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Bases of Motifs for Generating
Repeated Patterns with Wild Cards

Nadia Pisanti, Maxime Crochemore, Roberto Grossi, and Marie-France Sagot

Abstract—Motif inference represents one of the most important areas of research in computational biology, and one of its oldest ones.
Despite this, the problem remains very much open in the sense that no existing definition is fully satisfying, either in formal terms, or in
relation to the biological questions that involve finding such motifs. Two main types of motifs have been considered in the literature:
matrices (of letter frequency per position in the motif) and patterns. There is no conclusive evidence in favor of either, and recent work
has attempted to integrate the two types into a single model. In this paper, we address the formal issue in relation to motifs as patterns.
This is essential to get at a better understanding of motifs in general. In particular, we consider a promising idea that was recently
proposed, which attempted to avoid the combinatorial explosion in the number of motifs by means of a generator set for the motifs.
Instead of exhibiting a complete list of motifs satisfying some input constraints, what is produced is a basis of such motifs from which all
the other ones can be generated. We study the computational cost of determining such a basis of repeated motifs with wild cards in a
sequence. We give new upper and lower bounds on such a cost, introducing a notion of basis that is provably contained in (and, thus,
smaller) than previously defined ones. Our basis can be computed in less time and space, and is still able to generate the same set of
motifs. We also prove that the number of motifs in all bases defined so far grows exponentially with the quorum, that is, with the
minimal number of times a motif must appear in a sequence, something unnoticed in previous work. We show that there is no hope to
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efficiently compute such bases unless the quorum is fixed.

Index Terms—Motifs basis, repeated motifs.

1 INTRODUCTION

IDENTIFYING motifs in biological sequences is one of the
oldest fields in computational biology. Yet, it remains also
very much an open problem in the sense that no currently
existing definition of a “motif” is fully satisfying for the
purposes of accurately and sensitively identifying the
biological features that such motifs are supposed to
represent. Among the most difficult to model are binding
sites, as they are often quite degenerate. Indeed, variability
may be considered part of their function. Such variability
translates itself into changes in the motif, mostly substitu-
tions, that do not affect the biological function. Two main
schools of thought on how to define motifs in biology have
coexisted for years, each valid in its own way. The first
works with a statistical representation of motifs, usually
given in the form of what is called in the literature a PSSM
(“Position Specific Scoring Matrix” [9], [11], [13], [12] or a
profile which is one type of PSSM). Interesting PSSMs are
those that have a high information value (measured, for
instance, by the relative entropy of the corresponding
matrix). The second school defines a motif as a consensus
[4], [24]. A motif is therefore a pattern that appears
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repeatedly, in general, approximately, that is, up to a
certain number of differences (most often substitutions
only) in a sequence or set of sequences of interest.

It is generally accepted that PSSMs are more appropriate
for modeling an already known (in the sense of well-
characterized) biological feature for the purpose of then
identifying other occurrences of the feature, even though
the false positive rate of this further identification remains
very high. Identifying the PSSM itself ab initio is still,
however, a difficult problem, particularly for large data sets
or when the amount of noise may be high. The methods
used are also no guarantee heuristics, leaving an uncer-
tainty as to whether motifs that are statistically as mean-
ingful as those reported have not been missed.

On the other hand, formulating the problem of identifying
approximate motifs as patterns enables one to address the
motif identification problem in an exhaustive fashion, even
though the algorithmic complexity of the problem remains
relatively high, and the model may appear more limited than
PSSMs. Because of the lower algorithmic complexity of
identifying repeated patterns, the model may, however, be
made more complex and biologically pertinent in other ways.
One could think of introducing motifs composed of various
different submotifs separated by variable-length distances
that may then also be found in a relatively efficient way [14].
Motifs presenting such a high level of combinatorial complex-
ity are indeed frequent, particularly in eukaryotes. Exhaus-
tively seeking for approximately repeated patterns may
however have the drawback of producing many “solutions,”
that is, many motifs. In fact, the number of motifs identified
with this model may be so high (e.g., exponential in the size of
the input) thatitis as impossible to manage as the initial input
sequence(s), even though they provide a first way of
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structuring such input. Yet, it appeared clear also to any
computational biologist working with motifs as patterns that
there was further structure to be extracted from the set of
motifs found, even when such a set is huge. Furthermore,
such a structure could reflect some additional biological
information, thus providing additional motivation for infer-
ring it. Doing this is generally addressed by means of
clustering, or even by attempting to bring together the two
types of motif models (PSSMs and patterns). Indeed, recently
researchers have been using pattern detection as a first filter-
flavored step toward inferring PSSMs from biological
sequences [6]. This seems very promising although much
work remains to be done to precisely determine the relation
between the two types of models, and to fully explore the
biological implications this may have.

Again, each of the two above approaches is valid, but the
question remained open whether or not the inner structure
of a set of motifs could be expressed in a manner that would
be more satisfying from both the mathematical and the
biological points of view. Then, in 2000, a paper by Parida et
al. [17] seemed to present a way of extracting such an inner
structure in a very elegant and powerful way for a
particular type of motif. The power of their proposal
resided in the fact that the above mentioned structure
corresponded to a well-known and precisely defined
mathematical object and, moreover, guaranteed that no
solution would be lost. Exhaustiveness in relation to the
chosen type of motif is also preserved, thus enabling a
biologist to draw some conclusions even in the face of
negative answers (i.e., when no motifs, or no a priori
“expected” motifs are found in a given input), something
which PSSM-detecting methods do not allow. The structure
is that of a basis of motifs. Informally speaking, it is a subset
of all the motifs satisfying some input parameters (related,
for instance, to which differences between a pattern and its
occurrences are allowed) from which it is possible to
recover all the other motifs, in the sense that all motifs not
in the basis are a combination of some (in general, a few
only) motifs in the basis. Such a combination is modeled by
simple rules to systematically generate the other motifs with
an output sensitive cost [18]. A basis would therefore also
provide a way of characterizing the input, which then might
be used to compare different inputs without resorting to the
traditional alignment methods with all the pitfalls they
present. The idea of a basis would fulfill such expectations
if its size could be proven to be small enough. The argument
[17] seemed to be that, for the type of motifs considered, a
compact enough basis could always be found.

The motifs considered in [17] were patterns with wild card
symbols occurring in a given sequence s of n symbols
drawn over an alphabet X. A wild card symbol is a special
symbol “o” matching any other element' For example, the
pattern T oG matches both TTG and TGG inside s = TTGG.
Parida et al. focused on patterns which appear at least ¢
times in s for an input parameter ¢ > 2, called the quorum.
This may, at first sight, seem an even more restrictive type
of motif than patterns in general. It, however, has the merit

1. In the literature on sequence analysis and pattern matching, the wild
card is often referred to as do not care (as it is in the literature on bases of
motifs). Therefore, we will use this latter term when referring to the
sequence analysis and string matching literature.

of capturing one aspect of biological features that current
PSSMs in general ignore, or address only in an indirect way.
This aspect often concerns isolated positions inside a motif
that are not part of the biological feature being captured.
This is the case, for instance, with some binding sites,
particularly at the protein level. Studying patterns with
wild cards has a further very important motivation in
biology, even when no differences (such as substitutions)
are allowed. Indeed, motifs such as these or closely related
ones can be used as seeds for finding long repeats and for
aligning, pairwise or multiple-wise, a set of sequences or
even whole genomes [15], [23].

The basis introduced by Parida et al. had interesting
features, but presented some unsatisfying properties. In
particular, as we show in this paper, there is an infinite
family of strings for which the authors’ basis contains (n?)
motifs for ¢ = 2. This contradicts the upper bound of 3n for
any ¢ > 2 given in [17]. As a result, the algorithm taking
O(n?logn) time, mentioned in [17], for finding the basis of
motifs does not hold since it relies on the upper bound of
3n, thus leaving open the problem of efficiently discovering
a basis. A refinement of the definition of basis and an
incremental construction in O(n?) time has recently been
described by Apostolico and Parida [2]. A comparative
survey of several notions of bases can be found in [22].

Closely following previous work, here we introduce a
new definition of basis. The condition for the new basis is
stronger than that of [17] and, hence, our basis is included
in that of [17] (and is thus smaller) while both are able to
generate the same set of motifs with mechanical rules. Our
basis is moreover symmetric: Given a string s, the motifs in
the basis for its reverse s are the reversals of the motifs in
the basis for s. Moreover, the number of motifs in our basis
can provably be upper bounded in the worst case by n — 1
for ¢ = 2 and occur in s a total of 2n times at most. However,
we reveal an exponential dependency on ¢ for the number of
motifs in all bases defined so far (i.e., including our basis,
Parida’s and Pelfrene et al.’s [19]), something unnoticed in
previous work. Consequently, no polynomial-time algo-
rithm can exist for finding one of these bases with arbitrary
values of ¢ > 2.

2 NOTATION AND TERMINOLOGY

We consider strings that are finite sequences of letters
drawn from an alphabet ¥, whose elements are also called
solid characters. We introduce an additional symbol (de-
noted by o and called wild card) that does not belong to ¥
and matches any letter; a wild card clearly matches itself.
The length of a string ¢, denoted by |t|, is the number of
letters and wild cards in ¢, and t[i] indicates the letter or
wild card at position ¢ in ¢ for 0 <i < [¢| — 1 (hence, ¢t =
t[0]¢[1] - - - t[|t| — 1] also noted t[0..|¢| — 1]).
Definition 1 (pattern). Given the alphabet %, a pattern is a
string in ¥ U X(X U {o})"S (that is, it starts and ends with a
solid character).

The patterns are related by the following specificity
relation <.
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Definition 2 (<). For individual characters o1,09 € ¥ U {0},
we have 01 = o9 if 01 = o or o1 = 09. Relation < extends to
strings in (X U {o})" under the convention that each string t
is implicitly surrounded by wild cards, namely, letter t[j] is o
when j > |t|. Hence, v is more specific than u (written
u = v) if ulj] 2 v[j] for any integer j.

We can now formally define the occurrences of patterns
z in s and their lists.

Definition 3 (occurrence, £). We say that w occurs at
position ¢ in v if wu[j] <v[j+4], for 0<j<|ul—1
(equivalently, we say that w matches v[¢..¢ + |u| — 1]). For
the input string s € ¥* with n = |s|, we consider the location
list £, C {0..n— 1} as the set of all the positions on s at
which x occurs.

When a pattern u occurs in another pattern (or into a
string) v, we also say that v contains u. For example, the
location list of x = To G in s = TTGG is £, = {0,1}, hence s
contains x.

Definition 4 (motif). Given a parameter ¢ > 2, called quorum,
we say that pattern x is a motif in s when |L,| > q.

Given any location list £, and any integer d, we adopt
the notation £, +d={{+d|¢ec L,} for indicating the
occurrences in £, “displaced” by the offset d.

Definition 5 (maximality). A motif x is maximal if for any
other motif y that contains x, we have no integer d such that
L,=L,+d

In other words, making a maximal motif  more specific
(thus obtaining y) reduces the number of its occurrences in
s. Definition 5 is equivalent to that meant in [17] stating that
2 is maximal if there exist no other motif y and no integer
d > 0 verifying £, = £, + d, such that z[j] < y[j+d] for 0 <
j<|z|—1 (that is, z occurs in y at position d in our
’cerminology).2

Definition 6 (irredundant motif). A maximal motif x is
irredundant if, for any maximal motifs y1, ya,...,y, such
that L, = UL, L,,, motif x must be one of the y;s. Conversely,
if all the y;s are different from x, pattern x is said to be
covered by motifs y1, y2, . .. , Y.

The basis of irredundant motifs for string s is the set of all
irredundant motifs in s. The definition is given with respect
to the set of maximal motifs of the input string which is
unique; indeed, such basis is unique and it can be used as a
generator for all maximal motifs in s as proved in [17]. The
size of the basis is the number of irredundant motifs
contained in it. We illustrate the notions given so far by

2. Actually, the definition literally reported in [17] is “Definition 4
(Maximal Motif). Let p1, pa, . . ., pi be the motifs in a sequence s. Let p;[j] be
“” if j > |p;|. A motif p; is maximal if and only if there exists no p;, [ # ¢ and
no integer 0 < ¢ such that £, +6=L, and p6+j] < pi[j] hold for
1<j<|pi|l.” (The symbols in p; and p; are indexed starting from 1
onward.) The corresponding example in the paper illustrates the definition
for s = ABCDABCD, stating that p; = ABCD is maximal while p; = ABC is not.
However, p; does not match the definition because of the existence of its
prefix p; (setting 6 = 0); hence, we suspect a minor typo in the definition, for
which the definition should read as “.. such that £, =L, +¢ and
pild] 2 plé + 3"
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employing the example string s = FABCXFADCYZEADCEADC.
For this string and ¢ = 2 the location list of motif z; =AoC
is £, ={1,6,12,16}, and that of motif zo =FAoC is
L,, ={0,5}. They are both maximal because they lose at
least one of their occurrences when extended with solid
characters at one side (possibly with wild cards in between),
or when their wild cards are replaced by solid characters.
However, motif z3 = DC having list £,, = {7,13,17} is not
maximal. It occurs in x4 = ADC, where £,, = {6,12,16}, and
its occurrences can be obtained from those of z4 by a
displacement of d =1 positions. The basis of the irredun-
dant motifs for s is made up of z; =AoC, zy =FAoC,
x4 = ADC, and x5 = EADC. The location list of each of them
cannot be obtained from the union of any of the other
location lists.

3 IRREDUNDANT MoOTIFS: THE BASIS AND ITS SIzE
FOR QUORUM ¢ = 2

In this section, we show the existence of an infinite family of
strings s;, (k > 5) for which there are (n?) irredundant motifs
in the basis for quorum ¢ = 2, where n = |s;|. In this way, we
disprove the claimed upper bound of 3n [17] mentioned in
Section 1. Each string s, will be constructed from a shorter
string ¢, which we now define. For each k, t;, = A*TA¥, where
A* denotes the letter A repeated k times (our argument works,
in general, for z*wz*, where zand w are strings of equal length
not sharing any common character). String ¢, contains an
exponential number of maximal motifs, including those
having the form A{A, 0}" *A with exactly two wild cards. To
see why, each such motif « occurs four times in ¢;: Specifically,
two occurrences of z match the first and the last k letters in ¢,
while each distinct wild card in « matching the letter T in ¢,
contributes to one of the two remaining occurrences.
Extending « or replacing a wild card with a solid character
reduces the number of these occurrences, so x is maximal. The
idea of our proof is to obtain strings s; by prefixing t; with
O(|tg]) symbols so that these motifs = become irredundant in
s. Since there are Q(k?) of them, and n = |s;| = O(|ty]) =
O(k), this leads to the claimed result.

In order to define the strings s, on the alphabet
Y ={AT,u,v,w, XY,z 2a1,a2,...,3 2}, we introduce some
notation. Let @ denote the reversal of wu, and let
evy, ody, ug, vy, be the strings thus defined

if kiseven : evy = agay - --ay_o,
ody = ajag - - - a3,
U, = eV U eV, VW eV,

v = odj, Xy ody 2 ody,,

if kisodd : evy, = asay - -ap_3,
ody = aja3 - -ag 9,
U = eV UV €U WX eV,
vg = ody y ojk z od,.
The strings s; are then defined by s;, = ugvyty for k > 5.
Fig. 1 shows them for k = 7.
Fact 1. The length of uvy, is 3k, and that of s;, is n = 5k + 1.
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AAoAAAA
AAoAAAA AAcAAAA
57 = 24uv42wx24135y531z135AAAAAAATAAAAAAA
40000000000000000000AAAACAA
40000000000000000000AAAACAA

40000000000000000000AAAACAA

Fig. 1. Example string s7, (a; of the definition is simply denoted by i).
Above it, there are the occurrences of w of the Proof of Proposition 1,
while the three lines below show the occurrences of motif = =
4 o' AAAA o AA in s7. The letter 4 corresponds to position 4 of the wild
card in AAAA o AA.

Proof. Whatever the parity of k, the string u; v, contains the six
letters u, v, w, %, y, z, two occurrences each of ev;, and ody,
and one occurrence each of ev;, and odj. Since odj, and evy,
together contain one occurrence of each letter a,
ag,...,a;-2, we have |ody| + |evy| = k— 2. Moreover,
levg| = |evy| and |odg| = |odk|, so that |uzvg| = 6 + 3(k — 2)
= 3k. This proves the first statement. For the second
statement, the total length of s;, follows by observing that
ltr] =2k +1,and son = |sx| =3k + 2k + 1 =5k + 1. O

Proposition 1. For 1 < p <k — 2, no motif of the form AP o
AMP=L can be maximal in sy.. Also, motif A¥ cannot be maximal
in Sk

Proof. Let wbe an arbitrary motif of the form A? o AP with
1 <p<k-—2 Its location list is £, = {0,k —p,k+ 1} +
|ugvy| = {3k, 4k — p, 4k + 1} since |u,vi| = 3k by Fact 1 and
w matches the two substrings A" of s, as well as A? TAFP~1,
The occurrences are shown in Fig. 1 for k = 7and p = 2. No
other occurrences are possible. Let us consider the
position, say 1, of the leftmost appearance of letter a, in
si, (recall that there are three positions on s;, at which letter
a, occurs; we have i =0 in our example of Fig. 1 with
p=2). We claim that motif y=a, o3l w satisfies
Ly = Ly — (3k —i). Since w appears in y, it follows that w
cannot be maximal in s, by Definition 5 (setting
d = -3k +1). To see why L,, = L, + (3k — 1), it suffices to
prove that the distance in s;, between the positions of the
twoleftmostletters a, is k — pwhile that of the leftmostand
the rightmost a;, is k + 1. The verification is a bit tedious
because four cases arise according to the fact that each of &
and p canbe even or odd. Since the cases are analogous, we
detail only two of them, namely, when both & and p are
even, and when k is even and p is odd. In the first case, the
three occurrences of a,, are all in u;. Moreover, the distance
between the two leftmost letters a, is the length of the
substring apap42 -t - Ap—2Uag—2ak—4 " Apy2, that iS, 2|ap+2 te
ago|+2=2(k—2-p)/2+2=Fk—p. The distance be-
tween the leftmost and rightmost a, is the length of
apayyo - - - Aj_oU €U VWasay - - - a,_9. This is also the length of
UEU) VWagay - - - 8y 28,810 - @2 = UeU, vWev;, that is,
2(k—2)/24+3=k+1 as expected. In the second case
where kis even and pis odd, the occurrences of a, are all in
v. Analogously to the first case, the distance between the

two leftmost letters a, is the length of aya,, 5 - - - ay_3xya;_3
Crapt, that iS, 2|ap+2 ce ak,g\ +3= Q(k -3 _p)/2 +3
=k — p. The distance between the leftmost and the
rightmost a, is the length of the string aja,s---a;_3
xyo?l;zalay--ap,z, which equals k+1, the length of
xyoEczodk. The analogous verification of the other two
cases yields the fact that w cannot be maximal.

The second part of the lemma for motif A* proceeds
along the same lines, except that we choose y=
3k=i=1 gk with i as before (note that y is not required
to be maximal and that the motifs in the statement are
maximal in #;). O

apo

Proposition 2. Each motif of the form A{A,o}* A with exactly

two os is irredundant in sy

Proof. Let = be an arbitrary motif of the form A{A, o} 2 p with

two os, namely, z = AP o AP P71 o ARl for | < py <

p2 < k — 2. Toprove that z is an irredundant motif, we first
show that z is maximal. Its location list is £, = {0, k — p2,
k—p1,k+ 1} + 3k since |uwy| =3k by Fact 1 and z
matches the two substrings A* of s, as well as AP TAF—P1—1
and A”2 TA¥P2~1 Any other motif y such that x occurs in y
can be obtained by replacing at least one wild card (at
position p; or p,) in x with a solid character, but this would
cause the removal of position 4k — p; or 4k — p, from L,.
Analogously, extending « to the right by putting a solid
character at position |z| or larger would eliminate position
4k + 1 from L,. Finally, extending x to the left by a solid
character would eliminate at least one position from L,
because no symbol occurs four times in uyvy,. In conclusion,
for any motif y such that x occursiny, wehave £, # £, + d
for any integer d and, thus, z is a maximal motif by
Definition 5. We now prove that z is irredundant
according to Definition 6. Let us consider an arbitrary set
of maximal motifs y1, v, . .., yp suchthat £, = U, £,.. We
claim that at least one y; is of the form A{A, o}k72A. Indeed,
there must exist a location list £,, containing position 4k +
1 since that position belongs to £,. This implies that y;
occurs in the suffix A* of s. It cannotbe that |y;| < ksince y;
would occur also in some position j > 4k + 1 whereas
J & L, so it is impossible. Consequently, y; is of length &
and matches A¥, thus being of the form A{A, o}F %A We
observe that y; cannot contain zero or one os, as it would
not be maximal by Proposition 1. Also, y; cannot contain
three or more os, as each distinct o symbol would match the
letter T in sy, giving |L,,| > |£,|, which is impossible. The
only possibility is that y; contains exactly two os as = does
at the same positions because £, C £, and they are
maximal. It follows that y; = = proving the proposition. O

Theorem 2. The basis for string s, contains Q(n?) irredundant

motifs, where n = |si| and k > 5.

Proof. By Proposition 2, the number of irredundant motifs

in s is at least (*,?) = Q(k?), the number of choices of
two positions in {A,0}""%. Since |s;| = 5k + 1 by Fact 1,
we get the conclusion. 0
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4 TiLING MoTIFS: THE BASIS AND ITS PROPERTIES

4.1 Terminology and Properties

In this section, we introduce a natural notion of a basis for
generating all maximal motifs occurring in a string s of
length n.

Definition 7 (tiling motif). A maximal motif x is tiling if, for
any maximal motifs yi, ys,...,yr and for any integers d,
do, ..., dy such that L, = Uf':l(ﬁyﬁ -+ d;), motif x must be one
of the y;s. Conversely, if all the y;s are different from x, pattern
x is said to be tiled by motifs yi, ya, ..., Yp-

The notion of tiling is in general more selective than that
of irredundancy. Continuing our example string
s = FABCXFADCYZEADCEADC, we have seen in Section 2 that
motif z; = AoC is irredundant for s. Now, z; is tiled by
29 = FAoC and x4 = ADC according to Definition 7 since its
location list, £,, = {1,6,12,16}, can be obtained from the
union of £,, ={0,5} and £,, = {6,12,16} with respective
displacements dy =1 and ds = 0.

Remark 1. A fairly direct consequence of Definition 7 is that
if z is tiled by y1, v, . . ., y» with associated displacements
di, ds, ..., dj, then = occurs at position d; in y; for
1<i<k As a consequence, we have that d; >0 in
Definition 7. Note also that the y;s in Definition 7 are not
necessarily distinct and that k£ > 1 for tiled motifs. (It
follows from the fact that £, =L, +di with = #
would contradict the maximality of both z and y;.) As a
result, a maximal motif x occurring exactly ¢ times in s is
tiling as it cannot be tiled by any other motifs because
such motifs would occur less than ¢ times.

The basis of tiling motifs is the complete set of all tiling
motifs for s, and the size of the basis is the number of these
motifs. For example, the basis, let us denote it by B, for
FABCXFADCYZEADCEADC contains FAoC, EADC, and ADC as
tiling motifs. Although Definition 7 is derived from that of
irredundant motifs given in Definition 6, the difference is
much more substantial than it may appear. The basis of
tiling motifs relies on the fact that tiling motifs are
considered as invariant by displacement as for maximality.
Consequently, our definition of basis is symmetric, that is,
each tiling motif in the basis for the reverse string s is the
reverse of a tiling motif in the basis of s. This follows from
the symmetry in Definition 7 and from the fact that
maximality is also symmetric in Definition 5. It is a sine
qua non condition for having a notion of basis invariant by
the left-to-right or right-to-left order of the symbols in s (like
the entropy of s), while this property does not hold for the
irredundant motifs.

The basis of tiling motifs has further interesting proper-
ties for quorum ¢ = 2, illustrated in Sections 4.2, 4.3, and 4.4.
In Section 4.2, we show that our basis is linear (that is, its
size is at most n — 1). In Section 4.3, we show that the total
size of the location lists for the tiling motifs is less than 2n,
describing how to find them in O(n*lognlog|¥|) time. In
Section 4.4, we discuss some applications such as generat-
ing all maximal motifs with the basis and finding motifs
with a constraint on the number of undefined symbols.
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4.2 A Linear Upper Bound for the Tiling Motifs with
Quorum ¢ =2

Given a string s of length n, let B denote its basis of tiling
motifs for quorum ¢ = 2. Although the number of maximal
motifs may be exponential and the basis of irredundant
motifs may be at least quadratic (see Section 3), we show
that the size of B is always less than n. For this, we
introduce an operator & between the symbols of ¥ to define
the merges, which are at the heart of the properties of B.
Given two letters oi,00 € ¥ with oy # 0, the operator
satisfies 01 @ 09 = o and oy @ 01 = 0;. The operator applies
to any pair of strings z,y € £¥, so that u = z @ y satisfies
ulj] = z[j] ® y[j] for all integers j.

Definition 8 (Merge). For 1 < k < n — 1, let s, be the (infinite)
string whose character at position i is sy[i] = s[i] ® s[i + k. If
s contains at least one solid character, Merge;, denotes the
motif obtained by removing all the leading and trailing os in sy,
(that is, those appearing before the leftmost solid character and
after the rightmost solid character).

For example, FABCXFADCYZEADCEADC has Merges = EADC,
Merge; = FAoC, Merges = Mergeyyg = ADC, and Merge;; =
Mergeis = Ao C.Thelatteris the only merge thatisnotatiling
motif.

Lemma 1. If Merge;, exists, it must be a maximal motif.

Proof. Motif z = Mergej, occurs at positions, say,iand ¢ + kin
s. Character s;i] is solid by Definitions 4 and 8. We use the
fact that x at occurs at least twice in s for showing that it is
maximal. Suppose it is not maximal. By Definition 5, there
exists y # x such that = occurs in y and £, = £, + d for
some integer d (in this case d < 0). Since y is more specific
than x displaced by d, there must exist at least one position
j with 0 < j < |y| such that z[j + d] = o and y[j] = 0 € X.
Hence, z[j+d=sli+ (j+d)] ®s[i+k+(j+d)] =0,
andso s[(i +d) + j] # s[(i + k + d) + j]. Since y[j] cannot
match both of the latter symbols in s, at least one of ¢ + d or
i+ k+ d is not a position of y in s. This contradicts the
hypothesis that £, = £, + d, whereas both i,i + k € £,. O

Lemma 2. For each tiling motif x in the basis B, there is at least
one k for which Mergey, = x.

Proof. As mentioned in Remark 1, a maximal motif
occurring exactly twice in s is tiling. Hence, if |£,| =2,
say L, = {i,j} with j > i, then z = Merge, with k= j — 1
by the maximality of x and that of the merges by
Lemma 1. Let us now consider the case where |C,| > 2.
For any pair i, j € £,, we denote by u;; the string s[i..i +
|z| — 1] @ s[j..j + |z| — 1] obtained by applying the op-
erator @ to the two substrings of s matching = at
positions ¢ and j, respectively. We have z < u;; since x
occurs at positions 7 and j, and £, = Ul jec, L, since we
are taking all pairs of occurrences of z. Letting k = |j — 1|
for i,j € L,, we observe that v;; is a substring of Merge;,
occurring at position, say, 6, in it. Thus,

U ‘cu,_/ -

i,j€Ly

(‘cﬂferge,,. + 61«) = ‘CT

k=|j—i|: i,j€L,

By Definition 7, the fact that z is tiling implies that x
must be one Merge;, proving the lemma. a
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We now state the main property of tiling bases that
follows directly from Lemma 2.

Theorem 3 (linearity of the basis). Given a string s of lengthn
and the quorum q = 2, let M be the set of Mergey, for 1 < k <
n — 1 such that Mergey, exists. The basis B of tiling motifs for s
satisfies B C M and, therefore, the size of B is at most n — 1.

A simple consequence of Theorem 3 implies a tight
bound on the number of tiling motifs for periodic strings. If
s = w* for a string w repeated e¢ > 1 times, then s has at most
|w| tiling motifs.

Corollary 1. The number of tiling motifs for s is at most p, the

smallest period of s.

The bound in Corollary 1 is not valid for irredundant
motifs. String s = ATATATATA has period p = 2 and only one
tiling motif ATATATA, while its irredundant motifs are A, ATA,
ATATA, and ATATATA.

4.3 A Simple Algorithm for Computing Tiling Motifs
with Quorum ¢ = 2

We describe how to compute the basis B for string s when
¢ = 2. A brute-force algorithm generating first all maximal
motifs of s takes exponential time in the worst case.
Theorem 3 plays a crucial role in that we first compute
the motifs in M and then discard those being tiled. Since
B € M, what remains is exactly B. To appreciate this
approach, it is worth noting that we are left with the
problem of selecting B from n — 1 maximal motifs in M at
most, rather than selecting B among all the maximal motifs
in s, which may be exponential in number. Our simple
algorithm takes O(n?lognlog|X|) time and is faster than
previous (and more complicated) methods discussed in
Section 1.

Step 1. Compute the multiset M’ of merges. Letting
sgli] be the leftmost solid character of string s; in
Definition 8, we define occ, = {7,7 + k} to be the positions
of the two occurrences of x whose superposition generates
x = Merge;,. For k=1,2,...,n—1, we compute string s
in O(n — k) time. If s;, contains some solid characters, we
compute z = Merge, and occ, in the same time complex-
ity. As a result, we compute the multiset M’ of merges in
O(n?) time. Each merge z in M’ is identified by a triplet
(2,3 + k,|z|), from which we can recover the jth symbol of
z in constant time by simple arithmetic operations and
comparisons.

Step 2. Transform the multiset M’ into the set M of
merges. Since there can be two or more merges in M’ that
are identical and correspond to the same merge in M, we
put together all identical merges in M’ by radix sorting
them. The total cost of this step is dominated by radix
sorting, giving O(n?) time. As a byproduct, we produce the
temporary location list T, = (J,/_,. ey 0y for each dis-
tinct € M thus obtained.

Lemma 3. Each motif « € B satisfies T,, = L,.

Proof. For a fixed x € B, the fact that z is equal to at least
one merge by Lemma 2 implies that 7}, is well defined,
with |T,| > 2. Since T, C L,, let us assume by contra-
diction that £, — T, # 0. For each pair i € £, — T, and

j€T, let m;= Merge,_;, which is maximal by
Lemma 1. Note that each m;; # = by our assumption as
otherwise i would belong to T,; however, z must occur
in my; say, at position ¢; in m;;. Consequently,
Uier, -1, jer, (Lm,, + 8ij) = L. since any occurrence of
is either i € £, — T, or j € T,. At this point, we apply
Definition 7 to the tiling motif z, obtaining the contra-
diction that 2 must be equal to one m;;. 0

Notice that the conclusion of Lemma 3 does not
necessarily hold for the motifs in M — B. For the previous
example string FADABCXFADCYZEADCEADCFADC, one such
motif is © = ADC with £, = {8, 14, 18,22} while T,, = {8, 18}.

Step 3. Select M* C M, where M* ={z e M : T, = L,}.
In order to build M*, we employ the Fischer-Paterson
algorithm based on convolution [8] for string matching with
don'’t cares to compute the whole list of occurrences £, for
each merge x € M.Its costis O((|z| + n) lognlog|X|) time for
each merge z. Since |z| < n and there are at most n — 1 motifs
x € M, we obtain O(n? log nlog |X|) time to construct all lists
L,. We can compute M* by discarding the merges = € M
such that T}, # £, in additional O(n?) time.

Lemma 4. The set M” satisfies the conditions B C M”* and
Zme/\/l* |‘CT| < 2n.

Proof. The first condition follows from the fact that the
motifs in M — M" are surely tiled by Lemma 3. The
second condition follows from the definition of M* and
from the observation that

Z |Lo| = Z T | < Z locc,| < 2n,

zeEM”* zeM” zEM

since |occ,| = 2 (see Step 1) and there are less than n of
them. O

The property of M* in Lemma 4 is crucial in that
> wenm [L2] = ©(n?) when many lists contain ©(n) entries.
For example, s = A" has n — 1 distinct merges, each of the
form x = A’ for 1 <i<mn -1, and so |£,| =n —i+ 1. This
would be a sharp drawback in Step 4 when removing tiled
motifs as it may turn into a O(n?) algorithm. Using M*
instead, we are guaranteed that > __ .. |£;| = O(n); hence,
we may still have some tiled motifs in M", but their total
number of occurrences is O(n).

Step 4. Discard the tiled motifs in M*. We can now
check for tiling motifs in O(n?) time. Given two distinct
motifs z,y € M*, we want to test whether £, +d C L, for
some integer d and, in that case, we want to mark the entries
in £, that are also in £, + d. At the end of this task, the lists
having all entries marked are tiled (see Definition 7). By
removing their corresponding motifs from M", we even-
tually obtain the basis B by Lemma 4. Since the meaningful
values of d are as many as the entries of £,, we have only
|£,| possible values to check. For a given value of d, we
avoid to merge £, and £, in O(|£,| + |£,]) time to perform
the test, as it would contribute to a total of ©(n?) time.
Instead, we exploit the fact that each list has values ranging
from 1 to n, and use two bit-vectors of size n to perform the
above check in O(|£;| % |£,|) time for all values of d. This
gives O, X2, 1£:] x £,) = O(T, £, x ¥, [£.]) = O(n?)
by Lemma 4.
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We therefore detail how to perform the above check with
L, and L, in O(|L,] % |£,|) time. We use two bit-vectors V;
and V; of length n initially set to all zeros. Given y € M”, we
set Vi[i] =1 if ¢ € £,. For each 2 € M* — {y} and for each
d € (L, —m) (where m is the smallest entry of £,), we then
perform the following test. If all j € £, + d satisfy Vi[j] =1,
we set V[j] = 1 for all such j. Otherwise, we take the next
value of d, or the next motif if there are no more values of d,
and we repeat the test. After examining all € M* — {y},
we check whether Vi[i] = V5[¢] for all i € £,. If so, y is tiled
as its list is covered by possibly shifted location lists of other
motifs. We then reset the ones in both vectors in O(|L,|)
time.

Summing up Steps 1-4, we have that the dominant cost is
that of Step 3 and that we have proved the following result.

Theorem 4. Given an input string s of length n over the alphabet
Y, the basis of tiling motifs with quorum q=2 can be
computed in O(n*lognlog|X|) time. The total number of
motifs in the basis is less than n, and the total number of their
occurrences in s is less than 2n.

We have implemented the algorithm underlying Theo-
rem 4, and we report here the lessons learned from our
experiments. Step 1 requires, in practice, less than the
predicted O(n?) running time. If p =1/|%| denotes the
probability that two randomly chosen symbols of ¥ match
in the uniform distribution, the probability of finding the
first solid character in a merge follows the binomial
distribution, and so the expected number of examined
characters in s is O(1/p) = O(|X]), yielding O(n|X|) time on
the average to locate the first (scanning s from the
beginning) and the last (scanning s from the end backward)
solid character in each merge. A similar approach can be
followed in Step 2 for finding the distinct merges. In this
case, the merges are first partially sorted using hashing and
exploiting the fact that the input is almost sorted. Insertion
sort is then the best choice and works very efficiently in our
experiments (at least 50 percent faster than Quicksort). We
do not compute yet the full merges at this stage, but we
delay this expensive part to a later stage on a small set of
buckets that require explicit representation of the merges.
As a result, the average case is almost linear. For example,
executing Steps 1 and 2 on chromosome V of C.elegans
containing more than 21 million bases took around
15 minutes on a machine with 512Mb of RAM running
Linux on a 1Ghz AMD Athlon processor. Step 3 is
expensive also in practice and the worst case predicted by
theory shows up in the experiments. Running this step on
sequences much shorter than chromosome V of C.elegans
took many hours. Step 4 is not much of a problem. As a
result, an alternative way of selecting M* from M in Step 3
working fast in practice, would improve considerably the
overall performance.

4.4 Some Applications

Checking whether a pattern is a motif. The main property
underlying the notion of basis is that it is a generator of all
motifs. The generation can be done as follows: First select
segments of motifs in the basis that start and end with solid
characters, then replace any number of internal solid
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characters by wild cards. However, since the number of
motifs, and even maximal motifs, can be exponential, this is
not really meaningful unless this number is small and the
time complexity of the algorithm is proportional to the total
size of the output. An attempt in this direction is done in
[18]. The dual problem concerns testing only one pattern.
We show how, given a pattern z, it can be tested whether
is a motif for string s, that is, if pattern x occurs at least ¢
times in s. There are two possible ways of performing such
a test, depending on whether we test directly on the string
or on the basis. The answer relies on iterative applications
of the observation made in Remark 1, according to which
any tiled motif must occur in at least one tiling motif. The
next two statements deal with the alternative. In both cases,
we assume that integer k comes from the decomposition of
pattern x in the form wg o Oy ofs1 gy, where the
subwords wu; contain no wild cards (u; € ¥*, 0 <i < k) and
¢; are positive integers, 0 < j < k — 1. The next proposition
states a well-known fact on matching such a pattern in a
text without any wild card that we report here because it is
used in the sequel.

Uy ©

Proposition 3. The positions of the occurrences of a pattern x in
a string of length n can be computed in time O(kn).

Proof. This is a mere application of matching a pattern with
do not cares inside a text without do not cares. Using, for
instance, the Fischer and Paterson’s algorithm [8] is not
necessary. Instead, the positions of the subwords u; are
computed by a multiple string-matching algorithm, such
as the Aho-Corasick algorithm [1]. For each position p, a
counter associated with position p — £ on s is incremented,
where £ is the position of u; in z (¢ is the offset of u; in ).
Counters whose value is k+1 correspond then to
occurrences of x in s. It remains to check if x occurs at
least ¢ times in s. The running time is governed by the
string-matching algorithm, which is O(kn) (equivalent to
running k times a linear-time string matching algorithm).0

Proposition 4. Given the basis B of string s, testing if pattern x
is a motif or a maximal motif can be done in O(kb) time, where

b= ZyEB lyl

Proof. From Remark 1, testing if x is a maximal motif
requires only finding if x occurs in an element y of the
basis. To do this, we can apply the procedure of the
previous proof because wild cards in y should be viewed
as extra characters that do not match any letter of ¥. The
time complexity of the procedure is thus O(kb). Since a
nonmaximal motif occurs in a maximal motif, the same
procedure applies to test if « is a general motif. 0

As a consequence of Propositions 3 and 4, we get an
upper bound on the time complexity for testing motifs.

Ly 0

Corollary 2. Testing whether or not pattern wug o™ u; o
<oy o1y is a motif in a string of length n having a
basis of total size b can be done in time O(k - min{b,n}).

Remark 2. Inside the procedure described in the proofs of
Propositions 3 and 4, it is also possible to use bit-vector
pattern matching methods [3], [16], [25] to compute the
occurrences of z. This leads to practically efficient
solutions running in time proportional to the length of
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the string n or the total size of the basis b, in the bit-vector
model of machine. This is certainly a method of choice
for short patterns.

Finding the longest motif with bounded number of
wild cards. We address an interesting question concerning
the computation of a longest motif occurring repeated in a
string. Given an integer g > 0, let LM(s) be the maximal
length of motifs occurring in a string s of length n with
quorum ¢ = 2, and containing no more than g wild cards. If
g =0, the value can be computed in O(nlog|X|) time with
the help of the suffix tree of s (see [5] or [10]). For g > 0, we
can show that LM,(s) can be computed in O(gn?) time
using the suffix tree augmented (in linear time) to accept
longest common ancestor (LCA) queries as follows: For
each possible pair (z, j) of positions on s for which s[i] = s[j],
we compute the longest common prefix of s[i.n — 1] and
s[j..n — 1] in constant time through an LCA query on the
suffix tree. If £ is the length of the prefix, we get the first part
sli..i+ £ —1] o of a possible longest motif. The second part
is found similarly by considering the pair of positions
(t+£41,j+£+1). The process is iterated g times (or less)
and provides a longest motif containing at most g wild
cards and occurring at positions 7 and j. Length LM (s) is
obtained by taking the maximum length of motifs for all
pairs of positions (i, 7). This yields the next result.

Proposition 5. Using the suffix tree, LM(s) can be computed in
O(gn?) time.

What makes the use of the basis of tiling motifs interesting
is that computing LM,(s) becomes a mere pattern matching
exercise because of the strong properties of the basis. This

contrasts with the previous result grounded on the deep
algorithmic technique for LCA queries.

Proposition 6. Using the basis B of tiling motifs, LM,(s) can be
computed in time O(b), where b=} iyl

Proof. Let = be a motif yielding LM,(s) (i.e.,  is of length
LMy(s)); hence, = occurs at least twice in s. Let y be a
maximal motif in which x occurs (we have y = x if x is
itself maximal). Let z be a tiling motif in which y occurs
(again we may have z = y if y is a tiling motif). The word
x then occurs in z that belongs to the basis. Let us say that
it matches z[i..j]. Assume that z is not a tiling motif, that
is z # z. Certainly, ¢ =0 or z[i — 1] = o, otherwise, =
would not be the longest with its property. For the same
reason, j = |z| — 1 or z[j + 1] = o. But, indeed, = occurs
exactly in z, which means that the wild card symbols do
not match any solid symbol. Because, otherwise, z[i..j]
would contain less than g do not cares and could be
extended by at least one symbol to the left or to the right
because x # z, yielding a contradiction with the defini-
tion of x. Therefore, either z is a tiling motif or it matches
exactly a segment of one of the tiling motifs. Searching
for x thus reduces to finding a longest segment of a tiling
motif in B that contains no more than g wild cards. The
computation can be done in linear time with only two
pointers on s, which proves the result. O
By Proposition 6, it is clear that a small basis B leads to

an efficient computation once B is given. If we have to build

B from scratch, we can observe that no (maximal) motif can

give a larger value of LM,(s) if it does not belong to B. With

this observation, we have O(n?) running time, which

always beats the O(g x n?) cost of using the suffix tree. In
particular, it is interesting to notice that the running time of
the algorithm using the basis is independent of the
parameter g.

5 PseuboPOLYNOMIAL BASES FOR HIGHER
QUORUM

We now discuss the general case of quorum ¢ > 2 for
finding the basis of a string of length n. Differently from
previous work, we show in Section 5.1 that no polynomial-
time algorithm can exist for any arbitrary value of ¢ in the
worst case, both for the basis of irredundant motifs and for
the basis of tiling motifs. The size of these bases provably
depends exponentially on suitable values of g > 2, that is, we
give a lower bound of (f]_’ll) =Q(5 (” 1)) In practice, this
size has an exponential growth for increasing values of q up
to O(logn), but larger values of ¢ are theoretically possible
in the worst case. Fixing ¢ = (n —1)/4+41 in our lower
bound, we get a size of Q(2""V/*) motifs in the bases. On
the average, ¢ = O(logy n) by extending the argument after
Theorem 4, namely, using the fact that on the average the
number of simultaneous comparisons to find the first solid
character of a merge is O(|2| 1), which must be less than n.

We show a further property for the basis of tiling motifs

n—1
-1

with a simple proof. Since we can find an algorithm taking

in Section 5.2, giving an upper bound of ( ) on its size
time proportional to the square of that size, we can
conclude that a worst-case polynomial-time algorithm for
finding the basis of tiling motifs exists if and only if the
quorum q satisfies either ¢ = O(1) or ¢ = n — O(1) (the latter

condition is hardly meaningful in practice).

5.1 A Lower Bound of (_‘1> on the Bases

We show the existence of a family of strings for which there
are at least ( ) tiling motifs for a quorum q. Since a tiling
motif is also irredundant, this gives a lower bound for the
irredundant motifs to be combined with that in Section 3
(note that the lower bound in Section 3 still gives 2(n?) for
g > 2). For ¢ > 2, this gives a lower bound of Q<%71) =
Q% (" 1)) for the number of both tiling and irredundant
motifs.

The strings are this time of the form ¢, = A*TA* (k > 5),
without the left extension used in the bound of Section 3.

1

maximal and have each exactly g occurrences, from when it

The proof proceeds by exhibiting (k 1) motifs that are

follows immediately that they are tiling. Indeed, Remark 1

for tiling motifs holds for any ¢ > 2. Namely, all maximal

motifs that occur exactly ¢ times in a string are tiling.

Proposition 7. For 2 < ¢ < kand 1 <p < k — q+ 1, any motif
A” o {A, 0} o AP with exactly q wild cards is tiling (and
so irredundant) in t,.
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Proof. Let = be an arbitrary motif 4” o {A, P o AP with

1<p<k—-q+1 and ¢ wild cards; namely, z = A" o
AP2=P1=1 o oo AP1 P21 o pR=Pe1=1 o APt for 1 <pr<p<
<+ < pg—1 < k—1land p = p;. We first have to prove that «
is a maximal motif according to Definition 5. Its length is
k+1+p; and its location list is £, = {0, k—p,1,...,
k — pa, k — p1}. Observe that the number of its occurrences
is exactly the number of times the wild card appears in z,
which is equal to ¢. A motif y different from x such that =
occurs in y can be obtained by replacing the wild card at
position p; with a solid symbol, for 1 < i < ¢ — 1, but this
eliminates k — p; from the location list of 3. Also, y can be
obtained by extending « to the right by a solid symbol (at
any position > |z|), but then position k — p; is not in £,
because the last symbol in that occurrence of y occupies
position (k — p1)+|y|—1> (k- p1) + [a] = (k — p1) + (k +
14p1) > |tg| — Linty, which is impossible. Analogously, y
can be obtained by extending x to the left by a solid symbol
(at any position d < 0), but position 0 is no longer in £,,.
Consequently, for any motif y more specific than z, we
have L, # L, +d, implying that = is maximal. As
previously mentioned, x is tiling because it has exactly ¢

occurrences. O
Theorem 5. String t) has (?:11) =Q(% (’;j)) tiling (and
irredundant) motifs, where n = |t;| and k > 2.

Proof. By Proposition 7, the tiling or irredundant motifs in t;,

1

are at least ’;:1

, the number of choices of ¢ — 1 positions

on A1, Since n = 2k + 1, we obtain the statement. O
5.2 An Upper Bound of (Zj) Tiling Motifs

n—1

We now prove that (q_l

) is an upper bound for the size of a
basis of tiling motifs for a string s and quorum ¢ > 2. Let us
denote as before such a basis by B. To prove the upper
bound, we use again the notion of a merge, except that it
now involves ¢ strings. The operator @ between the
elements of ¥ extends to more than two arguments, so that
the result is a o if at least two arguments differ. Let k denote
now an array of ¢ — 1 positive values ki, ..., k,—; with 1 <
ki<kj<n-—1foralll<i<j<qg-1

Definition 9. Let s, denote the string such that its jth character
is splj] = syl @ s[j+ k1] ® - - - & s[j + kg_1] for all integers j.
Mergey, is the pattern obtained by removing all the leading
and trailing os in sy, (that is, appearing before the leftmost solid
character and after the rightmost solid character).

Lemmas 5 and 6 reported below extend Lemmas 1 and 2
for ¢ > 2.

Lemma 5. If Mergey, exists for quorum q, then it must be a
maximal motif.

Proof. Let = Merge;, denote the (nonempty) pattern, and
let si[i] be its first character, which is solid by
Definition 9. Since z occurs at least ¢ times in s, at
positions 4,7+ ki,...,i+ k,—1, then = is a motif for
quorum ¢. We show that x is maximal. Suppose it is
not maximal. By Definition 5, there exists y # z s.t. =
occurs in y and £, = £, +d for some integer d. This
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implies there exists at least one position j with 0 <
J < |y| such that y[j] =0 € ¥ and z[j + d] = o. Since

zlj+d=sli+j+d@si+j+k+do---@
s[i+j+kII*1+d]a

then at least one among i+ d,i + ki +d,...,i + k1 +d
is not an occurrence of y, contradicting the hypothesis
that £, = £, +d (since ¢,i + ki,..., i+ ky—1 € Ly). O

Lemma 6. For each tiling motif = in the basis B with quorum q,
there is at least one k for which Merge;, = .

Proof. If |£,| = gand £, = {i1,...,i,} withi; < --- < i, then
x = Merge;, where k is the array of values iy — 41, i3 — 41,
...,ig — i1. Let us now consider the case where |£,| > ¢.
Given any g-tuple i1,...,i; € L,, let u; denote s[i;..i; +
|z| — 1] - & s[ig..ig + |z| — 1], which is a substring of
Mergey, introduced in Definition 9. We have that z < wuy
and L, =; 4, ez, Lu.- Since each uy, for iy, iz, ... i €
L, is a substring of Merge;, we infer that £, =
Uiio.isec (Laterge, + 6) where the §;s are non-negative
integers. By Definition 7, if Merge;, were different from z,
then z would not be tiling, which is a contradiction.
Therefore, at least one Mergey, is x. O

The following property of tiling bases follows from
Lemma 5 and 6.

Theorem 6. Given a string s of length n and a quorum q > 2, let
M be the set of Mergey, for any of the (Zj) possible choices
of k for which Mergey, exists. The basis B of tiling motifs for s
satisfies B C M and, therefore, the size of BB is at most (Zj)
The tiling motifs in our basis appear in s for a total of

q(’éj) times at most. A variation of the algorithm given in

Section 4.3 gives a pseudopolynomial-time complexity of

2
9ofmn—1
X (q (q - 1> )
When this upper bound is combined with the lower bound
of Section 5.1, we obtain that there exists a polynomial-time

algorithm for finding the basis if and only if either ¢ = O(1)
or g =n—0(1).

6 CONCLUSIONS

The work presented in this paper is theoretical in nature, butit
should be clear by now that its practical consequences,
particularly—but not exclusively—for computational biol-
ogy, are relevant. Whether motifs as patterns are used for
inferring binding sites or repeats of any length, for character-
izing sequences or as a filtering step in a whole genome
comparison algorithm or before inferring PSSMs: We show
that wild cards alone are not enough for a biologically
satisfying definition of the patterns of interest. Simply
throwing away the pattern-type of motif detection is not a
good way to address the problem. This is confirmed by
variousbiological publications [24],[7]as well asby thenot yet
published—but already publicly available—results of a first
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motif detection competition http:/ /bio.cs.washington.edu/
assessment/. Evenif patterns arenot thebestway of modeling
biological features, they deserve an important function in any
future improved algorithm for inferring motifs ab initio from
biological sequences. As such, the purpose of this paper is to
shed some further light on the inner structure of one
important type of motif.
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