
Algorithms for extracting structured motifs using a suffix tree
with an application to promoter and regulatory site consensus

identification

Laurent Marsan 1 Marie-France Sagot 1,2,∗

1Institut Gaspard Monge 2Institut Pasteur
Université de Marne la Vallée Service d’Informatique Scientifique

5, bd Descartes, Champs-sur-Marne 28, rue du Dr. Roux
77454 - Marne-la-Vallée Cedex 2 75724 - Paris Cedex 15

marsan@univ-mlv.fr sagot@pasteur.fr
∗ corresponding author

1

Abstract

This paper introduces two exact algorithms for extracting conserved structured motifs
from a set of DNA sequences. Structured motifs may be described as an ordered collection of
p ≥ 1 “boxes” (each box corresponding to one part of the structured motif), p substitution
rates (one for each box) and p− 1 intervals of distance (one for each pair of successive boxes
in the collection). The contents of the boxes – that is, the motifs themselves – are unknown
at the start of the algorithm. This is precisely what the algorithms are meant to find. A
suffix tree is used for finding such motifs. The algorithms are efficient enough to be able to
infer site consensi, such as, for instance, promoter sequences or regulatory sites, from a set
of unaligned sequences corresponding to the non coding regions upstream from all genes of a
genome. In particular, both algorithms time complexity scales linearly with N2n where n is
the average length of the sequences and N their number. An application to the identification
of promoter and regulatory consensus sequences in bacterial genomes is shown.
key words: structured motif extraction, promoter and regulatory site, consensus, model,
suffix tree

2

1 Introduction

DNA binding-site identification is an important problem in molecular biology, especially as we
enter the era of large-scale genome sequencing. Besides being a major biological issue in itself,
accurately identifying ribosome binding sites, promoter and other regulatory sequences, may
thus greatly enhance our capacity to correctly predict genes and, in some cases, gene function.

There are two problems related to this identification. One is binding-site location predic-
tion, the other binding-site consensus extraction. Location prediction algorithms often use the
results produced by consensus extraction methods to establish precise site position. This paper
addresses the second kind of problem: extracting consensus motifs for DNA binding sites.

The two problems are difficult. Consensus extraction in particular is hard both biologically
and computationally. Current algorithms are limited in either the biological models upon which
they are built, or the quantity and type of data they may treat (see [Brazma et al., 1998a] for a
general survey and [Vanet et al., 1999] for the more specific case of promoter consensus identifica-
tion). Up to recently, consensi were therefore often derived from relatively small, well-established
and clean datasets [Galas et al., 1985] [Lawrence and Reilly, 1990] [Stormo and Hartzell, 1989]
[Queen et al., 1982]. Very few approaches (all of which either deal with exact, possibly degen-
erate motifs or are heuristics) have confronted the problem of extracting site consensi ab initio
from a whole genome [Brazma et al., 1998b] [Tompa, 1999] [van Helden et al., 1998] or consid-
ered the fact that binding sites often come together in a well-ordered and regularly spaced manner
[Fraenkel et al., 1995] [Cardon and Stormo, 1992] [Klingenhoff et al., 1999] [van Helden et al., 2000]
[Wolfertstetter et al., 1996]. This latter characteristic may be because two sites are recognized by
the same protein (as is, for instance, frequently the case of the RNA polymerase) [Lewin, 1997] or
because the sites are recognized by different macromolecular complexes that then make contact
with one another [Werner, 1999].

This paper presents two exact algorithms that are efficient enough to tackle site consensus
extraction from big datasets (possibly concerning a whole genome). Furthermore, the algorithms
take into consideration the fact that binding sites may be multiple and may present a constrained
spatial structure along the DNA chain. Such algorithms should therefore enable to identify in
genomic sequences what we shall call structured motifs. A structured motif may be described
as an ordered collection of p ≥ 1 “boxes” (each box corresponding to one part of the structured
motif), p maximum error rates (one for each box) and p − 1 intervals of distance (one for each
pair of successive boxes in the collection). The contents of the boxes – that is, the motifs
themselves – are unknown at the start of the algorithm. This is precisely what the algorithms
are meant to find. A suffix tree is used for finding such motifs. The second algorithm has a
better time complexity than the first but needs more space. The first is easier to understand and
implement. Both have a time complexity whose dominating terms are N2n and k

eglobal

total , where n
is the average length of the sequences, N their number, ktotal the total maximum length of the
motifs (spacers between parts excluded) and eglobal a global maximum number of errors allowed.

Section 2 presents definitions and formally states the addressed problem. Section 3 is a
reminder of the use of a suffix tree for single motif extraction [Sagot, 1998]. Section 4 introduces
the new algorithms for structured motif extraction. To simplify exposition of the main ideas,
the algorithms are described for the case of motifs composed of two parts of equal length, each
having the same maximum rate of errors and separated by a distance. We then suggest how
to extend this to the extraction of general structured motifs composed of p > 2 parts. In a
first version, the value of the distance between parts belongs to a known interval. In a second

3

version, it is just known to vary inside a restricted interval whose limits are unknown. We end
by showing an application to promoter consensus identification from whole bacterial genomes.

4

2 Definitions and Statement of the Problem

2.1 Motifs as Models – A Reminder

Let us start by establishing some of the terms we are going to use. The term “motif” in
particular will be replaced by the pair (model, occurrence). A motif has often been employed in
the literature to denote both something that is in a sequence, i.e. a word, and the representative
or representation of a set of such words (that possibly satisfy a certain property). We wish to
keep both concepts separate. An occurrence shall be “something” in the sequence and a model
something that “represents” (“models”) a set of occurrences. Models will thus serve to locate,
as well as describe DNA binding sites in a set of sequences. They may never be present in the
sequences.

More formally, let Σ be the alphabet {A, C, G, T} of nucleotides. An element u ∈ Σ+ is
said to be a word in a sequence s ∈ Σ+ if s = xuy for x, y ∈ Σ∗. An element m ∈ Σ+, called a
model, is said to have an e-occurrence (or simply an occurrence) in s for e a non negative integer
if there is at least one word u in s such that the Hamming distance (i.e. minimum number of
substitutions) between u and m is no more than e. Given N sequences s1, . . . , sN ∈ Σ∗ and an
integer 1 ≤ q ≤ N , an element m ∈ Σ+ is said to be a valid model if it has at least an occurrence
in at least q distinct sequences of the set (q is called the quorum). More complex definitions
of models (e.g. as elements of P+ where P is the set of all subsets of Σ) and of distances
between models and their occurrences may be used (e.g. a Levenshtein distance that represents
the minimum number of substitutions, insertions and deletions between two objects of same
type), but we shall not consider them here (see [Sagot and Viari, 1996] [Sagot et al., 1995] and
[Sagot et al., 1997]).

2.2 From Single to Structured Models

Although the objects defined in the previous section can be reasonable, algorithmically tractable
models for DNA binding sites, they do not incorporate any information concerning the relative
positions of such sites when more than one participates in a biological process. It is common
knowledge that these relative positions are often not random. For instance, the most frequently
observed prokaryotic promoter sequences are in general composed of two parts, or “boxes”, that
come approximately 10 and 35 bases respectively upstream from the start of transcription. The
two boxes, whose core sequences are six bases long, are therefore frequently situated 15 to 19
bases apart. The reason for this strict distance is that the boxes are recognized by the same
protein, the RNA polymerase, in fact, a factor of the polymerase, the σ70. RNA polymerases
may have attached to them other σ factors. Prokaryotic promoters recognized by these factors
are, for the same reason, commonly composed of two boxes although the distance between them
may be different [Gross et al., 1992]. There may also be other regulatory sites, whose distance
from the promoter sequence is more variable but often not random. Activator binding sites are
thus frequently located upstream from the promoter at a distance allowing for the activator to
interact with the RNA polymerase. Repressor binding sites on the other hand may overlap the
promoter sequences or come just downstream from it.

The case of eukaryotic transcription regulation is more complicated [Werner, 1999]. Promoter
sequences contain, as for prokaryotes, one or two boxes recognized by a same protein, but there
may be more regulatory sites, appearing sometimes repeated, that are recognized by distinct

5

proteins which interact with one another. The relative positions of these sites along a DNA
sequence remains thus not always indifferent [Werner, 1999]. Finally, enhancer sequences are an
important feature of eukaryotic gene regulation. Such sequences may be located at very long
distances from the gene start.

There is therefore a need for defining promoter or regulatory site models as objects that take
such characteristics into account. This has the biological motivation just mentioned but presents
also interesting algorithmical aspects: exploiting such characteristics could lead to algorithms
that are both more sensitive and more efficient. Models that incorporate such characteristics
are called structured models.

Formally, a structured model is a pair (m,d) where:

• m is a p-tuple of single models (m1, . . . ,mp) (the p boxes);

• d is a (p − 1)-tuple of triplets ((dmin1 , dmax1 , δ1), . . . , (dminp−1 , dmaxp−1 , δp−1)) (the p − 1
intervals of distance);

with p a positive integer, mi ∈ Σ+ and dmini , dmaxi (dmaxi ≥ dmini), δi non negative integers.
Given a set of N sequences s1, . . . , sN and an integer 1 ≤ q ≤ N , a model (m,d) is said to be
valid if: for all 1 ≤ i ≤ (p − 1) and for all occurrences ui of mi, there exist occurrences u1, . . . ,
ui−1, ui+1, . . . , up of m1, . . . ,mi−1,mi+1, . . . ,mp such that:

• u1, . . . , ui−1, ui, ui+1, . . . , up belong to the same sequence of the set;

• there exists di, with dmini + δi ≤ di ≤ dmaxi − δi, such that the distance between the end
position of ui and the start position of ui+1 in the sequence is equal to di ± δi;

• di is the same for p-tuples of occurrences present in at least q distinct sequences.

The term di represents a distance between the parts and ±δi an allowed interval around that
distance. When δi = (dmaxi − dmini + 1)/2, δi is omitted and d in a structured model (m,d) is
denoted by a pair (dmini , dmaxi). An example of a model with p equal to two is given in Figure 1.

2.3 Statement of the Problem

This paper proposes solutions to variants of increasing generality of a same basic problem. These
variants may be stated as follows; given a set of N sequences s1, . . . , sN , a non negative integer
e and a positive integer q ≤ N :

Problem 1 finds all models ((m1,m2), (dmin1 , dmax1)) that are valid;

Problem 2 finds all models ((m1, . . . ,mp), ((dmin1 , dmax1), . . . , (dminp−1 , dmaxp−1))) that are
valid where p ≥ 2;

Problem 3 finds all models ((m1,m2), (dmin1 , dmax1 , δ1)) that are valid.

Problem 4 finds all models ((m1, . . . ,mp), ((dmin1 , dmax1 , δ1), . . . , (dminp−1 , dmaxp−1 , δp−1)))
that are valid where p ≥ 2.

6

The last two problems represent situations where the exact intervals of distances separating
the parts of a structured site are unknown, the only known fact being that these intervals cover
a restricted range of values. How restricted is indicated by the δi parameters.

To simplify matters, we shall consider that, for 1 ≤ i ≤ p, mi ∈ Σk where k is a positive
integer, i.e. each single model mi of a structured model (m,d) is of fixed, unique length k. In a
likewise manner, we shall assume that each part mi has the same substitution rate e and, when
dealing with models composed of more than two boxes, that the dmini , dmaxi and, possibly, δi

for 1 ≤ i ≤ (p−1) have identical values. We shall note dmin, dmax and δ these values. Problem 2
is then formulated as finding all models ((m1, . . . ,mp), (dmin, dmax)) that are valid and Problem
4 as finding all valid models ((m1, . . . ,mp), (dmin, dmax, δ)).

Besides fixing a maximum substitution rate for each part in a structured model, one can
also establish a maximum substitution rate for the whole model. Such a global error rate, noted
eglobal, allows to consider in a limited way possible correlations between boxes in a model.

A solution to Problem 1 is described in section 4.1, solutions to Problems 2 and 3 are given in
sections 4.3 and 4.4 respectively. Solving Problem 4 implies simply putting together the solutions
proposed for Problems 2 and 3. The complexity of such an operation is indicated in section 4.5.
In section 4.6, we discuss how handling variable box lengths modify the previously described
algorithms. Finally, section 4.7 introduces other kinds of constraints, either local or global such
as, for instance, maximum substitution rate, which may be useful for some applications.

7

3 Single Model Extraction Using Suffix Trees – A Reminder

The algorithms for solving either of the problems stated in section 2.3 make use of a generalized
suffix tree T of the set of sequences s1, . . . , sN given as input. This is the classical suffix
tree introduced by McCreight [McCreight, 1976] and modified to consider N ≥ 1 sequences
[Bieganski et al., 1994] [Gusfield, 1997]. The modification consists in:

• placing at the end of each sequence in the set a symbol not in the alphabet and specific
to that sequence;

• storing at each node v in the tree a boolean-array of size N indicating the sequences in
the set to which belong the strings labeling the path to v from the root of T . Following a
same notation as in [Sagot, 1998], we denote such an array colorsv.

The suffix tree construction we adopt is that of Ukkonen [Ukkonen, 1995]. To facilitate the
exposition of the main ideas, a suffix trie is considered instead of a tree, i.e. arcs are labelled
by a single letter. We shall refer to it as a suffix tree since adapting the algorithm to deal with
a compact tree is straightforward. The level of a node v in the suffix trie will therefore denote
the number of nodes in the paths from the root to v. In either trie or tree, this corresponds also
to the length of the word the path spells.

Given a maximum number e of substitutions allowed, it has been shown in [Sagot, 1998]
that extracting all valid single models, that is, all models m ∈ Σk≥1 verifying a quorum q,
can be done by simultaneously and recursively traversing (in a depth-first way) the (virtual)
lexicographic trie M of all possible models of length k (stopping the descent down an arc and
pruning the subtree rooted at the end node of that arc as soon as the quorum is no longer
verified) and the (actually built) suffix tree T of the sequences. While traversing T , up to e
mispellings are allowed of the labels of the arcs in M corresponding to potentially valid models.
One may also see this operation as an application of a sparse dynamic programming technique
to two trees instead of two sequences. Tree T is another way of representing a sequence while
tree M explores all possible (valid) models.

Occurrences in the sequences of a model m that are identical are grouped (by their end-
positions) into those whose spelling leads to a same node in T . These occurrences correspond
therefore to nodes in the tree. A node-occurrence of m is represented by a pair (v, ev) where v is
a node in T and ev is the number of errors accumulated between a model m and the label of the
path from the root to v (at all times, ev ≤ e). The main recurrence upon which the algorithm
is based is given by the following Lemma where parent(v) denotes the parent of a node v in T .

Lemma 3.1 [Sagot, 1998] A pair (v, ev) is a node-occurrence of m′ = mα with m ∈ Σl for
1 ≤ l < k and α ∈ Σ if, and only if, one of the following two conditions is verified:

(match) A pair (parent(v), ev) is a node-occurrence of m and the label of the arc from parent(v)
to v is α;

(subst.) A pair (parent(v), ev − 1) is a node-occurrence of m and the label of the arc from
parent(v) to v is β ̸= α.

Further details may be found in [Sagot, 1998]; an illustration is also given in Figure 2.

8

Since suffix tree T is used as just another way of representing the sequences, observe that it
is simply “read” (i.e. traversed) over and over again to extract all valid single models. Once it
is built, no use is made of the suffix links in T , tree arcs only are followed. This will not be the
case of the suffix tree for inferring structured models in one of the algorithms given below.

In [Sagot, 1998], it was shown that this algorithm has an O(N2nV(e, k)) time complexity
for finding models of length k. The term V(e, k) is called the e-neighbourhood of a k-long word
m: it is the number of distinct words u that are at a Hamming distance at most e from m. We
have:

V(e, k) =
e∑

i=0

(
k
i

)
(|Σ|− 1)i ≤ ke|Σ|e

Observe that the second N comes from the union operations that we need to do to the
boolean arrays at each node to check whether the quorum is still satisfied at each step in the
construction of models.

The space complexity is O(N2n). The term Nn comes from the suffix tree, the second N
from the boolean arrays.

9

4 Structured Models Extraction

4.1 Algorithms for a Known Interval of Distance (Problem 1)

4.1.1 Naive Approach

A naive way of solving Problem 1 consists in extracting and storing all valid single models of
length k (given q and e), and then, once this is finished, in verifying which pairs of such models
could represent valid structured models (given an interval of distance [dmin, dmax]).

One way of doing this verification profits from the simple observation that two single models
m1 and m2 may form a structured one only if at least one occurrence of m1 is at the right
distance of at least one occurrence of m2. Building an array of size nN where cell i contains
the list of models having an occurrence starting at that position in s = s1 . . . sN allows us to
compare models in cell i to models in cells i + dmin, . . . , i + dmax only. If the sets of occurrences
of models are ordered, this comparison may be done in an efficient way (in time proportional to
the size of the sets of node-occurrences, which is upper-bounded by nN).

4.1.2 Algorithm 1: Jumping in the Suffix Tree

A first non naive approach to solving the problem starts by extracting single models of length
k. Since we are traversing the trie of models in depth-first fashion (also in lexicographic order),
models are recursively extracted one by one. At any time, a single model m (and its prefixes)
is being considered. Once a valid model m1 of length k is obtained together with its set of
T -node-occurrences V1 (which are nodes located at level k in T), the extraction of all single
models m2 with which m1 could form a structured model ((m1,m2), (dmin, dmax)) starts. This
is done with m2 representing the empty word and having as node-occurrences the set V2 given
by:

V2 = {(w, ew = ev) | ∃v ∈ V1 with dmin ≤ level(w) − level(v) ≤ dmax}

where level(v) indicates the level of node v in T . From a node-occurrence v in V1, a jump is
therefore made in T to all potential start node-occurrences w of m2. These nodes are the
dmin- to dmax-generation descendants of v in T . Exactly the same recurrence formula given in
Lemma 3.1 may be applied to the nodes w in V2 to extract all single models m2 that, together
with m1 could form a structured model verifying the conditions of the problem, for all valid
m1. An illustration is given in Figure 3 and a pseudo code is presented below. The procedure
ExtractModels is called with m the empty word having as sole node-occurrence the root of T
and i equal to 1.

10

procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2. if i = 2 then
3. put in PotentialStarts the children w of v at levels k + dmin to k + dmax

4. else
5. put v (i.e the root)in PotentialStarts
6. for each model mi (and its occurrences) obtained by doing a recursive depth-first

traversal from the root of the virtual model tree M while simultaneously
traversing T from the node-occurrences in PotentialStarts (Lemma 3.1 and
quorum constraint) do

7. if i = 1 then
8. ExtractModels(m = m1, i + 1)
9. else
10. report the complete model m = ((m1,m2), (dmin, dmax)) as a valid one

Since the minimum and maximum length of a structured model (m,d) that may be considered
are, respectively, 2k + dmin and 2k + dmax, we need only to build the tree of suffixes of length
2k + dmin or more, and for each such suffix to consider at most the first 2k + dmax symbols. To
do this is not difficult. Eliminating suffixes of length less than dmin is immediate: during the
construction of T (as described in Gusfield [Gusfield, 1997]), we just do not put such suffixes in
T . Placing in T the prefixes of length at most dmax of the suffixes of {s1, . . . , sN} means that
at each step j during the construction of the tree, nodes whose paths to the root spell a word of
greater length need not be considered for extension. The extension process starts therefore with
the node v whose path at the end of step j − 1 spelled a word of length dmax. The other nodes
to be treated at step j are then obtained by following T ’s suffix links from v until the root is
reached.

The observation made in the previous paragraph applies also to Algorithm 2 (section 4.1.3).
Note that, in both cases, this implies ni ≤ ni+1 ≤ Nn for all i ≥ 1 where ni is the number of
nodes at depth i in T .

4.1.3 Algorithm 2: Modifying the Suffix Tree

Algorithm 2 initially proceeds like Algorithm 1: it starts by building single models of length k,
one at a time. For each node-occurrence v of a first part m1 considered in turn, a jump is made
in T down to the descendants of v situated at lower levels. This time however, the algorithm
just passes through the nodes at these lower levels, grabs some information the nodes contain
and jumps back up to level k again (in a way that will be explained in a short while). The
information grabbed in passing is used to temporarily and partially modify T and start, from
the root of T , the extraction of the second part m2 of a potentially valid structured model
((m1,m2), (dmin, dmax)). Once the operation of extracting all possible companions m2 for m1

has ended, that part of T that was modified is restored to its previous state. The construction
of another single model m1 of a structured model ((m1,m2), (dmin, dmax)) then follows, and
the whole process unwinds in a recursive way until all structured models satisfying the initial
conditions are extracted.

More precisely, the operation between the spelling of models m1 and m2 locally alterates

11

T up to level k to a tree T ′ that contains only the k-long prefixes of suffixes of {s1, . . . , sN}
starting at a position between dmin and dmax from the end position in si of an occurrence of
m1. Tree T ′ is, in a sense, the union of all the subtrees t of depth at most k rooted at nodes
that represent start occurrences of a potential companion m2 for m1.

For each model m1 obtained, before spelling all possible companions m2 for m1, the content
of colorsz for all nodes z at level k in T are stored in an array L of dimension nk (this is for
later restoration of T). Tree T ′ is then obtained from T by considering all nodes w in T that
may be reached on a descent of, this time, k + dmin to k + dmax arcs down from the node-
occurrences (v, ev) of m1. These correspond to all end node-occurrences (instead of start as
in Algorithm 1) of potentially valid models having m1 as first part. The boolean arrays colorsw

for all w indicate to which input strings these occurrences belong. This is the information we
grab in passing and take along the only path of suffix-links in T that leads back to a node z at
level k in T . If it is the first time z is reached, colorsz is set equal to colorsw, otherwise colorsw

is added (boolean “or” operation) to colorsz. Once all nodes v and w have been treated, the
information contained in the nodes z that were reached during this operation are propagated
up the tree from level k to the root (using normal tree arcs) in the following way: if z̄ and ẑ
have same parent z, then colorsz = colorsz̄ ∪ colorsẑ. Any arc from the root that is not visited
at least once in such a traversal up the tree is not part of T ′, nor are the subtrees rooted at its
end node.

The extraction of all second parts m2 of a structured model (m,d) follows as for single models
in the initial algorithm (Lemma 3.1 in section 3).

Restoring the tree T as it was before the operations described above requires restoring the
value of colorsz preserved in L for all nodes z at level k and propagating the information (state
of boolean arrays) from z up to the root.

Since nodes w at level between 2k+dmin to 2k+dmax will be solicited for the same operation
over and over again, which consists in following the unique suffix-link path from w to a node z
at level k in T , T is pre-treated so that one single link has to be followed from z. Going from
w to z takes then constant time.

An illustration is given in Figure 4. A pseudo code for the algorithm is as follows. The
procedure ExtractModels is called, as for Algorithm 1, with m the empty word having as sole
node-occurrence the root of T and with i equal to 1.

12

procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2. if i = 2 then
3. put in PotentialEnds the children w at levels 2k + dmin to 2k + dmax

4. for each node-occurrence w in PotentialEnds do
5. follow fast suffix-link to node z at level k
6. put z in L
7. if first time z is reached then
8. initialize colorsz with zero
9. put z in NextEnds
10. add colorsw to colorsz

11. do a depth-first traversal of T to update the boolean arrays from the root to all
z in NextEnds (let T ′ be the k-deep tree obtained by such an operation)

12. if i = 1 then
13. Tree = T
14. else
15. Tree = T ′

16. for each model mi (and its occurrences) obtained by doing a recursive depth-first
traversal from the root of the virtual model tree M while simultaneously
traversing Tree from the root (Lemma 3.1 and quorum constraint) do

17. if i = 1 then
18. ExtractModels(m = m1, i + 1)
19. else
20. report the complete model m = ((m1,m2), (dmin, dmax)) as a valid one
21. restore tree T to its original state using L

Proposition 4.1 The following two facts are true:

• T ′ contains only the k-long prefixes of suffixes of {s1, . . . , sN} that start at a position
between dmin and dmax of the end position in {s1, . . . , sN} of an occurrence of m1;

• the above algorithm solves Problem 1.

Proof
The proof is straightforward. We start by observing that, at the end of line 3, PotentialEnds
indeed contains all end node-occurrences for a potential companion second box to the first one
just found. From each one of the nodes w in PotentialEnds, it is possible to go up the suffix
tree T and, by the definition of suffix links, this leads us to a node z such that the path from the
root to z spells a potential k-long occurrence of a second box. This path may represent words
in the sequences that are not occurrences of a second box (because they are not at the right
distance). However, these are “eliminated”, i.e. not counted for verifying the quorum, once
boolean arrays along the path are, first initialized, then modified with the boolean array in w.
Finally, no potential k-long occurrence of a second box is lost since all end node-occurrences w
for a potential companion second box were considered. ✷

13

4.2 Complexity

The naive approach to solving Problem 1 requires nN2V(e, k) time to find single models that
could correspond to either part of a structured model (and nNV(e, k) space to store all potential
parts). If we denote by ∆ the value dmax − dmin + 1, finding which pair of single models may
be put together to produce a structured model could then be done in time proportional to:

V(e, k)︸ ︷︷ ︸
1

∆V(e, k)︸ ︷︷ ︸
2

nN︸︷︷︸
3

nN︸︷︷︸
4

where 1. is the maximum number of single models to which a position may belong, 2. is the
maximum number of models to which a position at a distance between k + dmin and k + dmax

from the first may belong, 3. is the maximum number of comparisons that must be done to
check whether two single models may form a structured one and, finally, 4. is the number of
starting positions to consider.

To obtain the complexity of Algorithm 1, we have to calculate the total number of visits we
may do to nodes between level 2k + dmax (the deeper level we ever reach) and the root. To
count this, we need to consider, for each node between levels 2k +dmin and 2k +dmax in T , how
many times it could represent the node-occurrence of a model composed of two boxes, each one
having length k and separated by a spacer of length dmin to dmax. This number is at most:

dmax∑

i=dmin

n2k+iV2(e, k) ≤ min{2,∆}n2k+dmaxV2(e, k) ≤ min{2,∆}n2k+dmaxk2e|Σ|2e

where ∆ denotes the value dmax − dmin + 1 and n2k+dmax is the number of tree nodes at depth
2k + dmax. This last number is never more than nN . The min{2,∆} in the bound comes from
the fact that the degree of any internal node of T is at least 2.

Since each visit to a node requires at most O(N) operations, the time complexity of Algo-
rithm 1 is O(min{2,∆}Nn2k+dmaxV2(e, k)), that is, O(Nn2k+dmaxV2(e, k)). Space complexity is
O(N2n) as for the extraction of single models.

In the case of Algorithm 2, we need to consider the number of operations necessary for
building the two parts of each model using T or T ′, as well as the number of operations needed
to obtain T ′ from T and then to restore back T .

The single models composing either two parts of a structured model may be built in at most
NnkV2(e, k) operations. The reason for this is that, when spelling either part of a model, we
are working with nodes between the root and level k only (there are at most 2nk such nodes),
and there are V2(e, k) ways of spelling two paths from a node at level k to the root (each path
corresponding to one part of a structured model) allowing for up to e substitutions in each.

The total number of operations needed to modify the first k levels of the suffix tree T to
obtain T ′ before the identification of a second part at a right distance of the first is upper-
bounded by:

(
dmax∑

i=dmin

Nn2k+iV(e, k))

︸ ︷︷ ︸
visits to nodes z coming from w for all m1

+ (NnkV(e, k))︸ ︷︷ ︸
propagations from z to root for all m1

≤ min{2,∆}Nn2k+dmaxV(e, k).

14

Restoring T to start the extraction of another structured model from a different first part
takes O(NnkV(e, k)) operations for all m2 using O(Nnk) additional space (size of array L, each
cell possibly pointing to a node at level k in T or to nil). The total time complexity of Algorithm
2 is therefore O(NnkV2(e, k) + min{2,∆}Nn2k+dmaxV(e, k) + NnkV(e, k)). This results in an
O(NnkV2(e, k) + Nn2k+dmaxV(e, k)) time complexity. Space complexity is slightly higher than
for Algorithm 1: O(N2n + Nnk) where nk ≤ Nn. The second term is for array L.

In either case, the complexity obtained is better both in terms of time and space than the
one given by a naive approach to Problem 1 (see above).

4.3 Extending the Algorithms to Extract Structured Models with p > 2 Parts
(Problem 2)

4.3.1 Algorithm 1: Jumping in the Suffix Tree

Extending Algorithm 1 to extract structured models composed of p > 2 parts, that is solving
Problem 2, is immediate. After extracting the first i parts of a structured model ((m1, . . . ,
mp), (dmin, dmax)) for 1 ≤ i < (p−1), one jumps down in the tree T (following normal tree arcs)
to get to the dmin- to dmax-descendants of every node-occurrence of ((m1, . . . ,mi), (dmin, dmax))
then continues the extraction from there using Lemma 3.1.

A pseudo-code is given below.

procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2. if i > 1 then
3. put in PotentialStarts the children w of v at levels (i − 1)k + (i − 1)dmin to

(i − 1)k + (i − 1)dmax

4. else
5. put v (the root) in PotentialStarts
6. for each model mi (and its occurrences) obtained by doing a recursive depth-first

traversal from the root of the virtual model tree M while simultaneously
traversing T from the node-occurrences in PotentialStarts (Lemma 3.1 and
quorum constraint) do

7. if i < p then
8. ExtractModels(m = m1 · · ·mi, i + 1)
9. else
10. report the complete model m = ((m1, · · · ,mp), (dmin, dmax)) as a valid one

4.3.2 Algorithm 2: Modifying the Suffix Tree

Extending Algorithm 2 to solve Problem 2 is slightly more complex and thus calls for a few
remarks. The operations done to modify the tree between building mi≥1 and mi+1 are almost
the same as those described in section 4.1.3 except for two facts. One is that up to (p − 1)
arrays L are now needed to restore the tree after each modification it undergoes. The second,
more important, difference is that we need to keep for each node vk at level k reached from
an ascent up T ’s suffix links a list, noted Lptrvk , of pointers to the nodes at lower levels that
affected the contents of vk. The reason for this is that tree T is modified up to level k only

15

(resulting in tree T ′) as these are the only levels concerned by the search for occurrences of
each box of a structured model. Lower levels of T remain unchanged, in particular the boolean
arrays at each node below level k. To obtain the correct information concerning the potential
end node-occurrences of boxes i for i > 2 (i.e. to which strings such occurrences belong), we
therefore cannot descend T from the ends of node-occurrences in T ′ of box (i−1). If we did, we
would not miss any occurrence but we could get more, e.g. ones that did not have an occurrence
of a previous box in the model. We might thus overcount some strings and consider as valid a
model which, in fact, no longer satisfied the quorum. We have to go down T from the ends of
node-occurrences in T , that is from the original ends of node-occurrences in T of the boxes built
so far. These are reached from the list of pointers Lptrvk for the nodes vk that are identified as
occurrences of the box currently just treated. For models composed of p boxes, we need at most
(p − 1) lists Lptrvk for each node vk at level k.

A pseudo-code for the algorithm is as follows:

procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2. if i > 2 then
3. put in PotentialEnds the children w at levels ik + (i − 1)dmin to ik + (i − 1)dmax

4. for each node-occurrence w in PotentialEnds do
5. follow fast suffix-link to node z at level k
6. put z in L(i)
7. if first time z is reached then
8. initialize colorsz with zero
9. put z in NextEnds
10. add colorsw to colorsz

11. do a depth-first traversal of T to update the boolean arrays from the root to all
z in NextEnds (let T ′ be the k-deep tree obtained by such an operation)

12. if i = 1 then
13. Tree = T
14. else
15. Tree = T ′

16. for each model mi (and its occurrences) obtained by doing a recursive depth-first
traversal from the root of the virtual model tree M while simultaneously
traversing Tree from the root (Lemma 3.1 and quorum constraint) do

17. if i < p then
18. ExtractModels(m = m1 · · ·mi, i + 1)
19. else
20. report the complete model m = ((m1, · · · ,mp), (dmin, dmax)) as a valid one
17. if i > 1 then
21. restore tree T to its original state using L(i)

4.3.3 Complexity

Using a same reasoning as before, it is not difficult to see that Algorithm 1 requires O(Nvpk+(p−1)dmax

Vp(e, k)) time, where Vp(e, k)) ≤ kpe|Σ|pe. The space complexity remains the same as for solving

16

Problem 1, that is O(N2n).
In the case of Algorithm 2, the p single models composing a structured model may be built

in a number of operations upper bounded by O(NnkVp(e, k)).
The total number of operations needed to modify the first k levels of the suffix tree T to

obtain T ′ before the identification of a box (i + 1) for i > 2 at a right distance of box i is
upper-bounded by:

(
dmax∑

j=dmin

Nnik+(i−1)jV i−1(e, k)) + (NnkV(e, k)) ≤ min{2,∆}Nnik+(i−1)dmaxV
i−1(e, k)

Restoring T ′ as we back off to the preceding box takes, as before, O(NnkV(e, k)) operations
using O(N(p − 1)nk) additional space (size of arrays L(1) to L(p)).

The total time complexity of Algorithm 2 is therefore of O(NnkVp(e, k) + Nnpk+(p−1)dmax

Vp−1(e, k)). The space complexity is O(N2n + N(p − 1)nk).

4.4 Extending the Algorithms to Handle Restricted Intervals of Unknown
Limits (Problem 3)

4.4.1 Algorithm 1

In the case where the distances between the two parts m1 and m2 of a single model vary inside
a restricted interval whose limits are unknown, Algorithm 1 is extended in the following way.
Once a first part m1 of a structured model ((m1,m2), (dmin, dmax, δ)) has been extracted, we
jump as before to nodes w in V2 given in section 4.1.2. To verify, as we now must, that:

• there exists d, with dmin + δ ≤ d ≤ dmax − δ, such that level(w) - level(v) is equal to d± δ;

• (more particularly) d is the same for pairs of occurrences (one occurrence for each part
of the structured model) present in at least q distinct sequences;

we just need to keep at each node its distance from level k and to count the number of distinct
sequences for each restricted interval d ± δ separately.

4.4.2 Algorithm 2

In order to verify the same two points mentioned above in the case of Algorithm 2, we need this
time to keep an additional information at the nodes z situated at level k that are reached from w
by jumping back up the tree (following suffix links). This information is required because a node
at level k may be reached from nodes w corresponding to different distances from occurrences
of the previous box. We therefore need to have at each node z an array of dimension not N but
((dmax − dmin − (2 ∗ δ)) × N). The node-occurrences at each extension step of the second part
of a model are added for each cell i ∈ (dmax − dmin − (2 ∗ δ)) in turn. If for any i, this number is
at least q, the model is valid and the second part may be further extended (if its length is still
smaller than k).

We denote this boolean array Colorsz with a capital C to stress that it is now multi-
dimensional. If it is the first time a node z is reached from w, the l cells of Colorsz for
l ∈ [max{dmin + δ, level(w)−level(z) − δ},min{dmax − δ, level(w)−level(z) + δ}] are set equal to

17

colorsw and all the other cells are initialized to zero, otherwise colorsw is added (boolean “or”)
to the l cells of Colorsz. Once all nodes v and w have been treated, the information contained
in the nodes z that were reached during this operation are propagated up the tree from level k
to the root (using normal tree arcs) in the following way: if z̄ and ẑ have same parent z, then,
for all l such that dmin + δ ≤ l ≤ dmax − δ, Colorsz[l] = Colorsz̄[l] ∪ Colorsẑ[l].

4.4.3 Complexity

The time complexity of Algorithm 1 for solving Problem 3 remains O(Nn2k+dmaxV2(e, k)) and
the space complexity O(nN2).

The time complexity of Algorithm 2 for solving the same problem becomes O(N∆′nkV2(e, k)+
N∆′n2k+dmax V(e, k)) where ∆′ = dmax−dmin−(2∗δ). The space complexity is O(N2n+N∆′nk).

4.5 Extending the Algorithms to Extract Structured Models with p > 2 Parts
and to Handle Restricted Intervals of Unknown Limits (Problem 4)

Few changes are required when one wishes to consider structured models that are composed of
more than two boxes separated by intervals of distances of the type d± δ for some d and a fixed
δ. The main one concerns Algorithm 2: the boolean arrays at each node in the suffix tree have
now to be of dimension N(p− 1)∆′. The ∆′ comes from having to handle restricted intervals of
unknown limits as we saw in section 4.4. The (p−1) comes from the fact that d may be different
for each pair of successive boxes in the structured model. The time and space complexity will
therefore be further multiplied by a term of (p − 1).

The time complexity of Algorithm 2 (the only one for which there is a change) for solv-
ing Problem 4 is O(N∆′(p − 1)nkVp(e, k) + N∆′(p − 1)npk+(p−1)dmax

Vp−1(e, k)). The space
complexity is O(N2n + N∆′(p − 1)nk).

4.6 Handling Boxes of Variable Lengths

A straightforward way of handling boxes of variable length requires relatively few modifications.
The main one comes from the fact that the operations of jumping (Algorithm 1) or modifying
the tree (Algorithm 2) to find a box i once boxes 1 to i − 1 have been identified is done for all
possible allowed lengths (between a minimum and a maximum) for the previous boxes.

4.7 Adding Local and Global Constraints

4.7.1 Global Substitution Rate

One important constraint one may wish to add to the model concerns introducing a global
maximum substitution rate eglobal (this is in addition to the maximum substitution rate e allowed
for each box in the model).

No substantial changes need to be done to Algorithm 1 to consider such a global constraint
for solving Problem 1. The only difference is that a model has now two substitution counters,
one for the current box being built and the other for the global rate.

Algorithm 2 on the other hand requires more important changes for solving the same problem.
The main one is that each node v′ in T ′ will have attached to it a boolean-array that needs this
time to be of dimension (eglobal + 1)×N instead of N . The reason is that in T ′ we are grouping

18

nodes from T that may have accumulated a different number of substitutions against m1. We
denote this boolean array Colorsv′ with a capital C as before.

If it is the first time z is reached, the ev cell of Colorsz is set equal to colorsw and the
other cells are initialized to zero, otherwise colorsw is added (boolean addition) to the ev cell of
Colorsz. Once all nodes v and w have been treated, the information contained in the nodes z
that were reached during this operation are propagated up the tree from level k to the root (using
normal tree arcs) in the following way: if z̄ and ẑ have same parent z, then, for 1 ≤ j ≤ eglobal,
Colorsz[j] = Colorsz̄[j] ∪ Colorsẑ[j].

Observe that the substitution information concerning a node v′ in T ′ is obtained from both
Colorsv′ (global error) and ev′ (this latter corresponds to the error for one box and is therefore
initialized to zero). Apart from having to take into account the fact that T ′ groups at each node
occurrences in {s1, . . . , sN} that may present a different number of substitutions against m1,
the extraction of all second parts m2 of a structured model (m,d) follows as for single models
in the initial algorithm (Lemma 3.1 in section 3).

The time complexity of Algorithm 1 for solving Problem 1 becomes O(Nn2k+dmaxV(eglobal, 2k))
if eglobal ≤ e. The space complexity does not change.

In Algorithm 2, the building of models takes now time O(NnkV(eglobal, 2k)), again if eglobal ≤
e. Obtaining T ′ from T requires O(Nn2k+dmaxV(e, k)) time. This does not count initialization
of the boolean arrays Colorsz in T ′ which are done just once for each model m1 identified and
costs O((eglobal + 1)nkV(e, k)) operations overall.

Restoring T to start the extraction of another structured model from a different first part
takes O(NnkV(e, k)) operations using O(Nnk) additional space (size of array L, each cell pos-
sibly pointing to a node at level k in T or to nil). The total time complexity of Algorithm 2 for
solving Problem 1 is therefore O(NnkV(eglobal, 2k)+Nn2k+dmaxV(e, k)+ (eglobal +1)nkV(e, k)+
NnkV(e, k)). If we assume N is bigger than e, this results in an O(NnkV(eglobal, 2k) +Nn2k+dmax

V(e, k)) time complexity. Space complexity is higher than for Algorithm 1: O(N2n+N(eglobal +
1)nk + Nnk) where nk ≤ Nn. The second term comes from the fact that, in T ′, we group
together nodes from T that, as occurrences of models, have accumulated a different number of
errors. The third term is for array L.

Observe that, in either case, the complexity obtained improves even more in relation to the
one given by a naive approach to Problem 1 which would be in O(V(eglobal, k)∆V(eglobal, k)nNnN)
for time and O(nNV(eglobal, k)) for space.

4.7.2 Other Possible Local and Global Constraints

Another possible local and/or global constraint one may wish to consider for some applications
concerns the composition of the boxes.

One may, for instance, determine that the frequency of one or more nucleotide in a box (or
among all boxes) be below or above a certain threshold. For structured models composed of
more than p boxes, one may also establish that a box i is palindromic in relation to a box j for
1 ≤ i < j ≤ p.

In algorithmical terms, the two types of constraints just mentioned are not equivalent. The
first type, box composition whether local or global, can in general be verified only a posteriori
while the second type (palindromic boxes) will result in a, sometimes substantial, pruning of the
virtual trie of models.

19

5 Application to Promoter Consensus Identification from Whole
Bacterial Genomes

The aim of the present section is not to show a fully developed computer analysis of promoter
sequences with the algorithms described in this paper (see [Vanet et al., 2000] for that) but to
illustrate their use for inferring promoter models from a set of bacterial sequences extracted from
a whole genome. We address here Problem 1. The algorithms are applied to the identification
in Bacillus subtilis, Helicobacter pylori and Escherichia coli of promoter sequences recognized
by the RNA polymerase σ70 factor (σ80 for H. pylori).

5.1 Data

The data consisted in three sets of non coding regions located between two divergent genes,
that is, between genes transcribed in divergent directions (one on each strand). Each non
coding region appears therefore twice in the set, once as a sequence read from the genomic
one as publicly released, the other as the same sequence reversed and complemented. This
data was extracted from the whole genomes of B. subtilis (ftp://ncbi.nlm.nih.gov/genbank/
genomes/bacteria/ Bsub/), H. pylori (ftp://ftp.tigr.org/ pub/data/h pylori) and E. coli (http://
mol.genes.nig.ac. jp/ecoli/). The sequences in the three sets (called Gs, Gp and Gc respectively,
G denoting “Genomic”) are therefore non coding on both strands. Sequences having less than
40 bases were eliminated and only up to 330 nucleotides before the start of translation (as
annotated) were initially kept. The first and last 15 bases were then discarded from the sequences
in both sets. This eliminated the Shine-Dalgarno sequence as a potential motif. Gs contains
1,062 sequences for a total of 196,736 nucleotides, Gc 1,148 sequences and 226,928 nucleotides
while Gp contains 308 sequences and 52,100 nucleotides. The choice of data for this illustration
was dictated by the desire to show an application to a whole genome while reducing the amount
of noise (non coding sequences containing no promoters). More extensive genomic studies are
discussed in [Vanet et al., 2000] and [Vanet et al., 1999].

5.2 Measuring Statistical Significance

Once all structured models satisfying the initial constraints (number of boxes, maximum error
rates, distances between boxes and quorum) have been extracted, they may be classified ac-
cording to their statistical significance. No a priori method of evaluating such significance is
completely satisfactory for our purposes. This has two main reasons. One is that our mod-
els are composed of two parts. The second reason is that, as we allow errors between models
and their occurrences, we need methods that are able to either deal with such errors, or han-
dle multiple exact motifs statistics. Those currently available [Régnier and Szpankowski, 1997]
[Reinert and Schbath, 1998] [Tompa, 1999] appear too computationally intensive for our pur-
poses. A further complication comes from the fact that we are interested in assessing the
statistical significance of the number of occurrences of a model per sequence, i.e. of distinct
sequences having at least one occurrence, and not of the total number of occurrences.

For these reasons, it seemed more appropriate for now to evaluate the significance of a
structured model by using instead a data shuffling approach [Karlin et al., 1989].

Statistical pertinence of the models found was thus evaluated by performing a χ2 (with
one degree of freedom) on two contingency tables, one corresponding to what is observed, the

20

other to what was expected under the null hypothesis [Press et al., 1993], and then determining
the probability of getting the models observed given the null hypothesis. A hundred random
shufflings preserving both the mono and di-nucleotide frequency distributions of the original
sequences was performed to derive the values in the contingency table for the null hypothesis.

Another type of statistics, based on a Z-score, was also tried. It produced a classification of
the models that could be considered equivalent: very few permutations in the order obtained
were observed.

5.3 Results

The results are presented in the graphics of Figure 5. These graphics plot the intervals of
distance allowed between the two parts of a structured model (from 5±1 to 25±1 by increments
of one) against the statistical value obtained by the most significant model found in Sets Gs
(Fig. 5a), Gp (Fig. 5b) and Gc (Fig. 5c) with up to 1 substitution permitted and a quorum of
4% for B. subtilis, 6% for H. pylori and 2% for E. coli (these correspond to the highest, or close
to the highest quorum at which significant models, or any models at all were found).

The most significant model identified for each interval is shown above the curves. This is
done only for the intervals located at or near a peak.

Figure 5a shows that the algorithm is able to detect the consensus given in the literature
[Helmann, 1995] for the σ70 promoter sequence in B. subtilis, TTGACAx(17±1)TATAAT, with
the highest peaks at the known distance (17±1 bases) between the site at -35 and the TATA-box.
The model corresponding to the remaining peak in the curve, with a distance of 7±1 between
the two parts, is of unknown function. It is interesting to note that this model is palindromic
and that the distance between the two boxes is small. Palindromic motifs separated by such
short distances have a chance of corresponding to the binding sites of a dimeric protein. An
eample of such a protein is the CRP (Cyclic-AMP Receptor Protein) of which we shall speak
below when discussing the models found with the E. coli dataset.

This result increases our confidence that the models found for H. pylori are also biologically
pertinent besides being statistically significant (Figure 5b). The models corresponding to the
second peak in particular have been suggested in more detail in [Vanet et al., 2000] to represent
the σ80 promoter sequence in the bacterium. The models related to the first peak are of unknown
function.

Surprisingly, in Set Gc, the consensus given in the literature for the σ70 promoter se-
quence [Record et al., 1996] in E. coli (the same as for B. subtilis), TTGACAx(17±1)TATAAT,
is not identified (Figure 5c). This does not seem to be due to a failure of the algorithms
as one structured model is found significant (at an apparently optimal distance of 6±1 be-
tween the two parts of the model) that corresponds to a well-kwown palindromic motif, that
of the CRP binding site (see above and [Berg and von Hippel, 1988] [Combrugghe et al., 1984]
[Lawrence and Reilly, 1990] [Schneider et al., 1986]).

Our feeling that the algorithms are not at fault concerning E. coli is reinforced by the
fact that the classical consensus, TTGACAx(17±1)TATAAT, is found, although with a weaker
conservation than in B. subtilis, when the algorithms are run on a set of well-established E.
coli sequences containing an experimentally determined transcription start or, sometimes, pro-
moter (Figure 5d). We call this set Ec, the E denoting “Experimental”. These sequences were
obtained from Ozoline [Ozoline et al., 1998]. They are aligned on the predicted transcription
start. Although this information is not used, nor needed, by our algorithms, it allows us to verify

21

that the model identified as the most statistically significant at the highest peak (for interval
17±1) corresponds indeed to the promoter sequence although the model itself is slightly differ-
ent (TTGACTx(17±1)TAAAAT) when compared to the consensus given in the literature. The
CRP binding site is not found in Set Ec simply because the sequences in Ec are much shorter
than in Gc (their length varies between 60 and 80).

The results concerning the E. coli set of non coding sequences between divergent genes are
interesting. It has been observed [Mulder et al., 1997] that promoters of gram-positive organisms
such as B. subtilis exhibit higher consensus requirements than those of E. coli. This may explain
why it seems much harder to extract a promoter consensus sequence for E. coli, indeed impossible
with high enough confidence from the set of non coding sequences of the organism (considering
all the non coding sequences instead of just those located between divergent genes as in this
paper does not change the results), although E. coli is believed to have less promoter sequence
families than B. subtilis (8 as opposed to 18 for B. subtilis). This may suggest not only that the
σ70 promoter family is more degenerate in E. coli, but also that it may contain more elements.

A deeper analysis of the algorithms biological interest (including current limitations) may
be found in [Vanet et al., 2000] and [Vanet et al., 1999].

22

Acknowledgements

The authors were partly supported by a CAPES/COFECUB project (of type II, number 272/99)
between the universities of Marne-la-Vallée and Rouen in France and of São Paulo and Campinas
in Brazil, as well as by the REMAG project with the INRIA, France. They would like to thank
O. N. Ozoline for having kindly made available to them Set Ec in ascii format, Anne Vanet from
the Institut de Biologie Physico-Chimique, Paris, France, for having suggested and worked on the
promoter problem with them, a work that showed the necessity of developing new algorithms, as
well as Maxime Crochemore from the Institut Gaspard-Monge, University of Marne-la-Vallée,
France, for a very careful reading of the manuscript. Last but not least, they wish to thank all
referees of the RECOMB 2000 version of this paper for detailed and very helpful remarks that
helped improve the work.

23

References

[Berg and von Hippel, 1988] O. G. Berg and P. H. von Hippel. Selection of DNA binding sites by
regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition
sites. J. Mol. Biol., 200:709–723, 1988.

[Bieganski et al., 1994] P. Bieganski, J. Riedl, J. V. Carlis, and E.M. Retzel. Generalized suffix
trees for biological sequence data: applications and implementations. In Proc. of the 27th
Hawai Int. Conf. on Systems Sci., pages 35–44. IEEE Computer Society Press, 1994.

[Brazma et al., 1998a] A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to
the automatic discovery of patterns in biosequences. J. Comp. Biol., 5:279–305, 1998.

[Brazma et al., 1998b] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Predicting gene regu-
latory elements in silico on a genomic scale. Genome Research, 8:1202–1215, 1998.

[Cardon and Stormo, 1992] L. R. Cardon and G. D. Stormo. Expectation Maximization algo-
rithm for identifying protein-binding sites with variable lengths from unaligned DNA frag-
ments. J. Mol. Biol., 223:139–170, 1992.

[Combrugghe et al., 1984] B. Combrugghe, S. Busby, and H. Buc. Cyclic AMP receptor protein:
role in transcription activation. Science, 224:831–838, 1984.

[Fraenkel et al., 1995] Y. M. Fraenkel, Y. Mandel, D. Friedberg, and H. Margalit. Identification
of common motifs in unaligned DNA sequences: application to escherichia coli lrp regulon.
Comput. Appl. Biosci., 11:379–387, 1995.

[Galas et al., 1985] D. J. Galas, M. Eggert, and M. S. Waterman. Rigorous pattern-recognition
methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. J. Mol.
Biol., 186:117–128, 1985.

[Gross et al., 1992] C. A. Gross, M. Lonetto, and R. Losick. Bacterial sigma factors. In S. L.
Knight and K. R. Yamamoto, editors, Transcriptional Regulation, volume 1, pages 129–176.
Cold Spring Harbor Laboratory Press, 1992.

[Gusfield, 1997] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

[Helmann, 1995] J. D. Helmann. Compilation and analysis of Bacillus subtilis α-dependent
promoter sequences: evidence for extended contact between RNA polymerase and upstream
promoter DNA. Nucleic Acids Res., 23:2351–2360, 1995.

[Karlin et al., 1989] S. Karlin, F. Ost, and B. E. Blaisdell. Patterns in DNA and amino acid
sequences and their statistical significance. In M. S. Waterman, editor, Mathematical Methods
for DNA Sequences, pages 133–158. CRC Press, 1989.

[Klingenhoff et al., 1999] A. Klingenhoff, K. Frech, K. Quandt, and T. Werner. Functional pro-
moter modules can be detected by formal models independent of overall nucleotide sequence
similarity. Bioinformatics 1, 15:180–186, 1999.

24

[Lawrence and Reilly, 1990] C. E. Lawrence and A. A. Reilly. An expectation maximization
(EM) algorithm for the identification and characterization of common sites in unaligned
biopolymer sequences. Proteins: struct., funct., and genetics, 7:41–51, 1990.

[Lewin, 1997] B. Lewin. Genes VI. Oxford University Press, 1997.

[McCreight, 1976] E. M. McCreight. A space-economical suffix tree construction algorithm. J.
ACM, 23:262–272, 1976.

[Mulder et al., 1997] M. A. Mulder, H. Zappe, and L. M. Steyn. Mycobacterial promoters.
Tuber. Lung Dis., 78:211–223, 1997.

[Ozoline et al., 1998] O. N. Ozoline, A. A. Deev, and M. V. Arkhipova. Non-canonical sequence
elements in the promoter structure. cluster analysis of promoters recognized by Escherichia
coli RNA polymerase. Nucleic Acids Res., 25:4703–4709, 1998.

[Press et al., 1993] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical Recipes in C : The Art of Scientific Computing. Cambridge Univ. Press, 1993.

[Queen et al., 1982] C. Queen, M. N. Wegman, and L. J. Korn. Improvements to a program for
DNA analysis: a procedure to find homologies among many sequences. Nucleic Acids Res.,
10:449–456, 1982.

[Record et al., 1996] M. T. Record, W. S. Reznikoff, M. L. Craig, K. L. McQuade, and P. J.
Schlax. Escherichia coli RNA polymerase σ70 promoters, and the kinetics of the steps of
transcription initiation. In F. C. Neidhardt, editor, Escherichia coli and Salmonella, volume 1,
pages 792–820. ASM Press, 1996.

[Régnier and Szpankowski, 1997] M. Régnier and W. Szpankowski. On the approximate pattern
occurrences in a text. 1997. manuscript.

[Reinert and Schbath, 1998] G. Reinert and S. Schbath. Compound poisson and poisson process
approximations for occurrences of multiple words in markov chains. J. Comp. Biol., 5:223–253,
1998.

[Sagot and Viari, 1996] M.-F. Sagot and A. Viari. A double combinatorial approach to discov-
ering patterns in biological sequences. In D. Hirschberg and G. Myers, editors, Combinato-
rial Pattern Matching, volume 1075 of Lecture Notes in Computer Science, pages 186–208.
Springer-Verlag, 1996.

[Sagot et al., 1995] M.-F. Sagot, A. Viari, and H. Soldano. A distance-based block searching
algorithm. In C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, and S. Wodak,
editors, Third International Symposium on Intelligent Systems for Molecular Biology, pages
322–331, Cambridge, England, 1995. AAAI Press.

[Sagot et al., 1997] M.-F. Sagot, A. Viari, and H. Soldano. Multiple comparison: a peptide
matching approach. Theoret. Comput. Sci., 180:115–137, 1997. presented at Combinatorial
Pattern Matching 1995.

25

[Sagot, 1998] M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree.
In C. L. Lucchesi and A. V. Moura, editors, LATIN’98: Theoretical Informatics, Lecture
Notes in Computer Science, pages 111–127. Springer-Verlag, 1998.

[Schneider et al., 1986] T. D. Schneider, G. D. Stormo, L. Gold, and A. Ehrenfeucht. Informa-
tion content of binding sites on nucleotide sequences. J. Mol. Biol., 188:415–431, 1986.

[Stormo and Hartzell, 1989] G. D. Stormo and G. W. Hartzell. Identifying protein-binding sites
from unaligned DNA fragments. Proc. Natl. Acad. Sci. USA, 86:1183–1187, 1989.

[Tompa, 1999] M. Tompa. An exact method for finding short motifs in sequences, with applica-
tion to the ribosome binding site problem. In Seventh International Symposium on Intelligent
Systems for Molecular Biology, pages 262–271, Heidelberg, Germany, 1999. AAAI Press.

[Ukkonen, 1995] E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249–260,
1995.

[van Helden et al., 1998] J. van Helden, B. Andre, and J. Collado-Vides. Extracting regulatory
sites from the upstream region of yeast genes by computational analysis of oligonucleotide
frequencies. J. Mol. Biol., 281:827–842, 1998.

[van Helden et al., 2000] J. van Helden, A. F. Rios, and J. Collado-Vides. Discovering regulatory
elements in non-coding sequences by analysis of spaced dyads. Nucleic Acids Res., 28:1808–
1818, 2000.

[Vanet et al., 1999] A. Vanet, L. Marsan, and M.-F. Sagot. Promoter sequences and algorith-
mical methods for identifying them. Research in Microbiology, 150:1–21, 1999. in press.

[Vanet et al., 2000] A. Vanet, L. Marsan, A. Labigne, and M.-F. Sagot. Inferring regulatory
elements from a whole genome. An analysis of the σ80 family of promoter signals. J. Mol.
Biol., 297:335–353, 2000.

[Werner, 1999] T. Werner. Models for prediction and recognition of eukaryotic promoters.
Mamm. Genome, 10:168–175, 1999.

[Wolfertstetter et al., 1996] F. Wolfertstetter, K. Frech, G. Herrmann, and T. Werner. Iden-
tification of functional elements in unaligned nucleic acid sequences by a novel tuple search
algorithms. Comput. Appl. Biosci., 12:71–80, 1996.

26

m

unaligned
sequences

m
2d+_1

q = 50%

2

d

d-1

d+2

d+1

d+1

d+6

no occurrences

one only

too distant

valid model m

Figure 1: Example of a valid model with two boxes (p = 2).

L. Marsan

Legend Figure 1
No legend

1

1

1

1

2

1

1

1

2

2

2

2

2

q=2
e=2

2

1

2
2

1

G

T

A

G

$

A $

A

G

A

TC

T

T

A

G

$

A

G

A

CA

G

A

A
$

$

$

$

$

$, $

$

$

Suffix tree of the sequencesVirtual trie of the models

G

A

T

A

"TCAGA$ " and "CTTAG$ "

Figure 2: Extracting single models with a suffix tree – An example.

L. Marsan

Legend Figure 2
Single models are extracted by simultaneously and recursively traversing (in a depth-first way)
the (virtual) lexicographic trie M of all possible models of length k (stopping the descent down
an arc and pruning the subtree rooted at the end node of that arc as soon as the quorum is no
longer verified) and the (actually built) suffix tree T of the sequences. While traversing T , up
to e mispellings are allowed of the labels of the arcs in M corresponding to potentially valid
models. In the Figure, model ATA has been spelled. It has suffixes AGA, CTT, TCA and TTA
as occurrences with up to two substitutions. It is valid since 2 occurrences belong to string 1
and 2 to the other string (the quorum is 2). To avoid clutering the figure, boolean arrays at
each node have not been drawn.

1
d

...do a jump of variable length...

For each occurrence of m ...

dmax

...and look for occurrences of m k

to

k

min

1

2

Suffix tree of the sequences

1

Figure 3: Extracting structured models (in the context of Problem 1) with a suffix tree –
An illustration of Algorithm 1.

L. Marsan

Legend Figure 3
No legend

m

b c

d e

a
k

k

k k

k+d

Figure 4: Extracting structured models (in the context of Problem 1) with a suffix tree –
An illustration of Algorithm 2.

L. Marsan
Legend Figure 4
Fig. 4a corresponds to the extraction of the first single models m1 of structure models (m,d);
Fig. 4b to the jump of k+dmin to k+dmax down normal tree arcs to grab some information from
the ends of potential node-occurrences for a second box (to lighten the figure, we made here
dmin = dmax = dm); Fig. 4c shows the jump back up to level k following suffix links with the
information grabbed in passing; Fig. 4d represents the propagation of the information received
at level k up to the root; finally Fig. 4e illustrates the search for second single models m2 of
structure models (m,d) in tree T ′.

19

23

27

31

35

[4
,6

]

[6
,8

]

[9
,1

1]

[1
4,

16
]

[1
5,

17
]

[1
7,

19
]

[1
6,

18
]

[1
9,

21
]

[1
8,

20
]

[2
2,

24
]

[5
,7

]

[7
,9

]
[8

,1
0]

[1
0,

12
]

[1
1,

13
]

[1
2,

14
]

[1
3,

15
]

[2
0,

22
]

[2
1,

23
]

[2
3,

25
]

[2
4,

26
]

[4
,6

]

[6
,8

]

[9
,1

1]

[1
4,

16
]

[1
5,

17
]

[1
7,

19
]

[1
6,

18
]

[1
9,

21
]

[1
8,

20
]

[2
2,

24
]

[5
,7

]

[7
,9

]
[8

,1
0]

[1
0,

12
]

[1
1,

13
]

[1
2,

14
]

[1
3,

15
]

[2
0,

22
]

[2
1,

23
]

[2
3,

25
]

[2
4,

26
]

Χ2

Χ2

Χ2

Χ2

A
TT

G
A

C
_T

A
TA

A
T

distances between two parts of a model

[4
,6

]

[6
,8

]

[9
,1

1]

[1
4,

16
]

[1
5,

17
]

[1
7,

19
]

[1
6,

18
]

[1
9,

21
]

[1
8,

20
]

[2
2,

24
]

[5
,7

]

[7
,9

]
[8

,1
0]

[1
0,

12
]

[1
1,

13
]

[1
2,

14
]

[1
3,

15
]

[2
0,

22
]

[2
1,

23
]

[2
3,

25
]

[2
4,

26
]

TT
G

A
C

A
_T

A
TA

A
T

TT
G

A
C

A
_T

A
TA

A
T

G
A

A
A

A
A

_T
TT

TT
C

a

C
TA

A
A

A
_T

A
A

A
A

T

[4
,6

]

10

12

18

20

14

16

22 C
TA

A
A

A
_T

A
A

A
A

T

TT
TA

A
G

_T
A

TA
A

T

TT
TA

A
G

_T
A

TA
A

T

[6
,8

]

[9
,1

1]

[1
4,

16
]

[1
5,

17
]

[1
7,

19
]

[1
6,

18
]

[1
9,

21
]

[1
8,

20
]

[2
2,

24
]

[5
,7

]

[7
,9

]
[8

,1
0]

[1
0,

12
]

[1
1,

13
]

[1
2,

14
]

[1
3,

15
]

[2
0,

22
]

[2
1,

23
]

[2
3,

25
]

[2
4,

26
]

A
TT

TT
A

_C
TA

A
A

A

13

17

21

25

29

31

TT
G

TG
A

_T
C

A
C

A
T

TG
TG

A
T_

A
C

A
TT

T

TG
TG

A
T_

TC
A

C
A

T
TG

TG
A

T_
TC

A
C

A
Tc

TT
G

A
C

T_
TA

A
A

A
T

TT
G

A
C

T_
TA

A
A

A
T

TT
G

A
C

T_
A

TA
A

TG

TT
A

TT
C

_T
A

TA
A

T

10

11

12

9

8

d
b

distances between two parts of a model distances between two parts of a model

distances between two parts of a model

Figure 5: An application of the algorithms (in the context of Problem 1) to the identifi-
cation of promoter sequences in B. subtilis, H. pylori and E. coli.

L. Marsan

Legend Figure 5
The intervals of distance allowed between the two parts of a structured model are plotted
against the statistical value obtained by the most significant model found in Sets Gs (Fig. 5a),
Gp (Fig. 5b), Gc (Fig. 5c) and Ec (Fig. 5d) with up to 1 substitution permitted and a quorum
of 4% for B. subtilis, 6% for H. pylori and 2% for the E. coli sets of sequences. For this, a χ2

was calculated between the number of occurrences observed (allowing for the same maximum
number of errors) in all sets against that observed on average in shuffled versions of each (100
simulations were performed). The most pertinent models identified for each interval at or near
a peak is shown above the curves.

