the later.
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∑p
i=1 νi(e, k) = O(νp(e, k)) times more. Hence, the total number of visits to nodes at level k

is O(sp(k, d)νp(e, k)).
Finally, since each visit to a node requires the access to the Colors array, which takes

O(N) time, building the p parts of all structured motifs takes O(Nsp(k, d)νp(e, k)) time.
In order to compute (ii) we need to count the total number of operations necessary to

modify the first k levels of the suffix tree which is upper bounded, up to a constant factor, by
Nnpk+(p−1)dν

p−1(e, k). This corresponds to all visits made to nodes z coming from w for all
motifs mp−1. In addition, the propagation from node z to the root for all motifs mp−1 is also
upper bounded by the same value. To sum up, and since (iii) is also upper bounded by the time
to update T , we conclude that Algorithm 2 takes O(Nsp(k, d)νp(e, k)+Nnpk+(p−1)dν

p−1(e, k))
time.

The proof of space complexity can be found in [17]. !

This algorithm exhibits an exponential worst case time gain relatively to Algorithm 1.
Note that in the worst case scenario, the suffix tree is complete and we have sp(k, d) =
min{|Σ|pk, |Σ|pk+(p−1)d} = |Σ|pk < npk+(p−1)d = |Σ|pk+(p−1)d which reflects an exponential
gain of the order of |Σ|(p−1)d.

Proposition 3 Algorithm 4 takes O(Nsp(k, d)νp(e, k) + Nbp(k, d)νp−1(e, k)) time, where
bp(k, d) = min{np

k, npk+(p−1)d} is an upper bound for the total number of (p − 1)-size box-
links.

Proof: Given the similarity with the ExtractMotifs algorithm presented in Section 2.2.2, to com-
pute the complexity of Algorithm 4 we just have to compute the total number of operations
needed to update T (all other parcels are similar to Algorithm 2).

The total number of operations needed to modify the first k levels of the suffix tree T ,
using box-links, is now upper bounded by Nbp(k, d)νp−1(e, k) up to a constant factor. This
corresponds to all visits made to nodes z coming from box-links b〈v,z〉 for all models mp−1. In
addition, the propagation from z to the root R for all models mp−1 is upper bounded by the
same value.

We conclude that Algorithm 4 takes O(Nsp(k, d)νp(e, k) + Nbp(k, d)νp−1(e, k)) time. !
This algorithm exhibits an exponential time gain, in the worst case, relatively to the

previous algorithms to extract structured motifs presented in Section 2.2. The only difference
between complexity expressions appears in the second parcel, concerning the update and
restoration of the suffix or factor tree, where the new algorithm presents the term bp(k, d)
whereas the previous algorithm presents the term npk+(p−1)d. Observe that in the worst case
scenario, the suffix or factor tree is complete and we have bp(k, d) = min{|Σ|pk, |Σ|pk+(p−1)d} =
|Σ|pk < npk+(p−1)d = |Σ|pk+(p−1)d which reflects an exponential gain of the order |Σ|(p−1)d.
The major gain of this new method, over previous approaches for extracting structured motifs,
is that the extraction time of the motifs remains independent of the distances between them.

It is important to notice that the time spent building box-links is negligible in comparison
with the time spent for the extraction, as we shall see in Proposition 8.

Proposition 4 Algorithm 4 takes O(Nbp(k, d) + Npnk) space.

Proof: To compute the space complexity of Algorithm 4 note that the factor tree takes
O(Nnk) space, the box-links take O(Nbp(k, d)) space and restoring the tree T uses O(N(p−
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1)nk) = O(Npnk) additional space, which is the size of the L(i), with 1 < i ≤ p, each cell
possibly pointing to a node at level k in T or to nil. Since nk ≤ bp(k, d), we conclude that
the total space complexity is O(Nbp(k, d) + Npnk). !

This algorithm exhibits an exponential space gain, in the worst case analysis, relatively
to the previous algorithms to extract structured motifs presented in Section 2.2. To compare
space complexity results of Algorithm 4 with Algorithm 1 and Algorithm 2, we have to rewrite
the space complexity of the later two considering that they used a (pk +(p− 1)d)-factor tree.
In this case, the space complexity of Algorithm 1 becomes O(Nnpk+(p−1)d) whereas the space
complexity of Algorithm 2 becomes O(Nnpk+(p−1)d + Npnk). Observe that in the worst case
scenario, the factor trees are complete and we have bp(k, d)+pnk = min{|Σ|pk, |Σ|pk+(p−1)d}+
p|Σ|k = |Σ|pk + p|Σ|k (which is O(|Σ|pk) when |Σ| > 1) < |Σ|pk+(p−1)d = npk+(p−1)d which
reflects an exponential gain of the order |Σ|(p−1)d.

A.2 Variable distance between boxes

Herein we establish the time and space complexity for Algorithm 1, Algorithm 2, Algorithm 3
and Algorithm 4, considering the general case where dmin ≤ dmax.

To set up the time complexity for Algorithm 1 we consider that PotentialStarts does not
have repetitions. This can be easily achieved, by marking the nodes reached at [(i−1)k+(i−
1)dmin, (i− 1)k +(i− 1)dmax] levels with a bit every time they are added to PotentialStarts.
Also, we define ∆ = dmin − dmax + 1.

Proposition 5 Algorithm 1 takes O(p∆2n(p−1)k+(p−1)dmax
νp−1(e, k)+Np∆npk+(p−1)dmax

νp(e, k))
time.

Proof: To compute the complexity of Algorithm 1 we have to consider the cost of all visits
we make to nodes between the root and level pk + (p − 1)dmax. However, contrary to what
happened in Proposition 1 (see [17]), this cost is not upper bounded by the cost of all visits
we make to nodes at level pk + (p − 1)dmax. This happens because, by allowing a variable
distance between consecutive boxes, more than one final visit may occur to the nodes at
the lower levels of the tree. Taking this observation into account, we can upper bound the
total cost of the algorithm using two parcels. First, we have to consider the cost of all visits
to nodes at [(p − 1)k + (p − 1)dmin, (p − 1)k + (p − 1)dmax] levels, corresponding to the
computation of PotentialStarts, just before the extraction of the last box mp. Second, we
have to consider the cost of all visits we make to nodes at [pk +(p− 1)dmin, pk +(p− 1)dmax]
levels, corresponding to visits when spelling the last box mp of the models being extracted.

We start by analyzing the case where no substitutions are allowed. To compute the
first parcel concerning PotentialStarts, note that each visit to a node at a level within the
interval [(p − 1)k + (p − 1)dmin, (p − 1)k + (p − 1)dmax] is upper bounded by the number
of ascendants at [(p − 1)k + (p − 2)dmin, (p − 1)k + (p − 2)dmax] levels times the number of
visits each ascendant make to a descendant node. In the worst case and for each descendant
node, the number of ascendants is (p − 2)(dmax − dmin) + 1 = (p − 2)(∆ − 1) + 1 whereas
the number of visits an ascendant make to the descendant is ∆. Hence, the number of
visits we make to nodes at [(p − 1)k + (p − 1)dmin, (p − 1)k + (p − 1)dmax] levels is O(((p −
2)(∆−1)+1)∆n(p−1)k+(p−1)dmax

) = O(p∆2n(p−1)k+(p−1)dmax
). To compute the second parcel

concerning the last extraction step, note that each visit to a node at a level within the
interval [pk + (p − 1)dmin, pk + (p − 1)dmax] is upper bounded by the number of ascendants
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at [(p − 1)k + (p − 1)dmin, (p − 1)k + (p − 1)dmax] levels times the number of visits each
ascendant make to a descendant node. In the worst case and for each descendant node,
the number of ascendants is (p − 1)(dmax − dmin) + 1 = (p − 1)(∆ − 1) + 1 whereas the
number of visits an ascendant make to the descendant is 1 since we assume no repetitions in
PotentialStarts. Hence, the number of visits to nodes at [pk + (p− 1)dmin, pk +(p− 1)dmax]
levels is O(((p− 1)(∆− 1) + 1)npk+(p−1)dmax

) = O(p∆npk+(p−1)dmax
).

When up to e substitutions are allowed, a node at level pk + (p − 1)d may be visited
νp(e, k) times. Hence, the total number of visits is O(p∆2n(p−1)k+(p−1)dmax

νp−1(e, k) +
p∆npk+(p−1)dmax

νp(e, k)). Finally, since the extraction process requires the access to the
Colors array, which takes O(N) time, Algorithm 1 takes O(p∆2n(p−1)k+(p−1)dmax

νp−1(e, k)+
Np∆npk+(p−1)dmax

νp(e, k)) time. !

The space complexity of Algorithm 1 is the same as for constant distances between boxes,
presented in Proposition 1.

To establish the time complexity for Algorithm 2 we assume that the follow up of suffix-
links to level k is never done twice for the same node, for each motif being searched (see
Figure 2c to recall the follow up operation), which is equivalent to saying that PotentialEnds
has no repetitions.

Proposition 6 Algorithm 2 takes O(Nsp(k, dmax)νp(e, k) + (N + p∆2)npk+(p−1)dmax

νp−1(e, k)) time, where sp(k, dmax) = min{np
k, npk+(p−1)dmax

}.

Proof: In a similar way to Proposition 5, when we have variable distances between consecu-
tive boxes, an extra term appears in this analysis. In fact, the term concerning the update of
the suffix tree, presented in Proposition 2, is divided in two terms, one corresponding to the
computation of PotentialEnds and another corresponding to the follow up of suffix-links to
nodes at level k.

As in Proposition 2, we start by analyzing the case where no substitutions are allowed.
To compute the first term concerning PotentialEnds, note that each visit to a node at
a level within the interval [pk + (p − 1)dmin, pk + (p − 1)dmax] is upper bounded by the
number of ascendants at [(p − 1)k + (p − 2)dmin, (p − 1)k + (p − 2)dmax] levels times the
number of visits each ascendant make to a descendant node. In the worst case and for
each descendant node, the number of ascendants is (p − 2)(dmax − dmin) + 1 = (p − 2)(∆ −
1) + 1 whereas the number of visits an ascendant make to the descendant is ∆. Hence,
the number of visits we make to nodes at [pk + (p − 1)dmin, pk + (p − 1)dmax] levels is
O(((p− 2)(∆− 1) + 1)∆npk+(p−1)dmax

) = O(p∆2npk+(p−1)dmax
). The second term concerning

the follow up of suffix-links remains asymptotically the same due to two reasons. First, suffix
trees are compact, being at least binary, and 2npk+(p−1)dmax

is an upper bound for the total
number of nodes at [pk + (p − 1)dmin, pk + (p − 1)dmax] levels. Second, PotentialEnds has
no repetitions and therefore each node within the levels [pk + (p− 1)dmin, pk + (p− 1)dmax]
is followed up only once. Finally, the terms concerning the construction of the p parts of the
structured models and the restoration of the suffix tree remain as in Proposition 2. To sum
up, reasoning as in Proposition 2, when errors are allowed, we have that Algorithm 2 takes
O(Nsp(k, dmax)νp(e, k) + (N + p∆2)npk+(p−1)dmax

νp−1(e, k)) time. !

The space complexity of Algorithm 2 is the same as for constant distances between boxes,
presented in Proposition 2.
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Proposition 7 Algorithm 3 takes O(N2n∆2p2) time.

Proof: The time complexity of Algorithm 3 is determined by steps 1, 2, 4, 5, 6 and 8. Step
1 requires O(N) time. Step 2 requires O(n), where n is the average number of leaves in
listleaf i

(the average length of an input sequence). From step 4 to step 6 the time complexity
of the box-link construction is given by

∑p−1
j=1

∑(j−1)dmax

g=(j−1)dmin

∑dmax
h=dmin

O(1) = O(∆2p2). Step
8 requires O(N) time, which corresponds to create and/or update the array Colors for the
box-link being added. We conclude that Algorithm 3 takes O(N2n∆2p2) time. !

Proposition 8 Algorithm 3 takes O(Nbp(k, dmax)) space, where an upper bound for the
total number of (p− 1)-size box-links is defined as bp(k, dmax) = min{np

k, p∆2npk+(p−1)dmax
}.

Proof: By definition there are at most bp(k, dmax) (p − 1)-size box-links and each box-link
stores the array Colors, which takes O(N) space. We conclude that Algorithm 3 requires
O(Nbp(k, dmax)) space. !

Consider now the time and space complexity for Algorithm 4, for the general case where
dmin ≤ dmax. In this case, both complexities for time and space remain the same, but the
upper bound for the total number of (p− 1)-size box-links becomes defined by bp(k, dmax) =
min{np

k, p∆2npk+(p−1)dmax
}. Moreover, it is worthwhile to notice that the time and space

exponential gains still hold, since in the worst case bp(k, dmax) = np
k = |Σ|pk.
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