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ABSTRACT

Motivation: In the context of studying whole metabolic networks and

their interaction with the environment, the following question arises:

given a set of target metabolites T and a set of possible external

source metabolites S, which are the minimal subsets of S that are

able to produce all the metabolites in T. Such subsets are called the

minimal precursor sets of T. The problem is then whether we can

enumerate all of them efficiently.

Results: We propose a new characterization of precursor sets as the

inputs of reaction sets called factories and an efficient algorithm to

decide if a set of sources is precursor set of T. We show proofs of

hardness for the problems of finding a precursor set of minimum size

and of enumerating all minimal precursor sets T. We propose two new

algorithms which, despite the hardness of the enumeration problem,

allow to enumerate all minimal precursor sets in networks with up to

1000 reactions.
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1 INTRODUCTION

We recently introduced the concept of a minimal precursor set

which corresponds to a set of metabolites that an organism may

obtain from its environment and that enables it to produce a set

of metabolic targets of interest (see Cottret et al. (2008) for the

initial definition of this concept). In this model, we propose a

definition of precursor set which does not consider the stoichi-

ometry of reactions. Indeed, the values given for such stoichiom-

etry may often not be accurate. For instance, 51% of the

reactions in the Kyoto Encyclopedia of Genes and Genomes

(KEGG) were considered to be unbalanced in 2004 (Feist

et al., 2009) and solving these cases may become challenging

for more complex reactions (Thiele and Palsson, 2010). To over-

come this problem, we propose instead a model based only on

the topology of a metabolic network, that is that considers the set

of substrates and products of each reaction without considering

the amounts involved. The collection of precursor sets defined

should therefore be considered as potential/candidate solutions

which could be confirmed or discarded a posteriori by other

sources of information.
The method we developed in Cottret et al. (2008) to enumerate

all minimal precursor sets for a given set of targets was then

applied in Cottret et al. (2010a) to a relatively complex symbiotic

system. In this case, the environment was represented by an

insect. Homalodisca coagulata, which hosts within its cells two

bacteria, respectively, Baumannia cicadellinicola and Sulcia muel-

leri. The identification of the precursor sets for the sets of metab-

olites each bacterium gives to the symbiotic system (host and

co-resident endocytobiont), enabled to refine the analysis that

had been done previously (McCutcheon and Moran, 2007) of

the complementarity between the metabolisms of the two bacteria

and their host. It also suggested that both B. cicadellinicola and

S. muelleri might be completely independent of the metabolites

output by the co-resident endocytobiont to produce the carbon

backbone of the metabolites provided to the symbiotic system.
The algorithms in Cottret et al. (2010a) and Cottret et al.

(2008) suffered of a memory problem due to the necessity to

construct a huge tree—called the ‘replacement tree’. Moreover,

the enumeration procedure followed using such a tree was not

the most efficient way either to enumerate all minimal precursor

sets. For small networks (5250 nodes), the previous method runs

in a acceptable time, but for bigger networks it usually runs out

of memory.

In this article, we present new algorithms for enumerating all

minimal precursor sets that address both memory requirements

and time efficiency (Section 4). We also provide full proofs for

the complexity results that were just indicated in Cottret et al.

(2008) (Section 3). We use for this a simpler characterization of a
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precursor set that makes the concept, and the subsequent proofs,

formally easier to grasp (Section 2). Finally, we show by exten-

sive tests that the new algorithms are indeed able to deal with

much larger networks, up to 1000 reactions (Section 5).

2 DEFINITIONS AND CHARACTERIZATIONS

A metabolic network is modelled as a directed hypergraph

G ¼ ðC;RÞ with C the set of vertices corresponding to metabolites

(also called compounds) and R the set of hyperarcs correspond-

ing to reactions. A directed hyperarc of a reaction r 2 R is an

ordered pair of metabolite sets r ¼ ðSubsðrÞ;ProdðrÞÞ; where

Subs(r) is the set of substrates of r and Prod(r) is the set of

products of r. Reactions are supposed to be irreversible: each

originally reversible reaction is replaced by two irreversible reac-

tions of opposite direction.
We consider also a set of sources S � C representing the me-

tabolites that are potentially available in infinite external supply.

Sources used as substrates of reactions produce other metabol-

ites, thereby increasing the set of available ones. In addition, the

set T � C denotes the target set, that is a set of metabolites that it

is interesting to produce. Given a source set S and a target set T

of metabolites, the aim is to find subsets of S which are able to

produce all metabolites of T. We need now to formally define the

meaning of: being able to produce the target.
When stoichiometric information is missing or not (fully) re-

liable, two definitions have been proposed to model this concept

that can give different solutions to a particular instance.
Before comparing the two approaches, we introduce some

notation. Let M be a set of metabolites of C. We define

Reac(M) as the set of reactions that can be fired when the

metabolites in M are present. In other words,

ReacðMÞ ¼ fr 2 R j SubsðrÞ �Mg: For a given set of reactions

R � R, we define the sets SubsðRÞ ¼ [r2RSubsðrÞ and

ProdðRÞ ¼ [r2RProdðrÞ.

2.1 Sequencial production of the target

The forward propagation of M, denoted by Fwd(M), is the set of

metabolites successively produced from M using the reactions of

the network. Formally, Fwd(M) is the result of the recursion

Miþ1 ¼M [ ProdðReacðMiÞÞ starting from M0 ¼M and until

a fixed point is reached. For instance, in the network of Figure

1, ifM0 ¼ fa; b; cg then M1 ¼ fa; b; c; eg;M2 ¼ fa; b; c; e; hg and
so on until the fixed point fa, b, c, e, h, i, t} is reached. Thus,

Fwd(fa, b, c})¼fa, b, c, e, h, i, t}.
Romero and Karp (2001) considered a subset X of the sources

S as a precursor set of a target T, when T � FwdðXÞ. For in-

stance, the set of sources X¼fa, b, c} is a precursor set of the

target set T¼ ft} since Fwd(fa, b, c}) contains t. This iterative

way to calculate what is available from X may however not be

enough to model some real cases. Indeed, the network could

have cycles whose metabolites need to be consumed and pro-

duced all at the same time. For instance, in Figure 1 reactions

r1 and r2 form a cycle that consumes metabolites c and d to

produce f and g. However, Fwd(fc, d})¼ fc, d}, that is it contains

neither f nor g.

2.2 Including cycles in the target production

In our work, we used the model proposed in Cottret et al. (2008)

which defines a precursor set using a different approach. Instead

of starting the propagation from a subset of the sources, the

authors allow from the beginning the inclusion of other metab-

olites (called internal supply) provided that such metabolites are

produced by some reaction in a future step of the forward

propagation (besides production of the target). Formally,

the authors define FwdZðMÞ, the forward propagation of M

with Z (as internal supply), as the result of the recursion

Miþ1 ¼M [ ProdðReacðMi [ ZÞÞ starting from M0 ¼M and

until a fixed point is reached. A subset X of the sources is a

precursor set of T if T and Z are both included in FwdZðXÞ.

For instance, in the network of Figure 1, Fwdffgðfc; dgÞ ¼
fc; d; f; g; e; h; i; tg. Thus, it produces t but also re-produces f to

maintain the cycle working.

DEFINITION 1. A set of sources X � S is a precursor set of

T � C if there exists a set Z � C such that T [ Z � FwdZðXÞ.

In this case, we say that Z is an internal supply of the precursor

set X.

Of course, the internal supply may be not unique for a given

precursor set. In Figure 1, both Z¼ f f } and Z¼ fg} are internal

supplies for the precursor set X¼fc, d }. Observe also that any

set of metabolites which is a precursor set by the Romero and

Karp definition will continue being a precursor set for this def-

inition just considering Z ¼ ;.

Suppose now that the target is a set of metabolites whose

production we want to avoid. In this case, we can define the

notion of a precursor cut set or simply cut set, that is a subset

X of sources such that, if they are not present, then the target

cannot be produced by any combination of the remaining

sources. This concept has a biological application, for instance,

in the case where we want a bacterium to avoid producing some

given metabolite while providing it with a maximal set of

resources that enables it to continue doing its other specific

tasks. As an example, in Figure 1, the set fa, d} is a cut set of ft}.

DEFINITION 2. A set of sources X � S is a cut set of T � C if

and only if the set S n X is not a precursor set of T.

If the target contains more than one metabolite, a cut will

avoid the production of the whole target set but could still

Fig. 1. A metabolic network. Nodes represent metabolites and hyperarcs

represent reactions. Grey nodes are sources while the black node is the

target.
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produce some of their elements (a strict subset of T). If we want

to block each element of the target, we can modify slightly the

network in the following way: given T ¼ ft1; . . . ; t‘g, we can

define a new target metabolite ttarget and reactions rt1 ; . . . ; rt‘
with Subsðrti Þ ¼ ftig and Prodðrti Þ ¼ fttargetg. Clearly, a cut set

of the new target T 0 ¼ fttargetg must block the production of

each metabolite in T.

2.3 New characterization using factories

We give now a simpler and more natural way to grasp the char-

acterization of a precursor set X of T by considering, instead of

metabolites, a set of reactions F � R that connects X with T.

Clearly, the reactions must verify these two properties:

1. (Feasibility of reactions) Each substrate of the reactions in

F is contained in X or is produced by some reaction in F;

2. (Production of target) Each metabolite in the target T

(which is not in X) is produced by some reaction in F.

These two conditions can be summarized in one:

T [ SubsðFÞ � X [ ProdðFÞ. In this case, we say that F is a fac-

tory from X to T.

THEOREM 1. A set of sources X � S is a precursor set of T � C

if and only if there exists a factory from X to T.

PROOF. If X is a precursor set of T, there exists Z � C

such that T [ Z � FwdZðXÞ ¼ X [ ProdðReacðFwdZðXÞÞÞ. The

set of reactions F ¼ ReacðFwdZðXÞÞ is such that

T � X [ ProdðFÞ and SubsðFÞ � FwdZðXÞ � X [ ProdðFÞ.

Therefore, F is a factory from X to T. Inversely, let F be a set

of reactions such that T [ SubsðFÞ � X [ ProdðFÞ. Defining

Z¼Subs(F), we have FwdZðXÞ ¼ X [ Prod ðReacðFwdZ
ðXÞ [ SubsðFÞÞÞ which clearly contains X [ ProdðFÞ. Therefore,

T [ Z � FwdZðXÞ. œ

In the example of Figure 1, the set fc, d} is a precursor set of

ft}, since the set of reactions F ¼ fr1; r2; r3; r6g is such that

ftg [ fc; d; f; g; hg � fc; dg [ ff; g; h; i; tg.

3 COMPLEXITY RESULTS

Given a metabolic network G ¼ ðC;RÞ with S � C a set of

sources and T � C a set of target metabolites, we address the

theoretical complexity of the following three problems:

MINIMALPS(T): find a minimal precursor set X � S of T.
MINSIZEPS(T): find a minimum size precursor set X � S of T.
ALLPS(T): enumerate all minimal precursor sets X � S of T.

We also consider the analogous problems where what is

searched are precursor cut sets: MINIMALPCS, MINSIZEPCS and

ALLPCS.

3.1 Finding a minimal precursor set and a minimal cut set

Given a set X � S of sources, we can compute the maximal set of

reactions Fmax that satisfy the first condition of the factory def-

inition (feasibility of reactions). Thus, to decide whether X is a

precursor set of a given T, we can compute Fmax of X and check

whether T is included in the products of Fmax. To obtain this set,

we use the following recursion: starting from the whole set of

reactions F0 ¼ R, compute the set Fiþ1 ¼ ReacðX [ ProdðFiÞÞ

until a fixed point is reached. Defining K ¼ maxr2R
ðjSubsðrÞj þ jProdðrÞjÞ, we have the following result.

THEOREM 2. Given a subset X � S of sources and a target set

T � C, we can decide in polynomial time OðjCjjRj þ jRj2KÞ

whether X is a precursor set of T.

PROOF. We show the maximality of Fmax. Let F
0 be another set

of reactions such that SubsðF 0Þ � X [ ProdðF 0Þ. Clearly, if

F 0 � Fi then F 0 � ReacðX [ ProdðF 0ÞÞ � ReacðX [ ProdðFiÞÞ

¼ Fiþ1, Since we start with F0 ¼ R, we conclude that F
0 � Fmax.

The algorithm iterates at most jRj � jFmaxj times. Computing

Fi takes OðjCj þ jRjKÞ time. Therefore, the running time of the

whole procedure is OðjCjjRj þ jRj2KÞ. œ

This method provides also a way to find a minimal precursor

set of T. Starting from X ¼ S, we successively check if removing

a metabolite of X the target is still produced, maintaining in X

only those that are needed to produce T. We obtain a minimal

precursor set in jSj iterations. A similar procedure is also valid to

find a minimal cut set starting from X 0 ¼ ; and adding sources

while the target is not produced. The set X ¼ S n X 0 is a minimal

cut set.
COROLLARY 3. BothMINIMALPS(T) andMINIMALPCS(T) can be

solved in polynomial time OðjCjjRjjSj þ jRj2jSjKÞ.

3.2 Minimum size precursor set and cut set

Although finding one minimal precursor set of a target is easy,

obtaining a (minimal) precursor set of minimum size is NP-hard.

This result is proved by a reduction from the NP-complete prob-

lem HITTINGSET (Garey and Johnson, 1979): given a finite set of

elements U and a collection of subsets I ¼ fI1; . . . ; Ing of U, find

a minimum cardinality subset of elements H � U such that H

intersects all the subsets in I .

THEOREM 4. The problem MINSIZEPS(T) is NP-hard.

PROOF. We show hardness by proving completeness of the

decision version where we ask if a precursor set of size at most

k exists. Theorem 2 implies that this decision version is in NP.

We make a polynomial time reduction from the decision ver-

sion of HITTINGSET, asking if there exists a hitting set of size at

most k. Consider H; I and k a hitting set instance with

I ¼ fI1; . . . ; Ing. For each element h in H, we create a vertex h

in C, and for each set Ij in I , we create a vertex Ij in C (Fig. 2).

We create an extra vertex t in C. For each h 2 Ij, we create in R

an arc rhj going from h to Ij. Moreover, we create the hyperarc rt
having SubsðrtÞ ¼ fI1; . . . ; Ing and ProdðrtÞ ¼ ftg. We define t to

be the only target metabolite, and we define the vertices corres-

ponding to the elements of H as the sources S of G. œ

Observe that in the above reduction, there is a one-to-one

relation between hitting sets and precursor sets, and a related

pair is of the same size. This implies that MINSIZEPS is as hard

to approximate in polynomial time as HITTINGSET, which is

known to be APX-hard (Ausiello et al., 1999). Namely, no poly-

nomial time algorithm for MINSIZEPS can have approximation

ratio oðlog nÞ unless P¼NP (Raz and Safra, 1997).
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2476

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/28/19/2474/287819 by IN
IST-C

N
R

S BiblioVie user on 23 N
ovem

ber 2018



A similar proof shows NP-hardness for the problem of finding

a minimum size cut set. We consider in this case the same reduc-

tion but with two modifications (Fig. 3, left): (i) replace the

hyperarc rt (from fI1; . . . ; Ing to t) by n separate reactions,

from each Ij to t, for j 2 f1; . . . ; ng and (ii) replace, for each Ij,

the set of reactions producing Ij by a single reaction rj producing

Ij from the whole set of elements of Ij. In this case, each hitting

set corresponds to a cut set. Therefore, MINSIZEPCS(T) is

NP-hard and APX-hard.

Related hardness results are as follows:

PROPOSITION 5. Given a precursor set X of T, the following two

problems are NP-hard:

1. Find a minimum cardinality set of metabolites Z such that Z

is an internal supply of X.

2. Find a minimum cardinality set of reactions F such that F is

a factory from X to T.

PROOF. We modify the reduction presented in the proof of

Theorem 4 as follows (Fig. 3, right): for each element h in H, we

create another extra vertex h0 in C, and two reactions rhh0 and rh0h
from h to h0 and from h0 to h, respectively, the set of sources S is

empty and the remaining of the construction stays the same. It is

easy to see that the onlyminimal precursor set ofT is the empty set.

Using similar arguments as in the previous reduction, we have that

any possible set Z corresponds to a hitting set. Analogously, any

possible factory F corresponds also to a hitting set. œ

3.3 Enumerating all minimal precursor sets and cut sets

We showed that MINIMALPSðG;S;TÞ can be solved in polyno-

mial time. Nevertheless, if we are interested in finding allminimal

precursor sets of T, the number of solutions can grow

exponentially. We are therefore interested in knowing whether

ALLPS can be solved in polynomial total time, that is, polynomial

in the size of the input and output (Johnson et al., 1988).
Given a boolean ^;_�formula f (that is with no negation), a

prime implicant is a minimal set of variables such that if they are

all TRUE then f is TRUE (for instance, fp, s} is a prime implicant of

f ¼ ðp _ qÞ ^ ðr _ ðp ^ sÞÞ ^ s ). Enumerating the set of all prime

implicants of f cannot be done in polynomial total time unless

P¼NP (Gurvich and Khachiyan, 1999). We show that this prob-

lem can be reduced to ALLPS.

THEOREM 6. The enumeration problem ALLPS cannot be solved

in polynomial total time unless P¼NP.

PROOF. Let f be an ^;_-formula. The set C of metabolites

corresponds to the set of variables plus one metabolite for each

conjunction and disjunction inside the formula (Fig. 4). The

sources are the metabolites corresponding to each single variable.

The set of hyperarcs is as follows: for each metabolite represent-

ing a conjunction c in f, there is a single hyperarc from the

clauses of c to the metabolite c, and for each metabolite repre-

senting a disjunction d, there are arcs from each term of d to the

metabolite d. The target set is a singleton containing the metab-

olite representing f. Clearly, a minimal precursor set of T corres-

ponds to a prime implicant of f and vice versa. œ

Observe that the reduction holds even in the case of networks

without cycles (for any reasonable definition of cycle). This result

is also valid if we consider the enumeration of all minimal pre-

cursor cut sets of T. Indeed, in the reduction of Theorem 6, a

minimal cut set corresponds exactly to a prime implicate of the

boolean function f, that is to a minimal set of variables such that

if all are FALSE then f is FALSE. As for prime implicants, enumer-

ating the set of prime implicates cannot be done in polynomial

total time unless P¼NP (Gurvich and Khachiyan, 1999). Thus,

the enumeration problem ALLPCS cannot be solved in polyno-

mial total time unless P¼NP.

3.4 Simultaneous enumeration of precursor sets

and cut sets

Although enumeration of minimal precursor sets and enumer-

ation of minimal cut sets are both hard problems, we now show

that the enumeration of both problems simultaneously can be

done in quasi-polynomial total time (that is in time NOððlogNÞcÞ

for some c fixed and N the size of the input and output). Indeed,

we can represent any set of sources X � S as a vector of f0; 1gjSj.
We denote by PT the collection of all minimal precursor sets of

1

2
3 3

1

2

Fig. 2. Reduction of an instance of the hitting set problem. Each hitting

set of I ¼ fI1; I2; I3g corresponds to a precursor set of ft} (and vice

versa).

2

1

3

2

1

3

Fig. 3. Modification of the hitting set reduction to the proof of hardness

of MINSIZEPCS (left) and to the proof of Proposition 5 (right).

Fig. 4. Graphical representation of the reduction presented in Theorem 6.
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T, and by CT the collection of all minimal cut sets of T. We
define the function F : f0; 1gjSj ! f0; 1g as F(X)¼ 1 if X is a pre-

cursor set of T and F(X)¼ 0 otherwise. It is easy to see that F is a
monotone boolean function (although it is not explicitly ex-

pressed as a conjunction and disjunction of literals) whose
prime implicants are exactly PT and whose prime implicates

are exactly CT.
In Gurvich and Khachiyan (1999), the authors show an incre-

mental method to enumerate both prime implicants and prime

implicates of a monotone boolean function at the same time.
Roughly, given a collection P

0 [ C
0 of solutions already found

(with P
0
� PT and C

0
� CT), the method finds a set X � S such

that X is not superset of any minimal precursor set in P
0 and

S n X is not superset of any minimal cut set in C
0. Since either X

is a precursor set or S n X is a cut set, we have found a new

solution not in P
0
[C

0.
The algorithm finds this new solution in

Oðnð� þ nÞÞ þmOðlogmÞ, where n is the number of variables, m
the number of solutions already found and � is the time to com-

pute the value F(X). By Theorem 2, � is OðjCjjRj þ jRj2KÞ.
Therefore, given m solutions in PT [CT, we can obtain a new

solution in time OðjSjjCj2 þ jSjjCjjRjKþ jSj2Þ þmOðlogmÞ.

COROLLARY 7. The collections PT and CT can be jointly enum-
erated in quasi-polynomial incremental (and hence total) time.

Observe that applying the same method to enumerate only one
collection (i.e. discarding the solutions of the other) can be very

inefficient. Some instances can have exponentially more cut sets
than precursor sets (that is jPTj55jCTj), and thus obtaining all

precursor sets can take more than quasi-polynomial time com-
pared with jPTj. Analogously, there are instances where

jCTj55jPTj. In the next section, we present algorithms to enu-
merate all precursors sets by taking advantage of the network

topology.

4 PRECURSOR SETS ENUMERATION

We present two new algorithms that compute the collection of all

minimal precursor sets of a target set T. To facilitate the expos-
ition, we suppose that the metabolic network studied has the

following properties: (i) each source x 2 S is not produced by
any reaction and (ii) each reaction belongs to at least one factory

from the sources to the target. It is not difficult to see that by
applying the following steps, we transform any network in order

to satisfy these conditions without changing the collection of
precursor sets of a target T:

1. Sources are not products: rename as x0 each x in S that is

the product of at least one reaction. Then, add a new re-
action with substrate a new metabolite labelled x and

product x0. The set of sources continues to be S.

2. All reactions in a factory: compute the maximal factory
(see proof of Theorem 2) and remove all reactions in the

complement. Remove all unconnected metabolites.

4.1 Backtracking from the target to the sources

The general approach to enumerate PT (the collection of all

minimal precursor sets of T) proceeds by backtracking: starting

from the target, the method performs a kind of depth-first search

on the hypergraph using reactions in opposite direction. In this

way, the factories that produce T starting from any minimal

source sets are covered. Since we are considering hyperarcs,

each factory is composed by more than one path of the

depth-first search from the target to the sources. We thus

obtain the whole set of solutions only at the end of the algorithm,

when all paths have been travelled.

A similar idea was already presented in Cottret et al. (2008).

The algorithm PITUFO was proposed to enumerate all minimal

precursor sets by building a replacement tree which represented

all paths obtained by going from T to the sources by using the

reactions in reverse order. In a second step, this tree was com-

pacted from the sources to the target until it reaches depth 2, on

which the solutions were easily recognizable. The main problem

of this method is the huge amount of memory needed to build

the replacement tree, which made the algorithm useful only for

small networks.

4.2 Decomposing into subproblems

We decompose the problem into subproblems where each sub-

problem hasM as target set. Starting from M :¼ T, two kinds of

subproblem decompositions are successively applied:

1. Target decomposition: given a target M ¼ fm1; . . . ;mkg

and X a precursor set of M, then X can be written as

X ¼ [ki¼1Xi, where each Xi is a precursor set of

Mi ¼ fmig. Thus, we can enumerate PM by enumerating

Pfmg (the minimal precursor sets of fm}) for each metab-

olite m 2M and taking all the corresponding unions of

solution sets (one set from each collection).

2. Reaction decomposition: if the target is a singleton

M¼fm} and r1; . . . ; r‘ is the set of all reactions producing
m (which is not empty if m is not a source), then X is a

precursor set of M if and only if X is a precursor set of

some Mi ¼ SubsðriÞ with i 2 f1; . . . ; ‘g. Thus, to enumer-

ate Pfmg, we can enumerate PSubsðrÞ for all the reactions r

that produce m, and then take the union of the collections.

In both decompositions, solutions are obtained after discard-

ing the possible non-minimal sets obtained. Successively alternat-

ing these decompositions, the aim is to have subproblems where

the target is a singleton source fs}, which has the set fs} itself as

the only precursor set, that is Pfsg ¼ ffsgg.

4.3 Including available metabolites in the input

The difficulty in implementing the above described approach is

given by the presence of cycles in the network. Indeed, cycles can

make the algorithm enter into an endless loop. For this reason,

we must include explicitly in the input of the subproblems the set

of available metabolites, that is the metabolites already analysed

in previous steps of the algorithm. In this way, we can avoid

continuing the search for precursor sets of these metabolites.
Thus, given a set A of available metabolites, we conveniently

consider the following generalization of the precursor set

definition.
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DEFINITION 3. Given a set of sources S, a target M and a set A

of available metabolites, we say that a set X � S is a precursor set

of M when A is available if there is a factory from X [ A to M.

Observe that, if PMðAÞ denotes the collection of all precursor

sets ofM when A is available, then PTð;Þ is exactly the collection

of all minimal precursor sets of T. Thus, starting from T and

having A ¼ ; available, we successively apply the target and re-

action decompositions increasing, at each step, the set of avail-

able metabolites. We finally need to solve the subproblems

PfmgðAÞ which are composed of one of these two base cases:

(a) m is available: if m is in A, then PfmgðAÞ contains only the

empty set as element, i.e. PfmgðAÞ ¼ f;g.

(b) m is not available but is a source: if m 2 S n A, then

PfmgðAÞ ¼ ffmgg.

4.4 Increasing the set of available metabolites

We show how the set of available metabolites can be increased in

each subproblem decomposition. Observe that increasing the set

A of available metabolites is not only necessary to avoid cycling.

The bigger is this set, the shorter are the factories that produce

the given target when A is available, that is we can arrive faster to

the base case (a). Thus, in each decomposition, we try to maxi-

mize the set of available metabolites that can be added without

changing the solution of the original problem.

As mentioned before, to enumerate the collection PMðAÞ,

we can enumerate the collections PfmigðAÞ for each mi 2M

and compute all possible unions of its elements (one from each

collection). In fact, in the enumeration of the solutions of

PfmigðAÞ, we can include as available any other metabolite in

M different from mi, that is PfmigðA [ ðM n fmigÞÞ. Indeed, we

know that these metabolites will be produced by the precursor

sets given by the other parallel subproblems called. In the next

lemma, for a given collection of sets X, minimal[X] is the collec-

tion of all sets of X that are not supersets of any other set of X.

LEMMA 8. Given the sets M ¼ fm1; . . . ;m‘g � C and A � C, we

have the following relation:

PMðAÞ ¼ minimal
[‘
i¼1

Xis:t:Xi 2 Pfmig

�
A [ ðM n fmigÞ

�( )" #
:

PROOF. Given X 2 PMðAÞ, there is a factory F such that

M [ SubsðFÞ � X [ A [ ProdðFÞ. Therefore, fmig[ SubsðFÞ

� X [ A [ ProdðFÞ for all mi 2M. Adding ðM n fmigÞ to the

right side, we conclude that F is a factory from

X [ ðM n fmigÞ [ A to fmig for all mi 2M.

Conversely, given for all mi 2M the sets

Xi 2 PfmigððM n fmigÞ [ AÞ, there exist sets Fi such that

fmig [ SubsðFiÞ � Xi [ ðM n fmigÞ [ A [ ProdðFiÞ for all

mi 2M. This implies that mi 2 Xi [ A [ ProdðFiÞ, and also

implies that M [ SubsðFÞ � X [M [ A [ ProdðFÞ; where

F ¼ [iFi and X ¼ [iXi. These two relations in turn imply

M [ SubsðFÞ � X [ A [ ProdðFÞ. œ

In the case of reaction decomposition, computation of PfmgðAÞ

(when we are not in one of the base cases) requires to compute

PSubsðrÞðAÞ for any reaction r producing m. Clearly, since r

produces m, we can include m as available in the subproblems,

that is PSubsðrÞðA [ fmgÞ (which avoids getting into an endless

loop). Furthermore, we can also include any other product of

r, that is PSubsðrÞðA [ ProdðrÞÞ.

LEMMA 9. Given m 2 C and A � C, if m =2S [ A, then we have

the following relation:

PfmgðAÞ ¼ minimal
h [
8r producing m

PSubsðrÞ

�
A [ Prod ðrÞ

�i
:

PROOF. Consider X 2 S and F � R such that SubsðrÞ [

SubsðFÞ � A [ ProdðrÞ [ X [ ProdðFÞ. Since m 2 ProdðrÞ, we

have fmg [ Subsðfrg [ FÞ � A [ X [ Prodðfrg [ FÞ. Hence,

frg [ F is a factory from A [ X to fm}. Conversely, consider

and F � R a factory from X [ A to the target fm}. Then, F

must contain a reaction r that produces m. Therefore,

SubsðrÞ [ SubsðFÞ ¼ SubsðFÞ � A [ X [ ProdðFÞ � A [ ProdðrÞ

[ X [ ProdðFÞ. F is also a factory from X [ A [ ProdðrÞ to

Subs(r).

Hence, the collection of sets X having a factory from X [ A to

the target fm} is the same as the collection of sets of X having a

factory from X [ ProdðrÞ [ A to Subs(r) for any r producing m.

By considering minimality on each side, we conclude the

proof. œ

4.5 Pruning solutions by minimality

While performing reaction decomposition, there might exist re-

actions that can be a priori discarded because they do not give

any minimal solution. Indeed, if r and r0 produce m, and further-

more if the set of substrates of r that are not in A is a subset of

the set of substrates of r0 that are not in A, then for any solution

to the subproblem defined on Subsðr0Þ, we have a solution smal-

ler or equal on Subs(r). In other words, any solution given by r0 is

not minimal or is included in the solutions given by r. Therefore,

we can avoid computing PSubsðr0 ÞðProdðr
0Þ [ AÞ without losing

minimal precursor sets.

LEMMA 10. Let r and r0 be two reactions producing m such that

SubsðrÞ n A � Subsðr0Þ n A. Then for any solution

X0 2 PðSubsðr0Þ;Prodðr0Þ [ AÞ, there is a solution

X 2 PðSubsðrÞ;ProdðrÞ [ AÞ such that X � X0.

PROOF. Since X0 2 PSubsðr0 ÞðProdðr
0Þ [ AÞ, there exists X0 such

that Subsðr0Þ [ SubsðFÞ � Prodðr0Þ [ A [ X0 [ ProdðFÞ. There-

fore, SubsðF [ fr0gÞ [ A � A [ X0 [ ProdðF [ fr0gÞ.

By hypothesis, SubsðrÞ � Subsðr0Þ [ A, and then we can add

Subs(r) to the left side of the previous equation: SubsðrÞ [

SubsðF [ fr0gÞ [ A � A [ X0 [ ProdðF [ fr0gÞ. By removing the

union of A on the left and adding the union of Prod(r) on the

right, we obtain SubsðrÞ [ SubsðF [ fr0gÞ � A [ ProdðrÞ

[X0 [ ProdðF [ fr0gÞ. In other words, F [ fr0g is a factory from

A [ ProdðrÞ [ X0 to Subs(r). We conclude that there exists

X � X such that X 2 PSubsðrÞðProdðrÞ [ AÞ. œ

Thus, if we compute the solutions of PfmgðAÞ by using Lemma

9, we can first compute SubsðrÞ n A for all reactions r producing

m and not consider those reactions where this set is not minimal.
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Algorithm TRD: target–reaction decomposition

Our first algorithm, called TRD, consists in successively applying

target and reaction decompositions using the procedures

TDecomp and RDecomp below until reaching the base cases.

The first method uses the subroutine CrossUnions(U, Pm)

that computes the collection of all unions of one set of U

and one set of Pm. Running TDecomp(M, A), we obtain exactly

all the minimal precursor sets of M when A is available.

Algorithm TRD is therefore given by the execution of

TDecomp(T,;).

TDecomp(M � C;A � C):
U :¼ ½fg�;
For each metabolite m 2M do

If m is in A then Pm :¼ ½fg�

else if m is in S then Pm :¼ ½fmg�
else

Pm :¼ RDecomp(m, A [ ðM n fmgÞ);
U :¼ CrossUnions(U;Pm);

Return the collection minimalðUÞ.

RDecomp(m 2 C;A � C):
P :¼ ½ �;

For each reaction r producingm with SubsðrÞ n Aminimal do
Ur :¼ TDecomp(Subs(r), A [ ProdðrÞ);
P :¼ P [ Ur;

Return the collection minimalðPÞ.

4.6 Including factories as pseudo-reactions

Amain limitation of TRD is the following. Method RDecomp(m, A)

outputs all precursor sets of fm} when A is available. This

means that, if X is a set included in the output, we know that

there exists a factory from X [ A to fm}. If RDecomp is called

again as a subproblem on the same metabolite m with a similar

available set A0, then most of the successive decompositions

will be repeated again until the base cases are reached. In this

sense, the algorithm has no memory about the factories previously

computed.
We propose a new algorithm that, each time that a decompos-

ition is finished, includes this information in the network by

adding pseudo-reactions representing the previously computed

factories. For instance, if in the network there is a factory

from X [ A to fm} given by reactions r1 and r2, then we include

a pseudo-reaction �r1þ2 with Subsð�r1þ2Þ ¼ X [ A and

Prodð�r1þ2Þ ¼ fmg. Clearly, this operation is safe: the precursor

sets of T do not change.
Moreover, we do not want to lose the information about

the remaining of the metabolites produced by the factory,

which are used to increment the set A of available metabol-

ites. For this reason, we associate to each pseudo-reaction �r a

set Intð�rÞ of internal available metabolites which contains any

metabolite produced by the reactions represented by �r. Thus,

if we use this reaction in a future decomposition, we can

consider this set as available. If we define IntðrÞ ¼ ProdðrÞ

for any original reaction r of the network, then we do not

need to distinguish between reactions and pseudo-reactions.

In the previous example, we have then that Intð�r1þ2Þ ¼

Intðr1Þ [ Intðr2Þ.

4.7 Reaction replacement

Adding new pseudo-reactions to the network decreases the

number of reactions of the factories from X to fm}. However,

to really decrease the time, we need to ensure that the algorithm

will not consider again the original factory. Otherwise, if m is

revisited, the algorithm would analyse both the original factory

and the new one containing the new added reactions. To avoid

this, we delete the original reaction producing m but while guar-

anteeing that the collection of minimal precursor sets of T is

maintained.

Suppose that we want to delete a reaction r producing m.

Notice that any factory from X to m that contains r must also

contain at least one reaction producing each substrate of

r (except the sources). Thus, if r is merged with each set of

such reactions then r can be removed without modifying the

minimal precursor sets.

More formally, given a reaction r, we say that a set of reac-

tions R is a predecessor reaction set of r, if R produces all the

substrates of r that are not sources, that is ProdðRÞ � SubsðrÞ n S.

Let RminðrÞ be the collection of all minimal predecessor reaction

sets of r. Clearly, any factory containing r must also contain a

set R 2 RminðrÞ. The following method Replace(r) removes

reaction r and adds pseudo-reactions corresponding to the

merge of r with every reaction set R 2 RminðrÞ (Fig. 5).

Replace(r 2 R)

Compute RminðrÞ ¼ minfR � R j ProdðRÞ � SubsðrÞ n Sg;
For each set R 2 Rmin do
Add a new reaction �rR to the network with
Prodð �rRÞ :¼ ProdðrÞ,

Intð �rRÞ :¼ IntðRÞ [ IntðrÞ;
Subsð �rRÞ :¼ ðSubsðRÞ [ SubsðrÞÞ n Intð�rRÞ;

Remove r from the network

1 2 3 1 2 3

Fig. 5. Example of the application of Replace to reaction r0. Left:

reaction r0 has internal production m and f (enclosed in a rectangle).

The substrates of r0 are s (which is a source), a and b. The collection

Rminðr0Þ contains the minimal sets of reactions that produce a and b, that

is Rminðr0Þ ¼ ½fr1; r3g; fr2; r3g�. Right: we replace r0 by new reactions cor-

responding to the merge of r0 to each set of reactions of Rminðr0Þ. Thus,

reaction r0 is replaced by reactions �r013 and �r023. Notice that the sub-

strates of �r013 do not include substrates of r3 since they are internally

produced by r1 and r0.

V.Acuña et al.

2480

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/28/19/2474/287819 by IN
IST-C

N
R

S BiblioVie user on 23 N
ovem

ber 2018



LEMMA 11. Let r 2 R be a reaction of the network G and let G0

be the network that results from applying the procedure

Replace(r). Then, X is a precursor set of T in G if and only if X

is a precursor set of T in G0.

PROOF. The factories in G which do not include r are factories

also in G0. Let F � R be a factory from X to T in G which

contains r. Clearly, F must contain a set R 2 RminðrÞ. Thus,

the set F 0 ¼ F [ f�rRg n frg is a factory from X to T in G0.

Conversely, if F 0 is a factory from X to T in G0 containing the

set Rnew ¼ f�rR1
; . . . ; �rRk

g of new reactions added by

Replace(r), then F ¼ ðF 0 n RnewÞ [ frg [
Sk

i¼1 Ri is a factory

from X to T in G. œ

Algorithm NS: network shortcutting

We define a new algorithm ns to compute all precursor sets of

a target T based on reaction replacement. The following

preprocessing of the network is required: a new metabolite t

and a new reaction rt are created, such that SubsðrtÞ ¼ T and

ProdðrtÞ ¼ ftg. Clearly, the minimal precursor sets of ft} are

exactly the minimal precursor sets of T.

Starting from r :¼ rt, NS traverses the network in the same way

that TRD does. However, instead of computing the minimal so-

lutions, NS goes deep in the recursion until finding a reaction r

satisfying the following two conditions: (a) not all substrates of r

are in the base cases and (b) all substrates of all reactions in the

next level of the recursion are in the base cases. When such a

reaction is found, then it is replaced by new reactions.
Successively removing and adding reactions in this way, we

decrease the size of the factories from S to ft}. Finally, the last

reaction removed is rt which is replaced by new reactions produ-

cing t and having only sources as substrates. The sub-

strates of each reaction correspond exactly to a minimal

precursor set of ft}.
Running NS(rt; ;) we obtain a network where the minimal pre-

cursor sets are exactly the substrate sets of all the reactions that

produce t. The network can also contain many other reactions,

but they are not even connected to t.

NS(r0 2 R;A � C):
M :¼ Subsðr0Þ;
If M contains a metabolite not in A [ S then

For each metabolite m 2M n ðA [ SÞ do
NewA :¼ A [ ðM n fmgÞ;
For each r producingmwith SubsðrÞ nNewAminimal do

NS(r, NewA [ IntðrÞ);
Replace(r0);

5 PERFORMANCE ANALYSIS

Extensive tests were performed in order to measure the perform-

ance of the different algorithms on real metabolic networks.

These algorithms were compared for several different singleton

target sets (for instance, amino-acids, metabolites related to the

synthesis of the cell wall, DNA, RNA, membranes, etc.) in seven

networks of different sizes and topologies downloaded from

MetExplore (Cottret et al., 2010b). Ubiquitous metabolites

were filtered out and the split reactions using pairs of co-factors
option was chosen.
We adopted an automatic process to define the set of sources

based on the topology of the network. A metabolite m is con-
sidered a source if it satisfies one of these two conditions: (a) m is

not the product of any reaction or (b) m is involved in only two
reactions corresponding to both directions of an originally re-

versible reaction (i.e. m is substrate in one and product in the
other). The target sets were chosen based on their role:

amino-acids, metabolites related to the synthesis of the cell
wall or DNA, etc.

5.1 Removing bad cycles

There are some cycles that we know a priori that are not realistic
since they are able to produce compounds outside the cycle with-

out the need of any input. In particular, the two directions of an
originally reversible reaction form a cycle which can produce its

metabolites without using any external source. These bad cycles
must be avoided in factories since they may create fake solutions

in which an empty set of metabolites produces the target.
In order to avoid bad cycles in factories, we preprocess the

input network breaking this kind of cycles by removing some
reactions. Specifically, starting from a set M of metabolites con-

taining only the target and an empty set R of reactions, we in-
clude in R a randomly chosen reaction producing a metabolite of

M unless its inclusion generates a bad cycle. The substrates of the
added reactions are included in M. Successively repeating this

process we obtain a network with no bad cycles. Notice that this
process corresponds to a heuristic whose result depends on the

order in which reactions are chosen to be included in R.

5.2 Benchmarks

Table 1 presents an extract of the results for PITUFO, the algo-

rithm described in Cottret et al. (2008) and the two different
algorithms described in this article (TRD and NS) with and without

the test of minimality. The targets presented are those for which
finding the minimal precursor sets required more time for the

new algorithms with minimality check. The table shows, for each
network, the size of the sets of metabolites and reactions, and for

each target, the size of the preprocessed network, the number of
precursor sets found and the time in seconds that each algorithm

spent.
All algorithms have been implemented in Java and the running

times were collected using a cluster for the computation and
setting a limit of 1GB of RAM memory for each process.

Although PITUFO may be fast for small networks, its use is limited
since, as the size of the networks grows, the method takes a long

time to finish, and for some targets, it does not finish in the given
time limit of 24h. This already justifies the new methods pre-

sented in this work, since they do not present the same behaviour
for larger networks.

Concerning the minimality check, we may observe that it is not
necessarily true that it improves the running time. In some cases,

doing the check may even lead to worse results (example Yeast,
target FADH2, NS method), while in others it may have a strong

positive impact on the execution time of the algorithm which
becomes 700 times faster (example, Escherichia coli, target L-as-

partate, TRD method).
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Notice also that as the size and complexity of the networks
increase, the number of different minimal precursor sets found

increases also, and it does this at a rate faster than the increase of

the time needed to compute them.

5.3 Computing solutions for several preprocessed

networks

As mentioned before, the network free of bad cycles that is given

by the heuristic proposed depends on the order in which reac-

tions are added to R. Thus, different orders can generate differ-
ent minimal precursor sets. To recover as many solutions as

possible, we can repeat the search for precursors on several dif-

ferent results of the preprocessing part. In order to analyse the
effect of this heuristic on the algorithms, we successively repeated

this random process while computing, at each repetition, the

number of new precursor sets obtained. The process stops

Table 1. Runtime (in seconds) for computing minimal precursor sets of three singleton targets in seven different networks using five methods: PITUFO,

TRD without and with the minimality pruning (respectively All and Min) and NS without and with the minimality pruning (respectively All and Min)

Network (jCj=jRj) PITUFO TRD NS

Target (jCj=jRj after preprocess) All Min All Min

S. muelleri (75/65)

L-Arginine (33/22) 0.017 0.062 0.02 0.015 0.018

L-Isoleucine (32/21) 0.008 0.069 0.02 0.015 0.016

L-Lysine (31/20) 0.014 0.084 0.019 0.021 0.016

Carsonella Ruddii (114/126)

L-Leucine (86/56) 0.005 0.106 0.046 0.035 0.047

L-Isoleucine (83/49) 0.055 0.105 0.032 0.036 0.040

L-Valine (83/49) 0.037 0.091 0.030 0.028 0.035

B. cicadellinicola (236/229)

Octapremyl diphos, (149/160) 0.726 0.283 0.209 0.221 0.195

Tetrahydrofolate (148/149) 0.337 0.227 0.170 0.237 0.179

Heme-O (150/161) 1.164 0.319 0.208 0.217 0.172

B. aphidicola (396/338)

Pyruvate (219/87) 0.082 0.131 0.105 0.105 0.104

dGTP (206/76) 0.099 0.138 0.126 0.118 0.101

UTP (219/87) 0.113 0.117 0.099 0.148 0.104

Yeast (703/1010)

FADH2 (444/314) * 14.39 5.55 7.27 14.55

L-Histidine (415/269) * 5.55 4.80 5.02 6.62

L-Aspartate (410/ 274) 176.40 4.53 4.65 4.82 4.66

Human (997/1225)

L-Alanine (710/359) 5058.27 5.15 3.34 10.76 10.78

Seriapterine (698/329) * 3.19 2.96 6.85 2.88

L-Cysteina (150/161) 5579.85 3.32 3.32 4.22 3.17

E. coli (1010/1164)

L-Aspartate (714/507) * 2139.01 3.32 10.57 47.72

L-Metionine (737/545) * 632.20 13.62 14.08 14.17

Glycine (706/503) * 553.21 11.55 11.01 13.90

All methods were applied to the same preprocessed network on each target. In the cases marked ‘*’, the algorithm did not finish within 24h. For each target, the size of

metabolites and reactions after bad cycle deletion is indicated.

Table 2. Computation of minimal precursor sets of the E. coli network

for three targets, using several different preprocessed networks

Target Convergency Prec.

sets

Iteration reaching

X% of Prec. sets

Iteration Time (s) 25% 50% 80% 95%

L-Aspartate 71 3128 267 1 6 49 57

L-Metionine 94 2738 399 1 5 46 80

Glycine 73 2693 242 1 4 19 56

Each iteration corresponds to repeating the heuristical random preprocessing and

computing the minimal precursor sets using trd with minimality. For each target, we

show the iteration where the convergence is reached, the time required, the total

number of different minimal precursor sets (at the convergence), and the iterations

in which a given percentage of this total number of solutions is recovered.
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when no new precursor set is recovered in 10 consecutive repeti-
tions. Analysing the results for three different targets of E. coli,
this convergence criterium was reached in5100 iterations. In the
three cases,450% of the solutions were recovered in the first six

repetitions and480% in the first 50 iterations (Table 2).

6 CONCLUSION

Despite the proved hardness of enumerating all precursor sets of

a given target, the algorithms presented in this article can find all
solutions for networks of up to around a 1000 reactions. If we
restrict ourselves to the benchmark built for this article, the TRD

method with minimality check is the one that presented the
best behaviour on average. However, the methods vary widely
depending on the target chosen. Our benchmark does not

allow us to conclude which algorithm has a better performance
between TRD with a minimality test and NS with and without
minimality test for bigger networks. This justifies the utility of

each method individually and leaves an open space for further
improvements.
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