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Notations

Conventions générales

— ensembles en majuscules, italiques et police ordinaire : A, E, F'...

— éléments d'un ensemble de type non déterminé (ou non déterminant) en minus-
cule, italique et police ordinaire : x, f € F'...

— ensemble des variables d’une fonction comme les ensembles ordinaires : dans
f(X,Y), X et Y sont des ensembles de variables.

— objets structurés (arbres, graphes, automates) en majuscule, italique et police
dite caligraphique : A, G.

— termes en majuscule et police sans serif : X,y, C.

Notations spécifiques

| X| cardinal de I’ensemble X
|| longueur d’un chemin 7 dans un graphe
degg (s) degré entrant d’un sommet s dans le graphe G
degg(s) degré sortant d’'un sommet s dans le graphe G
predg(s) ensemble des prédecesseurs d’un sommet s dans le graphe G
(on notera pred(7) s’il est clair d’apres le contexte que 'on
parle de G)
dom(f) domaine (ensemble de définition) d’une fonction f
T(X) ou T est un terme, et X un ensemble de variables. Précision
(optionnelle) des variables libres du terme.
[x1 :=c1,...] désigne la substitution o définie par o(x;) = ¢;.
IXT ou X = {x}, ..., %n} est un ensemble de variables, et T est

un terme. Equivalent a Ix;3xo...3x, T.

vii
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Chapitre 1

Introduction

1.1 Motivations

La recherche en biologie moléculaire dispose depuis quelques années déja de tech-
niques expérimentales qui permettent de mesurer un grand nombre de variables simul-
tanément, avec un nombre limité d’interventions humaines. Ces progres sont le fruit de
deux efforts de recherche orthogonaux, a savoir la miniaturisation des instruments de
mesure, et la robotisation des taches. On parle souvent de mesures « haut-débit », ex-
pression qui désigne un ensemble assez hétérogene de techniques et de types de données
expérimentales, allant du séquencage des génomes a la recherche systématique d’inter-
actions moléculaires. Toutes ces techniques sont de plus en plus utilisées en routine, et
produisent des masses de données tres conséquentes, le plus souvent mises a disposition
sur des interfaces web. L’ambition que ces données suscitent, c¢’est de permettre une
étude globale d’un systeme biologique, intégrant des informations les plus completes
possible sur l'expression des genes, les interactions au sein de la cellule etc ... On
cherche ainsi & modéliser le comportement d’un systéme comme la résultante d’un
grand nombre d’interactions entre ses éléments. Cette approche, connue sous le nom de
biologie systémique est bien entendu complémentaire d’une approche réductionniste ou
I’on considere les systemes les plus simples possible afin d’en déterminer les mécanismes
élémentaires.

Cette apparente avalanche de données doit étre quelque peu nuancée. Les mesures
haut-débit restent des techniques onéreuses; en pratique, cela signifie que pour une
étude ciblée, on ne peut matériellement réaliser qu’un petit nombre d’expériences de
ce type, en regard du nombre de variables mesurées, et du bruit généralement observé.
Pour fixer les idées, disons que les techniques courantes affichent de I'ordre du millier
de variables mesurées, et sont au plus utilisées une dizaine de fois en pratique!. On
peut bien siir compter sur les données déja disponibles dans des conditions voisines
de I'étude, au prix d’une diminution — peut-étre considérable — du rapport signal sur
bruit. L’exploitation des données haut-débit est donc particulierement difficile, non
pas seulement a cause du volume d’information en jeu, mais aussi parce qu’elle doit

1 . A ;. e A s sz . .
ce qui est peu, attendu qu’une méme expérience doit étre répétée au minimum entre 3 et 5 fois
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étre adaptée a la qualité des données et au déséquilibre entre le nombre de variables
mesurées et le nombre de mesures disponibles.

Intéressons-nous maintenant a une deuxieme difficulté : aussi surprenant que cela
puisse paraitre de prime abord, il n’est absolument pas trivial de préciser ce que 1'on
attend d’une « analyse » des données haut-débit. Il s’agit d’une problématique générale
en biologie systémique : parvenir a formuler des questions ou des propriétés d’intérét
pour le systeme que l’on étudie est, dans ce domaine, un probleme a part entiere. Les
raisons de cette difficulté sont diverses, a commencer par le fait qu’il est relativement
ardu de relier les processus biologiques étudiés (apoptose, adaptation & un stress) a des
acteurs moléculaires précis (genes, protéines ...). Or si 'on s’intéresse le plus souvent
aux propriétés desdits processus, ce sont bien les especes chimiques que 'on mesure.
Dans le cas des données haut-débit, on peut évoquer une difficulté plus spécifique :
ce type de mesure est généralement réalisé comme un travail exploratoire; pour un
phénomene donné, les techniques de mesure haut-débit donnent une image globale du
systeme, a partir de laquelle on espere débuter un travail d’investigation plus ciblé. Pour
cela, il faut pouvoir repérer dans la masse de données recueillies des éléments suscep-
tibles d’étre intéressants pour I’élucidation du phénomene étudié. Dit autrement, il faut
savoir interpréter les données produites, c’est-a-dire y distinguer ce qui est surprenant
de ce qui est attendu, ce qui fait sens de ce qui est contradictoire avec les connaissances
sur le systeme ; puis dans un deuxieme temps étre capable d’utiliser les données comme
une base pour générer des hypotheses réfutables par I’expérience.

Ces considérations nous amenent au probleme étudié dans cette theése : pour un
processus biologique donné, on dispose de données haut-débit provenant de différentes
sources. Comment comparer les données entre elles et tester leur cohérence ? Comment
les combiner pour en déduire des informations nouvelles ?

1.2 Approche suivie

Pour répondre a ces questions, nous introduisons un formalisme permettant d’intégrer
un large spectre de données haut-débit. Dans ce formalisme, les données expérimentales
ou les connaissances s’interpretent soit comme des éléments d’un modele physique des
interactions cellulaires, soit comme des mesures sur 1’état de ce modele. Nous pro-
posons dans ce cadre une notion formelle de consistance entre modele et mesures
expérimentales. Cette notion de consistance est a la base d’'une démarche complete
d’analyse de données, décrite en figure 1.1. Partant des données existantes (compre-
nant des mesures expérimentales et les régulations connues d’un systeéme), nous testons
en premier lieu leur cohérence. Dans le cas ou ce test échoue, nous montrons des ap-
proches de diagnostic nous permettant d’en comprendre la cause. En prenant appui
sur ce diagnostic, on peut rechercher des corrections, soit sur la base de sources bi-
bliographiques, soit en étudiant I’ensemble des corrections possibles. Une fois que 'on
a obtenu un modele cohérent avec les données, il peut étre utilisé pour produire des
prédictions sur le systeéme et ses variables non observées. Cela inclut notamment la
problématique de reverse-engineering, c’est-a-dire la découverte de tout ou partie des
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Diagnostic Correction

Données —_— ‘ Modéle
Prédiction
Controle

EXPERIMENTATION ( y
L Plans d’expérience

Fic. 1.1 — Cycle d’analyse des données haut-débit

mécanismes & ’ceuvre dans un systeme donné a partir de mesures expérimentales. Les
prédictions obtenues pourront enfin guider les expérimentations suivantes, soit par une
vérification directe, soit éventuellement dans le cadre de plans d’expériences.

Le formalisme que nous proposons est adapté aux caractéristiques des données haut-
débit, que nous résumons comme suit :

1. elles sont en général fortement bruitées et peu répliquées;

2. elles portent sur un grand nombre de variables, mais sur peu de conditions
différentes ;

3. elles représentent un volume considérable d’information.

Le premier point nous conduira d’une part a adopter une approche qualitative, robuste
aux valeurs numériques bruitées; il motive surtout notre approche basée sur l'intro-
duction d’un critere de consistance entre les sources de données, et son utilisation pour
détecter, voire corriger les valeurs aberrantes. Le deuxieme point implique qu’il nous
faudra travailler avec des modeles sous-déterminés, c’est-a-dire en admettant qu’il y a
plusieurs modeles plausibles d’apres les données disponibles. Ainsi, nous devrons étre
capables de proposer des prédictions malgré 'incertitude sur le modele réel. Mieux en-
core, on pourra s’intéresser a la conception d’exrpériences permettant de déterminer le
modele réel le plus efficacement possible. Enfin, le troisiéme point nous obligera a soi-
gner tout particulierement les aspects algorithmiques associés & chacune de ces taches.
Nous voulons a présent mentionner quelques uns des types de données haut-débit les
plus courants; nous nous appuyons notamment pour cela sur la revue de Joyce et
Palsson [48].
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1.3 Sur les données

Données d’expression Il s’agit de mesures sur le transcriptome des cellules, c’est-a-
dire ’ensemble des molécules d’ARN présentes a un instant donné dans un tissu donné.
Ces ARN peuvent coder pour des protéines ou avoir une activité propre (transport
des acides aminés, régulation d’autres ARN, modifications du génome ...). Les tech-
niques les plus utilisées sont notamment les puces a ADN, la PCR quantitative ou la
méthode SAGE. Plus précisément, ces techniques mesurent la quantité d’ARN présente
dans un échantillon & ’aide de sondes qui sont spécifiques de chaque géne. Certaines
puces a ADN par exemple sont munies de plusieurs dizaines de milliers de sondes, et
servent a réaliser des mesures dites pangénomique, c’est-a-dire portant sur ’ensemble
des séquences génomiques transcrites connues.

La valeur trouvée pour chaque sonde ne donne la quantité d’ARN présente dans
I’échantillon qu’a une constante multiplicative pres. Celle-ci dépend notamment de la
taille de I’échantillon, et de constantes de ’appareil de mesure, le tout étant difficile a
étalonner. C’est pourquoi on procede en général par comparaison avec une condition
de référence : par exemple, cellules en culture contre cellules soumises & un stress, cel-
lules tumorales contre cellules saines, cellules nerveuses contre cellules musculaires. Le
résultat d’'une mesure d’expression est donc un vecteur contenant pour chaque transcrit
le ratio entre les valeurs trouvées dans la condition d’intérét et la condition de référence.

La technique la plus courante aujourd’hui est la puce & ADN?, qui est une plaque
sur laquelle sont fixées des sondes. Ces sondes sont constituées d’une séquence d’ADN
complémentaire d’'une séquence recherchée. Les plaques peuvent contenir jusqu’a plu-
sieurs dizaines de milliers de sondes, et I'on peut choisir la composition de chaque
plaque. Les quantités typiques d’ARN peuvent énormément varier d’'un ARN & l'autre,
et les signaux forts rendent les signaux faibles peu précis. C’est pourquoi on trouve
des plaques dédiées pour certains types d’ARN qui sont connus pour étre peu exprimés
(ARN de facteurs de transcription ou de micro-ARN par exemple). La précision que 1’'on
obtient pour les ratios d’expression est de l'ordre de I'unité (voir figure 1.2). Pour des
mesures plus précises, on a recours a la RT-PCR (pour Real Time Polymerase Chain
Reaction). La technique de PCR permet de créer un grand nombre de copies d’un brin
d’ADN dont la séquence est connue, méme si I'on ne dispose initialement que d’un
petit nombre d’exemplaires. Lors d’'une RT-PCR, on itére des phases de copies (dites
d’amplification) et la vitesse d’apparition du brin d’ADN (mesurée par fluorescence) en
donne la quantité initiale. La RT-PCR offre une précision de 'ordre du dixiéme, mais
devient relativement lourde au-dessus de la centaine de cibles mesurées.

Dans tous les cas, il faut en premier lieu obtenir 'ARN contenu dans les cellules
(ARN total), par une opération d’extraction. L’ARN obtenu est « converti » en ADN,
par rétrotranscription. Cette opération est nécessaire parce les molécules d’ARN sont
particulierement instables, contrairement aux chaines d’ADN. C’est pour cela qu’on
parle de puces a ADN, ou d’amplification de I’ADN.

Il faut en pratique disposer d’une quantité suffisante d’ARN total, et pour cela uti-

2La seule base de données GEO [8] comptait en septembre 2006 plus de 120000 de ces puces, réparties
sur plus de 200 organismes.
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point correspond a une sonde de la puce. Chaque sonde correspond spécifiquement &
un ARN transcrit. Sur chaque axe est représentée la mesure d’expression normalisée
obtenue sur chaque puce. Dans le cas idéal, tous les points devraient se trouver sur la
droite d’équation y = z. Les droites vertes correspondent & une variation d’un facteur
2 (augmentation et diminution respectivement). (b) Méme type de comparaison, mais
cette fois entre deux échantillons issus de tissus différents.

liser un échantillon suffisamment important. Par conséquent, cela oblige a travailler sur
un échantillon non homogene, parce qu'un tissu peut contenir plusieurs types cellulaires
tres distincts, et parce que les cellules d’'un méme type sont le plus souvent dans des
états notablement différents. Il existe des contextes expérimentaux dans lesquels on
peut « synchroniser » les cellules, mais la plupart du temps, une mesure d’expression
est une mesure « en moyenne » et peut fort bien ne correspondre a I’état d’aucune
cellule en particulier. Il existe des approches comme [7] qui proposent de corriger ce
probleme sous certaines conditions, mais elles sont en pratique rarement applicables.

Electrophorése sur gels bidimensionnels De méme que 'on peut, a 'aide d’une
puce & ADN, mesurer la quantité de chaque séquence d’ARN dans un échantillon,
on voudrait pouvoir mesurer la quantité des protéines présentes; en quelque sorte,
disposer d’une « puce a protéines ». Malheureusement, les choses sont plus compliquées.
La différence importante est que la notion de séquence complémentaire n’existe pas
chez les protéines. Il est donc extrémement difficile de fabriquer une sonde spécifique
d’une protéine donnée (voir plus loin avec la technique de chIP-chip). Pour explorer le
protéome d’une cellule (I’ensemble des protéines présentes), la méthode la plus efficace
a I’heure actuelle semble étre les gels bidimensionnels, qui sont des plaques recouvertes
d’un milieu particulier sur lequel on fait migrer les protéines extraites d’un échantillon.
Leur déplacement est provoqué dans une dimension, par un champ électrique et dans
I’autre, par un gradient de pH. On dit que 'on obtient une bonne résolution quand
chaque tache est individualisée et ne contient qu’une seule sorte de protéine. Si c’est
le cas, on peut alors mesurer la quantité de protéines présentes en mesurant la surface
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de la tache qui lui correspond. Reste — et c’est 1a la plus grande difficulté — a identifier
la protéine associée a chaque tache. Il s’agit en pratique de I’étape limitante en terme
de débit. La procédure la plus performante actuellement fait appel a des techniques de
spectrométrie de masse. Notons bien qu’il n’y a pas une relation simple entre la quantité
d’un ARN donné et celle de la protéine correspondante. Ceci est du a l'existence de
régulations dites post-transcriptionnelles, qui peuvent éventuellement dégrader un ARN
avant qu’il ne soit traduit en protéine.

Chromatographie/Spectrométrie La technique précédente peut étre adaptée pour
explorer le métabolome d’une cellule, c’est-a-dire I’ensemble des métabolites présentes
dans un tissu. Les métabolites sont des molécules impliquées dans la régulation éner-
gétique et dans la structure (cytosquelette) des cellules. Dans ce cas; 1’électrophorese
est remplacée par des techniques de chromatographie : la migration n’est plus provoquée
par des champs électriques mais par le déplacement d’un fluide (gaz ou liquide).

Séquencgage C’est sans nul doute la source la plus ancienne de données haut-débit. Le
séquencage de génome est 'un des protocoles les plus automatisés a I’heure actuelle. La
mise en place de nombreux centres a permis d’obtenir en ’espace de quelques années
plusieurs centaines de génomes complets. Selon la base de données GOLD [61], on
comptait en mai 2007 pres de 700 genomes completement séquencés, et plus de 1800
projets de séquencage en cours, soit un total dépassant les 2500 especes?. D’apres les
estimations courantes chacun de ces génomes contient de plusieurs centaines a quelques
dizaines de milliers de genes codant pour des protéines ou des petits ARN.

Disposer d’'un génome a essentiellement deux bénéfices. Premierement on peut y
rechercher des indices sur le fonctionnement de la cellule par recherche directe de la
séquence. On sait par exemple déterminer les protéines codées dans un génome et cer-
taines de leurs variations (épissage alternatif notamment), ou encore — dans une certaine
mesure — détecter les sites dans le génomes ou se lient les facteurs de transcription. Le
deuxieme bénéfice, bien plus important en pratique, est de faciliter nombre de manipu-
lations expérimentales touchant a la transcription, a commencer par la conception des
sondes pour les mesures d’expression.

Par ailleurs, le génome séquencé correspond bien a un individu particulier dans une
espece donnée. Pour ne pas biaiser les conclusions d’une étude il est donc important
de connaitre les variations existant entre les individus d’une méme especes. Le type le
plus simple de variation est la variation ponctuelle d’un nucléotide ou SNP (pour Single
Nucleotide Polymorphism). 11 existe également des bases de données de SNP, voir par
exemple [65].

ChIP-chip Cette technique permet de détecter tous les sites de fixation d’un facteur
de transcription donné sur le génome. Le protocole est le suivant : les protéines liées a
I’ADN dans la cellule sont fixées a ’aide d’un produit particulier, puis ’ADN est extrait
et fragmenté en petits brins par ultrasons. Il est le plus souvent possible, quoique

3dont, il faut le préciser, un grand nombre d’étres unicellulaires
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trés technique, de fabriquer des anticorps qui se lient spécifiquement a une protéine
donnée. Si I’on dispose d’un tel anticorps, on peut I'utiliser pour marquer les complexes
protéine-ADN d’un facteur de transcription particulier, puis les séparer du reste. Le
complexe est ensuite détruit, et on extrait uniquement les courts brins d’ADN. Cette
phase correspond a la partie « ChIP » (pour Chromatin Immuno-Precipitation). La
partie « chip » est une analyse de ’ensemble des brins d’ADN par puce & ADN classique.
L’ensemble permet donc de détecter toutes les séquences du génome qui sont des sites
de fixation d’un facteur de transcription dans une condition donnée. L’application de
cette technique peut mettre a jour des milliers de sites dans le génome. Néanmoins
elle ne renseigne pas sur l'effet des liaisons découvertes. En particulier, la fixation d’un
facteur de transcription peut fort bien n’avoir aucun effet sur la transcription des genes.

Double hybride Il s’agit d’une technique permettant de détecter a tres grande
échelle les couples de protéines capables de former un complexe. Le principe de la
manipulation est le suivant : supposons que 'on cherche a tester la complexation de
deux protéines A et B; on construit dans un organisme simple (principalement la le-
vure) un systéme rapporteur, qui est constitué d’un facteur de transcription d’une part
et d’un geéne cible de ce facteur d’autre part. Le géne en question produit une protéine
phosphorescente, dont la présence sera donc détectable facilement. Le facteur de trans-
cription n’est pas produit par 'organisme directement ; a la place on introduit dans le
génome de l'organisme un géne codant pour la protéine A fusionnée & un morceau du
facteur, et un gene B codant pour la protéine B fusionnée a I’autre morceau du facteur.
Si A et B forment une interaction, les 2 parties du facteur de transcription formeront
un complexe actif et on observera une fluorescence. Ce principe peut étre automatisé
pour tester plusieurs dizaines de milliers de couples, comme dans [80].

Extraction de la littérature A bien y réfléchir, la source d’information la plus
conséquente se trouve probablement dans les centaines de milliers d’articles publiés
depuis trois ou quatre décennies, dont la plupart est répertoriée (au moins en ce qui
concerne les résumés) dans le serveur Pubmed du NCBI*. L’information y est cependant
« cachée » dans du texte en langue naturelle, et par conséquent difficilement accessible
A un traitement automatique®. Plusieurs groupes [101, 46, 37, 50, 40] y ont répondu de
maniere tres pragmatique : puisqu’il est impossible d’extraire automatiquement et de
maniere fiable 'information dispersée dans la littérature, il suffit de I’extraire manuelle-
ment, quitte a cibler les problématiques et mettre suffisamment de personnes a la tache.
Certaines bases de données ainsi développées contiennent jusqu’a quelques dizaines de
milliers d’interactions. La plupart de ces bases (& I'exception notable de Kegg et de
RegulonDB) sont développées par des sociétés privées et ne sont pas dans le domaine
public. Outre leffort immense qu’une telle entreprise constitue, il faut aussi considérer

4 Accessible & 'adresse http://www.ncbi.nlm.nih.gov/sites/entrez

5Nous n’ignorons pas qu’il existe un corpus de recherche trés important sur Pextraction d’information
depuis un texte écrit en langue naturelle, et beaucoup d’applications a la biologie. Néanmoins les
résultats obtenus jusqu’a présent ne sont & notre connaissance pas assez fiables pour servir d’entrée a
des traitements automatiques a grande échelle.
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les problemes liés a la formalisation du contenu des publications : quelles informations
extraire 7 Comment spécifier le contexte de 1’étude 7 Méme partielles, ces données sont
essentielles du fait de leur grande fiabilité. Notons qu’a ce jour les bases de données
issues de la littérature se limitent aux interactions. Il n’existe a notre connaissance
qu'une base de données portant sur des observations (évolution temporelle, réponse
typique & une perturbation) [37].

1.4 Travaux connexes

1.4.1 Panorama

Grace aux puces a ADN notamment, il est aujourd’hui relativement simple, quoi-
qu’encore couteux d’obtenir une image globale de la réponse transcriptionnelle d’une
cellule a une perturbation. En revanche l’exploitation de ces données pose encore
probleme : sous sa forme brute, une mesure d’expression est un résultat peu lisible
et tres volumineux. Elle peut bien sir dans un premier temps servir & vérifier ce que
I’on sait déja. Le probléeme est nettement plus complexe en revanche, des que ’on sou-
haite s’appuyer dessus pour inférer des mécanismes ou guider I'expérimentation plus
avant.

L’utilisation la plus simple (et la plus courante) des mesures d’expression a I’échelle
génomique, c’est le criblage de génes impliqués dans un phénomene biologique donné.
Les transcrits exhibant une forte variation entre les deux conditions (c’est-a-dire supé-
rieure & un certain seuil) sont alors utilisés comme candidats prioritaires pour l'investi-
gation des mécanismes dudit phénomene. Ici, deux difficultés apparaissent en pratique.
La premiere est liée au choix du seuil au-dessus duquel une variation est jugée signi-
ficative. Il existe une littérature abondante sur le sujet (voir les revues rapides dans
[86, 49]); mais comme on peut le constater sur la figure 1.2, le niveau de bruit est
relativement important dans le cas des puces & ADN. Est en général jugée significative
une variation d’un facteur au moins 2 ou 3. Pourtant rien n’exclut a priori qu’une
variation faible — disons trop faible pour sortir significativement du bruit de fond — ait
un role important dans un phénomene donné. Il semble donc difficile de sélectionner
une liste de genes a partir des seules données d’expression. Deuxiemement, I’expérience
montre qu’il y a tres souvent plusieurs centaines de genes dont la variation est signifi-
cative. Une bonne partie d’entre eux sont en général décrits dans la littérature, mais
il ne serait guere raisonnable de se lancer dans une compilation manuelle des données
disponibles sur les génes identifiés — ne serait-ce qu’a cause du temps nécessaire a sa
constitution, bien supérieur au temps nécessaire a la production des mesures d’expres-
sion. Notons bien que de toute fagon, le probléme n’aurait été en rien résolu : on aurait
transformé une masse de données numériques en une masse de texte guere plus propice
a 'exploitation.

Ces constats ont amené a un grand nombre de propositions, que nous regroupons en
trois catégories. La premiére [72] consiste & annoter chaque géne avec des informations
diverses issues de bases de données publiques (dont, typiquement plusieurs mesures
d’expression), puis a utiliser des instruments d’analyse statistique pour structurer I’en-
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semble des candidats, par des méthodes de clustering. L’intérét est qu’on diminue ainsi
le nombre d’entités a considérer, et que l'on fait apparaitre des groupes pouvant —
dans le meilleur des cas — avoir une pertinence biologique. C’est une approche a double
tranchant : d’un coté elle est intéressante parce qu’elle permet d’intégrer (au travers
de la distance utilisée lors du clustering) des informations tres diverses sur les genes
candidats (cocitations dans les articles, interactions connues, description ontologique
[20], coexpressions dans d’autres conditions) ; de l'autre il devient difficile d’expliquer
le regroupement de deux genes, a mesure qu’on ajoute des informations. Il apparait en
pratique que ces approches de type data mining sont un bon moyen de faire ressortir
des candidats, ou de suggérer des liens fonctionnels entre plusieurs genes. Leur limite
est qu’elles calculent un résultat qui n’est pas réfutable par I’expérience. Il n’est donc
pas facile d’évaluer objectivement la qualité du résultat. De plus elles ne fournissent
pas d’explication physique des liens trouvés : une fois quelques candidats mis en avant,
le travail d’élucidation des mécanismes reste entier.

Une deuxieme approche consiste a utiliser les données d’expression comme entrée
dans des problemes d’apprentissage (classification ou régression). Autrement dit, il
s’agit de proposer des modeles statistiques liant les données d’expression (et éventuel-
lement d’autres sources d’information) & des propriétés vérifiables. Donnons quelques
exemples. Les travaux décrits dans [9, 99] sont des tentatives de classification des tu-
meurs dans différents cancers a partir de profils d’expression. Ces classifications cor-
respondent a des stades ou des conditions cliniques et peuvent étre utiles au choix
d’un traitement approprié. Les données d’expression ont été également utilisées pour
la prédiction d’interactions protéine-protéine [102], de réseaux génétiques [64]. Comme
dans les approches de data-mining, il existe des outils puissants pour combiner d’autres
types de données aux mesures d’expression. Citons notamment les développements
produits autour des fonctions noyaux revus dans [99]. Les prédictions obtenues sur la
structure du systeme peuvent ensuite étre testées expérimentalement.

En classification ou en régression, 'objectif est donc d’estimer une grandeur par-
ticuliere a partir d’observations et de connaissances sur le systeme. La troisieme et
derniere approche que nous souhaitons mentionner est I'utilisation des données d’ex-
pression dans un modele physique des réseaux de réactions. Dans ce cadre, on définit
explicitement les états du systeme et son évolution dans le temps ou sous ’action d’une
perturbation. La modélisation des cinétiques chimiques par des équations différentielles
ou des processus stochastiques en sont des exemples. Le principal avantage de ce type
d’approche est de permettre l'intégration de données diverses dans un langage plus
lisible que les mesures de similarité utilisées en apprentissage. On évite ainsi le coté
« boite noire » des prédictions réalisées en classification notamment. Le travail rap-
porté dans le présent mémoire appartient a cette catégorie. Notons néanmoins qu’il
n’y a pas de frontiere nette entre modeles physiques d’une part, et modeéles statis-
tiques d’autre part. C’est particulierement clair dans [56], o Kundaje et al montrent
que découvrir la fonction de régulation d’un gene a partir de sa séquence promotrice
peut se ramener a un probleme de classification supervisée. Les propositions a base de
réseaux bayésiens (voir [68] pour une introduction) en sont un autre exemple.
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1.4.2 Modeles physiques de réseaux biologiques

L’énumération faite au paragraphe 1.3 montre que les données haut-débit peuvent
généralement étre distinguées en deux catégories, selon qu’elles portent sur la structure
et les mécanismes élémentaires du systéme étudié (réactions biochimiques) ou sur son
état (variation en concentration par exemple). Ces deux types d’information ont en
commun — encore que pour des raisons différentes — d’étre de nature qualitative. Dans
le premier cas, la raison en est que s’il est techniquement possible de détecter 1'exis-
tence de réactions a grande échelle, il est toujours délicat d’en connaitre les constantes
cinétiques ; dans le second cas, les mesures apparaissent comme une grandeur physique
quantitative (ratio d’expression, de quantités mesurées), mais elles sont le plus souvent
fort bruitées. Cette variabilité correspond majoritairement a une variabilité biologique
des échantillons, mais également aux limites des instruments de mesures, comme nous
le voyons sur la figure 1.2.

Pour concevoir un modele physique d’un systéme en présence de données bruitées
et incompletes, les modeles probabilistes sont une option attractive : les informa-
tions sur la structure sont codées par des variables aléatoires discretes représentant
généralement un graphe, et les mesures quantitatives sont supposées suivre une distri-
bution paramétrique. Ses parametres — notamment les caractéristiques du bruit, et les
constantes cinétiques — sont estimés a partir des données selon un critere d’optimisa-
tion, de type maximum de vraisemblance. La piste la plus étudiée repose sur I’emploi de
réseaux bayésiens [82, 83, 29, 15, 67]. Ces approches ont principalement deux faiblesses :
premierement, elles reposent sur des problemes d’optimisation non convexes, c’est-a-
dire pouvant comporter des optima locaux; des que les modeles comportent quelques
dizaines de variables, il devient particulierement difficile de trouver un optimum glo-
bal. Deuxiemement, méme en supposant un modele optimal trouvé, celui-ci peut étre
treés différent des modeles quasi-optimaux. Autrement dit, 'inférence par maximisation
d’un score est potentiellement peu robuste. Ce probleme a une solution® élégante — mais
coliteuse d’un point de vue calculatoire — consistant a étudier la distribution postérieure,
comme cela est fait dans les approches bayésiennes pour la phylogénie [44]. Enfin, I'uti-
lisation de méthodes probabilistes nécessite des échantillons suffisamment importants
pour estimer les parametres du modele. On peut penser d’apres la littérature [5] que
la limite basse d’applicabilité des méthodes probabilistes se situe autour de 100 a 300
mesures indépendantes. Or il est bien rare en pratique de disposer d’autant de données
pour un seul systeme.

Une réponse partielle & ces problemes peut étre trouvée dans les approches décrites
dans [11, 6, 97], ou les modeles probabilistes sont remplacés par des équations différen-
tielles ordinaires, le plus souvent linéaires. Les techniques d’estimation sous-jacentes
sont plus abordables sur le plan complexité (résolution de systémes linéaires, optimi-
sation convexe) et le traitement du bruit requiert moins de parametres (interpolation,
estimation au sens des moindres carrés). L’étude réalisée dans [5] confirme 'intuition :
ces méthodes se comportent mieux que les méthodes probabilistes dans le cas ol peu de
données sont disponibles; et les différences s’atténuent avec I'augmentation du nombre

5Solution qui, & notre connaissance, n’est pas souvent mise en ceuvre
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d’expériences. Néanmoins dans les deux approches, il faut pouvoir fournir un nombre
suffisant d’expériences indépendantes.

Le raisonnement qualitatif est une alternative pour traiter des problemes ou les
données sont imprécises et/ou incompletes [55, 94, 41]. L’approche en raisonnement
qualitatif consiste a sur-approximer ’ensemble des comportements observables, en abs-
trayant des propriétés plus robustes des mesures, comme leur signe, ou leur ordre de
grandeur. Les relations quantitatives sont a leur tour abstraites en contraintes qualita-
tives, qui constituent des conditions nécessaires (mais pas suffisantes) a vérifier. Cette
démarche a déja été appliquée en biologie systémique pour modéliser la dynamique
des réseaux génétiques [79, 22, 10], ou des réseaux de signalisation [16, 38]. Dans tous
ces travaux, le processus d’abstraction qualitative permet de dériver une notion de
cohérence entre un modele et des mesures expérimentales adaptée a la qualité et la
précision des données disponibles. Le travail présenté dans cette these procede de la
méme démarche, appliquée a I’étude des données haut-débit.

1.5 Nos contributions

Nous présentons maintenant les différentes contributions de ce travail de these.

Critere de consistance et contraintes qualitatives Nous introduisons un critere
de consistance entre un modele simple des interactions cellulaires et des mesures expéri-
mentales. Ce critere stipule essentiellement que la variation d’une espece entre deux
états d’un systeme donné doit toujours pouvoir étre expliquée par la variation d’une
espece qui la régule. Nous exprimons cette régle intuitive comme une contrainte sur
variables a domaines finis, dont la résolution est montrée NP-complete.

Par ailleurs, nous démontrons la validité de notre critere de consistance dans un
cadre différentiel. Cette étude précise les limites d’applicabilité de notre formalisme, et
fournit des guides précieux pour l'interprétation des données.

Algorithmes pour 1’étude des contraintes qualitatives La deuxiéme contribu-
tion de ce travail porte sur la résolution et ’étude des contraintes qualitatives. Nous
proposons deux approches offrant des possibilités complémentaires. La premiere utilise
les diagrammes de décision pour représenter explicitement mais de maniére compacte
I’ensemble des solutions de la contrainte. Cette approche est associée a des techniques
de décomposition et de réduction que nous décrivons, afin d’accroitre significative-
ment la taille des contraintes pouvant étre traitées. La deuxieme approche fait appel a
des techniques récentes de programmation logique : nous montrons comment coder la
résolution des contraintes qualitatives par des programmes logiques, et nous utilisons
des solveurs dédiés pour rechercher efficacement une solution & une contrainte qualita-
tive. Nous verrons que cette méthode permet de vérifier certaines propriétés de maniere
beaucoup plus efficace que la précédente.
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Validation a grande échelle de ’approche Nous décrivons enfin deux applica-
tions de nos développements sur données réelles. La premiere consiste a prédire la
réponse transcriptionnelle globale de la bactérie F. coli a partir de données bibliogra-
phiques; la deuxieme aborde un cas particulier de reconstruction de réseau génétique,
ou l'on cherche a inférer 'effet des facteurs de transcription (activation ou inhibition)
sur leurs genes cibles. Ces deux applications démontrent d’une part la capacité de nos
algorithmes a traiter un volume d’information réaliste : les réseaux considérés com-
portent plusieurs milliers de genes et de régulations et sont confronté a plusieurs di-
zaines de mesures d’expression. D’autre part, nous montrons par ces expériences que
notre critere de consistance est un guide fiable et informatif pour 'analyse de données.
Les prédictions obtenues par notre approche ont pu étre validées de maniere significa-
tive, et les désaccords importants nous ont permis dans plusieurs cas de corriger nos
modeles.

La suite de ce document est structurée comme suit : nous commencgons par donner
une présentation générale et intuitive de notre approche au chapitre 2 ; nous introdui-
sons ensuite formellement notre notion de consistance et la modélisation associée au
chapitre 3. Les deux chapitres suivants détaillent les méthodes algorithmiques utilisées
pour la résolution et I’étude des contraintes qualitatives. Suivent enfin les applications
sur données réelles au chapitre 6.



Chapitre 2

Présentation générale de
I’approche : modélisation de
I’opéron lactose

Dans ce chapitre, nous illustrons sur un exemple simple la démarche détaillée dans
cette these. Il s’agit moins ici d’en faire un exposé formel que de la présenter de maniére
pragmatique et — nous ’espérons — intuitive.

Les données d’expression Nous avons vu en introduction que les données d’ex-
pression fournies par les puces & ADN sont caractérisées par un bruit trés important
relativement au nombre de variables observées et au nombre de réplicats effectués. Pour
s’en apercevoir, on peut par exemple examiner les données produites dans les travaux de
Maurer et al [66], qui portent sur la réponse génétique de la bactérie E. coli a différents
pH dans le milieu de culture. Les bactéries ont été exposée a trois pH distincts, et pour
chaque pH, cinq réplicats ont été produits. Pour chaque pH et chaque réplicat, une
puce & ADN a été utilisée pour mesurer le niveau d’expression d’environ 3800 genes.
Un extrait des résultats est donné en table 2.1.

Les mesures qui y sont présentées correspondent au niveau d’expression des genes
(a létat stable) quand les bactéries ont été cultivées sur un milieu & pH de 5 ou pH
de 7. Le traitement statistique effectué sur les mesures brutes assure que ces données
sont normalisées, c’est-a-dire qu’elles sont comparables d’un géne a 'autre. La premiere
observation est que selon le gene il peut y avoir un écart relatif & la moyenne dépassant
les 25% (voir table 2.2). Le bruit observé est di d’une part a l'instrument de mesure
(comme illustré a la figure 1.2), et d’autre part a la variabilité des échantillons biolo-
giques. Il est clair qu’un échantillon de 5 mesures est insuffisant pour estimer une valeur
moyenne, et ce d’autant plus que la loi du bruit n’est pas connue, et a priori difficile a
modéliser. Il ne s’agit pas ici d’un cas au pire : la plupart des données disponibles sont
moins, voire pas du tout répliquées.
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Présentation générale de "approche :

modeélisation de 'opéron lactose

Gene Expression sous pH 5 Expression sous pH 7
1 2 3 4 5 1 2 3 4 5

agaA | 128.7 347.1 344.1 346.6 3814 620.5 558.5  420.0 393.7 419.2
agaB 12.7 18.8 14.5 35.6 16.3 6.5 17.6 4.6 12.6 16.0
agaC | 23.5 66.5 78.1 70.8 71.3 85.6 78.4 53.9 63.5 53.5
agal 51.7 65.1 125.3 116.4  104.0 248.4 1049 167.7 198.2 1754
agp 657.3 1019.4 1142.2 1254.3 1060.8 || 1711.4 1048.8 1551.6 1040.5 1289.6
alaX | 6481.9 8344.6 8435.7 7064.6 4838.6 51.9  5855.5 5646.2 6318.4 6245.0
aldA | 1588.1 1689.7 1489.3 1494.4 12279 || 1126.5 631.1 553.6 526.6 918.1

TAB. 2.1 — Extrait des résultats obtenus dans [66]. Chaque ligne correspond a un gene de
E. coli, chaque colonne correspond & un couple (condition,réplicat). Le tableau donne

les mesures du niveau d’expression des genes pour cing réplicats et deux conditions
(pH=5 et pH=T).

Gene pH =5 pH =17

[ o 1
agaA | 309.58 91.48 482.38 90.13
agaB 19.58 8.26 11.46 5.12
agaC | 62.04 19.62 66.98 12.98
agal 92.50 28.96 178.92 46.51

agp | 1026.80 201.40

1328.38  267.98

alaX | 7033.08 1327.25 4823.40 2398.56

aldA | 1497.88  153.56

751.18  233.50

TAB. 2.2 — Statistiques élémentaires sur les données d’expression de la table 2.1. Les

colonnes d’indice p correspondent a ’expression moyenne dans chaque condition ; les
colonnes o a ’écart-type.
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Gene agaA agaB agaC agal agp alaX aldA
Variation pH 5 — 7 + 0/? 0/? + + _ _

TAB. 2.3 — Interprétation des données présentées dans le tableau 2.1. Les données
quantitatives sont remplacées par le signe de variation en expression entre les deux
conditions

Interprétation qualitative Quelle information peut-on tirer de ces données d’ex-
pression pour caractériser le passage d’un pH faible a un pH neutre? La dispersion
observée rapportée a la taille de I’échantillon rend une interprétation numérique (sous
la forme d’une moyenne, ou d’un intervalle de confiance) un peu hasardeuse. Nous
proposons dans ce travail de ne considérer que le signe de la variation entre les deux
conditions. C’est-a-dire qu’il nous faut décider, a partir de ces données si I’expression de
chaque geéne a augmenté ou diminué de maniére significative. Au moins intuitivement, il
semble que cette interprétation soit moins problématique : dans la table 2.1, il est a peu
pres clair que les génes agaA, agal, agp, alaX et aldA ont une variation significative,
respectivement positive, positive, positive, négative, négative. L’algorithme — trop naif
— derriere cette interprétation consiste a calculer la soustraction des moyennes pour
chaque condition, et rendre son signe. Dans le cas ou I’écart relatif des moyennes est
trop faible, on peut au choix, assigner une variation nulle (négligeable), soit déclarer
la variation inconnue. Ces deux alternatives ne sont bien siir pas équivalentes : il faut
choisir entre exploiter toute 'information disponible ou se préserver des erreurs d’in-
terprétation. Nous verrons plus loin une facon de trancher.

La démarche que nous suivons consiste donc a abstraire des données quantitatives
bruitées en attributs moins précis mais plus robustes, en 'occurrence le signe des gran-
deurs. Sur notre exemple, on obtient ainsi la mesure donnée en table 2.3.

Un modele des interactions cellulaires Pour exploiter ces données, nous pro-
posons de les comparer a d’autres informations disponibles sur le systeme étudié, a
commencer par les régulations génétiques décrites dans la littérature. Classiquement,
ces régulations sont représentées sous la forme d’un graphe, ou chaque sommet corres-
pond a un gene, et chaque arc représente une régulation. Les arcs sont de deux types,
selon que la régulation est une activation ou une inhibition. Ces graphes — souvent
appelés graphes d’interaction — sont généralement construits par une fouille ciblée des
publications disponibles sur un sujet donné, ce qui peut demander un effort conséquent.
On trouve par exemple des graphes sur les genes controlant la segmentation chez la dro-
sophile [17], sur le cycle cellulaire des mammiferes [54] ou méme un graphe synthétisant
’ensemble des régulations transcriptionnelles connues chez la bactérie E. coli [37]. Nous
en donnons quelques exemples a la figure 2.1.

D’un point de vue expérimental, il est relativement simple! de tester I’existence
d’une régulation génétique, voire d’en connaitre l'effet (activation ou inhibition); ce
type d’information peut facilement étre trouvé dans la littérature. En revanche, il est

1 , . , . oo
Cela nécessite néanmoins un travail important
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D

A B — C E
(a) (b)

F1a. 2.1 — Exemples de graphe d’interaction. Les fleches d’extrémité triangulaire (en
vert) représentent des activations, les fleches d’extrémité en T (en rouge) représentent
des inhibitions.

beaucoup plus difficile d’obtenir des renseignements quantitatifs sur la régulation. Les
graphes d’interaction sont donc adaptés a la précision des données disponibles, méme
si comme nous le verrons, ils ne sont pas une description univoque d’un systéme donné.

Critére de consistance Il nous faut maintenant donner une relation entre un graphe
d’interaction et les mesures d’expression. Commencons par un cas simple, en examinant
le graphe donné en figure 2.1(a). Il semble assez clair que si I'on fait augmenter A, qui
est un activateur de B, alors B doit également augmenter. Le gene B inhibant C', on
s’attend a ce que C' diminue. De maniere analogue, si on fait diminuer A, B et C doivent
respectivement diminuer et augmenter. Que se passe-t-il lorsqu’un gene est régulé par
plusieurs autres genes, comme dans le graphe présenté en figure 2.1(b)? Supposons
que D et E augmentent tous les deux, ceux-ci ayant des effets contraires sur F, il est
impossible de conclure sur sa variation. Il faudrait pour cela disposer d’informations
plus précises. Dans ce cas, on admettra n’importe quelle variation pour F. En revanche
si D diminue et F augmente, les deux régulateurs tendent a faire diminuer la quantité
de F' et seule une variation négative peut étre admise.

Les raisonnements que nous venons d’effectuer peuvent étre synthétisés en une for-
mule simple : toute variation en expression d’un géne doit pouvoir étre expliquée par
la variation d’au moins un de ses régulateurs. Nous appellerons une regle de ce genre
un critere de consistance entre le modele des régulations (le graphe d’interaction) et
les données d’expression. Nous allons maintenant voir plus en détail comment utiliser
ce critere pour étudier un systéeme. Nous illustrerons notre démarche sur ’exemple de
l’opéron lactose, dont le graphe d’interaction est donné en figure 2.2.

L’opéron lactose Sans trop entrer dans les détails, donnons quelques indications
sur le fonctionnement de ce systeme. Le glucose et le lactose sont des sucres, mais seul
le glucose est suffisamment « simple » pour étre utilisé directement par la bactérie E.
coli. Si le milieu de culture contient du lactose, mais pas de glucose, la bactérie utilise
un mécanisme lui permettant de réaliser la conversion. Le symbole L. représente le
lactose présent dans le milieu de culture, L; le lactose présent dans la bactérie, G le
glucose. La transformation comporte deux étapes : d’abord ’entrée du lactose dans la
cellule via 'action de la perméase LacY, puis transformation en glucose par I’enzyme
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L; Lacl cAMP-CRP

T

/

LacZ

Fia. 2.2 — Graphe d’interaction pour I'opéron lactose chez E. coli.

LacZ avec production d’allolactose A. Cette chaine de production est habituellement
inhibée par le facteur Lacl, mais elle peut étre activée par le complexe cAMP-CRP si
le niveau de glucose dans la cellule est suffisamment bas. Dans ce systeme, L. et G
doivent étre considérés comme des entrées, c’est-a-dire des espeéces dont la variation
n’est pas expliquée dans le modele, mais dépend également de facteurs extérieurs. Le
lactose dans le milieu extérieur est bien entendu controlé par 'expérimentateur ; quant
au glucose, son niveau dépend d’autres mécanismes qui ne sont pas représentés dans le
graphe d’interaction.

2.1 Vérification

La premiere utilisation du critere de consistance consiste, comme nous ’avons déja
esquissé, a vérifier la compatibilité de données d’expression avec les régulations connues
du systeme étudié. Soit par exemple les mesures données au tableau 2.4. La mesure
est compatible avec le graphe de 'opéron lactose. En effet on peut vérifier que pour
chaque sommet (hormis L. et G qui sont des entrées) toutes les variations peuvent étre
expliquées. Plus précisément elles respectent bien notre critere de consistance parce que
pour tout sommet, on peut trouver un prédécesseur avec une influence du signe porté
par le sommet. Ainsi la diminution de L; s’explique par la diminution de LacY, qui
s’explique par l'augmentation de Lacl etc ...

En revanche la mesure ps n’est pas compatible avec le graphe d’interaction : les
variations de LacY, A et cAMP-CRP ne sont pas explicables par la variation de leurs
régulateurs. Par exemple LacY augmente selon 9, mais Lacl ne varie pas (donc ne peut
expliquer aucune variation) et cAMP-CRP — un activateur de LacY — diminue; il ne
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Produit | L L; G LacY LacZ Lacl A cAMP-CRP
H1 - 0 - - + - 0
M2 + + 0 + — 0 0 -
3 + 7 - ? ? + ? ?
144 7 7 — + ? ?

TAB. 2.4 — Exemples de mesures pour 'opéron lactose décrit en figure 2.2.

peut donc pas expliquer 'augmentation de LacY. Plus globalement, on peut dénombrer
77 mesures compatibles avec le graphe d’interaction, sur un total de 3% = 6561 possi-
bilités?, soit un ratio d’environ 1.2%.

On voit ici qu’il est relativement simple de vérifier le critére de consistance, lorsque
tous les sommets du graphe sont observés. Que se passe-t-il lorsque les mesures sont
partielles 7 On dira qu’une mesure partielle satisfait au critére de consistance si 'on
peut trouver des valeurs pour les sommets non observés, telles que 'ensemble vérifie le
critere de consistance. Sous cette définition, la mesure us est compatible avec le graphe
d’interaction, parce que la mesure :

Produit | L L; G LacY LacZ Lacl A cAMP-CRP
JuA + 0 - — - + - +

étend p3 et respecte le critere de consistance. En revanche, la mesure p4 n’est pas com-
patible avec le graphe d’interaction parce que toute extension contredit le critere de
consistance. La vérification est plus difficile dans le cas de données manquantes, puis-
qu’elle se ramene & une résolution (trouver une valeur pour les inconnues qui respecte
une contrainte donnée). Dans cet exemple, les données manquantes correspondent a des
mesures incompletes ; plus généralement, les inconnues peuvent porter sur l'effet d’une
régulation (activation ou inhibition), ou méme sur son existence.

2.2 Prédiction

Lorsque 'on dispose de mesures compatibles avec un graphe d’interaction, on peut
les utiliser pour prédire la valeur des variables non observées (variation d’un gene dans
une condition donnée, effet ou existence d’une régulation). Par prédire, on signifie dans
ce travail « déduire par I'intermédiaire du critere de consistance » 3. Par exemple, dans
le cas du graphe décrit en fig. 2.1(a), nous avons vu que si I’on connait la variation de A,
alors on connait également la variation de B et C. Les choses se compliquent pour des
systemes plus étendus : revenons a 'opéron lactose, et supposons que ’on ne dispose
que de la mesure u3. Celle-ci est consistante avec le graphe, et admet 5 extensions,

281, pour une question d’interprétation des données que ’on verra plus loin, on décide d’exclure la
variation nulle, alors il y a 18 mesures compatibles avec le graphe d’interaction, sur un total de 2% = 256
possibilités.

311 existe d’autres modes de prédiction, notamment la prédiction par modeéle optimal : soit un
ensemble de modele, on associe & chacun un score ou une probabilité en fonction de son adéquation
avec les données. Les prédictions correspondent au modele le plus vraisemblable/probable.
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Produit | L L; G LacY LacZ Lacl A cAMP-CRP
pwy o |+ 00— - -+ - +
B+ - - - -+ - +
ool + + - - -+ - +
wyp |+ 4+ -0 - 4+ - +
B+ + -+ i +

TAB. 2.5 — Extensions de la mesure p3 qui sont consistantes avec le graphe d’interaction
de I'opéron lactose.

Produit | L, L; G LacY LacZ Lacl A cAMP-CRP
+ 1 L 06 06 1 0 1 0.2
0 0 i 0.2 0.2 0 0 0 0.2
— 0 g 0.2 0.2 0 1 0 0.6

TAB. 2.6 — Loi de probabilité des variations pour chaque espece, en supposant une
augmentation de L. et une diminution de Lacl. Les différentes possibilités d’extension
sont considérées comme équiprobables.

données dans le tableau 2.5. Un examen de ces solutions au probléme de vérification
montre qu'outre L., G et Lacl qui sont fixées par la mesure, LacZ, cAMP-CRP et A
n’admettent qu'une seule variation; on en déduit que si L. et Lacl augmentent, et G
diminue alors nécessairement LacZ et A diminuent pendant que cAMP-CRP augmente.
Récapitulons : on dispose de données incompletes sur un systeme et ses réponses a des
perturbations. Le critere de consistance décrit I’ensemble des valeurs admissibles pour
les données manquantes. Enfin on appelle prédictions les invariants de cet ensemble.

On peut également s’intéresser a une notion de prédiction moins forte : d’apres le
tableau 2.5, LacY n’est pas invariant, mais prend dans 3 possibilités d’extension sur 5 la
valeur — En considérant les différentes possibilités comme équiprobables, on peut ainsi
établir une loi de probabilité discrete sur les valeurs que peut prendre chaque variable
non observée. Un exemple est donné au tableau 2.6, dans le cas ou ’on observe une
augmentation de L, et une diminution de Lacl.

Bilan

Nous avons décrit de maniere informelle les premiers pas d’une analyse de données
telle que proposée dans ce travail. Nous avons en particulier insisté sur la phase d’in-
terprétation des données brutes, leur confrontation avec un modele graphique des
régulations du systeme (étape de vérification), et la recherche de prédictions sur les
variables non observées. Dans le reste de ce travail, nous formalisons cette démarche,
et nous montrons comment réaliser efficacement les déductions sur le modele et les
données. Le prochain chapitre précise notamment la relation entre signe des régulations
et signe des variations et en propose plusieurs justifications.
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Chapitre 3

Equations qualitatives pour la
consistance des données

Le probleme posé dans cette these concerne le traitement de données haut-débit en
biologie moléculaire. Nous ’avons vu, il s’agit de réussir a intégrer des informations de
nature et d’origine hétérogenes, pour poser quatre types de questions :

— définir et tester la consistance entre ces données,
prédire les variables non observées dans le cas ou les données sont consistantes,

— aider au diagnostic en cas de non consistance, et aider a 'amendement de ces

informations

— aider a la conception d’expériences pertinentes.

Nous abordons dans ce chapitre la question de la représentation et de I'intégration
des informations disponibles. En introduction, nous avons distingué les sources d’infor-
mation selon qu’elles concernent la structure, oul’ état du systeme étudié. La modélisation
que nous proposons ici reprend cette dichotomie, en ce qu’elle comporte essentiellement
deux types d’objets : des graphes pour représenter la structure, et des étiquetages de
ce graphe pour représenter 1’état. Le troisieme et dernier ingrédient est une contrainte
que ces objets doivent vérifier pour étre déclarés consistants.

Nous commengcons par présenter sans justification la modélisation étudiée dans cette
these. Cette formulation servira de référence pour le reste du document. Nous évaluons
ensuite la pertinence de notre formalisation en démontrant sa validité dans un cadre
différentiel, puis booléen. L’intérét de ces connexions sera de nous guider dans 'uti-
lisation pratique de notre formalisme, par exemple pour l'interprétation des données
quantitatives ou de réseaux de réactions complexes.

3.1 Formalisation

3.1.1 Le graphe d’interaction et ses étiquetages

Représentation du systeme Les systemes que nous cherchons a représenter sont
des réseaux de réactions biochimiques, ce qui inclut les réseaux génétiques et les réseaux

21
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B

(L &

(a) (b)

Fic. 3.1 — (a) Un exemple de graphe d’interaction. Les sommets sont des especes
chimiques, les fleches représentent des régulations entre especes. Les fleches vertes
(extrémités triangulaires) indiquent des activations, les fleches rouges (extrémités en
T) des inhibitions, les fleches noires (extrémité en cercle) des régulations dont 'effet
n’est pas connu. (b) Le méme graphe d’interaction, ot 'on a figuré une mesure (par-
tielle) des sommets. La couleur verte d’un sommet indique un accroissement du niveau
de l'espece entre deux conditions expérimentales, la couleur rouge une diminution, la
couleur grise ’absence de variation. L’absence de coloration signifie que le sommet n’a
pas été mesuré

métaboliques. Nous représenterons de tels systemes par un graphe orienté, appelé graphe
d’interaction, dont les sommets sont les especes chimiques présentes dans le systeme. Il
peut typiquement s’agir de genes (ou plus précisément, de leur transcrit), de protéines
ou de métabolites. Les arcs de ce graphe représentent les régulations existant entre les
différents especes. Une fleche entre un produit A et un produit B signifie que A régule
B. On parle d’activation (resp. d’inhibition) quand la présence de A tend & augmenter
(resp. diminuer) le niveau de B. Pour représenter cette information, les arcs d’un graphe
d’interaction sont étiquetés par des signes {4+, 0,—, 7} selon que la régulation a un effet
activateur, nul, inhibiteur ou indéterminé respectivement. L’ensemble S = {+,0,—, 7}
est appelé algébre des signes et nous l’aborderons plus en détail plus loin. Dans la
suite on appellera graphe d’interaction un triplet G = (V, E, p) ou V est 'ensemble des
especes chimiques du systeme, £ C V x V est I’ensemble des régulations, et p: £ — S
est un étiquetage partiel des régulations par des signes. La figure 3.1(a) montre un
exemple de graphe d’interaction.

Mesures expérimentales Comme nous l'avons évoqué au chapitre précédent, les
données disponibles en biologie moléculaire sont le plus souvent de nature comparative :
on ne mesure pas une grandeur, mais sa variation entre deux états d’un systeme, ou
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deux conditions expérimentales. Le résultat est en général donné sous forme d’un ratio,
dans des assertions du type « une dose d de X provoque une diminution de Y d’un
ratio r ». Selon la technique expérimentale utilisée, ledit ratio est plus ou moins fiable;
il n’est d’ailleurs que tres rarement donné avec une précision plus grande que l'unité.
Nous proposons dans ce travail de ne conserver que le signe de la variation. A savoir,
pour une expérience donnée, ou ’on a comparé deux conditions expérimentales, nous
appellerons mesure une application généralement partielle p : V- — S\ {?}. Cette
mesure ne rapporte que les signes définis, c’est-a-dire connus avec certitude. Le domaine
(ensemble de départ) d’une mesure correspond donc a ’ensemble des sommets mesurés.
La figure 3.1(b) montre la représentation graphique que nous utiliserons par la suite
pour les mesures.

3.1.2 Algebre des signes

Jusqu’ici nous avons proposé de représenter les informations disponibles sur un
réseau de réactions par un graphe dont les sommets et les arcs sont étiquetés par des
signes. Pour pouvoir expliciter la relation existant entre ces différents étiquetages, il
nous faut préciser cette notion de signe.

Définition et propriétés L’algebre des signes est une abstraction de ’ensemble des
réels, qui permet de raisonner sur le signe d’expressions arithmétiques. On peut la
définir comme 1’ensemble suivant de parties de R :

S P(R)
0 — {0}
F - ®
— S R-
7 - R

On note sgn : R — S 'application qui associe son signe & un réel. Par extension,
sgn associe a un ensemble de réels le plus petit signe (au sens de l'inclusion) conte-
nant cet ensemble. Pour toute opération ® sur les réels on peut définir une opération
correspondante ® dans ’algebre des signes, en posant :

s@t=sgn({z®@y|zesyct})

Nous utiliserons en particulier les opérations + et X que nous noterons plutdt + et x.
Voici, pour I'exemple, leur table :

+ =10 |+|? X | —10|+|7?
— =] =1717 — | 4+|0|-17
0 0 |+17? 0/,0(0|0]|O
+ + (4|7 + (-0 +]|7?
? 71?77 71?2107 |7

Remarquons que 7 est absorbant pour + et 0 pour X. Il reste enfin a ajouter 'abs-
traction de 1’égalité, a savoir la compatibilité des signes, notée =, et définie par s ~ t
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si et seulement si s Nt # (). Cela signifie que deux expressions sont déclarées de signe
compatible quand il est possible qu’elles soient de méme signe. Cela donne la relation
suivante :

~|—-10|4+ |7
- |\T|F|F|T
O|\F|T|F|T
+|F|F\|T\|T
r\T|\T\|T\|T

dont il faut se méfier, parce qu’elle est bien réflexive et symétrique, mais pas tran-
sitive. Par exemple, + ~ 7 et 7 &~ — mais + % —. La fonction sgn vérifie par ailleurs la
relation suivante :

Vr,y,z € R xy = z = sgn(x) sgn(y) = sgn(z) = sgn(z)sgn(y) ~ sgn(z)

ainsi que :
Vo,y,z € Rx+y=z=sgn(z)+sgn(y) ~ sgn(z)

Contraintes dans 1’algebre des signes Dans la suite, nous allons étudier des
contraintes qualitatives, que nous définissons comme un mot du langage suivant :

c = /\Z-elci
| vec|We
lp~p
3.1
p = pxplpt+p| —p (3:1)
| v

[ +[0[—]7

en prenant le symbole ¢ comme axiome et ou les symboles non terminaux c, p et
v représentent une contrainte, un polynéme et une variable respectivement. Ce que
nous appelons systeme qualitatif est donc un terme construit par induction, pouvant
comporter des variables. On aura recours a la notation Clo] pour désigner l'effet d’une
substitution o dans un terme, c’est-a-dire le remplacement de chaque variable libre v
de C dans le domaine de o par o(v).

La sémantique associée a ces termes est un peu particuliere : on définit une solution
d’une contrainte qualitative comme une valuation de toutes les variables libres de cette
contrainte & valeurs dans {4, 0,—} qui satisfait cette contrainte. La valeur ? est exclue
dans les solutions d’une contrainte, parce qu’elle n’apporte aucune information. Si une
variable peut prendre plusieurs valeurs pour lesquelles la contrainte est toujours vérifiée,
alors la contrainte admet plusieurs solutions, une pour chaque alternative. Mais chaque
solution est représentée sous la forme la plus précise possible, c¢’est-a-dire sans utiliser
le signe ?.

Nous allons a présent formuler la consistance entre un graphe d’interaction et un
ensemble de mesures comme une contrainte qualitative.
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Fi1G. 3.2 — Résumé des cas ou une variation d’'une espece est effectivement expliquée
par la variation des especes qui la régulent. Premiere ligne : le sommet cible admet une
variation, on doit donc parmi les prédécesseurs pouvoir trouver une influence de méme

signe. Deuxieme ligne : si la variation du sommet est nulle, alors soit on peut trouver
deux contributions de signe opposé, soit tous les régulateurs ont une variation nulle

3.1.3 Contrainte de consistance

La notion de consistance que nous étudions dans ce travail exprime simplement
que toute variation observée doit avoir une cause. Plus précisément, toute variation
d’une espece doit pouvoir étre expliquée par la variation de I'un de ses régulateurs. Par
exemple si A augmente entre deux conditions expérimentales, on doit pouvoir trou-
ver une influence positive, par exemple I'action d’un activateur B de A qui augmente
également. Les différents cas possibles sont résumés dans la figure 3.2.

Plus formellement, soit G = (V, E, p) un graphe d’interaction et {1, ..., iy} un en-
semble de mesures sur G. Pour chaque sommet i € V, et chaque mesure k € {1,...,m},
on introduit la variable qualitative X;;. Cette variable représente le signe de variation
de ’espece chimique 7 lors de ’expérience correspondant & la mesure k. On confondra
la mesure py, avec la substitution o définie pour tout i € dom(uy) par o(Xix) = k(7).
Pour chaque arc j — ¢ de G, on introduit la variable Sj;, qui représente le signe de la
régulation entre j et ¢. De méme on confondra 1’étiquetage du graphe d’interaction p
avec la substitution o définie pour tout (j,4) € dom(p) par o(S;;) = p(j,). On appelle
contrainte de consistance au sommet 7 pour la mesure k, la contrainte

Coo = (X~ Y SiiXk | (o 1l (32)
jE€pred(z)

Nous dirons qu’un graphe d’interaction G = (V, E, p) est consistant avec les mesures
pw={p1,...,m} sila contrainte

ieV,1<k<m

admet une solution. Ce que nous appelons contrainte de consistance est donc une
conjonction d’équations ; il y a une équation par sommet et par mesure. Chaque équation
relie la variation du sommet associé a celle de ses prédécesseurs. Les variables libres
sont les variations non observées et les signes de régulation inconnus. Les variations X;x
non observées sont propres a chaque mesure, mais les signes sur les régulations S;; sont
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partagées entre les équations associées a chaque mesure. Par convention, la contrainte
Cg désigne la contrainte obtenue avec une seule mesure de domaine vide. Dans ce cas,
on omettra généralement 'indice k. Cette contrainte sera utile notamment lorsque 1’on
voudra parler de ’ensemble des mesures compatibles avec un graphe d’interaction. Dans
le reste du manuscrit, nous étudierons la contrainte Cg et nous chercherons en particu-
lier des moyens efficaces pour extraire de I'information de I’ensemble de ses solutions.
Voici un premier exemple pour clarifier notre définition :

B
C
CA : XA ~ —XB
A Cp : X ~ Xa+SppXp
Ce : 0 =~ Xg+Xp (3.3)
CD : XD ~ —XA
D Cg : ~ Xp—Xyu
E

Le graphe d’interaction, ainsi qu’une mesure sont figurés a gauche selon les conven-
tions que nous avons introduites plus haut. A droite figurent les contraintes de consis-
tance a chaque sommet. Puisqu’il n’y a ici qu'une seule mesure, l'indice des me-
sures a été omis. La contrainte de consistance pour cet exemple est la conjonction
Cg =CaNCgACecACpACg. En voici les solutions :

Xa XB Xp Sps
+ - - + (3.4)
-+ o+ o+

En pratique il peut s’avérer utile de pouvoir spécifier que certains sommets du
graphe d’interaction sont des entrées du modele, c’est-a-dire que leur variation n’est
pas expliquée dans le modele. Pour ces sommets, on se dispense donc d’ajouter une
contrainte. En particulier, si un sommet n’a pas de prédécesseur dans le graphe d’inter-
action, alors son unique variation admissible est 0, ce qui fait disparaitre sa contribu-
tion dans toutes les autres contraintes. Pour cette raison, les sommets sans prédécesseur
dans le graphe d’interaction seront systématiquement considérés comme des entrées du
systeme.

Définition 1. (Consistance aux sommets, N -consistance) Soit un graphe d’interaction
G = (V,E,p), muni d'un ensemble d’entrées U, tel que {v € V | degg(v) = 0} C U.
Sauf mention contraire U sera par défaut exactement l’ensemble des sommets sans
prédécesseurs. G est dit N -consistant avec un ensemble p de mesures si la contrainte

qualitative
=N Ca
i€V\U,1<k<m

admet au moins une solution.
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Passons a présent aux propriétés générales des contraintes qualitatives.

3.1.4 Propriétés des contraintes qualitatives

Les contraintes qualitatives peuvent ne pas avoir de solution, et quand elles en
ont, il n’y a pas nécessairement unicité (comme nous venons de le voir dans I’exemple
précédent). La propriété suivante donne des indications sur quelques cas particuliers.

Proposition 1. Soient G = (V, E, p) un graphe d’interaction et p = {u1,...,m} un
ensemble de mesures.

1. Cg admet une solution.

2. si s est une solution de Cg alors —s est encore une solution

3. si dom(p) = E alors toute variable de Cg peut prendre soit une valeur, soit les
valeurs + et — mais pas 0, soit n’importe quelle valeur.

Démonstration.

1. C’est la solution nulle.

2. On vérifie facilement que si pour s,t € S, (—s)+(—t) = —(s+t), sx(—t) = —(sxt)
et s &t = —s =~ —t. L’assertion est ainsi prouvée par induction sur les termes
constituant une contrainte de consistance.

3. si dom(p) = E alors Cg est une conjonction de contraintes linéaires, et le résultat
est alors donné par la proposition 1.12 & la page 27 de [95].

O

La résolution des contraintes qualitatives a été particulierement étudiée dans le
cas de contraintes linéaires [94]. Ces développements proposent de transposer les ou-
tils connus en algebre linéaire dans le cas qualitatif, comme le pivot de Gauss ou le
déterminant. Sur le plan algorithmique, cette tentative n’aboutit pas a des outils par-
ticulierement performants, et qui sont de plus limités au cas linéaire.

Le probleme de résolution de contraintes qualitatives est prouvé NP-complet dans
le cas des systemes linéaires comme nous l'illustrons maintenant.

Théoreme 1. La construction d’une solution a une contrainte qualitative linéaire est
un probleme NP-complet.

Démonstration. On procede par réduction polynomiale de SAT. Soit & résoudre un
ensemble de clauses C' = {C1,...,C;} sur un ensemble de variable V. Chaque clause
C; est une disjonction de littéraux de la forme v ou —w. Pour arriver au résultat, il suffit
de trouver un codage de C' en un systeme qualitatif calculable en temps polynomial.
L’idée est d’associer la valeur T a 4+ et F' a — Une variable propositionnelle v de V' est
envoyée sur une variable qualitative v. Voici un tableau synthétisant la procédure de
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codage d’une clause :

clause contrainte qualitative
T — +
F — -
acV — a
-a, a €V — —a
IiVig--- Vi — L+l + 1

La contrainte résultante de C' est donnée par :

N Ci~+

i=1,...,n

Voici un exemple de la transformation : soit I’ensemble de clauses C' = {x1 V z9, ~24 V
x9 V 3, w1 V 24}. La contrainte résultant du codage est :

C=T1+Tm~rH)ANTE+T2-Ta~r+)AN([T1—-T1 =~ +)

Il nous faut montrer comment une solution & ce systeme fournit une solution qui satisfait
les clauses de C'. Si dans la valuation obtenue, on a ¥ = 4 (resp. v = —) pour v € V,
alors on pose v = T (resp. v = F). Si on a 7 = 0, alors on choisit une valeur quelconque
pour v. Soit une clause C; € C, on note l’ensemble de ses littéraux {l1,...,lx}. La
valuation obtenue est une solution du systeme qualitatif donc au moins un des littéraux,
disons /;, est tel que E = 4. Soit par construction tel que I; = T. Réciproquement,
toute valuation des variables propositionnelles satisfaisant C' fournit une solution a la
contrainte qualitative correspondante. O

Toutefois il n’est pas immédiat de savoir si le probleme reste difficile dans le cas des
contraintes issues de graphes d’interaction. Par exemple, dans le cas ou le graphe d’inter-
action est acyclique et les seuls sommets observés sont les sommets sans prédécesseurs,
la résolution s’avere particulierement simple :

Proposition 2. Soit G = (V, E, p) un graphe d’interaction acyclique et p = {p1, ..., ftim}
un ensemble de mesures. Si pour tous i et k, X;; € dom(ug) = degg(i) = 0 alors Cg
admet une solution, calculable en temps polynomial.

Démonstration. Ce résultat est un cas particulier de la proposition 7 qui sera donnée
plus loin. Contentons-nous ici d’esquisser informellement la preuve.

Tout d’abord, si certains signes sur les arcs de G sont inconnus, on les fixe a des
valeurs arbitraires. Une fois fait, on partitionne les contraintes de consistance aux som-

mets selon les mesures, c’est-a-dire les sous-systemes Cg’“k pour k=1,...,m ou
BE o _
Cor = /\ Cir
eV

Puisque tous les signes sur les arcs sont maintenant instanciés, les sous-systéemes que
nous avons construits ne partagent aucune variable. En effet, comme mentionné plus
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haut, si 'on partitionne les équations de la contrainte de consistance selon les mesures,
alors les seules variables partagées sont les signes sur les arcs. Par conséquent, les sous-
systemes que nous avons isolés peuvent étre résolus séparément.

Pour chaque sous-systeme, on décide de I'affectation de chaque variable suivant un
tri topologique de G (qui existe, puisque G est acyclique). On commence donc par les
sommets sans prédécesseurs, qui sont nécessairement des entrées. Soit ils sont dans
le domaine de la mesure, auquel cas leur valeur est fixée, soit on choisit leur valeur
arbitrairement. Ensuite, pour chaque sommet, on décide de sa valeur apres avoir décidé
de la valeur de ses prédécesseurs. Il suffit donc de prendre une valeur compatible avec
la somme qualitative sur les prédécesseurs, ce qui est toujours possible. ]

En revanche dans le cas général, le probleme est encore NP-complet pour les systéemes
issus d’un graphe d’interaction :

Théoréme 2. La construction d’une solution pour la contrainte Cg associée @ un
graphe d’interaction G et a un ensemble de mesures j est un probléme NP-complet.

Démonstration. On procede encore par réduction polynomiale de SAT. Soit a résoudre
un ensemble de clauses {C1, ..., C,} sur un ensemble de variables {z,...,zs}. Chaque
clause C; est un ensemble de littéraux de la forme zj ou —xy.

Soit le graphe (bipartite) G :

— dont l'ensemble des sommets est {C1,...,Cr} U{z1,...,2zs},

— et ou l'arc x; — C; existe si xj apparait dans C;. Cet arc est étiqueté par le signe

+ si x; € C; et par —si —x; € Cj.

Enfin, on construit une mesure pu telle que u(C;) = + et n’est pas définie ailleurs.
Voici un exemple de cette construction, sur I’ensemble de clauses C' = {z1 V z2, x4 V
x2 Vw3, w1 V e}

ONER OO O

Ch ) Cs

La contrainte qualitative de consistance aux sommets entre G et p est alors exactement
celle utilisée dans la preuve du théoreme 1, ce qui prouve le résultat. ]

3.2 Justification différentielle

Le modele de régulation que nous avons introduit au paragraphe précédent est rela-
tivement simple et par certains égards assez intuitif. Néanmoins, comment déterminer
s’il est une représentation adéquate des mécanismes a l’ocuvre dans une cellule? Le
meilleur moyen de trancher est bien entendu de vérifier par 'expérience les prédictions
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que l'on peut en tirer, et c’est 'objet des chapitres 4 et 5. Nous proposons dans ce pa-
ragraphe de montrer que notre formalisme peut étre vu comme une conséquence d’un
modele différentiel général de cinétique chimique.

Les équations différentielles ordinaires sont omniprésentes en biologie des systémes,
et servent fréquemment a modéliser des réseaux biologiques de nature tres différentes
(métabolisme [28, 39], transduction de signal [43, 52], régulation génétique [105, 19, 69)]).
Les utiliser comme hypothese pour dériver notre formalisme n’est donc pas absurde;
I'intérét principal de cette démarche sera de préciser les conditions d’application des
contraintes de consistance, et de guider l'interprétation des données expérimentales.
Nous commencons par introduire le formalisme différentiel, puis par énoncer un en-
semble d’hypotheses suffisant pour démontrer les contraintes de consistances dans le
cadre différentiel.

3.2.1 Graphe d’interaction

Définition On considere un ensemble de réactions chimiques impliquant n especes.
On note X le vecteur de concentration. Le systeme est supposé suivre une dynamique
différentielle :

dx
— = FX.0) (3.5)

ou U est le vecteur de taille p représentant des entrées du systeme, c’est-a-dire des
variables controlées par ’environnement. La fonction F' est une description quantita-
tive du systeme de réactions; elle est généralement inconnue. Si F' est dérivable, la
matrice jacobienne de F en (X,U) est la matrice (J(X,U) K(X,U)) ou J(X,U) =
(g;; (X,U))ij et K(X,U) = (25; (X,U))sj. On appelle graphe d’interaction en (X,U)
de F' le graphe G(X,U) :

— dont les noeuds sont les entiers 1,...,n+p

— ou 'arc j — ¢ existe si g)l?; (X,U) #0ou 83271 (X,U) # 0. Les arcs sont étiquetés

par le signe de la dérivée partielle, qu’on notera s(j, ).

Notons que G(X,U) est bien un graphe d’interaction au sens défini dans le para-
graphe précédent : il y a un arc entre j et i si le niveau (ou concentration) de j influe sur
la vitesse de production de i. La différence majeure ici, c’est que le graphe d’interaction
peut dépendre de I'état et des entrées si F' est non linéaire. Pour un état et une entrée
données, G(X,U) est appelé graphe d’interaction local ; le graphe d’interaction global
est obtenu en calculant I'union des graphes d’interaction locaux, et en prenant pour
étiquette d'un arc la somme qualitative des signes apparaissant sur cet arc pour tous
les graphes locaux.

Topologie et propriétés dynamiques La topologie des graphes d’interaction d’un
systeme donné peut renseigner sur ses propriétés dynamiques. Un premier résultat,
appelé premiere conjecture de Thomas dit informellement que la présence d’un circuit
positif dans le graphe d’interaction est une condition nécessaire a l’existence de plusieurs
états stables. Ce résultat a été énoncé dans différents cadres, plus ou moins généraux,



Justification différentielle 31

aussi bien différentiels que discrets. Soulé en propose une excellente revue dans [90] et
y démontre le théoreme suivant :

Théoréme 3 (Conjecture de Thomas, modeles différentiels avec dégradation). Soient
Q C R™ un produit d’intervalles ouverts, F = (F;) : Q — R™ un vecteur de fonctions
différentiables. On considére le systéme d’équations différentielles :

dX;
— Fi(X) — v X;
o (X) —~

0l Y1, --.,Yn Sont des réels strictement positifs.
Si l'om peut trouver deux vecteurs distincts X et Y dans Q) tels que

|Fi(X) —viXi — Fi(Y) + Y] < vlXi = Y|
alors il existe Z € Q tel que G(Z) contient un circuit positif.

On pourra également trouver des résultats plus précis dans [51] ou méme d’autres
résultats concernant la stabilité des états d’équilibres [93].

La deuzxiéme conjecture de Thomas dit quant a elle que la présence d’un circuit
négatif dans le graphe d’interaction est une condition nécessaire a ’existence d’oscilla-
tions stables ou amorties [87].

Enfin, une classe importante de systemes dynamiques, appelés systémes monotones
[2] est caractérisable en termes de graphe d’interaction. Plus précisément si un systéme
dynamique est de graphe d’interaction constant, et que celui-ci ne contient aucun cycle
(non-orienté) négatif, alors il est monotone [21]. Entre autres propriétés, les systémes
monotones (bornés) convergent presque siirement pour toute condition initiale vers un
état d’équilibre stable; ils n’admettent pas d’attracteurs chaotique, ni méme d’orbite
périodique.

3.2.2 Réponse statique a une perturbation

Un vecteur X est un état d’équilibre & entrée constante u si F(X,u) = 0; il est dit
stable si toutes les valeurs propres de J(X,u) ont leur partie réelle négative ; enfin il
est dit non dégénéré quand det J(X,u) # 0.

Il est classique d’étudier un systeme différentiel non-linéaire autour d’un point
d’équilibre stable (z,u), en remplacant I’équation (3.5), par sa linéarisation :

dAX
dt
Ce systeme admet un voisinage dans lequel ses trajectoires sont confinées. Parce
que linéaire, il est simple & étudier et ’allure de ses trajectoires est caractérisée par les
valeurs propres de J(z,u). L’intérét de la manceuvre vient de ce que les trajectoires
du systeme linéaire sont qualitativement similaires a celle du systéme d’origine. Plus
précisément le théoreme de Hartman-Grobman dit que les trajectoires dans 'un et
lautre cas sont homéomorphes (identiques a une fonction inversible et continue pres).
On peut ainsi étudier le comportement des trajectoires autour du point d’équilibre.

= J(z,u)AX (3.6)
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Dans la suite, nous ne nous préoccuperons jamais de la trajectoire du systeme
dynamique, mais seulement de la forme de ses nullclines. Une nullcline est une variété
{F;(X,U) = 0}, et 'ensemble des états d’équilibre est I'intersection des nullclines. En
différentiant I’équation F;(X,U) = 0, on calcule I'espace tangent en un point (z,u) de
la ¢ nullcline :

OF; OF;
zj: X, (,u)dX; + ; 90, (x,u)dU, =0
ou encore sous forme matricielle :
J(z,u)dX + K(z,u)dU =0 (3.7)

Cette relation détermine 1'effet (au premier ordre) dX d’une perturbation dU des
entrées du systeme. Elle montre le déplacement du point d’équilibre initial sous ’action
d’une perturbation, quand celle-ci est suffisamment faible. Ce que nous verrons dans la
suite, c’est ce qu’il reste de cette relation pour des perturbations d’intensité quelconque.

3.2.3 Hypotheses de modélisation

Comme nous venons de le voir, le graphe d’interaction d’un systéme différentiel
dépend en toute généralité de 1’état dudit systeme. Dans la mesure ou notre forma-
lisme ne représente pas ’état du systéme (mais seulement les variations d’états), il ne
nous est a priori pas possible de traiter des systéemes ou le signe d’un arc du graphe
d’interaction peut varier en fonction de I’état ou des entrées du systeme. Il nous faut
donc explicitement rajouter 'hypothese suivante :

Hypothése 1 (H1). On considére une dynamique différentielle % = F(X,U) de
graphe d’interaction constant, définie sur R"TP,

On appelle mesure un quatre-uplet (x(l) cuD, () u(2)). Cette définition est cohérente
avec celle que nous avons donnée précédemment ; pour construire une mesure qualita-
(2) (1)
x —x ).

x€T:

tive, il suffit de calculer le vecteur des sgn( :

Hypothése 2 (H2). Toute mesure (M), uM), 23 42 est telle que zV) (resp. ()
est un état d’équilibre sous u") (resp. u® ) stable et non dégénéré.

Cette hypothése signifie que nous restreignons notre analyse aux expériences de
déplacement d’équilibre : un systeme initialement au repos subit une perturbation, puis
revient a I’équilibre au bout d’un certain temps. Les données disponibles concernent
alors la variation entre état final et état initial.

L’hypothese suivante dit essentiellement que les especes du systeme sont soumises
a un phénomene de dégradation, d’intensité au moins linéaire en fonction de la concen-
tration. C’est une hypotheése analogue a celle utilisée par Soulé dans [89].

Hypothése 3 (H3). Pour toute espéce i du systéme, on a

or

Jk; > 0 V(X,U) € RYP 3¢

(X, U) < =k (3.8)
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Enfin, notre derniere hypothese découle de ce que les concentrations sont des gran-
deurs positives.

Hypothése 4 (H4). Pour toute espéce i du systéme et pour tout u, on a

3.2.4 Déplacement d’équilibre et variations

Dans le cadre des hypotheses précédentes, nous proposons de déterminer des rela-
tions entre la variation d’un sommet du graphe d’interaction et celle de ses prédécesseurs.
Nous commengons par une version globale du théoréme des fonctions implicites. On no-
tera X' le vecteur X dont on a 6té la i® coordonnée et Y le vecteur (X ¢ U).

Théoréeme 4. On considére une dynamique différentielle % = F(X,U) définie sur

R™?. Sous les hypothése H1, H3 et HY, pour tout Y, I’équation Fl(f”,Xl) =0 admet
une unique solution en X;. Soit la fonction ®; définie par

YY e R Ei(Y) =0 & X; = &;(VY)

Alors
1. ®; est dérivable

2. st Z est une variable apparaissant dans le vecteur Y*, alors ®; vérifie

OPi vy OF; oi o coin ) OFi vi g v
57 7= (G Ohe) S0 e )

Démonstration. Soit 'application ¢, ¢ : X; — FZ(YZ,XZ) Par I’hypothese H4, on sait
que ¢, y:(0) > 0. La fonction ¢“;i est dérivable parce que F; l’est et I’hypothese H3
implique que gi); v est partout négative. Plus précisément,

by, (1) = /O ¢ v (s)ds + &, 5.(0) (3.10)
x aE .
< /aj —kids + ¢, v (0) (3.12)
) Y;
< =Rt + ¢, y.(0) (3.13)

W) < 0, puis par continuité et monotonie de

¢; y, qu’il existe un unique réel dans [0; F(%’O)], noté ®;(Y7), tel que ®, YZ(<I>Z(IA/Z)) =0.
On a ainsi démontré l'existence et 'unicité de ®;. La dérivabilité et la formule
des dérivées partielles découlent de I’application du théoreme des fonctions implicites,

version locale. O

On déduit de cette borne que ¢, y (
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Ce résultat permet d’établir une formule quantitative exprimant la variation entre
deux états stationnaires.

Théoréme 5. Sous les hypothéses H1-Hj, si YV et Y2 sont deux états stationnaires
du systeme alors la variation en concentration d’une espéce v entre les 2 états station-
naires YV et Y2 est donnée par :

OF; o, i) OF; i i
x® _ x :/S_ (aX (v ,@i(y))) 3 oz V@V )dz (3.14)
t kepred(7)

A i i
ou S est un chemin régulier quelconque entre Y1) et Y (2) | et Z, représente la variable
Ui ou X selon que k est une entrée ou non.

A A
Démonstration. Soit S une courbe réguliere quelconque entre Y1) et Y(2) . On a :

)

Xi(z) _ X(l) Y(Q) ) o, (YD) (3.15)
/d‘l’ (3.16)
(3.17)
ZGYZ
an
/ > - < <I>z(f”'))> g? (Y, ®;(Y"))dZ (3.18)
Zeyi

On obtient la bonne formule en notant que si k ¢ pred(i) dans le graphe d’interaction,

oF; __
alors o7 = O

A ce stade, il nous faut faire deux remarques. La premiere c¢’est que si ’hypothése H3
ou H4 n’est pas vérifiée pour un sommet, rien n’empéche de dériver cette relation quan-
titative pour les autres sommets. Deuxiemement, nous n’avons & aucun moment parlé
du chemin réel suivi par le systéme entre les deux états stationnaires. En particulier,
ce chemin n’est pas celui utilisé pour l'intégration qui donne la formule.

Nous pouvons & présent donner une preuve de la contrainte (3.2) (contrainte de
consistance & un sommet 7). Il s’agit comme nous allons le voir d’une version qualitative
du théoreme 5.

Théoreme 6. On considére une dynamique différentielle % = F(X,U) et G =
(V, E,p) son graphe d’interaction. Sous les hypothéses H1-HJ, la variation ZL'Z(-2) — 1‘51)

au sommet i vérifie :
sgn(xZ@) — azgl)) R Z p(k, 1) sgn(z, (2) z,(gl)) (3.19)
kepred (i)

@) (@) 0

ou z;.° représente la variable uy,’ ou x;” selon que k est une entrée ou non.
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Démonstration. On commence par réordonner les termes dans ’équation (3.14) grace
a la commutativité somme/intégrale (la somme est finie) :

z® - = 3 /( 8X) 1§§k (3.20)

kepred(q)

or,\ ! oF, :
Le terme (— ) X?) 8Z; est de signe constant, et on a :
K3

OF,\ ! oF, OF, OF;
snl(~ g ) a0 = s g smn520) (3.21)
= r(k, i) (3.22)

En utilisant la formule de la moyenne, on sait qu’il existe 7 € S tel que :

oF,\ "' oF, () (1)
— = Ay - 3.23
[(-5%) st =Aual? - o) (3.23)
avec Ay; = <_STIZ@’ @i@)>_ g—gi@, ®;(y)). On obtient ainsi :
2 = Y A —4") (3.24)
kepred(i)
avec sgn(Ag;) = r(k,i). D’ou le résultat. O

3.2.5 Discussion

Dynamique inconnue Dans le développement qui précede, nous avons supposé que
la seule information disponible sur le systeme était synthétisée dans le graphe d’in-
teraction. Notre motivation est de produire une méthode applicable sur de grands
systemes ou, en 1’état actuel, la plupart des réactions ont une cinétique inconnue. No-
tons que toute conclusion obtenue dans ce cadre aura ’avantage d’étre tres générale car
ne dépendant pas d’une forme particuliere pour la cinétique. L’obtention de résultats
indépendants du type de cinétique choisi ou de ses parametre est un objectif important
dans les modeles par équations différentielles [18, 91, 74]. Il est en effet techniquement
tres difficile d’estimer précisément la cinétique réelle des équations : il faut pour cela
isoler une réaction dans une condition expérimentale ou les mesures sont possibles, ce
qui demande énormément de travail, quand cela est possible. De plus cette condition
est souvent fort différente du milieu intra-cellulaire, fort complexe et trées encombré.
Pour cette raison, les constantes cinétiques durement acquises peuvent donc étre bien
loin de la réalité. Les prédictions valides pour un large spectre de cinétiques sont pour
cette raison plus fiables. On peut également invoquer une deuxieme raison : les cellules
sont connues pour étre des systemes particulierement robustes a des changements de
condition (température, pression, concentration ...). On préfere donc d’une maniere
générale que les prédictions ne dépendent pas d’une valeur précise d’un parametre.
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Il est vrai néanmoins (et nous y reviendrons plus loin), que ’on connait des grands
types de cinétiques pour les réactions biochimiques, comme les fonctions de Hill pour
les régulations génétiques, les lois d’action de masse pour la signalisation ou encore
les réactions de type Michaelis-Mentens pour le métabolisme [96]. Chaque type est ca-
ractérisé par un certain nombre de parametres qui décrivent completement la cinétique
d’une réaction. Il existe grosso modo, deux fagons d’utiliser cette information :

— une approche numérique, qui consiste a estimer ces parametres a partir d’un
nombre fini de mesures, soit a I'aide de séries temporelles [12], soit a 'aide de
données de perturbations [13], telles que celles que nous utilisons. Pour un systéme
comportant plusieurs dizaines de réactions, ’estimation des parametres requiert
un nombre de mesures et une précision déraisonnables, compte tenu des tech-
niques actuelles.

— une approche qualitative, qui consiste a étudier des abstractions discrétes des
modeles différentiels [10]. Les techniques existantes sont tres adaptées a la qualité
des mesures disponibles, mais d’une complexité prohibitive pour le traitement de
grands systemes. De plus, ces approches sont limitées aux réseaux génétiques.

Dans les deux cas, il s’agit donc d’outils réservés a I’étude fine de « petits » systémes.

Graphe d’interaction constant Nous ’avons vu a plusieurs reprises, le graphe d’in-
teraction dépend en toute généralité de I’état et des entrées du systeme. Or 'hypothese
H1 stipule que nous ne travaillons qu’avec des graphes d’interaction constants. Cette
limitation n’a que peu de conséquences en pratique. La principale raison en est que
pour dériver la contrainte de consistance & un sommet, nous n’avons utilisé que des
conditions locales & ce sommet (dégradation, positivité des concentrations, influences
de signe constant). Par conséquent, si I'une de ces conditions n’est pas remplie pour
un sommet, cela n’affecte en rien les autres sommets du graphe d’interaction. Si une
interaction n’est pas de signe constant, elle invalide la contrainte du sommet a son
extrémité, mais rien de plus.

Dans nos expériences sur données réelles, nous avons trouvé des cas ou le signe
d’une interaction peut changer en fonction de 1’état. Un tel exemple est décrit chez
E. coli dans [42] : le promoteur du geéne cdd contient trois sites de fixation le facteur
Crp, d’affinités différentes. L’étude met en évidence que Crp se lie a des sites différents
selon que la protéine CytR est présente ou non. La conformation globale empéche la
transcription dans le premier cas, et la permet dans le deuxieme.

En pratique, il faut donc disposer de moyens permettant de détecter les régulations
de signe non constant, ce que nous verrons au chapitre suivant.

Séries temporelles L’hypothese H2 restreint ’application de notre méthode aux
données de perturbation. Néanmoins il est assez courant de disposer de séries tempo-
relles, c’est-a-dire de mesures établies en régime transitoire. Le principal intérét de ce
type de mesure est de faire apparaitre une notion de causalité : si deux geénes g et ¢’
ont des variations systématiquement identiques sous diverses conditions, il n’est pas
possible & partir de données de perturbation de décider si g régule ¢', ou si ¢’ régule
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g, ou bien encore si g et ¢’ sont régulés par un gene tiers. Des mesures temporelles
peuvent permettre de lever cette ambiguité si 'on observe systématiquement un gene
varier avant ’autre, ou si les deux genes varient de fagon synchrone. Il peut donc étre —
selon le contexte — particulierement dommageable de ne pas utiliser de telles données.

Nuancons quelque peu ce probleme : il existe une littérature relativement riche
(voir [31, 97, 6] par exemple) sur la reconstruction de réseaux génétiques a partir de
séries temporelles, et se basant sur la modélisation suivante. En notant X le vecteur
des concentrations, et U le vecteur des entrées, ces travaux proposent de modéliser un
réseau génétique par la relation :

X (tx) = AX(t) + BU(t1,) (3.25)

ot X représente le vecteur dérivé de X, et ott A et B sont des matrices. Autrement
dit, ces travaux proposent de modéliser un réseau génétique par un systeme différentiel
linéaire. Il est clair, et particulierement dans le cas des réseaux génétiques, que cette hy-
pothese est fausse. Sur le plan quantitatif, il s’agit donc de modeles trop approximatifs.
En revanche, si le but se limite a reconstruire le graphe d’interaction, ces algorithmes
ont un comportement tout a fait respectable, comme le démontre la comparaison ef-
fectuée dans [5].

En prolongement de ce travail, on pourrait tenter d’exploiter la relation (3.25) en
qualitatif (c’est-a-dire Uinterpréter dans l’algebre des signes). D’un point de vue pra-
tique, cela apporterait quelques avantages : 1. exploiter des séries temporelles fortement
bruitées, 2. lever I'hypotheése de linéarité (linéaire dans 1’algebre des signes n’implique
absolument pas linéarité en quantitatif). On pourrait notamment comparer les graphes
obtenus dans les deux approches : traitement des données quantitatives puis abstraction
en graphe d’interaction d’une part; abstraction des données en signes puis raisonne-
ments qualitatifs d’autre part.

Bilan Dans cette section, nous avons montré que si l'on peut parler du graphe d’in-
teraction d’un systéme, on peut sous certaines hypotheses dériver les contraintes de
consistance aux sommets. En particulier, ce cadre s’applique aux expériences ou un
systeme initialement au repos converge vers un nouvel état d’équilibre apres une per-
turbation de ses entrées. Rappelons qu’aucune hypothese n’a été faite sur 'intensité de
cette perturbation.

L’objectif des paragraphes qui suivent est de revenir sur ’hypothese du graphe
d’interaction constant. Il s’agit de mesurer les limites de cette hypothese — tout autant
que de constater qu’elle est relativement générale, a condition de décrire le systeme
de maniere suffisamment précise. Pour cela, on procédera en deux temps : d’abord
on étudiera le cas des cinétiques usuelles en modélisation, avec un systéeme réduit a
une réaction ; puis on verra sous quelles conditions on peut conserver ’hypothese dans
les systémes a plusieurs réactions. Comme sous-produit important de cette étude, on
montrera sous quelles hypotheses on peut déduire le graphe d’intéraction d’un ensemble
de réactions, sans en demander une description explicite ou quantitative.
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3.2.6 Cinétiques usuelles en modélisation

La premiere étape consiste & montrer que les cinétiques habituellement utilisées dans
les modeles différentiels de réseaux biologiques donnent lieu a des graphes d’interaction
ou les signes sont constants. Nous passons en revue quelques unes des cinétiques les
plus courantes [96].

Cinétiques linéaires Elles sont de la forme : ®(X) = XX, ou A est un vecteur
de réels et N désigne la transposée de A. Les cinétiques linéaires sont utilisées pour
modéliser des phénomenes de transport passif d’'un compartiment cellulaire & un autre,
la dégradation des especes chimiques ou la dilution lors de la croissance de bactéries.
Leur dérivée partielle est donnée par :

0
99 _y,
0X;

qui est signe constant.

Lois d’action de masse Cette cinétique constitue une bonne approximation lorsque
les réactions sont des processus élémentaires (transformations chimiques simples). Elles
sont de la forme ®(X) = x; [[, X;". La dérivée partielle est donnée par :

o® T e
ax; X" H.Xj J
JFi

qui est de signe constant.

Cinétique de Michaelis-Menten Elle décrit la transformation d’un substrat S en
un produit P lorsque celle-ci est catalysée par une enzyme FE. Elle est de la forme

O(S,E) = %, ou k est une constante positive. Les dérivées partielles sont :

0d S 0P kE

0E  k+S S~ (k+S5)?

qui sont de signe positif.
Dans la suite, on appellera réaction monotone une réaction dont la cinétique n’ad-
met que des dérivées partielles de signe constant et positif.

3.2.7 Graphes de réactions

Nous venons de montrer que pour les cinétiques les plus courantes en modélisation,
on peut associer a une réaction un graphe d’interaction dont les signes sont constants.
Nous étudions maintenant le cas des systemes comportant plusieurs réactions. Nous
précisons les conditions permettant d’appliquer notre approche a 1’étude des réseaux
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métaboliques et de signalisation, tels qu’on peut les trouver dans Kegg [50] ou BIO-
BASE [101]. De plus nous montrons qu’une transformation purement graphique permet
de déduire le graphe d’interaction des descriptions fournies dans ces bases de données.

Les réseaux décrits dans les bases de données Kegg ou BIOBASE sont des réseaux
de réactions biochimiques, c’est-a-dire des graphes bipartis spécifiant les substrats et
les produits de chaque réaction. Nous en donnons la définition suivante :

Définition 2. (Graphe de réactions) Un graphe de réactions est un graphe orienté
biparti R = (P,R,I,0) ot P représente l’ensemble des produits, R l’ensemble des
réactions, I C P X R les arcs d’entrée des réactions, O C R x P, et tel que V(i,r) €
P xR =((i,r) € I A (r,1) € O).

Un graphe de réactions est une description qualitative d’un systéeme. S’agissant d’un
ensemble de réactions biochimiques, on peut lui donner une description quantitative,
a base d’équations différentielles. La définition qui suit explicite la compatibilité entre
ces deux descriptions :

Définition 3. (Systéeme différentiel compatible avec un graphe de réactions) On dit
d’un systeme d’équations différentielles dd—)t( = F(X) qu’il est compatible avec un graphe
de réactions R = (P, R, I,0) si il existe un ensemble de cinétiques monotones (M;)rcr
telles que :

- (i,r) el >0

) 8M7» —
- (ri) e 0= ox. =0
— pour tout j € P,

F(X)= Y M/(X)= Y M(X)-7X;

(ri)e0 (i,r)el
ot y; est une constante de dégradation.

Dans cette définition, toutes les réactions sont considérées comme non réversibles.
On représente donc les réactions réversibles par deux réactions distinctes. Nous pouvons
a présent formuler ’objectif de ce paragraphe : pour un graphe de réactions, nous avons
défini 'ensemble des dynamiques qui lui sont compatibles. Chacune de ces dynamiques
admet un graphe d’interaction. Nous formulons une condition purement graphique sur
le graphe de réactions pour que toutes les dynamiques admettent le méme graphe
d’interaction. D’autre part nous montrons qu’on peut déduire ce graphe d’interaction
a partir du graphe de réactions.

Cette transformation graphe de réactions/graphe d’interaction est donnée dans la
définition suivante :

Définition 4. (Graphe d’interaction associé a un graphe de réactions) On appelle
graphe d’interaction associé a un graphe de réactions R = (P, R, I,0) le graphe Gr de
sommets contenus dans P obtenu :

1. en plagant un arc i — j chaque fois qu’on a (i,7) € I, (j,r) € I et i # 7,

2. en placant un arc j Ny chaque fois qu’on a (j,r) € I, (r,i) € O et i # j,
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3. en remplacant tout couple d’arcs j -+, i, j — 1 par un unique arc j SN i.

Nous pouvons a présent formuler le critéere qui garantit que cette construction abou-
tit & un graphe d’interaction ou tous les signes sont définis.

Théoréme 7. Soient un graphe de réactions R = (P, R,I,0) et S un deuxiéme graphe
de réactions défini par :

S = ({p1, 2},
{TlaTQ}a
{(p1,71), (p1,72), (P2, 72)},

{(r1,p2)})

Gr est sans signe T si et seulement si R ne contient aucun sous-graphe isomorphe a S.

Démonstration.

= Par contraposée, supposons R contient un sous-graphe 7 isomorphe a4 S. On re-
nomme les sommets de 7 comme ceux de S. Lors de la construction de Gz, on ajoute
larc p; — py parce que (p1,72) € I et (p2,72) € I; puis larc p; =, P9 parce que
(p1,7m1) € I et (r1,p2) € O; finalement les arcs p; — py et py =, po sont remplacés
par p1 ;) p2.

< Pour la réciproque, on procede encore par contraposée. Supposons que Gr contient
un arc p AN q. Alors pendant la construction de Gg, on a introduit successivement un
arc p =, q et un arc p — ¢. De la premiere régle, on déduit qu’il existe une réaction
r telle que (p,r) € I et (r,q) € O; on en déduit également que p # g (par définition
des graphes de réaction). De la deuxiéme, on a qu’il existe une réaction s telle que
(p,s) € I et (q,8) € I). On a nécessairement r # s puisque sinon on aurait (¢, s) € I et

(s,q) € O. Par conséquent, le sous graphe de R engendré par p, q,r, s est isomorphe a
S. O

Le résultat suivant montre que le graphe d’interaction déduit du graphe de réactions
est identique au graphe d’interaction des dynamiques compatibles avec le graphe de
réactions.

Théoreme 8. Soient R un graphe de réactions, F' une dynamique différentielle com-
patible, et G son graphe d’interaction global. Alors

Gr sans signe ? = Gr =G

Démonstration. Supposons Gr sans signe 7. Soit un sommet ¢, montrons qu’il a les
mémes prédécesseurs dans Gr et dans G. Soit j un autre sommet, on a :
or; oM, oM, o
0x; 0X; ox; i

(3.30)

(r,i)eO (i,r)el
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1°" cas : i #j Supposons que les deux sommes de la formule ci-dessus sont a support

non vide : on peut trouver deux réactions r et s telles que (r,4) € O, (i,s) € I, g]\)?;“ # 0

et g%; # 0. On a alors (r,i) € O, (4,r) € I, (4,8) € I et (i,s) € I. En effet, puisque

M, est monotone, gﬂ)/([; # 0 implique ‘g]\)é“ > 0 (définition des cinétiques monotones) et

oM,
09X,
graphe de réactions). Nécessairement les réactions r et s sont distinctes sinon (i,s) € I
et (s,i) € O, ce qui contredit la définition des graphes de réactions. Le sous-graphe
engendré par p,q,r, s est isomorphe a S ce qui contredit ’hypothese Gr sans signe 7.
Par conséquent, I'une des sommes au moins est a support vide. Si les deux le sont, alors
j n’est pas un prédécesseur de ¢ dans G ; de plus j n’est le substrat d’aucune réaction
consommant ou produisant ¢. Le sommet j n’est pas non plus un prédécesseur de ¢ dans
Gr. Si I'une des sommes est a support non vide, alors j est un prédécesseur de i dans

g et le signe de g)l;; est déterminé. L’arc et le signe sont également trouvés dans Gr,

> 0 implique (j,7) € I (définition des systemes différentiels compatibles avec un

en employant 'une des deux premieres regles de la définition 4.

2¢ cas : i = j Supposons qu’il existe une réaction r € R telle que (r,7) € O. Par
définition des dynamiques compatibles avec le graphe de réaction, %A)/([: est nul. Donc
la premiere somme dans 1’équation 3.30 est a support vide. Par conséquent, on obtient

bien §¢- < 0. m

Ce théoreme montre que les graphes de réactions peuvent étre convertis en graphe
d’interaction, de maniére cohérente avec toute dynamique raisonnable. Le point im-
portant ici, c’est que a une condition pres, le graphe d’interaction trouvé admet des
signes définis. De plus cette condition est vérifiable par un simple parcours du graphe
de réactions.

3.3 Justification booléenne

Nous reproduisons dans cette section un résultat dit & Adrien Richard qui montre
que la contrainte de consistance est également vérifiée dans le cadre des réseaux booléens
synchrones. Soit un ensemble de génes indexé par {1,...,n}. L’état d’activation des
génes est représenté par un vecteur booléen de {0,1}", et I’évolution du systéme est
donnée par une fonction F' : {0,1}" — {0,1}". Une trajectoire du réseau booléen est
une suite (F"™(z))pen pour un état initial z donné. Un état = est dit stable si ¢’est un
point fixe de F'.

3.3.1 Graphe d’interaction

De maniere analogue a ce que nous avons vu dans le cadre différentiel, on peut
définir une dérivée discrete de F' et un graphe d’interaction. Pour un état x, on notera
7' le vecteur obtenu en inversant la i coordonnée de x. On a alors la définition suivante :

Définition 5. (Graphe d’interaction) Pour x € {0,1}", on appelle :
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— j¢ dérivée discrete partielle de F; la fonction

Fy(x) — F(37)
zj — (@);

— et graphe d’interaction en x de F le graphe sur l’ensemble de sommets {1,...,n}
ot figure l'arc j —— i avec € € {+,—} sisgn(Fj;(v)) =«

Fji(z) =

Dans ce cadre, il existe aussi une formulation et des preuves des conjectures de
Thomas, que I’on pourra trouver dans [75, 77]. Comme la encore, le graphe d’interaction
dépend de I’état du systeme, et on peut parler de graphe d’interaction local et global.
Ceci nous conduira & ajouter explicitement une hypothése, toutefois moins forte que
dans le cas différentiel :

Hypothése 5 (H1). Le graphe d’interaction global de F est défini, c’est-a-dire que
r(3,1) = X peqonye sen(Fji(z)) € {4,0,-}.

3.3.2 Déplacement d’équilibre

Le résultat suivant montre que les équations qualitatives sont encore vérifiées dans
le cadre booléen synchrone, & une différence pres.

Théoréme 9 (Richard, 2007). Soit F' une dynamique de graphe d’interaction défini.
Pour tous z,y € {0,1}" et tout i € {1,...,n},
n
Fy(z) # Fi(y) = sen(Fi(y) — Fi(w)) = Y r(j, i) sen(y; — z;)

j=1
Démonstration. La preuve se fait par induction sur la distance de Hamming entre x et
y, définie par :

dlz,y) =#{ilie{l,....n},zi # v }

Cas initial : d(x,y) = 0 implique x = y et F(z) = F(y). La propriété est donc vérifiée.
Hérédité : supposons la propriété vraie pour tout couple (x,y) tel que d(z,y) < N. Soit
(z,y) tel que d(z,y) = N + 1 et supposons F;(x) # F;(y). On pose :

ZT i)sgn(y; — xj)

7j=1
Il nous faut démontrer sgn(F;(y) — Fi(z)) =~ a. Si a = ?, la propriété est vérifiée, sinon
on peut trouver k € {1,...,n} tel que xx # yg, puisque d(x,y) > 1. On a alors 'égalité

suivante :
n

ﬁ Z ]a Sgl’l Z T]a Sgn _xj)
J=15#k
En posant
v = r(k, i) sgn((@*), — xx) = r(k, 1) sgn(yp — =)
on a a = 3+ (parce que ni «, ni 4 ni vy ne sont indéterminés. On distingue maintenant
deux cas :
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o [F5(T") # Fi(xy)] Alors Fy; () # 0, et comme F est de graphe d’interaction défini,
on a r(k,i) = Fgi(z). D’apres la définition de Fj; on a donc :

Fi(@*) — Fi(z) = Fri(2)(T* — x)
d’ou
sen(F(a*) — Fi(a)) = r(k,i) sgn(a* - 2)

par passage aux signes, ce qui donne
sg(F (%) — Fi(x)) =

Comme o,y # 0,7, on a a = 7. De plus Fi(z) # Fi(z"*) et E(:c) # Fi(y)
impliquent F;(y) = F;(z*). On obtient ainsi sgn(F;(y) — Fj(z)) =

o [F;(zF) # Fi(x)] Alors dans ce cas Fy(y) # F;(z¥). Comme d(y,z%) = d(y,z) —1,
on a par hypothese d’induction :

sgn(F(y) — Fi(@") ~ B

Comme B,a # ? et sgn(Fi(y) — Fi(z%)) = sgn(Fi(y) — F;(z¥)), on obtient
sgn(Fy(y) — Fy(z")) = o
O

Notons bien que lorsqu’on a utilisé dans cette preuve des arguments de transitivité
dans l’algebre des signes, nous avons montré avant que les termes substitués étaient
déterminés.

Théoréme 10 (Déplacement d’équilibre dans le cas booléen). Soient F' une dynamique
de graphe d’interaction défini, x et y deux états stables pour F. Alors pour tout i €
{1,...,n},
T F Y= Y — L R Zr(ja i) sgn(y; — ;)
j—i
Démonstration. 11 suffit d’utiliser le théoréme précédent en remarquant que F;(x) = z;,
et que j — i si et seulement si r(j,7) # 0. O

Le résultat que nous obtenons dans le cas booléen est moins fort que dans le cas
différentiel. Nous trouvons ici que si il y a variation non nulle, alors on doit pouvoir
I’expliquer par la variation d’un au moins des prédécesseurs du sommet dans le graphe
d’interaction global. Dans le cas d’une variation nulle, on ne peut pas conclure, comme
le montre cet exemple :

(0,1) — (1,1) D

0,0) (1,00 D
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En numérotant abscisses et ordonnées par 1 et 2 respectivement, on obtient

F12(0,0) = Fi2(1,0) = -1
Fm(O, 1) = F12(1,1) =0

Ce qui signifie que F' admet un graphe d’interaction défini. Si ’on choisit y = (1,1) et
x = (1,0), on obtient effectivement que la contrainte de consistance au sommet 1 n’est
pas vérifiée : d’une part y; — z1 = 0, et d’autre part 7(2,1) = + et yo —x2 = 1.

Le résultat obtenu dans le cas booléen synchrone est tres similaire a celui obtenu
dans le cadre différentiel. Cette analogie vaut tout particulierement pour I’hypothese
de stationnarité des états comparés. Il faut noter que le résultat obtenu est un peu
moins fort dans le cas discret, puisque I’équation de consistance au sommet ne tient
que pour les sommets dont la variation est non nulle. Cette restriction a la contrainte
de consistance confirme ce qu’on peut intuitivement penser en pratique : il est difficile
de décider quand une variation observée est négligeable ou nulle. Cette difficulté est
mise en lumiere dans le cadre booléen ou les variables d’état sont discrétisées. La perte
de précision empéche dans ce cas — contrairement au cas différentiel — de mesurer des
variations trop faibles.

Bilan

Nous avons formalisé un critere de consistance entre un graphe d’interaction et des
mesures expérimentales comparant deux états stables du systeme. Nous déduisons de
ce critere des contraintes reliant le signe des régulations dans le graphe d’interaction
aux signes de variation des especes du systeme. Ces contraintes, appelées contraintes
qualitative de consistance aux sommets, sont exprimées comme des termes interprétés
dans ’algebre des signes. En particulier, la résolution de ces contraintes est un probleme
NP-complet.

Afin de mieux saisir les limites d’applicabilité de ce critére de consistance, nous
avons entrepris d’en démontrer la validité dans un cadre différentiel. Cette étude met
en évidence des conditions sur la stationnarité des états comparés, et sur la monotonicité
des réactions constituant le systeme. Nous rapportons une démarche analogue dans le
cadre des réseaux booléens synchrones, qui confirme ces résultats.

Nous passons a présent a I’étude des contraintes qualitatives. Cette étude inclut non
seulement leur résolution, mais également le calcul de certaines propriétés de ’ensemble
de leurs solutions. Dans tous les cas, ces problemes sont au moins NP-complets; les
applications visées impliquant le traitement de grands volumes de données, il nous faut
fournir des algorithmes particulierement efficaces. Nous proposerons deux approches,
décrites dans les deux prochains chapitres.



Chapitre 4

Résolution par diagrammes de
décision

Nous avons défini au chapitre précédent une notion de consistance entre des données
de perturbation et un modeéle graphique des interactions cellulaires. Pour un graphe G et
un ensemble i de mesures, nous avons introduit la contrainte qualitative Cg qui décrit
la compatibilité entre le graphe d’interaction G et les données de variation u. Nous
montrons a présent comment résoudre ces contraintes qualitatives. Une part importante
de cette étude a été publiée dans [98]

Calculer I’ensemble des solutions d’une contrainte L’approche que nous sui-
vons vise a calculer efficacement toutes les solutions d’une contrainte, plutét qu’une
seule. Ceci nous permettra notamment d’étudier des propriétés de I’ensemble des solu-
tions. Cependant, le nombre de solutions aux contraintes de consistance est généralement
tres élevé, méme pour des graphes d’interactions de dimension modeste. Notre approche
repose pour cette raison sur 'utilisation d’un diagramme de décision, qui est une struc-
ture de données utilisée en vérification de circuit et en model checking. Les diagrammes
de décision nous fourniront une représentation compacte de ’ensemble des solutions
d’une contrainte. Ils nous permettront en outre par un parcours approprié de calculer
des propriétés diverses de ’ensemble des solutions.

Définition des taches d’analyse Une fois l'utilisation des diagrammes de décision
précisée, nous introduisons et formulons précisément les problemes liés a notre démarche
d’analyse (voir figure 1.1). Nous aborderons successivement les taches de vérification, de
prédiction et de correction/diagnostic ; nous montrerons comment résoudre efficacement
chaque probleme par un parcours approprié du diagramme de décision.

Passage a 1’échelle Les algorithmes que nous introduisons dans un premier temps
supposent que l'on peut construire intégralement le diagramme de décision associé a
une contrainte qualitative. Dans les applications que nous visons — notamment 1’étude
de réseaux transcriptionnels étendus — cela n’est pas toujours possible a cause de la

45
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JANA F N

Fia. 4.1 — L’arbre de décision associé a la fonction booléenne F(w,z,y,z) =
(y@z)V(xAwA=2))A(wV-y), ol ® désigne le ou exclusif et z <y < z < w.

taille du diagramme. Nous étudions a la fin de ce chapitre des approches de réduction
et de décomposition de contraintes permettant d’analyser des données a 1’échelle d’un
organisme simple.

4.1 Diagrammes de décision

4.1.1 Définition

Un diagramme de décision est une structure de données permettant de représenter
de maniere compacte des fonctions booléennes. Nous l'introduisons ici en plusieurs
étapes. On dispose d'un ensemble de variables (binaires) et d’un ensemble de constantes.
Leur union est munie d’un ordre total < tel que pour toute constante c et toute variable
VonaV <c.

Définition 6. On appelle arbre de décision un arbre binaire dont les sommets internes
sont des variables, dont les feuilles sont des constantes, et tel que :

— tout chemin de la racine & une feuille est croissant pour <

— pour tout sous arbre A= (V, Ay, A1) on a Ay # A1

A tout arbre de décision A on peut associer une fonction booléenne F 4 de la fagon
suivante. On note Xi,..., X, les variables présentes dans A, ordonnées selon <. Une
valuation des variables X; décrit un chemin de la racine a une feuille dans A : c’est
le chemin tel qu’en chaque noeud interne X; de A, on choisit la branche de gauche si
X; = T dans la valuation, et la branche de droite sinon. F 4 est alors définie comme
la fonction qui a toute valuation de Xq,..., X, associe la constante au bout du chemin
dans A décrit par cette valuation.



Diagrammes de décision 47

La fonction v : A — F4 est injective sur son image. Les fonctions qui ne sont
pas dans l'image de u sont toujours de la forme F(X,Y) = G(X) ou G est dans
I'image de u. Autrement dit, ce sont les fonctions définies avec des variables « inutiles ».
Ce détail aura son importance lorsque nous voudrons définir le nombre de solutions
d’une contrainte qualitative. Pour rendre u bijective on peut quotienter I’ensemble des
fonctions booléennes avec la relation d’équivalence F' ~ G quand F(X,Y) = G(X, Z)
pour tous X,Y,Z. Dans la suite on confondra sauf mention contraire une fonction
booléenne et sa classe d’équivalence selon ~.

Ainsi pour une fonction F', arbre de décision associé est I'unique A tel que u(.A) ~
F. On appelle support de F I’ensemble des variables apparaissant dans A. Notons que
le support de F' ne dépend pas de <.

Un arbre de décision est une représentation simple d’une fonction booléenne mais de
peu d’intérét sur le plan algorithmique : sa taille, en nombre de noeuds croit en O(2")
ou n est le cardinal du support de la fonction représentée. L’idée exploitée dans les dia-
grammes de décision est qu'un arbre de décision A peut contenir plusieurs sous-arbres
identiques. Auquel cas, on décide de ne le représenter qu’une seule fois en mémoire.
Intuitivement, cela revient a fusionner les sous-arbres, et par conséquent a transfor-
mer l'arbre en graphe orienté acyclique. Donnons-en maintenant une définition plus
formelle.

Définition 7. Soit une fonction booléenne F, et Ap = u~Y(F) larbre de décision
associé. Le diagramme de décision Dr de F' est le graphe :
— dont les sommets sont les sous-arbres de Ar,

— et o il existe un arc a —— b (resp. a LN b) si b est le fils gauche (resp. droit)
de a dans Ap.

Dpr est une représentation compacte de Ap, c’est-a-dire ou ’on a supprimé les re-
dondances. Dans les cas favorables, la taille de Dp est notablement plus faible que
celle de Ap. Le gain en taille dépend de 'ordre des variables; cependant, déterminer
I'ordre optimal est un probleme NP-complet [14]. En pratique, les implémentations dis-
posent d’heuristiques de réordonnancement de variables. La transformation d’un arbre
de décision en un diagramme est bijective. Il en découle qu’a une fonction booléenne
correspond un unique diagramme de décision, et réciproquement.

4.1.2 Opérations sur les diagrammes

Nous présentons maintenant les opérations couramment disponibles sur les dia-
grammes de décision. C’est 'occasion d’introduire les notations qui seront utilisées
dans les algorithmes qui sont ’objet de ce chapitre, tout autant que de se familiariser
avec la manipulation des diagrammes. I.’ensemble des opérations sera présenté sous la
forme d’un type abstrait, dans l’esprit de [30].

Constructeurs élémentaires Nous considérerons essentiellement trois types, a sa-
voir constant, variable, et diagram. Le type constant représentera selon le contexte des
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T F

Fi1G. 4.2 — Diagramme de décision associé a ’arbre donné en figure 4.1. Notons le gain
en nombre de sommets, passé de 21 a 9.

booléens ou des signes ; variable représente les symboles de variables qualitatives. L’ap-
pel Leaf(c) construit le diagramme constitué d’une seule feuille qui est la constante c,
qui représente la classe d’équivalence des fonctions a variables qualitatives constantes
valant ¢. L’appel Node(V, dy,dz2) construit un diagramme qui se lit « si V = 4 alors
dy sinon (V = —) dg ». L’usage de la fonction Node est un peu délicat, parce qu’il faut
I’appeler avec des parametres qui respectent la définition des diagrammes de décision.
Pour la premiere condition (monotonie des variables sur un chemin), il faut ajouter une
précondition a l'appel, disant que la variable du noeud créé doit étre plus petite selon
< que les variables se trouvant & la racine des diagrammes fils. Le plus souvent, les
diagrammes sont construits récursivement a partir d’autres diagrammes, ce qui aide a
vérifier cet invariant. Pour la deuxiéme condition on opte en général pour une solution
différente : 'appel Node(V, d, d) retourne d.

Pour ces deux constructeurs, il est essentiel de maintenir 'invariant selon lequel
un neeud donné n’a qu’une seule représentation en mémoire. Pour cela, on utilise des
tables de hachage pour stocker les feuilles et les noceuds présents en mémoire centrale.
Ces tables sont vérifiées avant de créer de nouveaux diagrammes. Nous utiliserons la
notation == pour parler d’égalité physique (c’est-a-dire le fait que deux objets ont une
méme représentation en mémoire). Rappelons que 1’égalité physique implique ’égalité
structurelle (i.e. I’égalité des valeurs représentées), mais que la réciproque est fausse
en général. Les choses sont différentes dans le cas des diagrammes de décision, ou une
implémentation doit vérifier pour tous diagrammes dy, ds, di = dy < di == da. Cet



Diagrammes de décision 49

invariant est une conséquence de propriétés suivantes sur les constructeurs :

c = ¢ = Leaf(c) == Leaf()
dy == dy ANdy == dj, Ax =X = node(x, dy,dy) == node(X', d}, dj).

Visiteurs Nous aurons également besoin d’outils pour inspecter les diagrammes. La
fonction is_const distingue les diagrammes qui sont des feuilles; la fonction root
fournit la variable racine d’un diagramme qui n’est pas une feuille ; les fonctions dthen
et delse donnent les fils gauche et droit respectivement d’un diagramme qui n’est pas
une feuille. On a par exemple 'invariant suivant : root(node(x, di, ds)) == x. Ou encore
dy # dg = delse(node(x,d;,ds)) == do

Opérations définie sur I’ensemble d’arrivée Pour définir des opérations sur les
fonctions, on peut simplement se servir des opérations existant sur I’espace d’arrivée.
Soit p un opérateur unaire sur les constantes, et soit F' une fonction booléenne, sur les
variables X1,..., X, (on les suppose ordonnées). Le calcul du diagramme de p o F' se
base sur I'identité suivante :

— si F est une constante f alors p(F') = p(f)

— sinon

N P

De la, on calcule D,or a partir de D par 'algorithme suivant :

(4.1)

Function op_unaire(op : constant — constant, d : diagram)

if is_const(d) then
| return leaf(op(to_const(d)))
else
fo < op_unaire(op, dthen(d))
fi1 < op_unaire(op,delse(d))
return node(root(d), fo, f1)

Cet algorithme est remarquablement simple. Toutefois, la représentation compacte
des diagrammes ne doit pas faire oublier que 'on travaille in fine sur un arbre binaire.
Une conséquence directe est que l'algorithme présenté plus haut est en O(2") si n est
le nombre de variables dans le support de la fonction booléenne. En effet, méme si
chaque sous-arbre n’est représenté qu’une seule fois en mémoire, cet algorithme les
visite autant de fois qu’ils apparaissent dans ’arbre de décision.

Pour s’en sortir, on a recours a des techniques de mise en cache des résultats. Cette
amélioration est décisive en pratique, puisque dans le meilleur des cas, elle ramene
le nombre de calcul en temps quasi-linéaire en la taille du diagramme (quadratique
pour les opérations binaires, cf infra). Pour alléger les algorithmes, on ne mentionnera
plus la gestion des caches dans les algorithmes. Profitons néanmoins de I'exemple des
opérateurs unaires pour illustrer la démarche. Elle se transpose sans difficulté majeure
dans les algorithmes a venir.
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Function op_unaire’ (op : constant — constant, d : diagram)

if is_const(d) then
| return leaf(op(to_const(d)))

else

try return lookup(op,d)

if échec then
fo < op_unaire’(op,dthen(d))
fi1 < op_unaire’(op,delse(d))
store(op, d)
return node(root(d), fo, f1)

ol lookup et store sont les opérations permettant de consulter et entrer une va-
leur dans le cache respectivement. Dans le méme ordre d’idée, on peut construire des
opérations sur les fonctions booléennes a 'aide d’opérations binaires sur les constantes.
Soit une opération binaire @, ainsi que deux fonctions F' et GG sur les variables X1,..., X,,.
Comme précédemment, on décompose par rapport a la plus petite variable.

— si F' et G sont constantes et valent f et g respectivement, (F®G)(X1,...,X,) =

f&g
— sinon, on a

. F(+,X2,...,Xn)EBG(+,X2,...,Xn)SiX1:—|—
(F&G)(X,..-, Xn) _{ F(= X, ..., X)) ® G(—, Xa, ..., X») sinon

(4.2)

Evaluation Un diagramme représentant une fonction, on doit pouvoir évaluer cette
fonction pour une valeur donnée de ses variables. Plus précisément, soit un diagramme
D représentant une fonction f de variables xq, ..., x,, et soit une substitution o définie
par o(x;) = a;, on souhaite calculer f(ai,...,ay). Il suffit pour cela de « descendre »
dans le diagramme, en choisissant a chaque noeud x; le sous-arbre correspondant a la
valeur a;.

Function eval(d : diagram, o : variable — constant)
Pre : support(d) C dom(o)
if is_const(d) then
| return to_const(d)

else
if o(root(d)) = + then
| return eval(dthen(d))

else
| return eval(delse(d))

Elimination de quantificateurs Terminons cette courte introduction par deux
autres opérations qui seront utiles par la suite, a savoir I’élimination des quantifica-
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teurs 3 et V. Formellement, on considere un prédicat p(X,Y’) — c’est-a-dire une fonction
booléenne & valeurs dans B — et il s’agit de trouver un nouveau prédicat g tel que ¢(X)
est vrai si et seulement si il existe une valeur pour Y telle que p(X,Y’). On notera
¢(X) = 3Y p(X,Y). Dans le cas fini, cette question a une réponse particulierement
simple :
qX)=\/ X,y m) (4.3)
Y1, Yk €B

Néanmoins, un algorithme naif qui s’aventurerait a calculer cette disjonction de 2F
termes serait bien peu utile. Une fagon plus réaliste de procéder consisterait a éliminer
successivement les variables :

3Y,...3Y) P(X,Y1,...,Y%)

=3Y,...3Y, P(X,+,Ys,...,Y,) VP(X,—,Ys,...,Y)
=3Y,...3Y, PY(X.Ys, ..., Y3)

=3Y,...3Y5 PO(X, +,Ys, ..., V) VPO(X - Vs, ... Y, 1)
=3Y,...3v5 PO(X,Ys,...,Y})

A chaque étape de ce développement, I'une des variables est éliminée en calculant
la disjonction correspondant aux valeurs qu’elle peut prendre. Plus précisément, la
fonction P(® correspond & la fonction P ot Pon a éliminé les variables Y7 & Y;. Dans
les cas favorables (c’est-a-dire le plus souvent en pratique), la taille des diagrammes
représentant les P croit lentement avec i, voire pas du tout. En s’appuyant sur la
représentation en diagrammes de décision, on peut proposer un algorithme qui effectue
les k éliminations en un seul passage, comme dans la fonction exists. On obtiendrait
I’élimination de V de la méme maniere en remplacant dans l’algorithme le ou par un
et. On voit sur cet exemple une fagon de procéder que 1'on appliquera régulierement :
grouper plusieurs opérations lors du parcours récursif du diagramme. Ici, on effectue
les k£ éliminations en un seul parcours.

Function exists(Y : variable set, d : diagram)
if is_const(d) then
L return d
else
fo < exists(Y, dthen(d))
f1 « exists(Y,delse(d))
if root(d) € Y then
| return op_binaire(or, fo, f1)

else
| return node(root(d), fo, f1)
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Synthése Nous récapitulons les opérations (et les notations) introduites dans le type
abstrait présenté a la page 53. La syntaxe suivie est un langage proche des signatures
de modules dans Objective Caml.

4.1.3 Fonctions a variables dans un ensemble fini

Il est tout a fait possible de généraliser les diagrammes de décision aux fonctions
a variables dans un ensemble fini quelconque. La démarche est la méme, sauf que
l'on considere des arbres n-aires au lieu d’arbres binaires. Plus précisément si ’on
dispose d’un ensemble V' de variables prenant leurs valeurs dans un ensemble fini £ =
{e1,...,en}, un arbre de décision A = (x, Ay, ..., Ay) doit étre tel que 37,5 A; # A;.

Du point de vue implémentation, les choses sont nettement moins simples, et en
pratique la plupart des bibliotheques disponibles ne proposent que les diagrammes
pour fonctions booléennes. On peut donner deux raisons principales a cela :

— la condition sine qua non pour calculer avec les diagrammes de décisions, c’est
que le diagramme tienne en mémoire principale. Une bonne implémentation doit
donc veiller a optimiser la description du diagramme en mémoire. De ce point
de vue, il est nettement plus simple de connaitre a I'avance I’arité de 'arbre de
décision.

— des variables pouvant prendre plus de deux valeurs peuvent toujours étre codées
en utilisant plusieurs variables binaires. Dans ce cas, on utilise plus de variables.
Cependant une question (ouverte) est de savoir dans quel cas on fait apparaitre
le plus de redondances.

— on peut méme simuler le comportement d’une implémentation d’arbre n-aire en
jouant sur I'ordre d’apparition des variables. A une variable x sur un domaine fini
a n éléments est associé un ensemble de k = [logy n| variables binaires xy, . . ., X.
De plus on impose que les variables x; soient consécutives selon <, c’est-a-dire
X; <Y < Xj42 = Y = X;4+1. Enfin, on transforme tout arbre m-aire en un arbre
binaire de facon a trouver le ¢ sous-arbre du premier au bout du chemin dans le
deuxieme qui correspond au codage binaire de ¢. Voici un exemple pour n = 3.

X X1 F
2 0 T
1 \
X2
F
T
f2 fi fo f2
fi fo
Ce codage est légerement plus volumineux qu’une implémentation directe des
diagrammes de décision n-aires. Mais il présente 1’avantage de reposer sur des
implémentations tres efficaces. Notamment on pourrait — mais cela reste a faire
— répondre a la question évoquée au point précédent en comparant la taille des

diagrammes quand on relache la contrainte sur I'ordre des x;.
Dans ce qui suit, nous représentons les contraintes qualitatives a 1’aide de dia-
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Module BDD

type variable
type constant
type diagram

// Visiteurs
val is_const : diagram — bool
val to_const : diagram — constant
[Pre : to_const(d) if is_const(d)]
val root : diagram — variable
[Pre : root(d) if —is_const(d)]
val dthen : diagram — diagram
[Pre : dthen(d) if —is_const(d)]
val delse : diagram — diagram
[Pre : delse(d) if —is_const(d)]

invariant d : diagram = —(dthen(d) = delse(d))

// Constructeurs

val leaf : constant — diagram
[Post : ¢ = ¢ = leaf(c) == leaf()]
[Post : to_const(leaf(c)) = (]

val node : variable — diagram — diagram — diagram
[Pre : node(v,t, f) if is_const(t) V v < root(t)]
[Pre : node(v,t, f) if is_const(f) Vv < root(f)]
[Post : root(node(v,t, f)) = v]
[Post : node(v,t, f) == node(v,t, )]
[Post : dthen(node(v,t, f)) == {]
[Post : delse(node(v,t, f)) == f]

// Opérations

val op_unaire : (constant — constant) — diagram — diagram

val op_binaire : (constante — constant — constant) — diagram — diagram —
diagram

// Elimination de quantificateurs
val exists : variable set — diagram — diagram
val forall : variable set — diagram — diagram
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grammes de décisions. Les variables qualitatives ont un domaine a trois valeurs (4, —,
et 0) et nous aurons donc besoin de diagrammes ternaires. Pour la réalisation des
algorithmes nous nous sommes appuyés sur le logiciel Sigali [63], qui posséde une
implémentation dédiée des diagrammes ternaires. Nous avons supposé, mais pas vérifié,
que cette option était la plus appropriée pour limiter ’espace mémoire consommé par
les diagrammes. Dans la suite, nous exposerons des algorithmes travaillant sur des
arbres binaires, pour alléger leur présentation. A cette fin, nous limiterons le domaine
des variables a {4+, —}, excluant ainsi la valeur 0. Le développement qui précede montre
une facon simple d’adapter nos propositions au cas de variables sur domaines finis'.

4.2 Probléeme de vérification

4.2.1 Diagramme associé a une contrainte qualitative

Une contrainte qualitative peut étre vue comme une fonction booléenne, a savoir
la fonction indicatrice des solutions de la contrainte. Ce que nous proposons dans ce
chapitre, c’est de représenter une contrainte qualitative sous la forme d’un diagramme
de décision. Plus précisément, il s’agit d’une représentation en extension — mais com-
pacte — de I’ensemble des solutions d’une contrainte qualitative ; nous verrons comment
répondre a plusieurs questions sur I'ensemble des solutions par des parcours récursifs
du diagramme. Nous commencons par préciser sa construction.

Comme déja mentionné, la fagon la plus simple de construire le diagramme de
décision d’une fonction est de procéder de proche en proche, ou plus précisément en
suivant la structure de I’expression définissant la fonction. Ici, il suffit de définir par
induction le diagramme associé a une contrainte qualitative, comme montré dans la
fonction of term définie plus loin.

Il nous reste maintenant & préciser la relation entre I’ensemble des solutions d’une
contrainte C et le diagramme of term(C). Intuitivement, il suffit de suivre un chemin
de la racine du diagramme a la feuille T pour obtenir une solution. Sur ce chemin,
il peut manquer certaines variables apparaissant dans C; ces variables peuvent alors
prendre n’importe quelle valeur.

Plus formellement, soient C une contrainte qualitative, et D = of_term(C). Un

chemin 7 de D est dit chemin solution s’il part de la racine et finit au sommet T,
Si S; S4 N

c’est-a-~dire s’il est de la forme x;, - Xig EECN X, —5 T, on Si1y- -, 5, sont dans

{+,—}. On associe a 7 une valuation v, telle que vr(x;.) = s;,. L’application v, est
en général une valuation partielle de C, c’est-a-dire dom(v,) C support(C). On note
valc () Pensemble des valuations totales de C qui sont des prolongements de vs.

Proposition 3. Soit S = {valc(w) | ® chemin solution dans D}. S est une partition
de l'ensemble des solutions de C.

!Notre implémentation dédiée au cas des variables a trois valeurs conduit & des algorithmes similaires
a ceux exposés dans cette these, mais un peu compliqués par la présence de trois fils & chaque noeud,
au lieu de deux.
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Function of_term(T : term)

match T with

/\z‘el Ci
if I =0 then
| return leaf(T)

else
Let je I
return op_binaire(and, of term(c;), of_term(/;cp (5} Ci))

LLI
<
(e}

return exists({v},c)

<C
<
0

return forall({v},c)

P®q
return op binaire(®, of term(p), of term(q))

return op unaire(—, of term(p))

[<]

return node(v,leaf(+),leaf(—))

cesS
return leaf(c)
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D
B XAxXB—XC
XB%XA—XC
/A XD’&/’XA
C

Fi1a. 4.3 — Exemple de graphe d’interaction et de la contrainte de consistance associée
pour la construction des diagrammes.

Démonstration.

1. les éléments de S sont non vides Soit 7 un chemin solution dans D. valc(7)
est au minimum de cardinal 1 si v, est une valuation totale.

2. les éléments de S ont une intersection vide Soit 7/ un chemin solution
distinct de 7. Les chemins 7 et 7’ admettent un préfixe commun de longueur maximale u
contenant au moins la racine de D, et ne contenant pas T (sinon 7 et 7’ sont identiques).
7 est de la forme u —— v et 7’ de la forme u —— v/ avec s Z# t. Soit x le dernier
sommet de u. Pour toutes valuations (v,v’) € valc(r) x valc(n’), on a par conséquent
v(x) # V().

3. L’union des éléments de S est ’ensemble des solutions de C Soit une
solution de C. Alors cette valuation décrit un chemin (unique) dans D qui se termine
par la feuille T. O

Voyons cette construction a I'ceuvre sur un exemple, avec le graphe d’interaction
présenté en figure 4.3. Le sommet C' est considéré par défaut comme une entrée parce
qu’il n’a aucun prédécesseur. Le tableau 4.1 donne les principales phases de la construc-
tion de la contrainte. La variable X¢ n’apparait pas dans le diagramme final, qui admet
deux chemins solution m = X4 =+, Xg =, Xp et Ty = Xy — Xg — Xp —
T. Chaque chemin permet de construire deux solutions a la contrainte qualitative, une
pour chaque valeur de Xc.

4.2.2 Algorithme pour la vérification

Une fois l'ordre sur les variables fixé, les diagrammes de décision fournissent une
représentation canonique de nos contraintes qualitatives. Dit d’une autre maniere, deux
contraintes qualitatives sont équivalentes (décrivent le méme ensemble de solutions) si
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Xa~ Xp—Xc
XA XB — XC XD XA XB =~ XA — XC XA ~ XB — XC XB =~ XA — XC
XD ~ XA
CaD oD CaD
OIO, Ced &) Ced (=)
T 3’,‘1" T AT
> ¢ @
DR O DAD,

TAB. 4.1 — Principales étapes de construction pour le graphe d’interaction donné en
figure 4.3. A chaque expression sur la premiere ligne correspond juste en dessous son
diagramme pour l'ordre Xa < Xg < Xc < Xp. De gauche a droite, les exemples choisis
illustrent la construction de diagramme pour une variable, une expression polynomiale
a partir des digrammes des variables, une égalité qualitative a partir des diagrammes
des variables, une égalité qualitative a partir des diagrammes d’expressions polyno-
miales (deux exemples), et enfin une conjonction a partir des diagrammes d’égalités
qualitatives.

elles ont méme ensemble de variables libres et méme diagramme?. Nous utiliserons
souvent un cas particulier important : quand un diagramme n’a aucun chemin de la
racine vers T, alors il est nécessairement égal au diagramme contenant la seule feuille
F. Cela nous permet de tester facilement I’existence d’une solution & une contrainte a
partir de son diagramme.

Proposition 4. Soit une contrainte qualitative C, et D le diagramme de décision as-
socié. La contrainte C admet une solution si et seulement si D n’est pas réduit a la
feuille F'.

Nous avons a ce stade obtenu un algorithme pour le probleme suivant :

Probléme 1 (Vérification sous N-consistance). Soient un graphe d’interaction G =
(V,E,p), et un ensemble pu de mesures. Déterminer si G et u sont N -consistants.

Il suffit de calculer la contrainte C’g‘ introduite dans la définition 1, calculer son dia-
gramme et vérifier qu’il est différent du diagramme F.

4.3 Probleme de prédiction

4.3.1 Invariant de I’ensemble des modéles

Une contrainte qualitative décrit un ensemble de solutions. Il n’y a a prior: aucune
raison d’en privilégier une, mais on peut en revanche s’intéresser aux invariants de cet

2Notons que le test d’égalité des diagrammes se réduit méme & un test d’égalité physique, puisque
les implémentations assurent 'unicité de la représentation en mémoire.
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ensemble, c’est-a-dire aux propriétés vraies pour toute solution de la contrainte. Dit
autrement, un invariant est une conséquence de la contrainte. Dans la suite, nous tra-
vaillerons uniquement sur des invariants simples, qui stipulent qu’une variable donnée
prend la méme valeur dans toutes les solutions de la contrainte.

Définition 8 (Invariant). Soit une variable v et un signe s dans S*. Le couple (v, s)
est un invariant d’une contrainte satisfiable C sur l’ensemble de variables X si s’ #
s = —-3X Clv:=¢].

Il découle de la définition que toute solution v de C vérifie v(v) = s. La recherche des
invariants d’une contrainte est un probleme de prédiction, que nous étudions mainte-
nant :

Probléme 2 (Prédiction sous N -consistance). Déterminer tous les invariants d’une
contrainte.

Voici un premier algorithme, calqué sur la définition :

Function invariant® (d : diagram)
Pre : d # leaf(F)

V « support(d)
for x e V do
E —{se€S|eval(d,[x:=s]) # leaf(F)}
L if |[E| > 1 then V «— V' \ {x}
return V

Pour chaque variable x, I’algorithme calcule les diagrammes de C[x := s] pour s dans
S*. Si le diagramme obtenu est la constante F alors il n’est pas possible de trouver une
solution de C telle que x = s. L’ensemble E contient donc les signes possibles pour x.
Par conséquent :

— puisque C est satisfiable (précondition) E contient au moins un élément

— x peut former un invariant ssi £ contient au plus un élément.
Cet algorithme est simple, mais nécessite le calcul de |[S*|.|support(d)| diagrammes, a
travers ’emploi de la fonction eval. Voyons a présent comment caractériser les inva-
riants directement dans le diagramme de décision.

Proposition 5. Soit C une contrainte, et Dc son diagramme de décision. (x,s) est un
invariant de C ssi :

- x est dans le support de D¢

~ tout chemin de la racine a la feuille T est de la forme ...x —— ...

La premiere condition implique que D¢ n’est pas une constante, et par conséquent
que C admet au moins une solution. Cette propriété justifie I’algorithme récursif values
donné plus bas. A un diagramme D représentant une contrainte C et une variable x,
lalgorithme values associe I’ensemble des valeurs s telles que C[x := s] admet une
solution. Pour s’en convaincre, examinons les trois cas (disjoints et exhaustifs) envisagés
dans ’algorithme :
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1. si D est une constante ou si la variable de téte de D suit x pour l'ordre <, cela
signifie que x n’apparait pas dans D, et n’est donc pas contrainte.

2. sila variable de téte de D est x alors on vérifie I'existence de solutions pour x = +
et pour x = —. Par définition du diagramme, les nceuds fils de D représentent les
contraintes C[x = 4] et C[x = —]. On teste I’existence de solution de chacune de
ces deux contraintes en les comparant au diagramme constant F.

3. si la variable de téte w de D n’est pas x, alors on utilise la relation suivante

{s|Cx=s]}={s|Cx=s,w=4]}U{s | C[x=s,w=—]}

Function values(x : variable, d : diagram)
Pre : d # leaf(F)
case is_const(d) V x < root(d)
| return {+,-}

case x = root(d)
P, — if dthen(d) = leaf(F) then {-} else ()
P_ — if dfalse(d) = leaf(F) then {+} else ()
return Py UP-

case x > root(d)
| return values(dthen(d)) Uvalues(delse(d))

On peut en fait calculer en un seul parcours du diagramme tous les invariants,
comme montré dans la fonction invariant(® définie plus bas. Cette fonction retourne
un ensemble de couples variable/valeur qui sont des invariants du diagramme considéré.
Le cas terminal de la récursion dit qu’une constante n’admet aucun invariant. Si le
diagramme considéré est un noeud, alors soit un seul de ses fils mene a la feuille T — et
alors on a trouvé un invariant, que I'on ajoute a ceux que ’on trouve récursivement ;
soit les deux fils peuvent conduire & la feuille T. Dans ce cas la variable correspondant
au nceud n’est pas un invariant, et on cherche récursivement les invariants dans chaque
branche. On utilise enfin le fait que si un couple n’est pas présent dans les deux résultats,
alors il n’est pas un invariant dans I'un des fils, ou alors la valeur de la variable est
différente dans les deux fils.

4.3.2 Marginales

Définition Un invariant est une conséquence d’une contrainte donnée, et constitue
pour cette raison une prédiction bona fides d’'un modele. On peut également s’intéresser
a une notion moins forte, que nous introduisons ici. La contrainte de consistance Cg
définie au paragraphe 3.1.3 décrit ’ensemble des modeles admissibles. En supposant
tous ces modeles sont équiprobables, on peut s’intéresser a la probabilité qu’une variable
x prenne la valeur s, soit P[x = 3|Cg]. Cette probabilité peut étre calculée en comptant
les solutions de la contrainte.
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Function invariant® (d : diagram)
if is_const(d) then
| return
case dthen(d) = leaf(F)
| return {(root(d),—)} U invariant(®(delse(d))
case delse(d) = leaf(F)
| return {(root(d),+)} U invariant(® (dthen(d))
otherwise
I « invariant(® (dthen(d))
I — invariant(®(delse(d))
return I NI

Solutions de la contrainte et chemin dans le diagramme A premiere vue —
mais a premiere vue seulement — on pourrait penser que compter les solutions d’une
contrainte revient a compter les chemins de la racine du diagramme au sommet T.
Cette approche simple est malheureusement fausse, puisque comme on ’a vu, on peut
associer plusieurs solutions a chaque chemin de la racine a la feuille T. On peut le voir
sur I’exemple présenté en figure 4.3 : le systeme qualitatif comporte 4 variables, mais
le support du diagramme représentant les solutions de ce systeme n’en a plus que 3;
la variable représentant la variation du sommet C n’est pas contrainte, et n’apparait
donc pas dans le diagramme. En conséquence, il y a deux chemins dans le diagramme
qui menent au sommet T, mais bien quatre solutions a la contrainte initiale.

Comme nous l'avons déja vu, un diagramme de décision est une représentation
canonique pour une classe d’équivalence de fonctions booléennes. Ces fonctions different
par leur ensemble de départ, vu comme un ensemble de variables. Pour désigner une
fonction — ou une contrainte — booléenne, il faut donc donner a la fois son diagramme
et ’ensemble de ses variables. C’est pour cette raison qu’on ne peut compter le nombre
de solutions d’une contrainte a partir de son seul diagramme.

Valuations associées 4 un chemin Donnons-nous une contrainte C, son diagramme
de décision D¢, et un chemin 7 de la racine au sommet T. Nous avons introduit au
paragraphe 4.2.1 la valuation partielle v, décrite par 7, ainsi que ’ensemble valc(7)
des solutions de C qui sont des prolongements de v,. Soit X ’ensemble des variables
libres de C. Pour construire un prolongement de v, sur X, il suffit de choisir une valeur
parmi deux pour chaque variable de C n’apparaissant pas dans 7. On en déduit I’égalité
suivante :

| valc (mr)| = 2XI=Iml+1 (4.4)

Pour obtenir le nombre total de solutions de la contrainte (noté #C), on somme
| valc(7)| pour tous les chemins 7 de la racine a la feuille T :

#C = |valc(m)| (4.5)
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Cette formule n’est pas encore tres opérationnelle ; nous voyons a présent une formule
de récurrence qui constitue la base d'un algorithme sur les diagrammes de décision.

Formulation récursive Il suffit de décomposer le terme par rapport a une variable
libre. Soit x une variable libre dans C, on a :

#C = #C[x := 4] + #C[x := -] (4.6)

Cette relation est utile pour le calcul récursif que nous proposons avec la fonction
cardinal définie plus bas. Cette fonction regoit en argument la représentation cano-
nique d’une contrainte, i.e. son diagramme et ’ensemble de ses variables libres. La
précondition indiquée assure que le support du diagramme est bien contenu dans les
variables libres de la contrainte. Trois cas sont envisagés : tout d’abord, si le diagramme
est constant, alors le résultat est donné par la formule (4.4). Dans le cas contraire, le dia-
gramme a une variable de téte, que I’on va comparer a la variable libre de la contrainte
la plus prioritaire. Si elles sont égales, on applique la formule (4.6). Si la contrainte
admet une variable libre plus prioritaire que la racine du diagramme, cela signifie que
la variable en question n’apparait pas dans le diagramme, et que par conséquent les
diagrammes de C|[x := 4] et C[x := —| sont identiques, d’ou la récurrence employée.
Dans les deux cas, la précondition pour ’appel récursif de la fonction cardinal est bien
vérifiée. Enfin le cas ou la variable a la racine du diagramme est strictement plus prio-
ritaire que les variables libres du diagramme ne peut pas arriver, parce qu’il contredit
la précondition.

Function cardinal(d : diagram, S : variable set)
Pre : support(d) C S
if is_const(d) then
L return 2!

X« minS // Minimum selon <

if root(d) = x then
ni < cardinal(dthen(d), S \ {x})
ng < cardinal(delse(d), S \ {x})
return nqy + no

if root(s) < x then
| return 2 x cardinal(d, S\ {x})

Proportion de solutions Avec cet équipement, nous pouvons calculer la probabilité
qu’'une variable x prenne la valeur s sous la contrainte C. Elle s’exprime par :

#C[x := 9]
#C

Comme nous 'avons vu, le nombre de solutions d’une contrainte dépend du nombre de
ses variables libres et ce, méme si certaines de ces variables peuvent prendre n’importe

Pix = s|C] =
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quelle valeur. De telles variables n’apparaissent pas dans le diagramme de la contrainte.
Cela signifie que 'on peut augmenter « artificiellement » le nombre de solutions en ajou-
tant des termes dans une conjonction qui sont des tautologies et qui ont des variables
libres (comme x ~ ? par exemple).

Nous allons voir maintenant que cette propriété désagréable disparait quand on
considere non plus le nombre de solutions d’une contrainte, mais le rapport entre le
nombre de solutions et le nombre total de valuations des variables de la contrainte.
Cette proportion de solutions est invariante quand on ajoute des « variables inutiles » a
la contrainte. Soit C une contrainte et X I’ensemble de ses variables libres. La proportion
de solutions de C est définie comme :

_ #C
PC—W

La proposition suivante dit essentiellement que cette grandeur est indépendante de
I’ensemble des variables libres de la contrainte.

Proposition 6. La fonction C +— pc est constante sur une classe d’équivalence selon
~ (voir définition page 47).

Démonstration. Soit une contrainte booléenne C, et X ’ensemble de ses variables libres.
Le couple (D¢, X) ou D¢ est le diagramme de décision de C désigne C de maniere
univoque. Nous avons en particulier support(Dc) € X. Nous pouvons considérer 3
cas :

1. Dc = T. Toute valuation des variables de X est une solution donc pc =1
2. D¢ = F. Aucune valuation des variables de X n’est une solution donc pc =0

3. Alors soit x la variable a la racine de D¢c. On a :

#C
pc = W

_ #Cx = ]+ #Cx =]

- 21X

_1(#C[x:: +]  #Clx:= —])
2 2|X|71 2|X\71

_1(#C[x:: +]  #Cx:= —])
202X\ 21X\ {x}|

_ PClx=+] T PChe=]

2

Dans chacun des cas, la proportion ne dépend pas de X, mais seulement du diagramme
Dc, qui est constant sur une classe d’équivalence selon ~. ]

Calcul de la proportion de solutions On déduit de cette preuve un algorithme
pour le calcul de la proportion, décrit dans la fonction proportion. La fonction procede
récursivement sur le diagramme de décision en reprenant les trois cas de la preuve
ci-dessus.
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Function proportion(d : diagram)
case d = leaf(T)
L return 1
case d = leaf(F)
L return 0
otherwise
p+ < proportion(dthen(d))
p— < proportion(delse(d))
ey
2

return

Calcul des marginales On considére a nouveau une contrainte C, X ’ensemble de
ses variables libres, et x une variable quelconque. On voit maintenant par un calcul
rapide que la marginale P[x := s|C] est elle aussi constante sur une classe d’équivalence
selon ~ :

#C[x := 5]
#C
_ #Clx:= 4] 21Xl
21X] #C
_ 2pC[x::s]
- pc

Pix = s|C] =

Les marginales peuvent étre calculées en construisant le diagramme de C[x := +] pour
chaque x dans X, et obtenir le résultat par la formule ci-dessus.

Notons pour finir un point important sur I'implémentation : le nombre de solutions
d’une contrainte croit au pire en 2" si n est le nombre de variables dans le support du
diagramme. FEn pratique, le nombre de modeles satisfaisant la contrainte est souvent
tres élevé, et pour éviter les débordements il faut avoir recours a des entiers de taille
arbitraire. Les proportions sont elles calculées sous forme de rationnels.

4.4 Diagnostic des contraintes non satisfiables

Jusqu’ici, nous n’avons considéré que le cas ou la contrainte étudiée est satisfiable.
Lorsque ce n’est pas le cas, on aimerait pouvoir circonscrire des raisons possibles pour
ce probleme. Si un graphe n’est pas compatible avec des observations, ce peut étre pour
trois raisons :

— signe erroné

— fleche manquante

— équation non applicable (voir la discussion sur les hypotheéses dans le cadre

différentiel au chapitre précédent).

Nous proposons une formulation générale pour définir ce type de probleme et ce
que nous appellerons un diagnostic.
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Définition 9. Soit C une contrainte et o une substitution, telles que Clo] n’admet
aucune solution. On appelle correction une substitution o’ de méme domaine, telle que
Clo’] admette une solution.

La distance entre deux mesures o et o' de méme domaine est le nombre de leurs
différences. Plus précisément,

d(o,0') = |{x € dom(a)|o(x) # o’ (x)}
Une correction est un diagnostic si d(o,0’) est minimale.

La fonction que nous venons de définir est bien une distance : comme les fonctions
ont méme domaine, il s’agit de la distance de Hamming. Voyons tout de suite comment
cette définition se spécialise en différents problemes pratiques.

4.4.1 Données bruitées

Les données de puces & ADN fournissent le rapport des concentrations/niveau d’ex-
pression entre deux conditions expérimentales. Quand le rapport est significativement
différent de 1, I'interprétation en un signe de variation est relativement stire. Néanmoins
pour la plupart des genes, la variation n’est pas significative, et peut mener a une in-
terprétation incorrecte : un ratio légerement supérieur a 1 doit-il étre entré dans le
modele comme une variation positive, ou nulle, ou carrément rejetée 7 On peut envisa-
ger deux stratégies :

— soit rejeter toutes les ratios en-dessous d’un certain seuil, au risque de perdre de

I'information,
— soit garder toutes les données, quitte a obtenir une contrainte qualitative sans
solution.
La deuxieme alternative requiert de disposer d’'un outil permettant d’identifier les
données peu fiables. Voici une facon de procéder :
— construire la contrainte de consistance aux sommets Cg
— construire la mesure pg correspondant aux données expérimentales, avec l'in-
terprétation suivante :
ratio pour x p(x)
r<—0 - -
—-0<r<f — 0
0<r - +

— dans le cas ou Cluy| n’est pas satisfiable, déterminer ’ensemble des diagnostics
— chercher dans l’ensemble des diagnostics les invariants, ou calculer les marginales.

4.4.2 Reconstruction de réseau

Une problématique récurrente en biologie moléculaire consiste a déterminer les inter-
actions moléculaires dans un systeme biologique donné, a partir de données de pertur-
bation. La quantité de données disponible est en général tres insuffisante pour suffire
a cet objectif. Plus formellement, cela signifie que le probleme inverse est mal posé,
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c’est-a-dire qu’il admet un grand nombre de solutions. On impose donc en général un

critere de parcimonie, qui limite le nombre de solutions. Ce genre de tache entre tout
a fait dans notre problématique :

— on considere un graphe d’interaction G complet, dont les arcs sont étiquetés avec

un signe, éventuellement nul. Ainsi, les équations qualitatives sont de la forme :

Xik ~ Z Sjixjk
j€eg

— on considere la mesure p ou les données expérimentales sont intégrées comme
au-dessus, et ot 'on ajoute u(Sj;) = 0.

— le probléme de reconstruction consiste alors & trouver I’ensemble des ' qui sont
des diagnostics de p, et a y chercher des invariants ou calculer les marginales

4.4.3 Recherche des sous-systémes incompatibles

Une contrainte C est une conjonction de contraintes plus simples, notées C;;. Cha-
cune de ces contraintes C;; est associée & un sommet 7 et une mesure k. Pour faciliter la
lecture et la compréhension des inconsistances détectées, une possibilité consiste a iso-
ler les contraintes qui en sont a 'origine ; et si possible d’en isoler le plus petit nombre
possible. La encore notre formulation permet d’aborder ce probleme :

— a chaque contrainte C;;, on associe une variable booléenne B;i, et on considere

les contraintes :
Cir, = Bir V Cir ]

et leur conjonction :

= A
i,k

— on se donne la mesure i telle que fi(Bjx) = F
— si C[] n’est pas satisfiable alors on calcule les diagnostics fi/

4.4.4 Calcul des diagnostics

Nous montrons & présent comment calculer tous les diagnostics d’'une contrainte non
consistante avec une mesure (voir la fonction diagnostic). Comme dans les sections
précédentes, il s’agit d’un calcul récursif sur le diagramme représentant la contrainte.
La difficulté ici repose sur le stockage des diagnostics trouvés, qui peuvent en effet
étre tres nombreux. L’astuce consiste a stocker I’ensemble des diagnostics comme un
diagramme de décision. La valeur calculée par la fonction diagnostic est une paire,
comportant la distance de la mesure a ses diagnostics et ’ensemble des diagnostics,
lui-méme représenté par un diagramme.

Pour alléger la présentation, nous avons introduit une fonction lin qui est un
constructeur de diagramme analogue a node, et qui recoit trois arguments : une variable
x, un diagramme D et un signe s. La fonction 1lin construit le diagramme avec x a la
racine, avec D pour le fils correspondant au signe s, et leaf(F) pour 'autre fils.
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Function diagnostic(d : diagram, pu : substitution)

Output: une paire (0,C) ou C représente I’ensemble des diagnostics de d|[u]

if d = leaf(F) then return (oo,d)
if dom(p) = 0 then return (0,1leaf(T))
x «— mindom(x) // minimum selon <
if d = 1leaf(T) then

(6,m) « diagnostic(d, i/ dom(u)\{x})
| return (0,1lin(x,m, u(x)))
if root(d) < x then

(04, m4) <« diagnostic(dthen(d), i)

(6—,m_) « diagnostic(delse(d), u)
0 «— min {d4,0_}
return (6, ey 1y 5,—5 1in(root(d), ms, s))

f root(d) > x then

(6,m) « diagnostic(d,dthen(u))
| return lin(x,m, u(X))
if root(d) = x then
(04,m4) < diagnostic(dthen(d), 1/ dom(u)\{x})
(6—,m-) « diagnostic(delse(d), 1/ dom(u)\{x})
if u(x) =4 thend_ «—o0_+1lelsedp «— oy +1
0 «— min {d4,0-}
return (6, \ ey 5,25 1in(x,ms, s))

e
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Une limite importante de cet algorithme est qu’il requiert la construction de la
contrainte (c’est-a-dire la conjonction complete). Or celle-ci peut contenir un grand
nombre de variables et ne pas tenir en mémoire centrale. C’est un sérieux handicap
pour la reconstruction de graphe d’interaction : le nombre de variables de la contrainte
croit évidemment en O(n?) si n est le nombre de genes.

4.5 Réduction, décomposition des systemes

Tous les algorithmes que nous avons proposés jusqu’a présent pour étudier une
contrainte supposent de construire au préalable son diagramme de décision. C’est vrai
aussi bien pour trouver les solutions, les prédictions et les diagnostics d’une contrainte
donnée. 11 s’agit 1a d’une faiblesse importante de cette approche, puisque si le nombre
de variables augmente trop, le diagramme peut ne plus tenir en mémoire centrale.

Nous proposons ici de déterminer si 'on peut répondre aux mémes questions sans
jamais calculer le diagramme complet. Pour cela, nous allons étudier les contraintes qui
sont des conjonctions et qui sont telles qu’une variable donnée apparait dans un petit
nombre de contraintes.

Définition 10 (Graphe d’une conjonction). Soit C = A, ;c, C;(X®), ot X @ est I’en-
semble des variables libres apparaissant dans la contrainte C;. Le graphe de la conjonc-
tion C noté Gc est le graphe biparti défini comme suit :
— les sommets de Gc sont d’une part les contraintes C; pour 1 < i < n, et d’autre
part les variables libres de C.

— pour chaque contrainte C; et pour chaque variable x € X@  le graphe contient
Uaréte {x,C;}

Nous utiliserons ce graphe pour étudier les systemes obtenus en sélectionnant un
sous-ensemble des contraintes de la conjonction. Pour obtenir le sous-graphe correspond
a un sous-ensemble de la conjonction, il suffit de construire le sous-graphe engendré par
les sommets contrainte correspondant et tous leurs voisins directs. On parlera notam-
ment de sous-graphe induit par un sous-ensemble de contraintes, que ’on notera < E >.

4.5.1 Reéduction préservant I’existence de solution

Dans ce paragraphe, nous exploitons la forme particuliere des contraintes de consis-
tance aux sommets.

Proposition 7. Soit une contrainte C = A, Ci(X®). Si Gc contient un som-
met contrainte Cy, relié a un sommet variable v de degré 1, alors la contrainte D =
Ni<i<n,izk Ci(X @) est telle que toute solution de D peut étre étendue en une solution
de C.

Démonstration. Soit une solution u de D. La variable v n’apparait que dans la contrainte
Cg, donc il suffit de trouver une valeur de v rendant Cj satisfiable. La contrainte Cj est
de la forme X; = Xy + -+ - + X;. Soit i tel que X; = v.



68 Résolution par diagrammes de décision

1. sii=1, alors ¢ = (Xg + -+ -+ X;)[¢¢] est une constante. Si ¢ = ? toute valeur pour
v convient. Sinon, il suffit de poser v = c.

2. sii > 1, il suffit de poser v = p(X7).
O

Proposition 8. Soient une contrainte C = A\ .., Ci(XD) et Gc le graphe de la

conjonction. On considére lapplication t : Cr— N;cp\ p X)), ou E={C; |1<i<
n} et FF={Cy | Iv {Cs,v} € Gc Adeg(v) =1}.

1. La suite (tk(C))k admet une limite, appelée contrainte réduite.

2. Toute solution de la contrainte réduite peut étre étendue en une solution de la
contrainte originale.

Démonstration. La fonction t est décroissante au sens de l'inclusion, en identifiant les
conjonctions a l’ensemble des contraintes dans la conjonction. La suite (tk (C))k est
donc elle aussi décroissante et elle est de plus minorée par (). Par conséquent elle admet
une limite.

O

Nous venons de définir une opération de réduction du systéme, telle que toute so-
lution du systéme réduit peut étre étendue pour construire une solution du systeme
original. De plus, la preuve donne un algorithme effectif et simple pour cette construc-
tion.

4.5.2 Décomposition

Si la réduction décrite ci-dessus n’est pas suffisante, nous recourons a une approche
de type « diviser pour régner ». Notons que d’autres formes de décomposition des
réseaux biologiques (et notamment des graphes d’interaction) ont déja été abordées
[21], avec toutefois des motivations différentes. Soit une contrainte de la forme :

C(X,Y,Z) = C(X,Y) A Co(Y, Z)

ou X et Z sont des ensembles de variables disjoints. Pour un calcul donné, on effec-
tuera un traitement sur chaque partie de la conjonction, puis on combinera les résultats
intermédiaires pour obtenir le résultat final. La récurrence dépend du calcul effectué,
mais dans tous les cas, on évite ainsi de construire un diagramme sur les variables X,
Y et Z, susceptible d’avoir une représentation en mémoire trop volumineuse.

Ce procédé est applicable récursivement, jusqu’a ce que les sous-systemes contiennent
un nombre suffisamment petit de variables. Pour simplifier la présentation, nous intro-
duisons une représentation explicite de cette procédure.

Définition 11 (Décomposition). Soit une contrainte C(X) = Ajc;c,, Ci(X®), on ap-
pelle décomposition de C de grain 6 un arbre binaire dont les sommets sont des sous-
ensembles de {1,...,n}, tel que :
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— une feuille F' est telle que le support de la contrainte ;. p Ci(X@) contient au
plus 6 éléments.
— pour tout neud N, ses fils Ny et N1 forment une partition de N.

Les feuilles d’une décomposition sont des sous-systemes dont le diagramme est a
priori de taille suffisamment petite. Le « suffisamment » dépend bien évidemment
de l'implémentation, d’ou l'existence du parametre #. Notons des a présent qu’une
condition nécessaire et suffisante pour I'existence d’une décomposition est qu’aucune
des contraintes C; n’ait un support de cardinal supérieur a 6.

Remarquons, enfin, que la condition sur les feuilles est difficile & vérifier : pour
connaitre le support d’une contrainte, il faut en construire le diagramme, ce qui est un
calcul cotliteux. En pratique, on utilisera une borne supérieure simple a obtenir, a savoir
le nombre de variables libres dans la contrainte.

Nous définissons a présent trois étiquetages d’une décomposition. Ces étiquetages
décrivent les variables présentes dans le sous-systéme associé & chaque nceud. Soit C
une contrainte et A une décomposition de C. Pour tout sommet N de A, on note
V(N) =Ujen X () Pensemble des variables libres apparaissant dans au moins une des
contraintes C;(X®) pour i € N. Nous aurons aussi besoin de I’étiquette notée X'(N)
qui correspond a l’ensemble des variables « privées » de IV : ce sont les variables qui
apparaissent uniquement dans le sous-systéme correspondant & N. On définit enfin le
complémentaire, noté Y(N) qui correspond aux variables du sous-systéme décrit par
N qui sont partagées avec d’autres équations hors de V. Ces deux derniers étiquetages
sont mutuellement récursifs, & partir de la racine de A :

— Soit R la racine de A, on pose :

X(R) =V(R)
— Soit un nceud N ayant deux fils Ny et N respectivement fils gauche et droit, on
pose :
X(No) = V(No)\ (V(N1) UY(N))
X(N1) = V() \ (V(No) UY(N))
— Pour tout sommet N de A, on pose

Y(N) =V(N)\ X(N)

Si un neeud M est dans la descendance d’un nceud N, alors le systéme décrit par
M est un sous-systeme (au sens de l'inclusion de Iensemble des contraintes) de N.
Les étiquetages que nous avons introduits décrivent ’ensemble des variables présentes
dans chaque sous-systeme de la décomposition. Des sommets situés sur des branches
différentes de la décomposition ont une intersection vide, mais les sous-systemes qu’ils
représentent peuvent avoir des variables en commun. L’étiquetage V donne ’ensemble
des variables de chaque sous-systeme. L’étiquetage X donne les variables d’un sous-
systeme qui apparaissent uniquement dans sa branche; ’étiquetage ) correspond aux
variables du sous-systeéme qui apparaissent au moins une fois dans une autre branche de
I’arbre. On s’autorisera a appliquer ces étiquetages a des arbres, ce qui par convention
correspond a appliquer sur I'unique sommet de 'arbre s’il s’agit d’une feuille, ou sur la
racine de ’arbre sinon.
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4.5.3 Calcul de la consistance selon une décomposition

Nous montrons a présent comment décider de 'existence d’une solution a une
conjonction, sans calculer le diagramme représentant la conjonction. La proposition
suivante justifie ’emploi des décompositions introduites au-dessus.

Proposition 9. Soient C(X) = A\, .,, Ci(X®), et (A, B) une partition de X. Alors

3X C(X) =3(4N B) <3<A\B> /\cz-<X<">>>A <3<B\A> /\ci<X<z'>>>

€A i€B

L’astuce proposée consiste a diviser la conjonction en deux parties (en profitant
de lassociativité de A), a éliminer les variables n’apparaissant que dans une seule
des deux parties, et enfin a calculer la conjonction, avec (dans les cas favorables) un
nombre réduit de variables. Dans la terminologie introduite au paragraphe précédent,
cela donne : si dans la décomposition on a un nceud N possédant deux fils Ny et Ny,
alors on peut calculer les diagrammes correspondant a Ny et Ny, éliminer les variables
X (No) et X(Ny) dans chacun des diagrammes, calculer la conjonction, puis éliminer
les variables dans (V). Cette relation est mise a profit dans I’algorithme décrit dans
la fonction consistency.

Function consistency(C : diagram set, A : decomposition)
case A is a leaf F
| return exists(X(F),conjuction({¢; € C'| i€ F'}))
case A is a node (N, Ap, A1)
ro < consistency(C, Ag)
r1 < consistency(C, A;)
return exists(X'(IV), conjuction({rg,r1}))

Soit C = A<, Gi(X (@) une contrainte et A une décomposition de C. Un appel
consistency(C, .A) calcule, pour chaque sommet S de A, le diagramme de la contrainte :

3X(S) /\ Gi(x®)
€S

En particulier I'appel de la fonction retourne le diagramme de 3X C(X) qui est la
constante T ou F selon que la contrainte a, ou non, une solution.

4.5.4 Calcul des invariants selon une décomposition

Nous montrons & présent comment calculer les invariants d’une contrainte sans
calculer explicitement cette contrainte. Nous restons dans les mémes conditions que
précédemment : soit une contrainte C = A, C;(X®) et A une décomposition de
C. Nous aurons notamment besoin de la fonction v qui & un sommet S de A associe
le diagramme de 3X(S) A,cq Ci(X®). 1l s’agit précisément des diagrammes calculés
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par l'algorithme précédent, et nous les supposerons pré-calculés, et accessibles en temps
constant.

L’idée que nous exploitons est la suivante : supposons que ’on partitionne I’ensemble
des contraintes formant la conjonction en deux sous-systemes A et B ; les variables libres
de A se divisent en deux catégories, selon qu’elles sont également libres dans B ou non
(c’est-a-dire si elles sont dans X(A) ou dans Y(A) respectivement). Pour calculer les
invariants sur les variables « privées » de A, on calcule séparément les deux sous-
systemes, puis on élimine les variables « privées » de B dans le diagramme de B. On
calcule ensuite la conjonction des diagrammes de A et B (dans laquelle n’apparaissent
plus les variables privées de B), et on y recherche les invariants qui concernent des
variables de A. Cette procédure est justifiée par la proposition suivante.

Proposition 10. Soit une contrainte C(X,Y,Z) = C1(X,Y) A Co(Y, Z) telle que X et
Z sont des ensembles de variables disjoints. Soient

Cx(X,Y) = C1(X,Y) A (32 Co(Y, Z))
Cz2(Y,Z) =C(Y, 2) A (3X Ci(X,Y))

On a alors :
inv(C(X,Y, 7)) =inv(Cx(X,Y)) Uinv(Cz (Y, 2))

Le méme principe peut étre appliqué récursivement, en suivant une décomposition.
Cela est illustré dans la fonction invariants® qui est, a un détail pres, une application
directe de la formule ci-dessus.

Function invariants*(C : diagram set, A : decomposition, R : diagram)
case A is a leaf F
| return invariant(conjuction({c; € C'| i € F} U{R}))

case A is a node (N, Ay, A1)
Ro <« exists(V(A1) \ V(Ap), conjuction({R,v(A41)}))
Ri « exists(V(Ap) \ V(A1), conjuction({R,v(Ap)}))
Iy < invariants*(C, Ao, Ro)
I, < invariants*(C, A1, Ry)
return Iy U [

Le principe de I'algorithme est le suivant : soit un appel invariants*(C, A, R). In-
tuitivement, ’ensemble C représente la conjonction complete, ’arbre A le sous-systeme
courant, et le diagramme R la contrainte exercée sur le sous-systéme courant par le reste
de la conjonction. On note S le sous-systéme courant, qui est un ensemble de contraintes
inclu dans C. Le résultat de cet appel est ’ensemble des invariants concernant les va-
riables libres de S. Si on tombe sur une feuille, alors le diagramme de S a suffisamment
peu de variables libres pour étre calculé; R correspond au diagramme de C'\ S ou 'on
a éliminé toutes les variables qui n’apparaissent pas dans S. Son support est donc inclu
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dans celui du diagramme de S. On peut par conséquent calculer leur conjonction, et
donc les invariants. Si A est un nceud, alors on calcule récursivement les invariants
dans chacun des sous-systemes de S (c’est-a-dire ceux qui correspondent aux fils de
A). Pour procédér a ces appels récursifs, il faut notamment calculer la conjonction
des contraintes dans le reste du systeme. La encore, il faut calculer les conjonctions et
les éliminations de variables dans un ordre correct, et limitant autant que possible le
nombre de variables libres dans le support des intermédiaires de calcul. On parvient
ainsi & limiter le support de R au cardinal de Y(A).

L’efficacité pratique des procédés de décomposition décrits jusqu’ici dépend clai-
rement de la décomposition choisie. Pour clore ce chapitre nous montrons comment
caractériser une « bonne » décomposition, et comment la calculer.

4.5.5 Choix de la décomposition

Nous suggérons deux criteres pour évaluer une décomposition. En premier lieu, le
but de ces décompositions est d’éviter la construction d’un diagramme comportant
trop de variables. Pour cela, les deux sous-systemes produits a chaque étape de la
décomposition doivent avoir le minimum de variables en commun. Pour s’en convaincre,
il suffit de regarder le cas limite : dans le meilleur des cas, les deux sous-systémes ne
partagent pas de variables et peuvent étre traités indépendamment.

Deuxiémement, une bonne décomposition doit comporter le minimum de sommets,
pour limiter le nombre d’opérations a effectuer. Cela implique d’arriver par partitions
successives a des sous-systemes de support « suffisamment petit » le plus rapidement
possible. Une stratégie simple consiste a imposer qu’a chaque étape la partition choisie
détermine deux sous-systemes comportant a peu pres le méme nombre de variables.

En suivant a la lettre ces deux criteres, on arrive au probléme d’optimisation sui-
vant : pour une décomposition A donnée, soit k le nombre de ses sommets, et pour tout
S € A, on définit

oo — —00 si S est une feuille
5 |V(So) N Y(S1)| si Sy et Sy sont les fils de S

La décomposition recherchée est celle minimisant ’objectif suivant :

obj = k + Amaxag
SeA

ou A est un parametre permettant de contrbler I'importance relative des 2 criteres.
Il faut bien admettre que ce probleme est un peu compliqué, et que par ailleurs, sa
résolution exacte n’est pas a proprement parler cruciale.

Dans cet esprit, nous proposons dans la suite un algorithme glouton pour déterminer
une décomposition. Son principe est le suivant : si un systeme donné comporte trop de
variables dans son support, alors on choisit une partition des contraintes, telle que les
deux sous-systemes ainsi formés aient le moins de variables en commun, et approxima-
tivement le méme nombre de variables au total. Cette méme procédure est appliquée
récursivement, jusqu’a ce que le nombre de variables dans le support des sous-systemes
aux feuilles soit assez petit.
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Chaque étape de décomposition en deux parties peut étre vue comme un probléeme
de graphe : soit C(X) = A;<;<,, Ci(X®) une contrainte et G = (C,V, E) le graphe de
conjonction associé, ott C est ’ensemble des contraintes C;, V est I’ensemble des va-
riables apparaissant dans C et F ’ensemble des arétes du graphe. G est un graphe biparti
contraintes — variables. Les voisins d’une contrainte dans G sont les variables apparais-
sant dans la contrainte. Par extension, les voisins d’un ensemble de sommets contrainte
sont exactement les variables apparaissant dans la conjonction de ces contraintes, ce
que nous avons noté V(E) pour tout ensemble E de contraintes. Avec ces notations,
donnons maintenant un énoncé formel du probleme de partition posé a chaque étape
de la décomposition.

Probleme : DECOMP-STEP
Données : graphe de conjonction G = (C,V, E), réel €
Solution : partition {A, B} de C telle que
V(A)| < =Y
V(B) < 5=V
[V(A) N V(B)| est minimal

Ce probleme de partition peut étre vu comme une variante d’un probleme bien
connu en théorie des graphes, connu sous le nom de Minimum Bisection Problem.
Ce dernier consiste a déterminer une partition des sommets d’'un graphe non orienté
en deux parties de cardinal égal et minimisant la capacité des arétes coupées par la
partition. Sa généralisation aux partitions de taille k ((k,e) balanced partitioning en
anglais)[1] est également bien étudiée. Il s’agit dans tous les cas de problemes difficiles :
Minimum Bisection Problem est prouvé NP-complet, et la meilleure approximation en
temps polynomial est en O(log?(n)) ot1 n est le nombre de sommets dans le graphe. Nous
adaptons maintenant la preuve de NP-complétude & DECOMP-STEP, qui procede par
réduction de MAX-CUT, défini comme suit :

Probléme : MAX-CUT

Données : graphe non orienté G = (V, E)

Solution : une partition {A,B} de V telle que
{{a,b} e E|ac ANbe B} est de cardi-
nal minimal

Théoreme 11. DECOMP-STEP est NP-complet.

Démonstration. Considérons pour commencer une variante de DECOMP-STEP, nommée
DECOMP-STEP’, ot le nombre de variables partagées doit étre maximisé au lieu d’étre
minimisé. DECOMP-STEP’ peut étre réduit en DECOMP-STEP (et réciproquement)
par une transformation simple du graphe : plutét que de relier une contrainte a ses
variables libres, on relie une contrainte C aux variables qui n’apparaissent pas dans C.

Soit G = (V, E) un graphe non orienté. On construit le graphe biparti H = (V U
W,E,E") ou :

— W est un ensemble de cardinal |V'| disjoint de V'

— E’ est I'ensemble construit en ajoutant deux arétes {v,{v,v'}} et {v/,{v,v'}}

pour toute aréte {v,v'} € F.

La solution de DECOMP-STEP’ sur ‘H et € = 0 fournit une solution &8 MAX-CUT

sur G, en retirant de A et B les sommets de .
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O

Il nous reste enfin & préciser 'algorithme que nous avons utilisé pour résoudre le
probleme DECOMP-STEP. 1l existe un certain nombre d’algorithmes d’approximation
pour le probleme Minimum Bisection Problem, et ceux-ci peuvent étre adaptés pour
DECOMP-STEP. A cette possibilité, nous avons préféré 'utilisation de techniques de
résolution de contraintes booléennes décrites au prochain chapitre. Notons pour finir
que de tels problemes de partitionnement de graphes biologiques vérifiant certaines
propriétés et partageant un minimum de sommets ont déja été introduits dans d’autres
contextes, notamment dans des études de modularité des systemes différentiels [53], ou
dans le cadre des systemes différentiels monotones [21].

Bilan

Dans ce chapitre nous avons décrit une méthode de résolution des contraintes qua-
litatives, basée sur les diagrammes de décision. Nous avons tout d’abord montré com-
ment calculer efficacement ’ensemble des solutions d’une contrainte donnée a partir
d’opérations de composition des diagrammes. Le résultat est une structure de données
représentant de maniere compacte chacune des solutions; le gain en espace est obtenu
en exploitant les redondances trouvées entre les solutions. Dans un deuxieme temps,
nous avons mis & profit cette structure de données pour étudier I’ensemble des solu-
tions. Ainsi on peut, par le biais de procédures récursives parcourant le diagramme en
profondeur, calculer les invariants d’une contraintes, les probabilités marginales sous
une contrainte de chaque variable, ou les corrections minimales a effectuer pour rendre
une contrainte compatible avec une mesure.

Le prix a payer pour ces résultats, c’est le risque permanent de tomber sur une
contrainte dont la représentation en mémoire sous forme de diagramme de décision
est trop volumineuse. Ce probleme nous a conduit a mettre au point des procédures
de réduction et de décomposition des systemes qualitatifs. Celles-ci sont applicables
quand une contrainte est une conjonction de contraintes comportant un petit nombre
de variables ; elles visent & produire le résultat demandé sur une contrainte sans jamais
construire compléetement son diagramme.

Ces approches sont des réponses appropriées, mais il faut bien avouer qu’elles com-
pliquent un peu les calculs, et qu’elles ne sont pas toujours applicables. Notamment,
des que 'une des contraintes dans une conjonction comporte un grand nombre de va-
riables, on ne peut plus trouver de décomposition adéquate. Ce cas particulier survient
en pratique dans les problématiques de reconstruction de réseau comme décrites au
paragraphe 4.4.2.

Nous avons pour cette raison proposé une seconde approche, qui repose sur des
techniques de résolution de contraintes booléennes. La stratégie est cette fois totalement
différente : pour une contrainte donnée, on cherche cette fois seulement a déterminer
une solution. Le compromis recherché est de faciliter le traitement de données plus
volumineuses, quitte a perdre certaines des possibilités offertes par les diagrammes de
décision.



Chapitre 5

Résolution par Answer Set
Programming

Nous revisitons dans ce chapitre les problemes formulés plus haut a ’aide de tech-
niques de résolution de contraintes booléennes. Plus précisément, il s’agit d’étudier
les possibilités offertes par la programmation par ensemble réponse pour aborder les
problemes de vérification, prédiction, correction/diagnostic. Il s’agit d’une technique
relativement récente, qui peut étre vue comme l'intersection de deux axes de recherche :

1. la définition d’un langage et d’une sémantique pour les programmes logiques
facilitant la modélisation de probléemes

2. la recherche d’un moteur de résolution efficace pour déterminer le ou les modeles
d’un programme logique.

Cette combinaison permet d’appliquer la programmation par ensemble réponse pour
résoudre des problemes combinatoires éventuellement difficiles. La démarche consiste a
écrire un programme logique dont les modeles sont exactement les solutions du probleme
considéré ; on s’appuie ensuite sur un solveur dédié pour trouver les modeles du pro-
gramme logique. L’efficacité actuelle des solveurs disponibles rend cette approche tout
a fait réaliste, méme pour le traitement de données volumineuses.

Dans la suite, nous introduisons brievement la programmation par ensemble réponse,
puis nous montrons comment 1'utiliser pour résoudre les problemes de vérification, de
prédiction et de diagnostic/correction.

5.1 Une introduction a la programmation par ensemble
réponse

La programmation par ensemble réponse (Answer Set Programming, ASP) désigne
une famille de langages de programmation logique. Cette famille est caractérisée par
la sémantique commune utilisée, dites des modeles stables, que nous introduirons plus
loin. Brievement, un programme ASP décrit un ensemble d’atomes a ’aide de regles. Un
atome est un terme, au sens habituel en programmation logique. L’ensemble d’atomes
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décrit est appelé ensemble réponse (answer set) ou modele du programme logique. Les
regles stipulent essentiellement que si certains atomes sont dans I’ensemble réponse
(corps positif d'une regle), et que d’autres atomes ne s’y trouvent pas (corps négatif
d’une regle), alors un ou plusieurs atomes (téte de la regle) doivent se trouver dans
I’ensemble réponse.

Un atome peut étre vu comme un fait, et les régles comme des déductions permises
pour déterminer de nouveaux faits. La sémantique des modeles stables assure 1. que
I’ensemble réponse d’un programme en vérifie toutes les regles (autrement dit, que c’est
un modele du programme), 2. que tout atome dans 1’ensemble réponse est justifié par
au moins une regle du programme.

Dans la suite, nous introduisons en détail les programmes normauz (normal logic
programs), qui sont une variante de la programmation par ensemble réponse. Nous
mentionnerons ensuite plusieurs extensions.

5.1.1 Syntaxe

Nous nous limitons pour le moment aux programmes logiques ou tous les atomes
sont des constantes d’un ensemble A. Un programme logique II est un ensemble de
régles de la forme suivante :

h <«—ai,...,an,not by,...,not by,
téte corps positif corps négatif
avec m,n > 0, ou h,ay,...,an,b1,...,b,n € A. L'opérateur not est appelé négation

par défaut (negation as failure). On note head(r) la téte h d’une regle r, body(r) =
{a1,...,an,b1,...,by} le corps de 7, body™ (r) = {a1,...,ar} le corps positif de 7 et
body ™ (r) = {b1,...,bm} le corps négatif de r. Voici des exemples quelconques de régles
syntaxiquement correctes :

a «—
p <« notq
q < a,c,notp
Les deux propriétés d’un ensemble réponse E que nous avons énoncées plus haut s’ex-
priment de la maniére suivante :
— pour toute régle r d’un programme logique IT, si body ™ (r) C E et body ™ (r)NE =
() alors head(r) € E
— pour tout a € E, on peut trouver r dans II telle que head(II) = a, body™ (r) C E
et body (r)NE = 0.
Ces deux propriétés ne caractérisent pas completement les ensembles réponses. Nous

donnons & présent leur définition qui est basée sur la notion de modéle stable introduit

dans [33].
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5.1.2 Sémantique des modeles stables

Cas des programmes définis Un programme logique II est défini (basic program)
s’il ne contient pas de négation par défaut, c’est-a-dire si :

Vr € II body (r) =0

Dans ce cas particulier, la définition de ’ensemble réponse est naturelle : un ensemble
réponse est ’ensemble des déductions possibles en utilisant les regles du programme.
Cet ensemble est unique et se construit facilement, comme nous allons le voir. Pour un
programme défini II, on note agr 'application définie par :

f2A 24
MW X > X Uhead({r | » € I, body ™ (r) C X})

L’application ag calcule les conséquences d’un ensemble d’atomes selon I1 et les ajoute
a son argument. Dit autrement, pour un ensemble d’atomes X, on applique les regles
ayant tous leurs prérequis dans X, et on ajoute les tétes de ces regles a X. Cette
application est donc croissante au sens de 'inclusion.

Voyons ce qui arrive si on itere cette opération. Soit H l'’ensemble des atomes se
trouvant en téte d’'une regle de II, et soit X C H ; on a alors aq(X) C H. On en déduit
que la suite (of;(0)),, est bornée (par H). Elle admet par conséquent une limite, que
l'on note C'n(IT). Cn(II) est 'ensemble des atomes que 1’on peut déduire en utilisant
un nombre fini de régles de II. Plus formellement, Cn(II) est 'unique plus petit point
fixe de ag et correspond donc au plus petit ensemble clos par les regles du programme
II. On dira que c’est ’ensemble réponse de II dans le cas défini.

Réduit d’un programme par rapport a un ensemble d’atomes Passons main-
tenant au cas général : on appelle réduit d’un programme II par rapport a un ensemble
d’atomes X le programme

II* = {head(r) < body™ (r) | r € IL,body ™ (r) N X = 0}

Le passage au réduit transforme un programme logique en un programme défini, en
supprimant :

— les prérequis négatifs des regles,

— les regles qui ne sont pas applicables a cause de certains atomes présents dans X

Ensembles réponse d’un programme normal Puisque IIX est un programme
défini, on peut calculer son ensemble réponse C’n(HX ). On appelle ensemble réponse (ou
modeéle stable) d’un programme logique II tout ensemble d’atomes X tel que Cn(I1X) =
X. Intuitivement, on peut comprendre cette définition de la maniere suivante. Pour
qu’un ensemble d’atomes X soit un ensemble réponse, ce doit étre un modele ou tout
atome admet une preuve, sous la forme d’une suite d’applications de régles. Pour savoir
si X est un ensemble réponse, il faut donc commencer par supprimer toutes les regles
qui ne sont pas applicables sous X, a cause des négations par défaut. Dans les regles
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restantes, le corps négatif n’est donc pas utile. C’est ainsi le réduit de II par X que
I'on a calculé. Maintenant, si les conséquences de ITX sont exactement X, cela signifie
que tout atome de X a une preuve valide, et que rien de plus ne peut étre prouvé
en utilisant les regles applicables. L’idée derriere les ensembles réponse consiste a se
donner un ensemble de faits (les atomes) et & en apprécier la cohérence. On le jugera
cohérent si sous I’hypothese que ces faits décrivent correctement une situation, chacun
d’eux admet une preuve finie, non circulaire par applications successives de regles.
Voyons cette définition a I’ceuvre sur un exemple. Pour le programme

p < notgq

¢ — notp (5.1)

les différents possibilités sont résumées dans le tableau suivant :

X X Cn(I1%)
0|y - | e
{r} | p < {r}
{a} | ¢ <« {q}
{p. q} 0 0

qui montrent que seuls {p} et {q} sont des ensembles réponses. En effet ce sont les seuls
ensembles X tels que Cn(I1¥) = X. Ce programme exprime donc Iexclusion mutuelle
des atomes p et q.

Considérons maintenant le programme

p < notp

et les différentes possibilités

X x Cn(1I)
0| p < {r}
{p} 0 0

Ce programme n’a pas d’ensemble réponse et nous y aurons recours plus tard pour
augmenter le langage des programmes logiques. Apres avoir vu la définition des en-
sembles réponse, et quelques exemples, il nous reste a les distinguer d’autres définitions
de modeles a priori plus intuitives. Les modeles stables sont :

— des modeéles minimaux (au sens de l'inclusion) : supposons que X et X’ sont
deux modeles stables tels que X’ C X. Alors nécessairement IIX C HXI, et
par conséquent Cn(I1X) ¢ Cn(ITX") puisque IT¥ et ITX" sont définis. Or comme
Cn(I1¥) = X et Cn(IIY') = X/, on a X = X'. En revanche, les modeles mi-
nimaux ne sont pas forcément stables : le programme {p < not p} admet un
(unique) modele minimal {p}, mais pas d’ensemble réponse, comme nous ’avons
vu précédemment.
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— des modeles minimaux ol tous les atomes sont supportés par 'application d’une
regle. Mais la réciproque est fausse, comme le montre I’exemple suivant :

p < q
g « p (5.2)
r <« notgq
{r} et {p,q} sont des modeles minimaux ou tous les atomes sont supportés par
I'application d’une regle, mais seul {r} est un ensemble réponse. En effet, it =
{p — q,q — p} et Cn(IIP3) = @. L’ensemble {p,q} n’est donc pas stable;
intuitivement la raison en est qu’il n’est pas possible de trouver des preuves non-
circulaires pour la présence de p et q.

Avant de passer a la suite, et aux extensions des programmes normaux, essayons
de bien comprendre ce qui fait la difficulté ici. Les programmes définis constituent un
fragment de logique classique, celui des clauses de Horn. Il est tres facile de définir
des modeles raisonnables de ce type de programme, et ces modeles ont deux propriétés
importantes : premierement les programmes définis admettent un unique modele ; en-
suite, il s’agit d’une sémantique monotone : si j'ajoute des regles au programme, le
modele ne peut qu’augmenter, au sens de l'inclusion. L’utilisation de la négation par
défaut perturbe complétement ces propriétés : I'ajout de nouveaux faits ou de nouvelles
regles peut diminuer le modele (considérer par exemple les programmes {p < not g}
et {p < not q,q <}). On parle dans ce cas de logique non monotone. Dés qu'un pro-
gramme comporte des négations par défaut, il peut avoir plusieurs modeles modeles
minimaux, et la question revient a définir le, ou les « bons » modeles.

Pour finir, insistons bien sur le fait que la négation par défaut est tres différente de
la négation en logique classique. Si un modele vérifie not p, cela signifie qu’on ne peut
pas trouver de preuve de p sous ce modele. Illustrons cette différence sur un « classique »
de logique non-monotone, avec ce programme décrivant le protocole a observer avant
de traverser une voie de chemin de fer :

check «— not —check
—check <+ mnot check

train < not —train, check
—train <+ not train, check
cross <« not train

Les deux premieres lignes stipulent que I’on peut ou non vérifier avant de traverser, selon
que l’ensemble réponse contient check ou —check (les deux premieres regles assurent
I'exclusion mutuelle, comme vu plus haut). Les deux lignes suivantes signifient que si
l'on vérifie avant de traverser, on peut prouver la présence ou I’absence de train (selon
le méme mécanisme d’exclusion mutuelle). La derniere ligne donne la condition pour
traverser la voie. Le probleme de ce protocole est qu’il admet, entre autres, le modele
{—check, cross}, c’est-a-dire « traverser sans regarder ». En effet, si —check est dans le
modele, alors check ne peut pas y étre; par conséquent ni train, ni —train ne peuvent
étre dans le modele. Dit plus simplement, si on ne vérifie pas, on ne peut prouver ni
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la présence, ni ’absence de train. La derniere regle dit en substance : « traverser si
on ne peut pas prouver la présence de train », au lieu de dire « traverser si I'on peut
prouver 'absence de train ». Or il vaut mieux — on en conviendra — prouver [’absence
de train avant de traverser. Pour cela, la regle cross < not train doit étre corrigée en
cross «<— —train.

5.1.3 Variables

Le langage des atomes peut étre enrichi pour faciliter la modélisation de problemes.
On se donne trois ensembles dénombrables et disjoints de symboles C' = {c1,ca, ...},
V = {vy,v9,...} et P = {p1,p2,...}, qui sont respectivement les constantes, les va-
riables et les prédicats. Un atome est un terme sur ces ensembles de symboles :

an= ¢ | v; | pr(at,...,an)
constante variable prédicat

L’utilisation des variables permet, comme en Prolog, de séparer un programme
logique en un ensemble de regles génériques d’une part, et une base de faits d’autre
part. Les termes quant a eux, permettent de représenter les relations. Illustrons tout
de suite leur utilisation, avec le programme suivant :

((t(X,Y) <« r(X)Y)
t(X,Z2) « t(X,Y),rY,2)

r(1,2)
r(1,3)
r(2,5)
( 7(3,4)

Dans ce programme, le prédicat r représente une relation, dont les éléments sont donnés
dans la deuxieme partie du programme. La premiere partie définit la fermeture transi-
tive de la relation, de maniere générique. L’unique ensemble réponse de ce programme
est

{r(1,2),r(1,3),7(2,5),7(3,4),t(1,2),t(1,3),4(2,5),t(3,4),t(1,5),t(1,4) }

Comme en Prolog, on adoptera d’une part la notation pred/k pour spécifier I'arité
des prédicats, et d’autre part la convention selon laquelle seules les variables com-
mencent par une majuscule. Dans le programme précédent, on a par exemple utilisé les
prédicats t/2 et r/2, et parlé des atomes ¢(X,Y). Pour définir la sémantique des pro-
grammes avec variables — comme d’ailleurs pour en trouver un modele — on passe par
une étape dite de grounding, qui instancie les variables avec des termes ne contenant
plus que des constantes.
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5.1.4 Contraintes d’intégrité

Certaines pratiques apparentées a de I'ingénierie logicielle peuvent aider a formu-
ler ce que 'on a en téte. L’'une de ces « méthodologies » consiste a séparer les regles
génériques en deux parties, 'une dite de génération et ’autre de test. Les premieres ont
pour fonction de décrire un sur-ensemble des solutions, les secondes d’y sélectionner les
solutions par des sortes de filtres, appelés contraintes d’intégrité.

Pour illustrer cette démarche, revenons sur le programme (5.1). Nous avons vu que
ses ensembles réponse sont {p} et {¢} et en avons déduit que ce programme assurait
I’exclusion mutuelle de p et q. Ce n’est que partiellement vrai puisque si les deux regles
sont utilisées dans un programme plus grand, on peut tout a fait produire p et ¢ par
d’autres moyens. Par exemple

p <« notgq
q < notp
b — T

q «— T

r

admet {p,q,r} comme unique ensemble réponse. Pour exprimer précisément 1’ex-
clusion mutuelle de deux atomes, on utilisera le programme :

p <« notq
q < notp
— g

ou la troisieme regle est une contrainte d’intégrité signifiant que si p et ¢ sont dans
I’ensemble alors ce n’est pas un ensemble réponse. Plus généralement les contraintes
d’intégrité sont des regles de téte vide, soit de la forme :

cii=+a,...,a,nota,...,not a

Les solutions vérifiant le prérequis d’une contrainte d’intégrité sont éliminées. Il n’est
pas nécessaire d’adapter la sémantique définie plus haut pour intégrer les contraintes
d’intégrité : un programme comportant des contraintes d’intégrité peut étre transformé
en un programme normal équivalent. On introduit a cet effet un symbole L représentant
la valeur logique faux, qui ne peut pas étre utilisé dans un programme logique avec
contraintes d’intégrité. Toute contrainte d’intégrité

“—ai,...,ay,not by,...,not by
est transformée en :
1L «—mnot L,a1,...,a,,not by,...,not b,

Si le prérequis d’'une contrainte d’intégrité est vérifié, alors il reste une regle de type
1 <« not L. ou L ne peut étre produit par aucune autre regle. Nous avons vu qu’alors le
programme n’admet aucun ensemble réponse. Nous verrons dans la suite de nombreuses
utilisations de ces contraintes d’intégrité.
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5.1.5 Contraintes de cardinalité

Le programme (5.1) permet de définir les ensembles réponses contenant un et un
seul atome parmi deux. Les contraintes de cardinalité sont une généralisation de cette
construction. On écrira une expression de la forme k {ai,...,a,} [ pour désigner un
sous-ensemble des a; de cardinal compris entre k et [. Les contraintes de cardinalité
peuvent apparaitre aussi bien dans la téte d’une regle que dans le corps. Dans le premier
cas, la contrainte doit étre respectée dans ’ensemble réponse; dans le deuxieme, elle
constitue un prérequis a l'applicabilité de la regle. On pourra trouver la sémantique
précise des programmes logiques avec contraintes de cardinalité dans [85].

Ainsi le programme (5.1) se code plus naturellement en {1 {p,q} 1.}. La syntaxe
inclut également une notation en intention de ’ensemble des a;. Voyons en exemple le
programme suivant :

d(1..4)
1{c(X):d(X)} 3

La notation d(1..4) est un raccourci pour la regle d(1) d(2) d(3) d(4); les ensembles
réponse sont les sous-ensembles de cardinal 1 & 3 de {¢(1),¢(2),¢(3),¢(4)} ajoutés a
{d(1),d(2),d(3),d(4)}.

Pour illustrer I’approche « générer puis tester » décrite au paragraphe précédent,
intéressons-nous a la résolution du probleme de coloration de graphe. Soit un graphe
non orienté G, et un ensemble (fini) de couleurs; le probleme de coloration revient a
attribuer a chaque sommet du graphe une couleur de telle facon que deux sommets
adjacents n’ont pas la méme couleur. Il faut dans un premier temps coder les données
du probleme : on écrit pour ¢a une premiere partie du programme qui constitue une

base de faits :
vertex(allemagne)

vertex(espagne)
vertex( france)

edge(allemagne, france).
edge(allemagne, suisse).
edge( france,italie).

col(bleu)

col(rouge)
Vient ensuite une partie générique, c’est-a-dire exprimée a l'aide de variables, qui pro-
duit les solutions au probleme, et spécifie les contraintes qu’elles doivent respecter :

génération : 1 {label(V,C) : col(C)} 1 «— wertex(V)
test : — label(V,C),label(W,C), edge(V, W)

Le prédicat label /2 représente 1’association sommet /couleur. La premiere regle force la
présence dans tout ensemble réponse d’un atome label précisant la couleur de chaque
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sommet. Cette regle « produit » des solutions. La deuxieme regle est une contrainte
d’intégrité, qui élimine une solution si deux sommets voisins dans le graphe ont la méme
couleur.

Nous retrouvons dans ce programme le découpage typique que nous avons décrit
plus haut. Tout d’abord, la séparation entre une partie générique (avec des variables),
et la base de faits (suite d’atomes). La partie générique est elle-méme divisée entre une
partie génération (premiere ligne) et une partie test (la deuxiéme ligne).

5.1.6 Optimisation

Nous l'avons vu a plusieurs reprises, un programme logique peut avoir plusieurs
modeles stables. Il peut donc se révéler utile de spécifier une fonction objectif pour
sélectionner davantage les différents modeles. On I'exprimera par une commande de la
forme suivante :

minimize {a; = wy,...,a, = Wy, not by = wpi1,...,n0t by, = Wpim}

Le poids d’'un ensemble réponse est la somme des poids des atomes le constituant.
Utilisons tout de suite cette construction pour spécifier dans le programme précédent
les colorations minimales d’un graphe :

1 {label(V,C) : col(C)} 1 «— wertex(V).

— label(V,C),label(W, C), edge(V, W),
vertex(V'),vertex(W).
used(C) — col(C),vertex(V),label(V,C).

minimize {used(C) : col(C)}.

Nous n’avons reproduit ici que la partie générique. Comme précédemment, la premiere
regle dit que pour chaque sommet, il faut choisir une couleur parmi celles définies par
le prédicat col/1. La regle d’intégrité qui suit assure que deux sommets voisins dans
le graphe ne peuvent avoir la méme couleur. La troisieme regle introduit le prédicat
used/1 qui représente ’ensemble des couleurs utilisées dans la coloration. Enfin la
directive minimize assure que ’ensemble réponse fourni utilise un nombre minimal de
couleurs pour rendre une coloration correcte.

5.1.7 Complexité et résolution

Déterminer un modele stable d'un programme normal est un probleme NP : pour
vérifier une solution il suffit de calculer le réduit, puis le modele minimal du réduit,
toutes choses que ’'on peut faire en temps polynomial. Par ailleurs, il est tres facile (et
c’est bien l'intérét de la programmation par ensemble réponse, vu comme un langage)
de réduire un probleme NP-complet & la recherche d’'un modele stable. Nous avons déja
vu ’exemple de la coloration de graphe, et ’application développée dans ce chapitre
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en sera un autre. Les extensions revues dans les paragraphes qui précedent sont toutes
NP-completes.

Il existe un certain nombre de solveurs pour la recherche de modeles stables, en
particulier smodels [92], dlv [58], cmodels [60] et clasp [32]. Dans tous les cas, ces
solveurs utilisent des techniques proches de celles mises en ceuvre dans les solveurs SAT,
tels que miniSAT ou zchaff. Ainsi ils bénéficient des progrés considérables effectués
depuis deux dizaines d’années dans ce domaine.

Sans entrer dans le détail de fonctionnement des solveurs, mentionnons néanmoins
une différence importante entre les solveurs ASP et les solveurs SAT. Pour une classe
assez grande de programmes logiques, il existe une transformation de ces programmes
en une formule de logique propositionnelle telle que les modeles stables des programmes
sont exactement les modeles de la formule. Les programmes en question sont dits
« tight » dans la littérature, la transformation est appelée complétion de Clark. Cette
propriété, démontrée par F. Fages [26] assure donc que les programmes tight peuvent
étre résolus a ’aide d’un solveur SAT. Les programmes non tight sont les programmes
possédant des dépendances circulaires positives. Nous en avons donné un exemple plus
haut, avec le programme (5.2) : dans un modele stable, chaque atome a une preuve sous
la forme d’une suite finie de regles. Or les solveurs SAT ne procédent pas & ce genre
de vérification. Quelle incidence en pratique ? La principale conséquence, c¢’est que les
programmes non tight sont nettement plus difficiles & exprimer et a résoudre en logique
propositionnelle qu’en programmation par ensemble réponse.

Avant de revenir aux contraintes qualitatives, rappelons les caractéristiques ma-
jeures de la programmation par ensemble réponse :

1. un langage déclaratif pour la modélisation de problemes de recherche, a savoir les
programmes logiques, augmenté de constructions telles que les contraintes de car-
dinalité (génération de modeles), les contraintes d’intégrité (filtrage de modeles)
et directives d’optimisation (modeéles minimaux),

2. l'existence de solveurs performants, similaires aux ou basés sur les solveurs SAT,
permettant de résoudre des problemes combinatoires réputés durs.

Nous allons a présent proposer une formulation de la contrainte de consistance par
un programme logique : les solutions de la contraintes seront données exactement par
les ensembles réponse du programme.

5.2 Consistance aux sommets

Nous proposons ici un codage des solutions d’une contrainte qualitative comme
ensembles réponse d’un programme logique. Suivant la méthodologie proposée plus
haut, un tel programme sera constitué de trois parties : la premiere pour les données,
la deuxieme pour la génération des solutions, et la derniere pour le test des solutions.
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5.2.1 Codage des données

Le graphe d’interaction est codé a l'aide de deux prédicats : vertex/1 pour les
sommets et edge/2 pour les arcs. Comme toujours, un graphe d’interaction est étiqueté
par des signes, que nous définissons ici comme les atomes p, n et z pour +, — et 0
respectivement. La variation observée d’'un sommet I dans la mesure K sera donnée
par le prédicat m/3; un atome m(heatshock, cro,n) dit donc que lors d’une expérience
de choc thermique, 'expression du gene cro a diminué. Le signe des arcs est donné par
le prédicat r/3 : un atome r(cro, crp, p) dit que le géne cro active le géne erp. Voici par
exemple le résultat de ce codage sur 'exemple donné en figure 3.1(b).

sign(p) sign(n) sign(z)

measure(puy)

vertex("A”) wvertex("B”) wvertex("C”)
vertex("D”) wvertex("E”)

m(/_,[/]_,”B”,TL) m(M1777C7”Z)

m(l'l/1777D”7p) m(LLl?”E”’n)

edge(”A”’”B”) edge(”A”’??D”) edge(”B??’”A’?)
edge(”A”’”EW) edge(”B??’”C”) edge(77c”,7’E’7)
edge(”D”’”B”) edge(”D”’”C??) edge(”D””?E”)
/r,(” A” , ” B”,p) 7,(77 A’? , ” D” , n) /’,,(7? A” , ” E?’ , n)
T,(”B” , 7 A77 , n) r(?’ B77 , 7 C77 ,p) 7,..(77 C77 , 7 E77 , n)

T(” D77 , 7 C’? , p) ,,,,(77 D?? , ” E’? , p)

5.2.2 Génération des solutions

Les solutions que nous cherchons sont composées des variations aux sommets et des
régulations portées par chaque interaction. Le signe des régulations est décrit par le
prédicat /3 que nous avons déja introduit. La variation d’un sommet dans une mesure
est donnée par le prédicat /3 : par exemple, atome z(u,”araC”, z) signifie que dans
la mesure u, I'expression du gene araC n’a pas varié. La génération des solutions est
donnée par :

1{z(K,I,S) :sign(S) } 1 «— wertex(l), measure(K).
1{r(J,1,S):sign(S) } 1 «— edge(J,I).

La premiere regle spécifie que pour chaque sommet et chaque mesure, un ensemble
réponse doit spécifier une variation dans {4,—,0}; de maniere analogue la deuxieéme
regle indique que chaque régulation porte un signe. Il ne reste plus qu’a ajouter les
contraintes de consistance.
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5.2.3 Test des solutions

I1 faut en premier lieu faire correspondre les variations de chaque sommet (prédicats
x/3) avec les variations observées (prédicats m/3). C’est assuré par les contraintes
d’intégrité suivantes :

— m(K,I,S),not (K,I,S)

Pour la contrainte de consistance, nous procédons en deux étapes, en commencgant par
identifier les contributions de chaque signe non nul.

contrib(K,I,p) «— r(J,1,S),z(K,J,S),S # =
contrib(K,I,n) «— r(J,I,S),2(K,J,T),S #T,S # 2, T # =

Les prédicats contrib/3 sont des indicateurs de la présence de termes de chaque signe
non nul dans la somme (3.2). Plus précisément, un ensemble réponse contient un atome
contrib(u, g, s) si, dans la solution trouvée, le membre droit de I’équation (3.2) as-
sociée a g et p contient un terme de signe s non nul. Puis nous indiquons 'effet des
contributions :

x(K,I1,p) <« contrib(K,I,p),not contrib(K,I,n),vertex(I)
x(K,I,n) < contrib(K,I,n),not contrib(K,I,p),vertex(I)
x(K,1,z) <« mnot contrib(K,I,p),not contrib(K,I,n),vertex(I).

S’il n’y a que des termes strictement positifs (resp. négatifs) dans la partie droite de
I’équation (3.2), alors la premiere (resp. deuxiéme) regle implique une variation positive
(resp. négative) qui exclut — par l'effet des contraintes de cardinalité sur z/3 — toute
autre variation. S’il n’y a aucun terme non nul, alors la variation doit étre nulle. Enfin
s’il y a un terme positif et un terme négatif, alors la variation n’est pas contrainte.

Un ensemble réponse de ce programme fournit exactement une solution a la contrainte
de consistance aux sommets. Réciproquement, toute solution permet de construire un
ensemble réponse. Nous avons donc ici un deuxieme algorithme pour le probleme de
vérification sous consistance aux sommets.

5.3 Prédiction

Comme nous ’avons montré, on peut faire correspondre I’ensemble des solutions
d’une contrainte qualitative et I’ensemble des ensembles réponse d’un programme lo-
gique. Rechercher les invariants de ’ensemble des solutions revient donc & chercher les
invariants dans I’ensemble des ensembles réponses, c’est-a-dire 'intersection de tous les
ensembles réponse. Une premiere idée consiste a utiliser la capacité de certains solveurs
ASP a énumérer tous les ensembles réponses d’un programme donné. Dans notre cas
cette stratégie n’est pas adaptée, a cause du nombre de solutions généralement observé.
Nous recourrons donc a une stratégie par contre-exemples : 1. calculer un ensemble-
réponse, 2. pour chaque atome a dans cet ensemble réponse, calculer un nouvel ensemble
réponse ne contenant pas a. Cette approche est détaillée dans ’algorithme 15.
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Algorithm 15: Algorithme de calcul des invariants d’un programme logique

Input: un programme logique II admettant au moins un modele
Output: un ensemble I d’atomes, intersection de tous les modeles de II.

R «— TrouverModele(II)
for a € R do
L if ITU {« not a} admet un modeéle M then
| R—(R\{a})nM

return R

Donnons quelques arguments pour justifier 'algorithme, & commencer par la ter-
minaison : le programme II admet un modele par hypothese, et ce modeéle est fini.
Par conséquent I'unique boucle de I’algorithme termine. Concernant la correction, on
remarque que le premier modele trouvé et stocké dans R contient nécessairement 1’in-
tersection de tous les modeles de II. Pour chaque atome a de R, si il existe un modele
de II ne contenant pas a, alors a n’est pas dans l'intersection et doit étre retiré de R.
De plus, tout atome de R qui n’est pas dans le nouveau modele trouvé ne peut pas étre
dans l'intersection'. Ainsi, & I'issue de la boucle on a pour chaque atome a initialement
dans R :

— soit cherché un modele ne contenant pas a, et a ne substiste dans R a 'issue de

la boucle que si un tel modele n’existe pas

— soit éliminé a de R grace a un des modeles de II calculé durant I’itération
A Tissue de la boucle, tous les atomes substitant dans R sont donc bien dans l'inter-
section.

Au chapitre précédent, nous avons introduit une deuxiéme notion de prédiction,
avec le calcul des probabilités marginales pour chaque variable. A la base de ce calcul
se trouvait la possibilité de compter efficacement le nombre de solutions d’une contrainte
qualitative. Comme nous venons de 1’évoquer, les solveurs ne peuvent (dans le meilleur
des cas) compter les modeles d’un programme qu’en les énumérant explicitement. Cette
approche n’est pas praticable parce que le nombre de solutions croit en général tres vite
avec le nombre de variables de la contrainte.

5.4 Contrainte non satisfiable

La recherche de diagnostic, comme proposée en définition 9, se traduit ici de la
manieére suivante. Soit une contrainte qualitative C, et une mesure pu. Nous avons vu
comment calculer un programme logique II dont les ensembles réponses coincident avec
les solutions de C. Par ailleurs la mesure p peut étre traduite en un ensemble d’atomes
M, ou chaque atome précise 'association (variable,valeur). La contrainte C est alors
compatible avec la mesure p si I'on peut trouver un ensemble réponse X contenant
M. Si ce n’est pas le cas, on cherchera un ensemble réponse affichant le minimum de

1 s’agit 14 d’une optimisation, qui peut étre ignorée sans nuire & la correction de I'algorithme.
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divergences avec M.

Plus formellement, pour un programme logique II et un ensemble d’atomes M, on
cherche un ensemble réponse X de II tel que M C X et tel que le cardinal de M \ X
est minimal. Pour y arriver, il suffit d’ajouter au programme II la directive suivante :

minimize {not a,...,not a}

avec M = {ay,...,an}.

Bilan

Nous avons présenté une solution basée sur la programmation par ensemble réponse
pour les différentes taches d’analyse des données. Rappelons que contrairement a ’ap-
proche proposée au chapitre précédent, la démarche consiste ici & ne calculer qu’une
seule solution & la contrainte étudiée. Il s’agissait donc de cerner les gains et les limites
que cela implique pour ’analyse de données.

Pour la vérification, nous avons proposé un programme logique dont les modeles sont
exactement les solutions de la contrainte de consistance aux sommets. En anticipant
sur les résultats du chapitre suivant, il est clair que le gain escompté est bien la : la
vérification de consistance entre un graphe d’interaction de plusieurs milliers de genes
et quelques dizaines de mesures ne pose aucun probleme.

Le méme programme logique est utilisé pour la recherche des invariants, dans le
cadre d’un algorithme simple de recherche de contre-exemples. On montre au passage
que le calcul des invariants ne nécessite pas vraiment de calculer ’ensemble des solu-
tions. A I'inverse, le calcul des probabilités marginales n’est pas réalisable (au moins
simplement) avec ASP, parce que 1’énumération (nécessaire, dans ce cas) des solutions
est beaucoup trop longue en pratique.

Nous avons enfin montré comment traduire la recherche de diagnostic en une formu-
lation générale sur les ensembles réponse. Celle-ci fait notamment appel aux directives
d’optimisation disponibles sur la plupart des solveurs ASP.

Le chapitre qui suit porte sur la validation de notre approche avec des données
réelles et/ou de volume réaliste ; du point de vue algorithmique, il s’agit de vérifier le
passage & l’échelle des méthodes que nous avons proposées. Elles devront notamment
permettre — c’est notre but initial — le traitement de données haut-débit telles que des
mesures d’expression, ol plusieurs milliers de variables sont mesurées simultanément.



Chapitre 6

Validation expérimentale

Les deux derniers chapitres ont détaillé plusieurs approches pour la résolution et
I’étude des contraintes qualitatives. Le présent chapitre présente ’application des algo-
rithmes décrits a des données réelles, avec essentiellement deux objectifs :

1. évaluer la pertinence de notre modélisation qualitative. Permet-elle de décrire
correctement un systeme réel et d’apporter des prédictions non triviales ?

2. déterminer si les algorithmes passent a 1’échelle, c’est-a-dire s’ils sont utilisables
sur des données telles que rencontrées en pratique.

Cette validation expérimentale porte majoritairement sur les problemes de vérification
et prédiction, et de correction/diagnostic dans une moindre mesure. Elle comporte trois
volets : la premiere étude porte sur un des organismes les mieux étudiés a I’heure ac-
tuelle, a savoir la bactérie E. coli, dont il s’agit de déterminer la réponse globale & un
stress nutritionnel ; la deuxieme partie s’intéresse a la reconstruction du réseau trans-
criptionnel de S. cerevisiae, qui est un probleme tres étudié [67, 104, 15, 59, 64]. Nous
comparons notamment nos résultats avec ceux obtenus dans [104]. Cette comparaison
est étendue sur le plan théorique dans la troisieme partie.

6.1 Prédiction de la réponse a une perturbation

Nous avons cherché dans un premier temps a vérifier que la regle de consistance
que nous avons proposée est effectivement observée dans les données réelles. Dans ce
but nous nous sommes intéressé au réseau transcriptionnel de la bactérie E. coli et
a sa réponse sous l'effet d’un stress nutritionnel. Notre démarche est la suivante : 1.
construire un graphe d’interaction a partir des informations disponibles dans les bases
de données publiques, 2. vérifier sa consistance avec des données issues de la littérature
décrivant la réponse typique de la bactérie a un stress nutritionnel, 3. utiliser ces données
pour prédire les variations dans le reste du réseau, 4. confronter ces prédictions a des
mesures obtenues par puces a ADN.

89
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A B

IhfB l

—*1_ [ =

fur fiu IhfA aceA

F1G. 6.1 — Exemples de régulations trouvées dans RegulonDB. (A) Inhibition du gene
fiu par la protéine Fur (produite par le géne fur). On lui fait correspondre 'interaction
fur — fiu. (B) Production du dimere THF par deux geénes ihfA et ihfB (un pour
chaque sous-unité). Le complexe ITHF active l'expression du gene aceA. On en déduit

les interactions ihfA — THF, ihfB — THF et THF —t- aceA.

6.1.1 Construction du graphe d’interaction

Nous avons utilisé la base de données RegulonDB [37] qui synthétise les informations
disponibles sur les régulations transcriptionnelles de la bactérie E. coli. Elle propose
notamment pour chaque gene, une liste des facteurs de transcription intervenant dans sa
régulation, leur site de fixation et parfois quelques détails sur leur mécanisme d’action.

Pour construire notre graphe d’interaction, nous avons collecté les régulations conte-
nues dans la table « transcription factor to gene interactions » de RegulonDB (version
de mars 2006). Celle-ci se présente comme une liste d’interactions A —— B ot s est un
signe (éventuellement indéterminé ou dépendant de 1’état) et ot A et B sont des genes
ou des protéines selon le cas :

— si une protéine A produite par un gene a est 'un des facteurs de transcription

régulant ’expression du geéne b, alors on on crée 'interaction a — b,
— si une protéine A est un complexe régulant I’expression d’'un gene b, on crée l'in-
teraction A — b (on trouve dans le réseau transcriptionnel de E. coli exactement
4 dimeres, a savoir IHF, HU, ResB et GatR),
— si un gene a produit un élément d’un complexe protéique B, on crée 'interaction
a— B.
Cette construction est illustrée a la figure 6.1. Les sommets sans prédécesseurs dans
le graphe obtenu sont considérés comme des entrées du systeme. Nous avons de cette
maniere obtenu un graphe d’interaction contenant 1258 sommets et 2526 arcs, dont 160
portant un signe indéterminé. La structure du graphe est assez particuliere, on notera
notamment ’existence de 7 sommets (crp, for, IHF, fis, arcA, narLL et Irp) ayant plus
de 80 successeurs.

6.1.2 Confrontation aux données d’expression issues de la littérature,
premier essai

Afin de valider notre réseau, nous avons voulu tester sa cohérence avec des données
d’expression considérées comme particulierement fiables. Nous avons pour cela utilisé



Prédiction de la réponse a une perturbation 91

TAB. 6.1 — Variations pour 40 transcrits sous stress nutritionnel, comme fourni dans la
base RegulonDB, version de mars 2006.

(a) (b) (c) (d) ()

gene  effect gene  effect gene  effect gene  effect gene effect
acnA + csikE + gadC + osmB + recF +
acrA + cspD + hmp + osmE + rob +
adhE + dnaN + hns + osmY + sdaA —
appB + dppA + hyaA + otsA + sohB —
appC + fic + ihfA — otsB + treA +
appY + gabP + ihfB — polA + yeilL +
blc + gadA + Irp + proP + yvfiD +
bolA + gadB + mpl + proX + yihl —

des informations également mises a disposition dans RegulonDB. 1l s’agit de tables re-
censant les variations connues de certains genes pour quelques conditions expérimentales.
Chaque variation est fournie avec les publications apportant sa preuve expérimentale.
L’une des tables en particulier porte sur la réponse d’E. coli & un stress nutritionnel,
et comporte 40 variations ; nous la reproduisons au tableau 6.1.

Il s’avere que ces 40 mesures ne sont pas consistantes avec le graphe d’interaction
que nous avons construit. Pour en comprendre la raison, nous nous sommes appuyés
sur la démarche proposée au paragraphe 4.4.3, qui consiste a isoler un sous-ensemble
de contraintes dont la conjonction n’admet aucune solution. On appellera un tel sous-
ensemble un défaut a la regle de consistance. Nous développons maintenant la recherche
et I’analyse pratique de ces défauts.

6.1.3 Diagnostic par isolement des défauts

La contrainte de consistance que nous avons donnée a la définition 1 est une conjonc-
tion de contraintes locales, c’est-a-dire se rapportant a un sommet et ses prédécesseurs
(et une mesure). Si une conjonction n’admet pas de solution, on peut toujours essayer
de trouver des sous-ensembles de contraintes qui n’admettent pas non plus de solu-
tion. Dans le meilleur des cas, ces sous-ensembles sont suffisamment petits pour étre
facilement interprétables.

Pour faciliter cette interprétation, on peut utiliser le fait que chaque contrainte locale
correspond a un sous-graphe du graphe d’interaction : il s’agit du sous-graphe engendré
par le sommet attaché a la contrainte locale et ses prédécesseurs. Un sous-ensemble de
contraintes locales correspond donc aussi a un sous-graphe du graphe d’interaction :
le sous-graphe engendré par tous les sommets associés aux contraintes locales, et leurs
prédécesseurs.

L’approche proposée au paragraphe 4.4.3 consiste a déterminer un sous-ensemble de
contraintes locales dont la conjonction n’admet aucune solution, ou le sous-ensemble
en question est de cardinal minimal. Si le sous-ensemble est suffisamment petit, on
peut donc en tirer une représentation simple, sous forme d’un graphe et des mesures
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ifhA
IHF Ciar : XiHF  ~  —Xinfa — XinfB
Cihta © Xinfa ~ XiHF
Cuwm @ X =~ Xmr
ihfB

(a) (b)

F1G. 6.2 — (a) Sous-graphe inconsistant avec les données du tableau 6.1. (b) Contrainte
qualitative correspondante

qui posent probleme. Une approche alternative, plus simple d’un point de vue calcu-
latoire, consiste a chercher des sous-ensembles minimaux au sens de l'inclusion. Les
sous-ensembles inconsistants de cardinal minimal sont aussi minimaux au sens de 'in-
clusion mais la réciproque est fausse. En pratique, nous commencons par calculer un
ensemble C-minimal, ce qui est relativement facile d’un point de vue algorithmique. Si
ce dernier est trop gros pour étre facilement interprétable, nous recourons a la recherche
d’ensembles de cardinal minimal.

Illustrons a présent le résultat de cette démarche sur notre probléeme. Comme on
peut le voir sur la figure 6.2(a), on peut isoler un sous-systeéme, composé des sommets
ihfA, ihfB et IHF, qui n’est pas compatible avec les variations données en tableau 6.1.
Cela peut se voir sur la contrainte qualitative associée a ce systeme, donnée en figure
6.2(b). La conjonction des contraintes Crr, Cinga et Ciugg n’admet que la solution nulle
partout, ce qui est contradictoire avec ’observation rapportée dans RegulonDB. Méme
sans regarder de pres les équations, on remarque tout de suite sur le graphe d’interaction
qu’il n’y a aucune boucle positive dans le graphe d’interaction. Par conséquent, le
systeme n’admet qu’un seul état stable et la seule variation observable suite a un
déplacement d’équilibre est la variation nulle.

6.1.4 Ajout des facteurs ¢ dans le modele

Cette observation nous a conduit a rechercher d’autres régulateurs des génes ihfA
et ihfB, et finalement a considérer I'action des facteurs o que nous avions initialement
omis dans le modele. Les facteurs o sont des protéines intervenant dans l'initiation de la
transcription et elles régulent de ce fait un tres grand nombre de genes. Ces régulations
sont également recensées dans RegulonDB, et nous les avons ajoutées a notre modele.
Le tableau 6.2 indique le nombre de genes cibles pour chaque facteur o. Le graphe
d’interaction obtenu comporte cette fois 1529 sommets et 3802 arcs, dont 175 de signe
indéterminé; il est présenté en figure 6.5. En particulier notre sous-graphe inconsistant
est modifié comme présenté en figure 6.3(a). La contrainte correspondante 6.3(b) admet
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TAB. 6.2 — Nombre de geénes cibles pour chaque facteur o (régulations répertoriées dans
RegulonDB, version de mars 2006)

Protéine | Geéne | Genes cibles
a0 rpoD 1047
038 rpoS 114
o rpoN 100
ot rpoE 48
032 rpoH 29
ot? fecl 7

cette fois une variation négative pour ihfA et ihfB.

Néanmoins il s’avere que ce nouveau réseau n’est toujours pas compatible avec les
données bibliographiques sur la réponse au stress nutritionnel. Le diagnostic produit
dans ce cas est présenté en figure 6.4(a). Cette fois le probleme est un peu plus com-
plexe : si ihfA et ihfB diminuent, alors IHF doit également diminuer. Or si c’est le
cas, seule une augmentation de rpoD pourrait justifier 'augmentation de dppA. Par
ailleurs rpoS ne peut qu’augmenter, puisqu’il est le seul régulateur connu de fic, qui
augmente. Mais alors, il n’y a pas d’explication a la diminution de ihfA. Nous nous
sommes cette fois tourné vers les données, et nous avons trouvé que ’annotation four-
nie par RegulonDB (version de mars 2006) pour ihfA et ihfB est en contradiction avec
les publications qui doivent la justifier. On trouve notamment dans [3] ’extrait suivant :

[... ] transcription of himA and himD promoters increases as the E. coli
cells enter the stationary phase of growth [... ]

ou himA et himD sont des synonymes de ihfA et ihfB respectivement ; 'entrée en phase
stationnaire correspond a la réaction physiologique des bactéries sous l'effet d’un stress
nutritionnel’. Une fois les deux annotations corrigées, les données bibliographiques sur
le stress nutritionnel sont consistantes avec le graphe d’interaction avec facteurs o.

6.1.5 Prédiction de la réponse globale au stress nutritionnel

Disposant de données stires mais partielles sur la réponse d’E. coli a un stress nutri-
tionnel, nous avons cherché a prédire les variations dans le reste du réseau. Nous avons
obtenu au total 381 variations prédites (invariants de la contrainte qualitative associée
au graphe et aux données bibliographiques), soit approximativement un quart des som-
mets du graphe d’interaction. Afin de valider ces prédictions nous les avons comparées
a des données expérimentales sur ’entrée en phase stationnaire. Plus précisément les
prédictions ont été comparée a des résultats de puces & ADN réalisées dans [47] et
[100]. Ces données sont compilées et mises & disposition dans la base de données Gene
Ezpression Omnibus (GEO).

1 . . . . s RT
La phase stationnaire est ainsi nommée parce que les bactéries cessent de se multiplier.
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ifhA rpoD
IHF
Cr : Xmr ~  —Xinta — XinB
Cinea @ Xinta & XHF + Xipos + XipoD
ihfB rpoS Cint - XinfB = XiHF + Xipos + XrpoD

(a) (b)

Fic. 6.3 — Correction du graphe d’interaction, selon les données disponibles sur les
facteurs o.

rpoD

dppA IHF ifh A fic

Cir : Xir  ~  —Xihta — XinfB
Cinta - XintA =~ XmHF + Xipos + XepoD
Che : Xfic ~ eroS
CdppA : XdppA ~ eroD
ihfB rpoS

(a) (b)

FiG. 6.4 — Sous-graphe inconsistant avec les données bibliographiques, apres ajout des
régulations par les facteurs o
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Fi1G. 6.5 — Graphe d’interaction pour le réseau transcriptionnel d’E. coli avec facteurs o.

Comme mentionné au chapitre 2, ainsi qu’au paragraphe 4.4.1, U'interprétation des
données brutes en signes passe par la définition d’un seuil, au-dessus duquel la varia-
tion mesurée est jugée significative. Si la variation est trop faible, on peut au choix la
considérer nulle ou inconnue. Nous avons opté pour la deuxieme possibilité, en com-
mencant par un seuil nul : toutes les données sont interprétées en signes + et — uni-
quement. Pour étre cohérent avec ce choix, les calculs de prédictions ont également été
faits en excluant les solutions contenant des variations nulles. Ainsi les prédictions sont
également dans {+,—}.

TAB. 6.3 — Validation des prédictions obtenues a partir des données bibliographiques.
Les prédictions sont comparées a des données de puces & ADN, provenant de [47] et
[100].

Source de données Nombre de génes comparés | Genes validés (%)
Phase stationnaire apres 20 minutes | 292 51.71%
Phase stationnaire aprés 60 minutes | 281 51.2%

Les résultats de la comparaison sont donnés au tableau 6.3. Nous avons inclus dans
cette comparaison deux temps expérimentaux (20 et 60 minutes). Dans chaque cas,
il y a des variations manquantes (mesure brute absente), et la deuxiéme colonne du
tableau montre le nombre de genes qui sont a la fois prédits par notre approche et dont
la mesure est disponible dans la source. La troisieme colonne donne le pourcentage de
genes dans cette intersection qui ont effectivement un signe commun.

Les chiffres obtenus sont & premiére vue peu encourageants : les prédictions font
a peine mieux qu’un tirage aléatoire. Néanmoins ce résultat peut étre partiellement
di au bruit dans les données : comme indiqué ci-dessus, nous n’avons initialement
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Fig. 6.6 — Prédiction de la réponse au stress nutritionnel. Les courbes montrent
I’évolution des résultats en fonction du seuillage des données. On se donne un seuil
en dessous duquel les variations mesurées sont jugées non significatives. Dans ce cas, la
variable concernée est déclarée non observée. Plus on choisit un seuil élevé, moins on
garde de données, mais plus ces données sont fiables. (a) Pourcentage de prédictions
correctes en fonction du seuil. (b) Nombre de genes conservés en fonction du seuil.

effectué aucun filtrage sur les données. En choisissant un seuil en-dessous duquel les
variations sont ignorées, on peut s’attendre a observer une meilleure concordance entre
les prédictions et les données. Pour le vérifier, nous avons itéré le calcul pour diverses
valeurs du seuil ; le tracé est donné en figure 6.6.

La premiere courbe donne le pourcentage de prédictions validées en fonction du seuil
choisi. Plus le seuil est élevé, plus on exclut de genes de la comparaison. Le nombre de
genes considérés (c’est-a-dire qui ont une variation expérimentale suffisante et qui sont
prédits par notre approche) est donné en fonction du seuil sur la courbe de droite. Ainsi,
lorsque 'on sélectionne les genes dont la variation est la plus importante, le taux de
prédiction s’améliore sensiblement. Cet effet n’est pas tres étonnant si ’on se souvient
du niveau de bruit généralement observé dans les mesures d’expression (voir figure
1.2), et particulierement pour les genes faiblement exprimés dans les deux conditions
comparées.

Il reste que le pourcentage de prédictions validées est loin d’étre parfait, méme
apres avoir choisi un seuil tres restrictif. Nous nous sommes donc intéressés aux er-
reurs de prédiction les plus flagrantes, c’est-a-dire pour lesquelles la variation mesurée
ne pose aucun probleme d’interprétation. C’est notamment le cas pour le gene ilvC
dont I'expression devrait augmenter d’aprés notre modele, et qui diminue en fait for-
tement. Le gene ilvC n’admet qu’un seul activateur, a savoir le gene ilvY, qui n’a lui
méme qu’un seul activateur, a savoir rpoD. Ce dernier est prédit comme augmentant &
I’entrée en phase stationnaire, ce qui implique 'augmentation de ilvY et de ilvC. Une
recherche bibliographique nous a conduit & des publications portant spécifiquement sur
la régulation de ces genes [76, 70]. Ces travaux montrent l'influence des phénomenes
de super-hélicité de '’ADN dans la régulation transcriptionnelle de ces genes. On peut
notamment lire dans [76] :
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Evidence that this promoter coupling is DNA supercoiling-dependent is
provided by the observation that a novobiocin-induced decrease in global
negative superhelicity results in an increase in ilvY promoter activity and
a decrease in ilvC promoter activity predicted by the in vitro data. We
suggest that this transcriptional coupling is important for coordinating basal
level expression of the ilvYC operon with the nutritional and environmental
conditions of cell growth.

Des travaux expérimentaux [4] montrent que le phénomene de superhélicité tend a dimi-
nuer lors du passage en phase stationnaire. Cet événement, provoqué in vitro dans [76]
conduit a une diminution de 'activité transcriptionnelle du gene ilvC, et une augmen-
tation pour le gene ilvY. En complétant notre modele avec 'incluence de la topologie
de ’ADN, nous obtenons une correction validée de notre modele.

6.2 Inférence de graphes d’interactions

Nous abordons maintenant un deuxieme probleme essentiel en biologie systémique :
la reconstruction de modeles a partir de données expérimentales — reverse-engineering
dans la littérature. Dans notre contexte, il s’agit de construire un graphe d’interaction
compatible avec des données de déplacement d’équilibre. Nous nous sommes intéressés
a un cas particulier de ce probleme, ou 'on suppose les arcs du graphe d’interaction
connus, et ol seuls les signes sur les arcs sont a déterminer.

L’intérét pratique de cette question est de permettre I'intégration des données chIP-
on-chip avec les mesures d’expression : les premieres fournissent les arcs du graphe d’in-
teraction, puisqu’elles déterminent les cibles des facteurs de transcription ; les deuxiemes
vont nous permettre de déduire le signe des arcs, c’est-a-dire l'effet (activation ou in-
hibition) de ces facteurs de transcription sur leurs cibles.

L’intégralité de ce travail est reproduite en annexe A, et nous en synthétisons ici
les principaux résultats. Nous avons procédé en trois étapes, partant de données bien
validées et /ou artificielles sur la bactérie E. coli, pour arriver a un contexte d’utilisation
réaliste chez la levure. En voici les grandes lignes.

6.2.1 Limites théoriques de 1’approche

Inférence a partir d’une seule mesure On peut commencer par une remarque
simple : si un géne a¢ admet un unique régulateur b, alors il suffit d’une seule mesure
voyant a et b varier pour déterminer l'effet de la régulation. Elle est positive si a
et b varient dans le méme sens, négative sinon. En supposant que I’on mesure tous les
sommets d’un graphe d’interaction donné, ce raisonnement simple regle donc la question
pour tous les sommets n’ayant qu'un seul prédécesseur. Sur le graphe d’interaction issu
de RegulonDB, cela représente plus de 600 régulations (sur un total de 3802). La valeur
ajoutée de notre approche est donc de savoir combiner plusieurs mesures pour déduire
le signe des régulations dans le cas général.
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Fig. 6.7 — Statistique du nombre de signes déduits a ’aide d’'un nombre donné de
mesures. En abscisse, nombre de mesures disponibles ; en ordonnées le nombre de signes
de régulation que ’on peut en déduire.

Inférence & partir de plusieurs mesures Si l'on dispose de plusieurs mesures,
nous étudions les invariants de la contrainte de consistance, et rapportons tous les
invariants qui sont des signes (les invariants peuvent également étre des variations
non mesurées). Plus précisément, pour un graphe d’interaction G entierement signé,
on calcule un ensemble de k solutions de la contrainte de consistance Cw, notées p =
{p1,..., 1k }. On construit le graphe H, qui a les mémes arcs que G mais ou aucun
signe n’est connu. Enfin, on cherche les invariants de la contrainte Cé‘{. Pour étudier
I'intérét pratique de cette approche, nous examinons son comportement sur le graphe
d’interaction basé sur RegulonDB (voir section précédente). Ce réseau étant entierement
signé, nous l'avons utilisé pour générer aléatoirement des mesures compatibles. Plus
précisément, pour un entier £ donné, on génere aléatoirement k mesures compatibles
avec le graphe d’interaction. On construit ensuite une version non signée de ce graphe
d’interaction, que ’on combine avec les k£ mesures pour obtenir les signes prédits, dont
on compte le nombre. Cette opération est répétée une centaine de fois pour obtenir une
statistique du nombre de signes déduits a l'aide de k mesures. Le résultat obtenu est
donné en figure 6.7. On retrouve, a l'origine de la courbe, les régulations inférables par
une seule mesure. La courbe monte rapidement vers un plateau supérieur & 35%. Nous
voyons notamment qu’on peut en moyenne déterminer 30% des régulations du graphe
a I’aide d’environ 30 mesures.

Réalisation Pour l'inférence des régulations, le calcul des invariants peut, au choix
étre effectué par un moteur ASP soit en utilisant les diagrammes de décision et notre
méthode de décomposition. Le calcul des simulations est relativement cotteux, aussi
nous avons cherché a optimiser autant que faire ce peut le calcul des invariants. A
cette fin, nous 'avons décomposé en deux parties. La premiere consiste a calculer des
parties bien choisies de la contrainte de consistance avec des diagrammes de décision.
Nous obtenons ainsi la plupart des invariants dans un temps relativement court. La
deuxieme phase utilise le moteur ASP clasp pour prouver la non-invariance des autres
variables. La procédure complete est détaillée dans ’article reproduit en annexe.
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Signes inférables La courbe 6.7 semble indiquer 'existence d’une limite au nombre
de signes pouvant étre retrouvés, correspondant & un peu plus de 35% du graphe d’in-
teraction. Nous pouvons en fait calculer cette limite exactement, en déterminant les
signes que l'on peut déduire quand toutes les mesures compatibles sont disponibles.
L’algorithme naif consistant a générer toutes les mesures explicitement, puis a les uti-
liser comme au paragraphe précédent n’est pas envisageable. On peut procéder de la
maniere suivante : la contrainte Cg construite plus haut décrit toutes les mesures com-
patibles avec G. De plus toute mesure compatible avec G doit étre compatible avec H,
ce qui se traduit par la contrainte :

vx Chix] = X, S)

qui porte sur les variables de signe uniquement, et dont on peut calculer les invariants.
Ces invariants sont les seuls signes inférables a partir de mesures expérimentales. Notons
bien la raison de cette limitation : il est impossible de prouver expérimentalement qu’une
mesure arbitraire n’est pas compatible avec le systeme étudié. Dans le cas contraire, on
pourrait remplacer dans la formule ci-dessus I'implication par une équivalence, et tous
les signes seraient inférable, moyennant le bon ensemble d’observations.

Sur notre graphe d’interaction pour E. coli, nous obtenons que 40.8% des régulations
sont inférables, c’est-a-dire un peu plus de 1550 signes. Ce maximum peut n’étre atteint
que pour un tres grand nombre de mesures. Le calcul a été réalisé grace aux procédures
sur les diagrammes de décision, en utilisant les techniques de décomposition sur les
contraintes qualitatives décrites au paragraphe 4.5.2.

Bilan Cette étude sur le réseau transcriptionnel d’E. coli nous permet d’évaluer les
limites de l'inférence de régulation par contraintes de consistance, dans le cas ot les
données — ou du moins leur interprétation qualitative — ne sont pas bruitées. Nous
voyons ainsi que tous les signes de sont pas inférables, et d’autres ne le sont qu’au prix
d’un tres grand nombre de mesures. Néanmoins, nous montrons sur cet exemple qu’un
petit nombre de mesures permet déja d’approcher de maniere significative cette limite.

6.2.2 Validation par des mesures d’expression

Prédictions sous données non consistantes Dans une deuxiéme étape, nous rem-
plagons les mesures artificielles par des données d’expressions, compilée dans [27]. Dans
ce cadre, les mesures peuvent ne pas étre consistantes avec le graphe d’interaction que
nous avons construit. Les données expérimentales peuvent donc nous amener a déduire
des signes erronés (c’est-a-dire non conformes & ’annotation données dans RegulonDB).
Plus ennuyeux, les données peuvent ne pas étre consistantes avec le graphe non signé.
On peut en donner un exemple simple : soit un systéme composé de deux especes A et
B avec une régulation B — A. Supposons qu’on dispose de deux mesures u;(A) = 4+,
p1(B) = 4 d’une part, et ui1(A) = +, pi(B) = — d’autre part. L’ensemble n’est pas
consistant, car la contrainte qualitative de consistance aux sommets n’admet aucune
solution. A fortiori, on ne peut donc pas calculer les invariants. Il nous faut donc
répondre a la question suivante : comment obtenir (définir 7) des prédictions lorsque les
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données expérimentales ne sont pas consistantes avec le graphe d’interaction non signé ?
La réponse la plus sage consiste a détecter chaque défaut a la regle de consistance, et
examiner manuellement le probleme. Il n’est toutefois pas toujours possible d’investir
le temps nécessaire pour arriver corriger compléetement les défauts.

Un algorithme pour la prédiction en présence de bruit Nous avons ici proposé
une approche intuitive proche de la notion de diagnostic. En voici les grandes lignes :
— soit un graphe non signé, et un ensemble de mesures qui ne sont pas consistantes
avec ce graphe
— en utilisant ’approche de diagnostic décrite plus haut (voir paragraphe 6.1.3), on
isole un sous-ensemble d’équations et de mesures inconsistantes, que ’on supprime
de la contrainte de consistance.
— cette opération est répétée jusqu’a obtenir un graphe et des données consistants
pour lesquels on calcule les invariants sur les signes des régulations,
— pour chaque prédiction, on appelle indice de confiance le nombre de mesures
compatibles avec la prédiction.
Il s’agit donc essentiellement de retirer des données jusqu’a arriver a une contrainte
satisfiable, sur laquelle on peut calculer des prédictions. Bien stir cette approche n’est
pas pleinement satisfaisante, puisque les données mises a I’écart ne sont pas uniquement
déterminées : plusieurs sous-ensembles de données et d’équations peuvent expliquer
I'inconsistance constatée. Néanmoins cette approche a le mérite de la simplicité, et
nous permet d’observer 'intérét « grandeur nature » de la notion de diagnostic (par le
biais de 'indice de confiance).

Résultats expérimentaux Les résultats obtenus par l'algorithme ci-dessus sont
donnés en figure 6.8. Pour 'indice de confiance le plus faible (k = 1), on obtient 183
signes, mais 42% de ceux-ci sont conformes & ’annotation de RegulonDB. Pour des
indices de confiance plus élevés, le nombre de prédictions chute (c’est attendu), mais
le taux de faux-positifs diminue également de maniere sensible, arrivant a 8% pour
k = 15.

Bilan Nous avons montré une approche simple pour la formulation de prédictions
dans le cas de données non consistantes. Son principe peut étre perfectionné, mais
elle illustre déja l'intérét pratique de la notion de diagnostic, puisqu’elle privilégie les
prédictions confirmées par le plus grand nombre d’observations (c’est-a-dire celles qui
en contredisent le minimum).

6.2.3 Application chez S. cerevisiae

La derniere étape de ce travail expérimental consiste a appliquer 'algorithme de
prédiction décrit plus haut dans un contexte plus difficile : le graphe d’interaction
provient cette fois de données chIP-on-chip, et constitue donc un modele beaucoup
moins fiable que le réseau fourni par RegulonDB pour la bactérie E. coli.
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FiG. 6.8 — Résultats de l'inférence des signes de régulation sur le réseau d’FE. coli, a
partir de données d’expression.

Données Nous avons étudié quatre réseaux transcriptionnels, correspondant aux
données produites par Lee et al [57] et Macisaac et al [62]. Les trois premiers sont
de taille modeste (moins de 100 sommets) car limités aux facteurs de transcriptions.
Le dernier regroupe toutes les cibles des facteurs de transcriptions étudiés dans [57];
il compte plus de 2400 sommets et 4300 régulations. Les mesures d’expression utilisées
sont celles qui ont été compilées dans [45].

Résultats Comme avec le réseau transcriptionnel d’E. coli, les réseaux que nous
avons construits ne sont pas consistants avec les données d’expression. La procédure de
diagnostic décrite plus haut nous a permis d’isoler les défauts & la regle de consistance ;
il s’avere que les défauts typiques tombent systématiquement dans un des cas montrés
en figure 6.9. Dans le cas du plus grand graphe, nous avons compté plus de 740 de
ces défauts, couvrant un peu moins de 18% du graphe d’interaction total. En utilisant
I’algorithme de prédiction décrit plus haut, nous obtenons 631 signes prédits avec un
indice de confiance supérieur a 1, et 198 avec un indice supérieur a 3. Pour valider ces
prédictions, nous utilisons comme référence le réseau construit dans [35] a partir de
données bibliographiques. Sur les 198 régulations prédites avec un indice supérieur a 3,
19 sont annotées dans le réseau et 18 concordent.

Bilan

Nous avons exposé dans ce chapitre deux applications de notre approche sur des
données réelles. La premiere porte sur la réponse transcriptionnelle de la bactérie E. coli
a un stress nutritionnel : il s’agissait, partant d’un graphe d’interaction completement
annoté, et d’un ensemble (restreint) d’observations issues de la littérature, de prédire
la réponse globale de la bactérie. Dans la seconde application, le but était de prédire
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Fia. 6.9 — Cas typiques de défaut a la contrainte de consistance, trouvés dans les
données sur S. cerevisiae.
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I'influence des facteurs de transcription sur leurs genes cibles, en combinant des données
chIP-on-chip et des données d’expression. Nous avons dans un premier temps démontré
la faisabilité de la méthode en utilisant des données fiables sur la bactérie E. coli, puis
produit des prédictions a partir de données sur la levure.

Validation algorithmique Ces expérimentations répondent positivement a la ques-
tion du passage a 1’échelle : les algorithmes que nous avons proposés sont & méme de
traiter des données transcriptomiques portant sur plusieurs milliers de transcrits, dans
un temps qui n’excede pas quelques minutes. A ce titre, nos deux méthodes de résolution
(par diagramme de décision, ou par programmation logique) ont un comportement si-
milaire, méme si 'utilisation des diagrammes de décision pour de si grands systemes
reste délicate — notamment & cause des passages obligés de réduction/décomposition
des contraintes. L’utilisation du solveur ASP clasp donne en revanche des résultats
tout a fait satisfaisants, pour une utilisation relativement simple.

Analyse de données Ces travaux sur données réelles ameénent a une observation

capitale : le critére de consistance n’est généralement pas vérifié dans les mesures

expérimentales disponibles. Quoique décevant de prime abord, ce résultat est au contraire
un formidable levier pour ’analyse de données, puisque nous avons mis en évidence que

I’étude des défauts permet dans de nombreux cas de corriger le modele étudié, ou les

données utilisées. Dit autrement, nous avons proposé un modele suffisamment peu précis

pour s’accommoder des données disponibles, mais qui néanmoins peut guider vers des

connaissances nouvelles sur le systeme étudié.



Chapitre 7

Discussion

Nous avons a présent décrit en détail notre approche, tant en ce qui concerne son
principe que ses aptitudes au traitement de données réelles. Nous proposons dans ce
chapitre de resituer notre travail parmi d’autres contributions abordant la comparaison
grande échelle d’un modele graphique et de données expérimentales. Nous approfon-
dissons notamment la comparaison avec ’approche développée par Yeang, Ideker et
Jaakkola [103].

7.1 Travaux connexes

Notre travail peut étre vu comme une proposition pour relier une représentation gra-
phique d’un systeme biologique au comportement dudit systeme. La relation que nous
avons décrite est basée sur un modele physique qui donne d’une part une sémantique a la
représentation graphique, et d’autre part une interprétation des mesures expérimentales.
Cette relation porte essentiellement sur une propriété topologique (prédécesseurs d'un
sommet) sur un type de graphe (les graphes d’interaction) et un type de mesure (signe
des variations entre deux états d’équilibre). Nous allons dans un premier temps men-
tionner un certain nombre de travaux abordant, dans des contextes distincts, la méme
question : comment expliquer ou prédire des observations expérimentales sur un systeme
a partir de sa description sous forme d’un graphe ?

7.1.1 Circuits du graphe d’interaction

Nous avons déja cité au paragraphe 3.2.1 quelques résultats connus sur le graphe
d’interaction d’'un systeme. Ainsi, I'absence de circuit positif implique 'unicité de
I’équilibre d’un systeme; ’absence de circuit négatif implique ’absence d’oscillations
amorties ou entretenues. Par ces résultats, on a donc relié des propriétés dynamiques
(unicité de 1’équilibre par exemple) aux circuits d’un graphe d’interaction, sous di-
verses sémantiques (modeles différentiels avec ou sans dégradation [89], réseau booléens
[75]/multi-valués [77] ...).

103
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7.1.2 Régulons

Gutiérriez et collegues [36] ont adopté une approche tres similaire au travail présenté
dans cette these : ils proposent de comparer des connaissances issues de la littérature
(en particulier le contenu de la base RegulonDB étudiée au chapitre 6) a des mesures
sur le transcriptome de la bactérie E. coli dans différentes conditions expérimentales.
Le modele physique justifiant la comparaison intégre des connaissances générales sur
la régulation transcriptionnelle chez les prokaryotes. De maniére analogue a ce qui est
présenté dans cette these, ce formalisme explicite la relation entre I’état d’un gene et
celui de ses prédécesseurs. 1l introduit notamment la notion de régulon, qui désigne les
ensembles de genes ayant exactement le méme ensemble de prédécesseurs. Tout comme
la comparaison données/modele nous a permis de déterminer effet des facteurs de
transcription sur leurs génes cibles, elle permet dans ce cadre d’inférer les fonctions de
régulation propres a chaque régulon.

7.1.3 Chemins métaboliques

On appelle métabolites les « petites » molécules’ présentes dans le milieu cellu-
laire qui sont liées a la production d’énergie ou des structures cellulaires (cela inclut
les acides aminés, acides nucléiques, lipides et sucres simples). Les mécanismes de pro-
duction d’énergie, de synthese ou de destruction des métabolites (I’ensemble est appelé
métabolisme) est souvent représenté par un graphe de réactions analogue a ce que
nous avons utilisé au paragraphe 3.2.7. Chaque réaction transforme ou assemble des
métabolites par le biais d’une réaction enzymatique ; chaque réaction est donc associée
a l'enzyme qui la catalyse, et on s’intéresse au flux de métabolites transformées par la
réaction. Ce flux est dans certains cas mesurable, et en partie fonction des régulations
génétiques : si le géne codant pour I'enzyme n’est pas exprimé, alors le flux a travers la
réaction associée est nul. Pour relier ces observations au graphe de réactions, on a re-
cours & une analyse de flux a I’équilibre (Fluz Balance Analysis, FBA) [81] : on suppose
que les réactions suivent une dynamique différentielle et on étudie ’ensemble des flux
a I'équilibre compatibles avec les observations. Cet ensemble peut étre infini, donc dif-
ficile a visualiser, mais s’avere étre le noyau d’une application linéaire de rang fini. On
peut donc en rechercher une famille génératrice finie ; chaque vecteur de flux dans cette
famille peut étre représenté par un sous-graphe « actif ». Notamment, si un vecteur de
flux a peu de composantes non-nulles, cette représentation fait apparaitre des chemins
métaboliques (metabolic pathways), ¢’est-a-dire une suite de transformations menant ty-
piquement de métabolites simples & la production d’énergie ou de biomasse. On obtient
finalement que tout flux a 1’équilibre est une superposition de chemins métaboliques
simples. On a ainsi relié des observations sur les flux métaboliques a un graphe de
réactions en faisant I’hypotheése d’un modele différentiel a I’équilibre. L’analyse offre
par ailleurs une visualisation intuitive des états de flux possibles comme superposition
de chemins métaboliques.

!Elles sont petites & coté des protéines, typiquement. Elles constituent en général les briques de
bases de structures moléculaires plus complexes.
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7.1.4 Cascades de régulations

La réponse d’une cellule aux signaux présents dans ’environnement passe par une
série de réactions et de mécanismes physiques, comprenant notamment des interactions
avec des récepteurs sur la membrane, des phénomenes de transport par des vésicules,
des interactions protéine/protéine et la régulation de genes dans le noyau. La encore on
s'intéresse aux chemins en tant qu’ils constituent des suites d’événements reliant une
perturbation a une réaction observable. Les chemins trouvés sont appelées cascades de
régulation (regulatory pathways); ils different des chemins métaboliques par le modele
physique sous-jacent : les chemins métaboliques correspondent a des flux équilibrés
minimaux (en un certain sens) ; les cascades de régulations sont des chemins explicatifs
reliant une perturbation a ses effets observables?. Nous mentionnerons deux approches
précisant cette notion de chemins explicatifs. La premiere, implémentée dans les logiciels
BIOCHAM [16] et Pathway Logic [25], consiste a interpréter un graphe de réactions
comme un ensemble de regles de réécriture : 1’état d’un systeme est représenté par
un vecteur de booléens (absence/présence de chaque espece), et cet état est modifié
par I'application des regles. Les régles sont applicables des que tous les substrats de la
réaction sont présents. Pour relier des observations expérimentales (état d’activation
des geénes suite a une perturbation) au graphe de réactions, on recherche donc une suite
d’applications de regles menant du profil initial au profil final. On montre dans [25] que
sous la sémantique choisie, cela correspond a un sous-graphe du graphe de réactions,
qui correspond a la cascade de régulation expliquant la réponse a la perturbation. La
deuxieme approche [103], que nous détaillons plus loin, permet d’étudier les effets d’une
délétion de gene (knock-out) : par manipulation génétique on produit une variété d’un
organisme ol I'un des geénes ne s’exprime plus. On soumet les deux variétés (sauvage
et mutante) aux mémes conditions et on compare les différences de comportement.
Les observations portent typiquement sur I’expression des genes et correspondent aux
variations entre les deux souches. Des lors, 'objectif est de chercher a expliquer toute
variation observée par une suite de régulations (chemin dans le graphe) partant du gene
muté.

7.1.5 Bilan

Nous avons revu quelques approches proposées pour comparer une représentation
graphique a des observations expérimentales, via I'introduction d’un modele physique.
La comparaison avec notre approche n’est pas systématiquement possible, puisque les
types de données expérimentales utilisés dans chaque approche ne sont pas toujours
compatibles. Il n’en reste pas moins que chaque approche fournit un critere de consis-
tance — au sens ol nous ’avons définit dans cette thése — entre une représentation du

2Formellement, rien n’empéche de rechercher des chemins explicatifs dans les réseaux métaboliques,
ni d’appliquer des méthodes de Fluz Balance Analysis aux réseaux de signalisation (comme par exemple
dans [71]). Le choix du bon outil reste avant tout une question de modélisation (que cherche-t-on?) et
d’adéquation aux données disponibles. La différence que nous avons voulu souligner est que les chemins
métaboliques sont des composantes simples d’un état d’équilibre, alors que les chemins explicatifs
doivent étre vus comme des séries d’événements.
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systeme et des données expérimentales. L’existence de ces différents criteres de consis-
tance pose naturellement la question de leur comparaison. Etant donnés deux criteres
A et B, cela demande :

1. d’expliciter un cadre formel pour leur comparaison, c’est-a-dire une interprétation
commune des données;

2. de déterminer si des modeles admis par A sont admis par B (et réciproquement) ;

3. d’étudier, dans le cas ou une telle inclusion n’existe pas, l'intersection des deux
criteres.

Donnons-en un exemple : prenons comme critere A la satisfaction des contraintes
introduites dans cette these, et comme critére B l’existence d’une trajectoire dans
un modele différentiel linéaire par morceaux, comme ceux définis dans [87], [24] ou
[78]. Ces modeles sont connus pour étre des abstractions qualitatives de systeémes
différentiels continus. En particulier [88], le modele discrétisé conserve exactement I’en-
semble des points stationnaires du modele continu. Cela implique en particulier que tout
déplacement d’équilibre du modele discrétisé est admis par nos équations qualitatives.
On en déduit que le critere B est plus restrictif que le critere A.

Nous passons a présent a une comparaison plus détaillée entre notre approche et
celle développée par Yeang, Ideker et Jaakkola dans [103]. Cette étude est facilitée
par la relative proximité entre les modeles que nous utilisons. Elle illustre notamment
lintérét d’expliciter et de comparer les criteres de consistance données/modeéle.

7.2 Chemins dans le graphe d’interaction

Les travaux de Yeang et al [103, 104] portent sur la modélisation des expériences
dites de knock-out (délétion de gene), ou 'on construit une souche bactérienne « mu-
tante » a partir d’une souche « sauvage ». La mutation consiste généralement a suppri-
mer Dactivité d’un gene, voire deux. Quand la mutation n’est pas létale, on compare
alors la réponse des deux souches a une méme perturbation. Sur le plan modélisation,
Pobjectif est de relier les effets de la délétion (c’est-a-dire les variations observées) au
role connu du gene inactivé. Notamment, on cherche a faire apparaitre une notion de
chemin (pathway dans la littérature) menant de la cause (gene inactivé) aux effets
(variations observées).

7.2.1 Le modéle de Yeang-Ideker-Jaakkola (Y1J)

Le modele YIJ [103] integre les interactions protéine/protéine et protéine/ADN
connues ou supposées dans une structure de graphe. Les arcs du graphe sont étiquetés
par un signe + ou — indiquant l'effet d’un géne (ou d’une protéine) sur un autre géne. On
suppose disposer par ailleurs de données de knock-out : pour chaque délétion de gene,
on connait les effets sur le reste des sommets du graphe (augmentation, diminution,
pas d’effet significatif).

Nous introduisons maintenant plus formellement ce modele en en excluant les
éléments liés aux interactions protéine/protéine. Cette hypotheése ne modifie pas fon-
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damentalement les conclusions de cette étude, et en facilite grandement ’exposition :
le graphe du modele Y1J est alors tout a fait analogue a un graphe d’interaction.

Description du modele et des données Les éléments du modele sont les suivants :

— un ensemble de génes V = {g1,...,9n}

— un ensemble d’arcs (dirigés) E C V x V, représentant I’ensemble des interactions
protéine-ADN potentielles, c’est-a-dire celles pour lesquelles, il existe un support
expérimental minimum (par exemple, p-valeur raisonnable dans une expérience
de chIP-on-chip). On suppose qu’aucune autre interaction n’existe en dehors de
celles-ci.

— des variables binaires Xg = {x. | ¢ € E} indiquant qu’une interaction est fonc-
tionnelle (autrement dit, qu'une liaison protéine-ADN est réellement suivie d’ef-
fet).

— des variables qualitatives (i.e. & valeurs dans S) Sp = {s. | e € E} indiquant
effet de l'interaction (activation, inhibition, sans effet)

— une collection de knock-outs, qui est un sous-ensemble I de V x V' x S dont les
triplets (gi, g5, ki;j) sont tels que g; # g; et k;; représente la variation de g; entre
un knock-out de g; et la condition de référence.

Pour un gene ¢ muté, on s’intéresse a ’ensemble des chemins de ¢ vers j ou j est un
autre géne du modele. Cet ensemble est noté II;;. Pour un chemin a € II;;, on notera
E, l'ensemble des arcs de a et X, (resp. S;) ’ensemble des variables x,. (resp. se) pour
e dans F,.

7.2.2 Relation modéle — données

Pour déterminer la valeur des parametres d’un modele (existence des arcs avec les
variables z., signe des régulations avec les variables s.), le modele Y1J est étiqueté par
une loi de probabilité, dont nous décrivons la construction. Soit un triplet (g;, g5, kij) €
IC, on introduit pour tout a € II;; la fonction v;;, définie par :

bija(Xa,Sa) = [ Llwe=1]-1 [H Se = m]

ecE, eckE,

ou 1[] représente la fonction indicatrice. La fonction 1;j, est & 1 si a est un chemin
explicatif pour l'effet de la délétion de g; sur g;. Il faut ensuite pouvoir détecter que
I'un au moins des chemins entre g; et g; est un chemin explicatif. La fonction v;; calcule
la disjonction des indicatrices 1;jq :

¥ij(Xg, Sp) =1— H (1 = tija(Xa, Ea))

aEHij

La loi de probabilité complete pour un modele et des données de knock-out est donnée
par :
P(Xp,Se)= [l  ¢i(Xs k) (7.1)
(9i,95,ki5)EX
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Cette relation exprime une hypothese d’indépendance entre les chemins explicatifs choi-
sis. Le modele peut aussi intégrer, selon la méme hypothese d’indépendance (donc en
ajoutant quelques termes multiplicatifs) les indices de confiance généralement fournis
avec les mesures expérimentales.

7.2.3 Consistance de chemin

La forme des lois de probabilité introduites dans le modele Y1IJ suggere une notion
de consistance basée sur les chemins dans un graphe d’interaction. Nous la formulons
a présent dans le cadre introduit au chapitre 3.

Rappelons tout d’abord que 'on cherche & définir la consistance entre d’une part
un graphe d’interaction G = (V, E,p) et un ensemble de mesures {pi,...,u }. Le
graphe G est en tout généralité partiellement signé, et muni d’un ensemble U d’entrées.
L’ensemble U décrit les especes dont la variation dépend aussi de ’environnement.
Il contient donc les éventuels genes mutés, ainsi que toute espece dont le niveau est
influencé par I’environnement.

Nous appellerons consistance de chemin la situation ou pour tout sommet (hors
entrées), on peut trouver une entrée et un chemin de l’entrée audit sommet, tel que
les signes du chemin et des variations soient compatibles. Plus précisément, a tout
sommet 7 et toute expérience k, on associe une variable X;;, et a toute régulation j — %
la variable Sj;;. Pour un sommet ¢ € V' \ U, on considere I’ensemble II,; des chemins
partant de u € U et arrivant a 7. Soit 71 = u, ..., 7|7 = i un tel chemin. On appelle signe
du chemin le produit (dans I'algébre des signes) Sz = [[;cq _|xj—1 Smym;q,- On définit
w(Xig) = pr(i) pour i € Vet k€ {1,...,r}, et p(S;i) = p(4,7) pour (j,4) € dom(p).

Définition 12 (Consistance de chemin, P-consistance). On dit que G et M = {1, ..., ur}
sont P-consistants si la contrainte qualitative

Pi'= A Pa
1€G\U,k€el,...,r

admet une solution, avec

Piv = [ Xik = D D SaXun

uelU welly;

Commentons un peu cette définition. Si I’on souhaite modéliser une expérience de
délétion d'un gene [, il suffit de choisir U = {l} et poser u(X;) = —. Si un sommet i
de G admet une variation non nulle suite a la délétion, alors il faut trouver un chemin
m del a i, tel que S;X; = X;. Si la variation est nulle, alors soit ¢ n’est pas accessible
depuis [, soit on peut trouver deuz chemins, I'un de contribution positive, I'autre de
contribution négative?.

Examinons pour fixer les idées, l’exemple donné dans [103], représenté en figure
7.1. Le cas de gauche est bien P-consistant : il suffit par exemple de poser Sap =

3Pour étre tout & fait précis, le modele YIJ ne traite pas le cas des variations nulles.
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(a) (b)

Fic. 7.1 — Illustrations pour la consistance de chemins. Le premier cas est présenté
dans [103]. Les deux graphes ont une seule entrée : A.

Sep = Sceg = X = + et Spac = Xg = —. En revanche, I'exemple de droite n’est pas
P-consistant : pour expliquer la variation nulle de D, il faudrait un chemin négatif et
un chemin positif, ce qui contraint Sac & +, mais alors il n’y a aucun chemin négatif
de AaFE.

7.2.4 Consistance au sommet et consistance de chemin

Nous sommes a présent en possession de deux notions de consistance, qu’il serait
bon de pouvoir comparer. On peut en fait facilement prouver le résultat suivant :

Théoréme 12. Il n’y a pas d’inclusion entre N -consistance et P-consistance.

Il suffit d’exhiber des contres-exemples, comme ceux donnés en figure 7.2. Le cas
(a) est P-consistant, mais pas N-consistant; on peut en effet trouver des chemins
expliquant les variations de E et I’ a partir de la variation de A. Cependant, on ne
peut localement expliquer les variations opposées de E et F' par la seule variation
de D. La compétition entre les voies A — B — D et A — C — D se résout en
D, et ne se propage pas a sa descendance dans le graphe d’interaction. Dans le cas
(b), les équations qualitatives sont effectivement vérifiées, mais il n’y a aucun chemin
explicatif entre 'entrée A et les sommets B et C. Il semble en effet étrange que le
systeme initialement & 1’équilibre passe, sous l'effet d’une inhibition a un état ou B et
C sont augmentés. Les variations de B et C « s’autojustifient », alors qu’elles devraient
découler d’une contrainte imposée sur les entrées.

Cette comparaison suggere que les deux criteres de consistance sont complémentaires :
la consistance au sommet assure la cohérence des variations et des régulations directes;
la consistance de chemins assure que les variations sont explicables par une sollicitation
extérieure au systeme.
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(a) (b)

F1G. 7.2 — Contre-exemples pour la preuve du théoreme 12. (a) Cas P-consistant mais
pas N-consistant. (b) Cas N-consistant mais pas P-consistant. Les deux graphes ont
une seule entrée : A.

7.2.5 Chemins et déplacement d’équilibre

Nous avons cherché une justification différentielle au critere de consistance par che-
min, dans le cadre présenté au chapitre 3. Nous avons obtenu le résultat suivant, publié
dans [84] et sous une forme raffinée dans [73].

Théoreme 13. Soit un systeme régi par une dynamique différentielle % = F(X,U).
Soit G = (V, E, p) le graphe d’interaction associé, et U l’ensemble de ses entrées. On
note G le sous-graphe de G privé de ses entrées, et F la restriction de F auz sommets
de g Awvec les hypotheéses suivantes :
— H1 est vérifiée (voir chapitre 3),
~ F est non singuliére,
~ Festdela forme
F(X)=W¥(X,X)-A'X
ot A est un vecteur de réels strictement positifs et W est une fonction bornée
vérifiant pour tout i € CO?,

\I’i(Xl,...,XZ':O,...,X)>O

~ G ne contient pas de boucle positive
Alors deuz états d’équilibre stables X' et X2 de F vérifient :

sen(X7 — X)) =Y > ] p(mk, mar) sen(X7 — X7) (7.2)

ueU welly, k<|m|

ou II7, est ’ensemble des chemins sans circuit de u a i tels que u est le seul sommet

dans U.
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Ce résultat differe sur deux points avec le critere de consistance de chemin. D’une
part, les contraintes sont plus fortes, a cause des conditions portant sur les chemins
explicatifs. Ceux-ci doivent étre sans circuit et ne jamais revenir & une entrée. D’autre
part ses conditions d’application sont restreintes, puisque le résultat n’est valable que
pour les graphes d’interaction sans circuit positif.

7.2.6 Bilan

Nous avons explicité I'utilisation dans les travaux de Yeang et al [104, 103] d’une no-
tion de consistance, que nous avons appelée consistance de chemin. Nous avons montré
que cette notion n’est pas comparable au critere étudié dans cette these. Elle lui apporte
essentiellement le fait que toute variation s’explique, via une cascade de régulations,
par une perturbation appliquée au systeme considéré.
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Chapitre 8

Conclusion

8.1 Bilan

Problématique et approche suivie Le probleme posé dans cette thése porte sur
I’analyse des données haut-débit par des modeles physiques des interactions cellulaires.
Comme nous 'avons vu, cette question est compliquée par la nature des données dis-
ponibles qui portent sur un tres grand nombre de variables, et sont le plus souvent
fortement bruitées et incompletes.

Nous avons suivi une approche d’abstraction qualitative d’'un modele quantitatif, ou
les grandeurs mesurées sont remplacées par leur signe. De maniere analogue a ce qui est
proposé dans [23] et [38], nous dérivons du modele quantitatif sous-jacent des relations
qui sont abstraites en contraintes purement discretes. Ces contraintes, appelées « critere
de consistance », sont la base d’'une comparaison entre la description du systeme (le
graphe d’interaction) et les données disponibles.

Ce critere de consistance s’inscrit dans une démarche générale d’analyse de données,
qui comporte quatre étapes (voir aussi figure 1.1) :

1. une phase de vérification, ou le critere est utilisé pour décider de la compatibilité
entre les données et le modele;

2. une phase de diagnostic/correction en cas d’incompatibilité, consistant & déterminer
des causes possibles pour la non consistance, puis a modifier le modele ou les
données ;

3. une phase de prédiction, quand le modele et les données sont consistantes, ou le
critere est utilisé pour déduire le comportement du systeme;

4. enfin une phase de conception d’expériences, permettant de cibler I'acquisition de
nouvelles données.

Nous avons étudié les trois premieres phases de cette démarche, que nous avons for-
malisées comme des probléemes de contraintes sur domaines finis. Nous avons apporté
plusieurs réponses algorithmiques a ces problemes, qui ont été validées par des appli-
cations sur données réelles.

113
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Modélisation discréte/modélisation quantitative L’objectif de ce travail est de
formuler un modele qualitatif adapté au volume et a la qualité des données existantes. 11
s’agit de fournir une technique d’analyse des mesures globales (transcriptome, protéome,
métabolome etc) dans les conditions techniques prévisibles a court et moyen terme —
c’est-a-dire un contexte ou les mesures haut-débit sont disponibles en nombre limité, et
tres peu répliquées. Il ne s’agit pas d’un bon outil pour ’analyse ciblée d’un mécanisme ;
en comparaison, les modeles quantitatifs & base d’équations différentielles ou de proces-
sus stochastiques fournissent un cadre de modélisation beaucoup plus riche (tant sur le
plan de la description du systéme que sur ses propriétés).

Une question sous-jacente a ce travail est celle de 'application des méthodes quanti-
tatives comme les équations différentielles ordinaires ou les réseaux bayésiens a ’étude
des données haut-débit. Ces modeles requierent l’estimation d’un nombre important
de parametres réels, et nécessitent de ce fait une masse de données tres importante,
qui n’est que rarement disponible en pratique. Nous voulons de plus attirer ’attention
sur les difficultés calculatoires liées a ’exploration de ’espace des parametres dans les
approches différentielles et probabilistes. Elle repose le plus souvent sur des simulations
ou sur des problemes d’optimisation non convexes, qui sont particulierement cotteux
en temps de calcul et qui n’offrent en général aucune garantie d’exactitude.

L’approche que nous avons développée repose sur une modélisation discrete; les
données bruitées ou les parametres inconnus sont représentés par leur signe, et les
relations entre eux sont abstraites en contraintes a vérifier. L’étude et la résolution de
ces contraintes sont des problemes beaucoup mieux maitrisés, pour lesquels nous avons
exhibé des algorithmes exacts. Ces algorithmes permettent une exploration exhaustive
de 'espace des parametres ou des données manquantes, et fournissent des preuves des
propriétés trouvées.

Critere de consistance La premiere contribution de ce travail porte sur la modéli-
sation d’un formalisme adapté au traitement des données haut-débit. Nous ’avons vu,
le résultat est un compromis entre propriétés calculatoires, disponibilité des données et
précision de la description. Notre modele repose sur deux types d’objets : d’une part un
graphe recensant les especes chimiques présentes dans le systeme (géne, protéine, etc)
ainsi que les influences (positives ou négatives) des uns sur les autres; d’autre part,
un étiquetage des sommets du graphe, indiquant la variation du niveau des especes
entre deux mesures. Le critere de consistance que nous avons introduit stipule que la
variation de chaque sommet doit étre expliquée par I'une au moins des influences qu’il
recoit.

Nous avons formalisé cette regle intuitive en utilisant ’algebre des signes, et montré
comment associer a un graphe d’interaction et des données une contrainte définissant
leur compatibilité. Nous avons ensuite démontré formellement la validité de cette con-
trainte dans un cadre différentiel. Cette démarche nous a notamment permis de cerner
les conditions d’applicabilité de notre critere de consistance.

Résolution de contraintes qualitatives FEn nous appuyant sur notre critere de
consistance, nous avons formulé de maniere précise des problemes liés a la vérification
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de la compatibilité données/modeles, & la prédiction des variables non observées et au
diagnostic des inconsistances. Ces problemes se ramenent a la résolution et a 1’étude de
contraintes booléennes exprimant des relations dans ’algebre des signes. La deuxieme
contribution de ce travail concerne la résolution de ces contraintes, pour laquelle nous
avons proposé deux approches.

La premiere utilise une structure de données appelée diagramme de décision pour
représenter ’ensemble des solutions des contraintes booléennes. Une fois construit, un
parcours récursif du diagramme permet d’obtenir diverses informations sur I’ensemble
des solutions. Nous avons détaillé la construction du diagramme, ainsi qu’une série d’al-
gorithmes répondant efficacement aux problemes posés. La principale limite de cette
approche se situe au niveau de la construction du diagramme, dont la taille est au pire
exponentielle en fonction du nombre de variables de la contrainte. Ainsi 1'utilisation
directe des diagrammes de décision se limite a des contraintes d’au plus quelques cen-
taines de variables. Pour cette raison, nous avons développé des méthodes de réduction
et de décomposition des contraintes qualitatives permettant d’étendre tres sensiblement
leur applicabilité.

La deuxieme approche fait appel & des techniques de résolution issues de la pro-
grammation logique. Nous avons montré comment construire un programme logique
dont les modeles sont exactement les solutions de la contrainte qualitative. En nous
appuyant sur les moteurs de résolution ASP, nous avons ainsi obtenu un algorithme
particulierement efficace pour la résolution des contraintes qualitatives.

Nous avons également vu que ces deux techniques ne sont pas forcément adaptées
a tous les problemes introduits. Le tableau 8.1 récapitule ces différences. En voici les
grandes lignes :

— le probleme de vérification est nettement mieux résolu par ’approche programma-
tion logique. Dans nos expériences sur la levure par exemple, on a pu travailler sur
un réseau de plus de 2000 sommets et 4000 arcs non signés, et quelques dizaines de
mesures. Pour le probleme de vérification, cela signifie résoudre une contrainte de
plusieurs dizaines de milliers de variables. Il serait particulierement difficile (no-
tamment pour le choix de la décomposition) d’obtenir des performances similaires
a partir des diagrammes de décision.

— la recherche des invariants est du coup également plus efficace avec 'approche
programmation logique, grace a la recherche de contre-exemples.

— en revanche, les diagrammes de décision sont clairement supérieurs des que — ce
n’est pas une surprise — il est nécessaire d’énumérer ou de compter les solutions.
C’est le cas notamment avec le calcul des probabilités marginales.

— les diagrammes de décision sont également incontournables quand les contraintes
qualitatives contiennent plusieurs alternances de quantificateurs existentiels et
universels. Nous ’avons mentionné lors de la recherche des signes inférables au
paragraphe 6.2.1.

D’un point de vue modélisation, il faut souligner que l'utilisation de programmes
logiques est d’une souplesse bien supérieure a celle des diagrammes de décision. Certes
la sémantique des modeles stables joue parfois des tours au programmeur débutant (ou
distrait !), mais il nous semble nettement plus simple et plus sur d’expérimenter de cette
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Probleme BDD | ASP
Vérification sous consistance aux sommets ' oo
Invariants d’une contrainte ' eece
Probabilités marginales .
Parametres inférables oo
Diagnostic ° oo

TaB. 8.1 — Récapitulatif des problemes formulés dans la these, et des algorithmes
proposés

fagon de nouvelles idées, et ce d’autant plus que le résultat final est — au moins avec
I’habitude — particulierement lisible.

Validation sur données réelles La troisieme et derniere contribution de cette these
est un premier pas vers la validation expérimentale de notre approche. Nous avons no-
tamment travaillé sur ’application des notions de vérification et de prédiction a des
données réelles sur la bactérie E. coli et sur la levure. Dans une premiere expérience,
nous avons étudié la réponse transcriptionnelle globale d’E. coli & un stress nutritionnel.
Nous avons confirmé sur cet exemple la validité du critere de consistance, et montré
comment obtenir des corrections non triviales de notre modele du réseau transcription-
nel. Notre seconde application porte sur la reconstruction de réseaux transcriptionnels
a partir de données d’expression. Nous avons étudié un cas particulier de ce probleme,
ou les régulations sont connues, mais pas leur effet. Nous avons montré, par une étude
préliminaire sur le réseau d’FE. coli qu'un nombre limité de mesures (moins de 30) per-
met de déterminer une fraction raisonnable des régulations (de 15 a 40% environ).
L’application de cette approche pour I'intégration de données chIP-on-chip et données
d’expression chez la levure a confirmé ces estimations en fournissant des prédictions
que nous avons partiellement validées.

8.2 Perspectives

Le travail présenté dans cette these peut étre selon nous prolongé selon trois axes,
que nous détaillons maintenant.

Nouvelles notions de consistance La premiere suite que nous suggérons concerne
I’étude de nouvelles notions de consistance entre données et modele. 11 s’agit notamment
de systématiser le genre de comparaison esquissée a la section 7.2. Un point de départ
consisterait a éclaircir la notion de chemin explicatif et a I'incorporer dans le critere de
consistance utilisé dans cette these. Nos études préliminaires dans ce sens montre que
la notion de consistance qui en résulte contraint significativement plus les données et
peut étre efficacement traitée par les techniques de programmation logique utilisées au
chapitre 5. D’autres criteres de consistance peuvent provenir d’une modélisation plus
spécifique des réseaux étudiés. Les travaux de Gutiérrez [36] peuvent étre vus comme un
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exemple de spécialisation des contraintes entre un sommet et ses prédécesseurs dans le
cas des réseaux génétiques. De maniere analogue, un rapprochement avec les techniques
de flux a I’équilibre dans les réseaux métaboliques pourrait étre envisagé, offrant ainsi
un formalisme d’étude grande échelle des mécanismes génétiques sur le métabolisme.

Traitement des données bruitées La contribution majeure de ce travail nous
semble étre d’avoir exhibé une regle simple qui est généralement vérifiée dans les
systemes biologiques, mais souvent mise en défaut dans les données expérimentales. Ce
double constat fait du critére de consistance que nous avons proposé un guide préciseux
pour ’analyse de données, a condition de traiter correctement les défauts trouvés. Il
nous apparait pour cette raison essentiel d’approfondir notre travail sur la partie diag-
nostic/correction de la démarche présentée en figure 1.1. Il convient notamment de
formaliser et de systématiser les approches utilisées au chapitre 6.

L’une des pistes, qui a été proposée dans le chapitre 4 mais non validée sur données
réelles, consiste a s’appuyer sur la notion de diagnostic : si une série de mesures est
incompatible avec un graphe donné, on calcule le nombre minimal de modifications (du
graphe et des données) permettant de vérifier le critere de consistance. Ces modifica-
tions minimales constituent ce que nous avons appelé des diagnostics de I'inconsistance.
Nous pensons que les invariants de l’ensemble des diagnostics peuvent constituer des
corrections particulierement fiables pour les données et/ou le modele. Cette approche
pourrait notamment étre validée par I'une des applications, a savoir la reconstruction
de graphe d’interaction a partir de données.

Nous avons a plusieurs reprises souligné que l'interprétation des variations faibles
est difficile en pratique : soit on ne considere que les fortes variations, en perdant une
partie de 'information ; soit on considere aussi les faibles variations, quitte a rajouter
du bruit. Méme en choisissant un compromis, nous avons observé un grand nombre
de défauts lors de ’étude des données d’expression. Beaucoup trop, en tout cas, pour
espérer les corriger tous, ce qui pourtant est nécessaire pour prédire les variables non
observées. La solution que nous envisageons consiste a introduire une notion d’invariant
sous correction minimale, permettant de proposer des prédictions méme dans le cas ou
les données ne sont pas compatibles avec le modele. Dit autrement, on s’intéresse a
I'intersection des prédictions des modeles corrigés.

Ces propositions visent a formaliser l'interprétation des données bruitées. Elles
nécessitent avant méme une étude algorithmique poussée, une validation a petite échelle
sur données réelles.

Plans d’expérience Le dernier axe que nous voudrions mentionner concerne la
conception d’expériences, que nous n’avons pas abordée dans ce travail. Brievement,
on peut distinguer deux taches. La premiere porte sur le contrile des systémes étudiés.
Etant donné un ensemble d’entrées, voire un nombre limité de modifications permises
du graphe d’interaction, comment provoquer a coup sur une variation donnée 7 Il s’agit
d’un probleme difficile puisqu’il nécessite de trouver des valeurs pour certaines va-
riables d’une contrainte, telle que d’autres variables deviennent invariantes. Les outils
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développés aux chapitres 4 et 5 peuvent fournir des solutions algorithmiques abordables.
Notamment, il semble possible de construire a l'aide des diagrammes de décision — et
pour des systémes de taille raisonnable — la fonction qui & une valeur des entrées as-
socie I’ensemble des variables invariantes du systeme. Coté programmation logique, ce
type de probléme doit pouvoir étre abordé a 'aide de programmes disjonctifs [34]. La
deuxieéme tache que nous identifions concerne la discrimination de modéles. Nous avons
vu que les graphes d’interactions peuvent étre partiellement connus. L’existence de cer-
tains arcs peut étre incertaine, ou le signe de certaines régulations peut manquer. Nous
avons montré comment travailler malgré 'incertitude sur le modele réel, et raisonner
sur toutes les valeurs des variables non observées. Un probleme intéressant consisterait
a déterminer, parmi un ensemble d’expériences techniquement réalisables, celles qui dis-
crimine le plus efficacement parmi les modeles admissibles. Idéalement, les expériences
proposées devraient, quelle que soit leur issue, invalider le plus grand nombre possible
de modeles.



Annexe A

Inférence de l’effet des facteurs
de transcription sur leurs genes
cibles

Nous reproduisons ici un article non publié portant sur un cas particulier de recons-
truction de modele a partir de données expérimentales. Nous supposons connus les arcs
du graphe d’interaction, mais pas leur signe. L’objectif est d’utiliser des données de
variation pour en déduire 'effet des régulations (activation ou inhibition). Cet article
complete le chapitre de validation expérimentale de notre approche et plus précisément
le résumé donné a la section 6.2
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ABSTRACT

Background Expression profiles obtained from multiple pertur-
bation experiments are increasingly used to reconstruct transcrip-
tional regulatory networks, from well studied, simple organisms
up to higher eukaryotes. Admittedly, a key ingredient in develop-
ing a reconstruction method is its ability to integrate heterogeneous
sources of information, as well as to comply with practical observ-
ability issues: measurements can be scarce or noisy. The purpose of
this work is (1) to build a formal model of regulations among genes;
(2) to check its consistency with gene expression data on stress per-
turbation assays; (3) to infer the regulatory role of transcription
factors as inducer or repressor if the model is consistent with ex-
pression profiles; (4) to isolate ambiguous pieces of information if
it is not.

Results We validate our methods on E. Coli network with a
compendium of expression profiles. We investigate the dependence
between the number of available expression profiles and the num-
ber of inferred regulations, in the case where all genes are observed.
This is done by simulating artificial observations for the transcrip-
tional network of E. Coli (1529 nodes and 3802 edges). We prove
that at most 40,8% of the network can be inferred and that 30 distinct
expression profiles are enough to infer 30% of the network on av-
erage. We repeat this procedure in the case of missing observations,
and show that our approach is robust to a significant proportion of
unobserved genes. Finally, we apply our inference algorithms to S.
Cerevisiae transcriptional network, and demonstrate that for small
scale subnetworks of S. Cerevisiae we are able to infer more than
20% of the regulations. For more complex networks, we are able to
detect and isolate inconsistencies between experimental sources and
a non negligible portion of the model (15% of all interactions).

Conclusions Our approach does not require accurate expression
levels, nor times series. Nevertheless, we show both on real and
artificial data that a relatively small number of perturbation exper-
iments are enough to determine a significant portion of regulatory
effects. This is a key practical asset compared to statistical methods
for network reconstruction. In addition, we illustrate the capability
of our method to validate networks. We conjecture that inconsisten-
cies we detected might be good candidates for further experimental
investigations.

Contact  philippe.veber @irisa.fr

1 INTRODUCTION

A central problem in molecular genetics is to understand the tran-
scriptional regulation of gene expression. A transcription factor (TF)
is a protein that binds to a typical domain on the DNA and influences

transcription. Depending on the type of binding site, on the dis-
tance to the coding regions and on the presence of other molecules
that also bind to the DNA, the effect can either be a repression or
an activation of the transcription. Finding which gene is controlled
by which TF is a reverse engineering problem, usually named net-
work reconstruction. This question has been approached over the
past years by various groups.

A first approach to achieve this task consists in expanding in-
formation spread in the primary literature. A number of important
databases that take protein and regulatory interactions from the lit-
erature and curate them have been developed [1, 2, 3, 4, 5]. For
the bacteria E. Coli, RegulonDB is a dedicated database that con-
tains experimentally verified regulatory interactions [6]. For the
budding yeast (S. Cerevisiae), the Yeast Proteome Database contains
amounts of regulatory information [7]. Even in this latter case, the
amount of available information is not sufficient to build a reason-
ably accurate model of transcriptional regulation. It is nevertheless
an unavoidable starting point for network reconstruction.

The alternative to the literature-curated approach is a data-
driven approach. This approach is supported by the availability
of high-throughput experimental data, including microarray ex-
pression analysis of deletion mutants (simple or more rarely dou-
ble non-lethal knockouts), over expression of TF-encoding genes,
protein-protein interactions, protein localization or chIP-chip ex-
periments coupled with promoter sequence motifs. We may cite
several classes of methods: perturbations and knock-outs, microar-
ray analysis of promoter binding (chIP-chip), sequence analysis,
various microarray expression data analysis such as correlation,
mutual information or causality studies, Bayesian networks, path
analysis, information-theoretic approaches and ordinary differential
equations [8, 9, 10].

In short, most available approaches so far are based on a proba-
bilistic framework, which defines a probability distribution over the
set of models. Then, an optimization algorithm is applied in order to
determine the most likely model given by the data. Due to the size
of the inferred model, the optimal model may be a local but not a
global optimal. Hence, errors can appear and no consensual model
can be produced. As an illustration, a special attention has been
paid to the reconstruction of S. Cerevisiae network from chIP-chip
data and protein-protein interaction networks [11]. A first regulatory
network was obtained with promoter sequence analysis methods
[12, 13]. Non-parametric causality tests proposed some previously
undetected transcriptional regulatory motifs [14]. Bayesian analysis
also proposed transcriptional networks [15, 16]. Though, the results
obtained with the different methods do not coincide and a fully data-
driven search is in general subject to overfitting and to unfiability
[17].
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In regulatory networks, an important and nontrivial physiological
information is the regulatory role of transcription factors as inducer
of repressor, also called the sign of the interaction. This informa-
tion is needed if one wants to know for instance the physiological
effect of a change of external conditions or simply deduce the ef-
fect of a perturbation on the transcription factor. While this can be
achieved for one gene at a time with (long and expensive) dedi-
cated experiments, probabilistic methods such as Bayesian models
[18] of path analysis [19, 20] are capable to propose models from
high-throughput experimental data. However, as for the network
reconstruction task, these methods are based on optimization algo-
rithms to compute an optimal solution with respect to an interaction
model.

In this paper, we propose to use formal methods to compute the
sign of interactions on networks for which a topology is available.
By doing so, we are also capable of validating the topology of the
network. Roughly, expression profiles are used to constrain the pos-
sible regulatory roles of transcription factor, and we report those
regulations which are assigned the same role in all feasible models.
Thus, we over-approximate the set of feasible models, and then look
for invariants in this set. A similar idea was used in [21] in order to
check the consistency of gene expression assays. We use a deeper
formalisation and stronger algorithmic methods in order to achieve
the inference task.

We use different sources of large-scale data: gene expression
arrays provide indications on signs of interactions. When not avail-
able, ChIP-chip experiments provide a sketch for the topology of the
regulatory network. Indeed, microarray analysis of promoter bind-
ing (ChIP-chip) is an experimental procedure to determine the set
of genes controlled by a given transcription factor in given exper-
imental conditions [22]. A particularly interesting feature of this
approach is that it provides an in vivo assessment of transcription
factor binding. On the contrary, testing affinity of a protein for a
given DNA segment in vitro often results in false positive binding
sites.

The main tasks we address are the following:

1. Building a formal model of regulation for a set of genes, which
integrates information from ChIP-chip data, sequence analysis,
literature annotations;

2. Checking its consistency with expression profiles on perturba-
tion assays;

3. Inferring the regulatory role of transcription factors as inducer
or repressor if the model is consistent with expression profiles;

4. Isolating ambiguous pieces of information if it is not.

Both, probabilistic approaches and our formal approach mainly
aim to deal with incomplete knowledge and experimental noise.
However, statistical methods usually require a minimal number of
samples (about a hundred), because they explicitly model the distri-
bution of experimental noise. In practice it is feasible but very costly
to obtain enough expression profiles to apply them. In contrast,
our approach may be used even with less perturbation experiments
(some tens) at hand, which makes it a suitable alternative when
statistical methods cannot be applied.

Additionally, since our predictions are consensual with all pro-
files and since they are not based on heuristics, our methods are well

designed to validate networks inferred with probabilistic methods,
and eventually identify the location of inconsistencies.

The paper is organized as follows. Sec. 2 briefly introduces the
mathematical framework which is used to define and to test the con-
sistency between expression profiles and gene networks. In Sec. 3
we apply our algorithms to address three main issues.

e We illustrate and validate our formal method on the transcrip-
tional network of E. Coli (1529 nodes and 3802 edges), as
provided in RegulonDB [6], together with a compendium of
expression profiles [9]. We identified 20 inconsistent edges in
the graph.

e We investigate the dependence between the number of avail-
able observations and the number of inferred regulations, in the
case where all genes are observed. This is done by simulating
artificial observations for the transcriptional network of E. Coli.
We prove that at most 40,8% of the network can be inferred
and that 30 perturbation experiments are enough to infer 30%
of the network on average. By studying a reduced network,
we also comment about the complementarity between our ap-
proach and detailed analysis of times series using dynamical
modeling.

e We repeat this procedure in the case of missing observations,
and estimate how the proportion of unobserved genes affects
the number of inferred regulations. With these two situations
we also demonstrate that our approach is able to handle net-
works containing thousands of genes, with several hundreds of
observations.

e We apply our inference algorithms to S. Cerevisiae tran-
scriptional network, in order to assess their relevance in real
conditions. We demonstrate that for small scale subnetworks
of S. Cerevisiae we are able to infer more than 20% of the
roles of regulations. For more complex networks, we are able
to detect and isolate inconsistencies (also called ambiguities)
between expression profiles and a quite important part of the
model (15% of all the interactions).

The last two sections discuss the results we obtained, and give more
details on the algorithmic procedures.

2 APPROACH
2.1 Detecting the sign of a regulation and validating a
model

Our goal is to determine the regulatory action of a transcription fac-
tor on its target genes by using expression profiles. Let us illustrate
our purpose with a simple example.

We suppose that we are given the topology of a network (this
topology can be obtained from ChIP-chip data or any computational
network inference method). In this network, let us consider a node
A with a single predecessor. In other words, the model tells that the
protein B acts on the production of the gene coding for A and no
other protein acts on A.

Independently, we suppose that we have several gene expression
arrays at our disposal. One of these arrays indicates that A and B
simultaneously increase during a steady state experiment. Then, the
common sense says that B must have been as activator of A during
the experiment. More precisely, protein B cannot have inhibited
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Model Expression profiles Prediction
A . The action from B
B increases . .
/ . to A is an activa-
C' increases .
B tion.
Model Expression profiles Prediction
A Model and data
/+v B increases are ambigu-
C' decreases ous (also called
B incompatible).

gene A, since they both have increased. We say that the model
predicts that the sign of the interaction from B to A is positive.

This naive rule is actually used in a large class of models, we will
call it the naive inference rule. When several expression profiles are
available, the predictions of the different profiles can be compared.
If two expression profiles predict different signs for a given interac-
tion, there is a ambiguity or incompatibility between data and model.
Then, the ambiguity of the regulatory role can be attributed to three
factors: (1) a complex mechanism of regulation: the role of the in-
teraction is not constant in all contexts, (2) a missing interaction in
the model, (3) an error in the experimental source.

Algorithm:Naive Inference algorithm

Input:

A network with its topology

A set of expression profiles
Output:

a set of predicted signs

a set of ambiguous interactions

For all Node A with exactly one predecessor B

if A and B are observed simultaneously then return
prediction sign(B — A) = sign(A) * sign(B)

if sign(B — A) was predicted different by another expression

profile then return Ambiguous arrow B — A

Let us consider now the case when A is activated by two proteins
B and C. No more natural deduction can be done when A and B
increase during an experiment, since the influence of C' must be
taken into account. A model of interaction between A, B and C has
to be proposed. Probabilistic methods estimate the most probable
signs of regulations that fit with the theoretical model [18, 23].

Our point of view is different: we introduce a basic rule that shall
be checked by every interactions. This rule tells that any variation
of A must be explained by the variation of at least one of its pre-
decessors. Biologically, this assumes that the nature of differential
gene expression of a given gene is likely to affect the differential ex-
pression in other genes. Even if this is not universally true, this can
be viewed as a crude approximation of the real event. In previous
papers, we introduced a formal framework to justify this basic rule
under some reasonable assumptions. We also tested the consistency
between expression profiles and a graphical model of cellular inter-
actions. This formalism will be here introduced in an informal way ;

Model
B

N
7

c

Expression profiles Prediction

B decreases
A A decreases
C' decreases

its full justification and extensions can be found in the references
[24, 25, 26, 27].

In our example, the basic rule means that if B and C' activate A,
and both B and C' are known to decrease during a steady state ex-
periment, A cannot be observed as increasing. Then A is predicted
to decrease. More generally, in our approach, we use the rule as
a constraint for the model. We write constraints for all the nodes
of the model and we use several approaches in order to solve the
system of constraints. From the study of the set of solutions, we
deduce which signs are surely determined by these rules. Then we
obtain minimal obligatory conditions on the signs, instead of most
probable signs given by probabilistic methods. Notice that by con-
struction, our constraints coincide with probabilistic models in the
predictions of the naive inference algorithm.

2.2 A formal approach

Consider a system of n chemical species {1, ..., n}. These species
interact with each other and we model these interactions using an
interaction graph G = (V, E). The set of nodes is denoted by V'
={1,...,n}. There is an edge j — ¢ € E if the level of species
7 influences the production rate of species . Edges are labeled by
a sign {+,—} which indicates whether j activates or represses the
production of 4.

In a typical stress perturbation experiment a system leaves an
initial steady state following a change in control parameters. Af-
ter waiting long enough, the system may reach a new steady state.
In genetic perturbation experiments, a gene of the cell is either
knocked-out or overexpressed; perturbed cells are then compared
to wild cells. Most high-throughput measurements provide the ratio
between initial and final levels, like in expression arrays for in-
stance. In many experimental settings, the numerical value is not
accurate enough to be taken “as it is”. The noise distribution may be
studied if enough measurements are available. Otherwise, it is safer
to rely only on a qualitative feature, such as the order of magnitude,
or the sign of the variation. Let us denote by sign(X;) € {+,—,0}
the sign of variation of species ¢ during a given perturbation exper-
iment, and by sign(j — i) € {+,-} the sign of the edge j — ¢ in
the interaction graph.

Let us fix species ¢ such that there is no positive self-regulating
action on . For every predecessor j of i, sign(j — 1) * sign(Xj;)
provides the sign of the influence of j on the species ¢. Then, we can
write a constraint on the variation to interpret the rule previously
stated: the variation of species i is explained by the variation of at
least one of its predecessors in the graph.

sign(X;) ~ Zsign(j — i)sign(X;). (1)
Jj—i

When the experiment is a genetic perturbation the same equation
stands for every node that was not genetically perturbed during the
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experiment and such that all its predecessors were not genetically
perturbed. If a predecessor X s of the node was knocked-out, the
equation becomes

sign(X;) = —sign(M — i) + Z sign(j — i)sign(X;).

i, jAM
(2)

The same holds with +sign(M — i) when the predecessor
X was overexpressed. There is no equation for the genetically
perturbed node.

The sign algebra is the suitable framework to read these equa-
tions [26]. It is defined as the set {+,—, ?,0}, provided with a sign
compatibility relation =, and arithmetic operations + and x. The
following tables describe this algebra:

+4+-=? +4++=4+ —+-=- +X-=- +X+=4+ -—-X-=+
++0=+ 04+0=0 -4+0=- +x0=0 0x0=0 -x0=0
24-=? ?24+=2? ?24?=27 ?Xx-=7 ?x+=7 ?x?=?
?240=? ?2x0=0

+E- +x0 -=0 ?x+ ?2x- 27®0

Even if the sign compatibility relation ~ provides a rule for the
0 value, we are not able to infer with our approach regulations of
sign 0. This limitation is because the sign of an arrow in an inter-
action graph is only restricted to be {+, -}, thus we do not generate
an equation for products which have no variation during a specific
experiment.

For a given interaction graph G, we will refer to the qualitative
system associated to G as the set made up of constraint (1) for each
node in G. We say that node variations X; € {+,—, 0} are compati-
ble with the graph G when they satisfy all the constraints associated
to G using the sign compatibility relation ~=.

With this material at hand, let us come back to our original prob-
lem, namely to infer the regulatory role of transcription factors from
the combination of heterogeneous data. In the following we assume
that :

e The interaction graph is either given by a model to be validated,
or built from chIP-chip data and transcription factor binding
site searching in promoter sequences. Thus, as soon as a tran-
scription factor j binds to the promoter sequence of gene i, j
is assumed to regulate ¢. This is represented by an arrow j — ¢
in the interaction graph.

e The regulatory role of a transcription factor j on a gene ¢ (as
inducer or repressor) is represented by the variable S;;, which
is constrained by Eqgs. (1) or (2).

e Expression profiles provide the sign of the variation of the gene
expression for a set of r steady-state perturbation or mutant
experiments. In the following, =¥ will stand for the sign of the
observed variation of gene ¢ in experiment k.

Our inference problem can now be stated as finding values in
{+, -} for Sj;, subject to the constraints :

forall (1<i<n), 1<k<r),
i not genetically perturbed in the k-th experiment

=¥ o~ D i Sjm? if no genetic perturbations on all nodes j
¥ o~ —Sui+ Ejaiyjﬂ Sjix? if knocked-out node M
=¥~ S+ D il Sjix? if overexpressed node M

3
Most of the time, this inference problem has a huge number of
solutions. However, some variables S;j; may be assigned the same
value in all solutions of the system. Then, the recurrent value as-
signed to Sj; is a logical consequence of the constraints (3), and
a prediction of the model. We will refer to these inferred interac-
tion signs as hard components of the qualitative system, that is, sign
variables Sj; that have the same value in all solutions of a qualita-
tive system (3). When the inference problem has no solution, we say
that the model and the data are inconsistent or ambiguous.

Let us illustrate this formulation on a very simple (yet informa-
tive) example. Suppose that we have a system of three genes A, B,
C, where B and C' influence A. The graph is shown in Table 1. Let
us say that for this interaction graph we obtained six experiments, in
each of them the variation of all products in the graph was observed
(see Table 1). Using some or all of the experiments provided in Ta-
ble 1 will lead us to a different qualitative system, as shown in Table
2, hence to different inference results. The process of inference for
this example can be summarized as follows: starting from a set of
experiments we generate the qualitative system of equations for our
graph, studying its compatibility we will be able to set values for the
signs of the regulations (edges of the interaction graph), but only we
will infer a sign if in all solutions of the system the sign is set to
the same value. Following with the example, in Table 2 we illus-
trate this process showing how the set of inferred signs of regulation
varies with the set of experiments provided.

Stress perturbation
B expression profile ta TB o
\ el + + +
[} + + -
A e3 - + -
C es - - +
€6 + - +

Table 1. Interaction graph of three genes A, B, C, where B and C influence
A. Table with the variation of genes A,B, and C' observed in six different
stress perturbation experiments.

2.3 Algorithmic procedure

When the signs on edges are known (i.e. fixed values of .S;;) find-
ing compatible node variations X; is a NP-complete problem [26].
When the node variations are known (i.e. fixed values of X;) finding
the signs of edges S;; from X; can be proven NP-complete in a very
similar way. Though, we have been able to design algorithms that
perform efficiently on a wide class of regulatory networks. These al-
gorithms predict signs of the edges when the network topology and
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the expression profiles are compatible. In case of incompatibility,
they identify ambiguous motifs and propose predictions on parts of

the network that are not concerned with ambiguities.

The general process flow is the following (see Sec. 6 for details):

filtering value k, all the predictions that are consistent with
less than k profiles are rejected.

Step 1 Sign Inference

Divide the graph into motifs (each node with its predeces-
sors). For each motif, find sign valuations (see Algorithm
1 in Sec.6) that are compatible with all expression profiles.
If there are no solutions, call the motif Multiple Behaviors
Module and remove it from the network.

Solve again the remaining equations and determine the edge
signs that are fixed to the same value in all the solutions.
These fixed signs are called edge hard components and
represent our predictions.

Step 2 Global test/correction of the inferred signs

Solutions at previous step are not guaranteed to be global. In-
deed, two node motifs at step 1 can be compatible separately,
but not altogether (with respect to all expression profiles).
This step checks global compatibility by solving the equa-
tions for each expression profile. New Multiple Behavior
Modules can be found and removed from the system.

Step 3 Extending the original set of observations

Once all conflicts removed, we get a set of solutions in which
signs are assessed to both nodes and edges. Node hard com-
ponents, representing inferred gene variations can be found
in the same way as we did for edges. We add the new vari-
ations to the set of observations and return to step 1. The
algorithm is iterated until no new signs are inferred.

Step 4 Filtering predictions

In the incompatible case, the validity of the predictions
depends on the accuracy of the model and on the correct
identification of the MBMs. The model can be incomplete
(missing interactions), and MBMs are not always identifi-
able in an unique way. Thus, it is useful to sort predictions
according to their reliability. Our filtering parameter is a
positive integer k representing the number of different ex-
periments with which the predicted sign is compatible. For a

The inference process then generates three results:

1. A set of multiple behavior modules (MBM), containing interac-
tions whose role was unclear and generated incompatibilities.
‘We have identified several types of MBMS:

o Modules of Typel: these modules are composed of several
direct regulations of the same gene. These modules are
detected in the Step 1 of the algorithm. Most of the MBMs
of Type I are made of only one edge like illustrated in Fig.
1, but bigger examples exist.

e Modules of Type II, IIL, IV: these modules are detected
in Steps 2 or 3, hence, they contain either direct regula-
tions from the same gene or indirect regulations and/or
loops. Each of these regulations represent a consensus of
all the experiments, but when we attempt to assess them
globally, they lead to contradictions. The indices II-IV
have no topological meaning, they label the most frequent
situations illustrated in Fig. 1.

2. A set of inferred signs, meaning that all expression profiles fix
the sign of an interaction in a unique way.

3. A reliability ranking of inferred signs. The filtering parameter k
used for ranking is the number of different expression profiles
that validate a given sign.

On computational ground, the division between Step 1 (which
considers each small motif with all profiles together) and Step 2
(which considers the whole network with each profile separately) is
necessary to overcome the memory complexity of the search of solu-
tions. To handle large-scale systems, we combine a model-checking
approach by decision diagrams and constraint solvers (see details in
Sec. 6).

Since our basic rule is a crude approximation of real events, we
expect it to produce very robust predictions. On the other hand, a
regulatory network is only a rough description of a reaction network.
For certain interaction graphs, not a single sign may be inferred even

Experiments used | Qualitative system Replacing values from experiments Compatible solutions Inferred signs
P T R placing ) P ) (Spa,Sca) (identical in all solutions)
(+,4)
{e1} zh, & Spazp+ Scazg (+) = Spax(+)+Scax(+) (+:-) 0
(=+)
T T T
Ty ~ SBAiL'B+SCAiL'c (+) ~ SBAX(+)+SCA><(+) (+,+) s
;e : : =+
{es e} @~ Spazd +Scazl (+) =~ Spax(+)+5cax () (+,9) (854 =+}
m}a ~ SBAw}BJrScAz}: (+) = Spax (+)+ Sca x (+)
{61,62763} :Ei ~ SBA:E%-}—ScA:E% (+) ~~ SBAX(+)+ScA><(—) (+,+) {SBA:+,SCA:+}
mi ~ SBAwgBJrScAwsC (—) ~ SBAX(+)+SCA X(—)

Table 2. Sign inference process. In this example variables are only the roles of regulations (signs) in an interaction graph , the variations of the species in
the graph are obtained from the set of six experiments described in Table 1. For different sets of experiments we do not infer the same roles of regulations.
We observe in this example that if we take into account experiments {e1, e2, ez}, our qualitative system will have three constrains and not all valuations of
variables Sp 4 and S¢ 4 satisfy this system according to the sign algebra rules. As we obtain unique values for these variables in the solution of the system,
we consider them as inferred.
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Figure 1. Classification of the multiple behavior modules (MBM). These
modules are some of the MBM found in the global regulatory network of
S. Cerevisiae extracted from [11]. Green and red interactions correspond to
inferred activations and repressions respectively. Genes are colored by their
expression level during certain experiment (green: more than 2-fold expres-
sion, red: less than 2-fold repression) (a) Type I modules are composed by
direct regulations of one gene by its predecessors. Sources of the conflict
in this example are: Heat shock 21°C to 37°C [28], and Cells grown to
early log-phase in YPE [29]. (b) Type II The genes in this module have
the same direct predecessor. Explanation: The interaction among SUMI and
YFLO40W is inferred at the beginning of the inference process, as an acti-
vation while among SUM1 and DIT? is inferred as an inhibition. During the
correction step, expression profile related to YPD Broth to Stationary Phase
[28], shows that these two genes: YFLO40W and DIT2 overexpress under
this condition. Resulting impossible to determine the state (overexpressed or
underexpressed) of SUM 1, we mark this module as a MBM. (c) Type III The
genes in this module share a predecessor, but not the direct one. Source of
the conflict: Diauxic shift [30]. (d) Type IV The predecessor of one gene is
the successor of the other. Source of the conflict: Heat Shock 17°C to 37°C
[28].

with a high number of experiments. In Sec. 3, we comment the
maximum number of signs that can be inferred from a given graph.

3 RESULTS

In perturbation experiments, gene responses are observed follow-
ing changes of external conditions (temperature, nutritional stress,
etc.) or following gene inactivations, knock-outs or overexpression.
When expression profile is available for all the genes in the net-
work we say that we have a complete profile, otherwise the profile
is partial (data is missing). The effect of gene deletions is modelled
as the one of inactivations, which is imposing negative gene varia-
tions. Thus, we may say that we deal with perturbation experiments
that do not change the topology of the network. An experiment in
which topology is changed would be to record the effect of stresses
on mutants; this possibility will be discussed elsewhere.

In order to validate our formal approach, we evaluate the per-
centage of the network that might be recovered from a reasonable
number of perturbation experiments. We first provide theoretical
limits for the percentage of recovered signs. These limits depend on
the topology of the network. For the transcriptional network of E.
Coli, these limits are estimated first by a deterministic and then by
a statistical algorithm. The statistical approach uses artificial ran-
dom data. Then we combine expression profiles with a publicly
available structure of E. Coli network, and compute the percent-
age of recovered signs. Finally, we combine real expression profiles
with chIP-chip data on S. Cerevisiae, and evaluate the percentage of
recovered signs in a real setting.

On computational ground, we check that our algorithms are able
to handle large scale data, as produced by high-throughput mea-
surement techniques (expression arrays, chIP-chip data). This is
demonstrated in the following by considering networks of more than
several thousand genes.

3.1 Stress perturbation experiments: how many do you
need ?

For any given network topology, even when considering all possible
experimental perturbations and expression profiles, there are signs
that can not be determined (see Table 2). Sign inference has thus
a theoretical limit that we call theoretical percentage of recovered
signs. This limit is unique for a given network topology. If only
some perturbation experiments are available, and/or data is missing,
the percentage of inferred signs will be lower. For a given number
N of available expression profiles, the average percentage of recov-
ered signs is defined over all sets of IV different expression profiles
compatible with the qualitative constraints Eqs. (1) and (2).

In this section, we calculate and comment the theoretical and
the average percentages of recovered signs for the transcriptional
network of E. Coli.

We first validate our method on the E. Coli network. We build the
interaction graph corresponding to E. Coli transcriptional network,
using the publicly available RegulonDB [6] as our reference. For
each transcriptional regulation A — B we add the corresponding
arrow between genes A and B in the interaction graph. This graph
will be referred to as the unsigned interaction graph.

From the unsigned interaction graph of E. Coli, we build the
signed interaction graph, by annotating the edges with a sign. Most
of the time, the regulatory action of a transcription factor is available
in RegulonDB. When it is unknown, or when it depends on the level
of the transcription factor itself, we arbitrarily choose the value +
for this regulation. This provides a graph with 1529 nodes and 3802
edges, all edges being signed. The signed interaction graph is used
to generate complete expression profiles that simulate the effect of
perturbations. More precisely, a perturbation experiment is repre-
sented by a set of gene expression variations {X; }i—1,...,n. These
variations are not entirely random: they are constrained by Eqgs.(1)
and (2). Then we forget the signs of network edges and we compute
the qualitative system with the signs of regulations as unknowns.

The theoretical maximum percentage of inference is given by the
number of signs that can be recovered assuming that expression pro-
files of all conceivable perturbation experiments are available. We
computed this maximum percentage by using constraint solvers (the
algorithm is given in Sec. 6). We found that at most 40.8% of the
signs in the network can be inferred, corresponding to Myae =
1551 edges.

However, this maximum can be obtained only if all conceivable
(much more than 2°°) perturbation experiments are done, which is
not possible. We performed computations to understand the influ-
ence of the number of experiments N on the inference. For each
value of N, where N grows from 5 to 200, we generated 100 sets of
N random expression profiles. Each time our inference algorithm is
used to recover signs. Then, the average percentage of inference is
calculated as a function of N. The resulting statistics are shown in
Fig. 2.

When the number of experiments (X-axis) equals 1, the value
M; = 609 corresponds to the average number of signs inferred
from a single perturbation experiment. These signs correspond to
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Figure 2. (Both) Statistics of inference on the regulatory network of E. Coli from complete expression profiles. The signed interaction graph is used to
randomly generate sets of X artificial expression profiles which cover the whole network (complete expression profile). Each set of artificial profiles is then
used with the unsigned interaction graph to recover regulatory roles. X-axis: number of expression profiles in the dataset. Y-axis: percentage of recovered
signs in the unsigned interaction graph. This percentage may vary for a fixed number of expression profile in a set. Instead of plotting each dot corresponding
to a set, we represent the distribution by boxplots. Each boxplot vertically indicates the minimum, the first quartile, the median, the third quartile and
the maximum of the empiric distribution. Crosses show outliers (exceptional data points). The continuous line corresponds to the theoretical prediction
Y =M +M(1-(1- p)X ), where M stands for the number of signs that should be inferred from any expression profile (that is, inferred by the naive
inference algorithm); and M2 denotes the number of signs that could be inferred with a probability p.

(Left) Statistics of inference for the whole E. Coli transcriptional network. We estimate that at most 37, 3% of the network can be inferred from a limited
number of different complete expression profiles. Among the inferred regulations, we estimate to M1 = 609 the number of signs that should be inferred from
any complete expression profile. The remaining M2 = 811 signs are inferred with a probability estimated to p = 0.049. Hence, 30 perturbation experiments
are enough to infer 30% of the network.

(Right) Statistics of inference for the core of the former graph (see definition of a core in the text). An estimation gives M1 = 18 and M2 = 9 so that the
maximum rate of inference is 47, 3%. Since p = 0.0011, the number of expression profiles required to obtain a given percentage of inference is much greater
than in the whole network.

single incoming regulatory interactions and are thus within the The values of M1, M2, p estimate the efficiency of our method:
scope of the naive inference algorithm. We deduce that the naive large p,M1,M> mean small number of expression profiles needed
inference algorithm allows to infer on average 18% of the signs in for inference. For the E. Coli full transcriptional network we have
the network. p = 0.049 per observation. This means that we need about 20
Surprisingly, by using our method we can significantly improve profiles to reach half of the theoretical limit of our approach.

the naive inference, with little effort. For the whole E. Coli net-

work it appears that a few expression profiles are enough to infer a 3.2 Inferring the core of the network

significant percentage of the network. More precisely, 30 different Obviously, not all interactions play the same role in the network.
expression profiles may be enough to infer one third of the network, The core is a subnetwork that naturally appears for computational
that is about 1200 regulatory roles. Adding more expression profiles purpose and plays an important role in the system. It consists of all
continuously increases the percentage of inferred signs. We reach oriented loops and of all oriented chains leading to loops. All ori-
a plateau close to 37,3% (this corresponds to M = 1450 signed ented chains leaving the core without returning are discarded when
regulations) for N = 200. reducing the network to its core. Acyclic graphs and in particular
The saturation aspect of the curve in Fig. 2 is compatible with trees have no core. The main property of the core is that if a system
two hypotheses. According to the first hypothesis, on top of the of qualitative equations has no solution, then the reduced system
M, single incoming regulations (that can be inferred with a sin- built from its core also have no solution. Hence it corresponds to
gle expression profile), there are M> interactions whose signs are the most difficult part of the constraints to solve. It is obtained by
inferred with more than one expression profile. On average, a sin- reduction techniques that are very similar to those used in [31] (see
gle expression profile determines with probability p < 1 the sign of details in Sec. 6). As an example, the core of E. Coli network only
interactions of the latter category. According to the second hypoth- has 28 nodes and 57 edges. It is shown in Fig. 3.
esis, the contributions of different experiments to the inference of We applied the same inference process as before to this graph. Not
this type of interactions are independent. Thus, the average number surprisingly, we noticed a rather different behavior when inferring
of inferred signs is M (N) = M1 + M2(1 — (1 — p)N ). The two signs on a core graph than on a whole graph as demonstrated in Fig.
numbers satisfy M1 + M2 < E (E is the total number of edges), 2. In this case we need much more experiments for inference: sets of
meaning that there are edges whose signs can not be inferred. expression profiles contain from N = 50 to 2000 random profiles.
According to this estimate the position of the plateau is M = Two observations can be made from the corresponding statistics
M + M and should correspond to the theoretical maximum per- of inference. First as can be seen on X-axis, a much greater num-
centage of inferred signs Mqz. Actually, M < Myyes. The ber of experiments is required to reach a comparable percentage of
difference, although negligible in practice (to obtain My,q. One inference. Correspondingly, the value of p is much smaller than for
has to perform N > 10'® experiments) suggests that the plateau the full network. This confirms that the core is much more difficult
has a very weak slope. This means that contributions of different to infer than the rest of network. Second, Fig. 2. displays a much
experiments to sign inference are weakly dependent. less continuous behavior. More precisely, it shows that for the core,
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Figure 4. (All) Statistics of inference on the regulatory network of E. Coli from partial expression profiles. The setting is the same than in Fig. (2), except for
the cardinal of an expression profile which is set to a given value, and for the variable on X-axis which is the percentage of missing values in the expression
profile. In each case, the dependence between average percentage of inference and percentage of missing values is qualitatively linear. The continuous line
corresponds to the theoretical prediction M; = M™%* — d * f * Myo441, Where d is the number of signs interactions that are no longer inferred when a node
is not observed, M™% is the number of inferred interactions for complete expression profiles (no missing values), M4, is the total number of nodes and
f is the fraction of unobserved nodes.

(Left) Statistics for the whole network (the inference is supposed to be performed from 30 random expression profiles). We estimate d = 0.14, meaning that
on average, one loses one interaction sign for about 7 missing values.

(Middle) Statistics for the core network (the inference is supposed to be performed from 30 random expression profiles). We estimate d = 0.21 ; the core of
the network however is more sensitive to missing data.

(Right) Statistics for the core network (the inference is supposed to be performed from 200 random expression profiles). We estimate d = 0.35. Hence,
increasing the number of expression profiles increases sensitivity to missing data.

Figure 3. Core of E. Coli network. It consists of all oriented loops and
of all oriented chains leading to loops. The core contains the dynamical
information of the network, hence sign edges are more difficult to infer.

different perturbations experiments have strongly variable impact on
sign inference. For instance, the experimental maximum percentage
of inference (27 signs over 58) can be obtained already from about
400 expression profiles. But most of datasets with 400 profiles infer
only 22 signs.

This suggests that not only the core of the network is more dif-
ficult to infer, but also that a brute force approach (multiplying the
number of experiments) may fail as well. This situation encourage
us to apply experiment design and planning, that is, computational
methods to minimize the number of perturbation experiments while
inferring a maximal number of regulatory roles.

This also illustrates why our approach is complementary to dy-
namical modelling. In the case of large scale networks, when an
interaction stands outside the core of the graph, then an inference
approach is suitable to infer the sign of the interaction. However,

when an interaction belongs to the core of the network, then more
complex behaviors occur: for instance, the result of a perturbation
on the variation of the products might depend on activation thresh-
olds. Then, a precise modelling of the dynamical behavior of this
part of the network should be performed [32].

3.3 Influence of missing data

In the previous paragraph, we made the assumption that all proteins
in the network are observed. That is, for each experiment each node
is assigned a value in {+,0,-}. However, in real measurement de-
vices, such as expression profiles, a part of the values is discarded
due to technical reasons. A practical method for network inference
should cope with missing data.

We studied the impact of missing values on the percentage of in-
ference. For this, we have considered a fixed number of expression
profiles (N = 30 for the whole E. Coli network, N = 30 and
N = 200 for its core). Then, we have randomly discarded a growing
percentage of proteins in the profiles, and computed the percentage
of inferred regulations. The resulting statistics are shown in Fig. 4.

In both cases (whole network and core), the dependency between
the average percentage of inference and the percentage of missing
values is qualitatively linear. Simple arguments allow us to find an
analytic dependency. If not observing a node implies losing infor-
mation on d interaction signs, we are able to obtain the following
linear dependency M; = M{"*® — d x f * Miota1, where M is
the number of inferred interactions for complete expression profiles
(no missing values), Miotq: is the total number of nodes, and f is
the fraction of unobserved nodes. In order to keep Myotq; nON neg-
ative, d must decrease with f. Our numerical results imply that the
constancy of d and the linearity of the above dependency extend to
rather large values of f. This indicates that our qualitative inference
method is robust enough for practical use. For the full network we
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estimate d = 0.14, meaning that on average one loses one interac-
tion sign for about 7 missing values. However, for the same number
of expression profiles, the core of the network is more sensitive to
missing data (the value of d is larger, it corresponds to lose one sign
for about 4.8 missing values). For the core, increasing the number of
expression profiles increases d and hence the sensitivity to missing
data.

3.4 Application to E. Coli network with a compendium
of expression profiles

We first validate our method on the E. Coli network. We use the
compendium of expression profiles publicly available in [9].

For each experimental assay several profiles were available (in-
cluding a profile for the reference initial state). We processed time
series profiles, considering only the last time expression data. For
each measured gene, we calculated its average variation in all the
profiles of the same experiment. Then, we sorted the measured
genes/regulators in four classes: 2-fold induced, 2-fold repressed,
non-observed and zero variation, this last class corresponds to
genes whose expression did not vary more than 2-fold under an
experimental condition. Only the first two classes were used in
the algorithm. Obviously this leads us to missing data: there will
be edges for which neither the input, nor the output are known.
Altogether, we have processed 226 sets of expression profiles cor-
responding to 68 different experimental assays (over-expression,
gene-deletion, stress perturbation).

It appears that the signed network is consistent with only 40 com-
plete profiles of the 68 selected. After discarding the incompatible
motifs from the profiles (deleting observations that cause conflicts),
67 profiles remained that were compatible with the signed network.
In these 67 expression profiles, 14,47% of the nodes of the network
were observed on average as varying. When summing all the obser-
vations, we obtained that 9,8% of the edges (input and output) are
observed in at least one expression profile. In order to test our al-
gorithm we wipe out the information on edge signs and then try to
recover it.

Since the profiles and network were compatible, our algorithm
found no ambiguity and predicted 51 signs, i.e. 1,8% of the edges.
The naive inference algorithm inferred 43 signs. Hence our algo-
rithm inferred 8 signs, that is 15% of the total of prediction, that
were not predicted by the naive algorithm.

Then we applied our algorithm, filtering our inference with dif-
ferent parameters, on the full set of 68 expression profiles including
incompatibilities. This time 16% of the network products were ob-
served on average. Several values of the filtering parameter k were
used from k£ = 1 to £ = 15. Without filtering we predicted 183
signs of the network (6,3%), among which 131 were inferred by the
naive algorithm. We compared the predictions to the known interac-
tion signs: 77 signs were false predictions (42% of the predictions).
A source of the error in the prediction could lie on non-modelled
interactions (possibly effects of sigma-factors). Filtering greatly im-
proves our score, allowing us to retain only reliable predictions.
Thus, for k£ = 15, we inferred 36 signs, of them, only 3 were incor-
rect predictions (8% of false prediction). We conclude that filtering
is a good way to stronger our predictions even when the model is
not precise enough. We illustrate the effect of the filtering process
in Fig. 5.

‘We notice that the inference rate is much more lower in this case
than the theoretical inference rate predicted in Sec. 3.3. This shows
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Figure 5. Results of the inference algorithm on E. Coli network from a com-
pendium of 68 expression profiles. The profiles were not globally coherent.
With no filtering, there are 42% of false predictions. With filtering — keeping
only the sign predictions confirmed by k different sets of expression profiles
— the rate of false prediction decreases to 8%.

that when the percentage of observation is very low (as it is the
case here), the sign-inference process is very dependent from the
type of available expression profiles. To overcome this problem, we
should take into account more stress perturbation experiments and
less genetic perturbation experiments.

Our algorithm also detected ambiguous modules in the network.
There are 10 modules of typel (i.e. single incoming interactions)
in the network. Among these interactions, 5 are also stated as am-
biguous by the naive algorithm. There are also 6 modules of typell
and III, which are not detected by the naive inference algorithm.
All ambiguities are shown in Fig. 6. The list of experimental assays
that yields to ambiguities on each interaction is given in the Sup-
plementary Web site. Notice that in RegulonDB, only two of these
interactions are annotated with a double-sign, i.e. they are known to
have both repressor and inducer effect depending on external condi-
tion. On the other 18 interactions belonging to an ambigous module,
this analysis shows that there exist non-modelled interactions that
balance the effects on the targets.

3.5 A real case: inference of signs in S. Cerevisiae
transcriptional regulatory network

We applied our inference algorithm to the transcriptional regulatory
network of the budding yeast S. Cerevisiae. Let us here briefly re-
view the available sources that can be used to build the unsigned
regulatory network. The experimental dataset proposed by Lee et
al. [11] is widely used in the network reconstruction literature. It is
a study conducted under nutrient rich conditions, and it consists of
an extensive chIP-chip screening of 106 transcription factors. Esti-
mations regarding the number of yeast transcription factors that are
likely to regulate specific groups of genes by direct binding to the
DNA vary from 141 to 209, depending on the selection criteria. In
follow up papers of this work, the chIP-chip analysis was extended
to 203 yeast transcription factors in rich media conditions and 84
of these regulators in at least one environmental perturbation [12].
Analysis methods were refined in 2005 by Maclsaac et al.[13]. From
the same chIP-chip data and protein-protein interaction networks,
non-parametric causality tests proposed some previously undetected
transcriptional regulatory motifs [14]. Bayesian analysis also pro-
posed transcriptional networks [15, 16, 10]. Here we selected four
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Figure 6. Interactions in the regulatory network of E. Coli that are ambigu-
ous with a compendium data of expression profiles [9]. For each interaction,
there exist at least two expression profiles that do not predict the same sign
on the interaction. In this subnetwork, only 2 interactions (red edges) are
annotated with a double-sign in RegulonDB.

of these sources. All networks are provided in the Supplementary
Web site.

(A) The first network consists in the core of the transcriptional
chIP-chip regulatory network produced in [11]. Starting from
the full network with a p-value of 0.005, we reduced it to
the set of nodes that have at least one output edge. This net-
work was already studied in [31]. It contains 31 nodes and 52
interactions.

(B) The second network contains all the transcriptional interactions
between transcription factors shown by [11] with a p-value

below 0.001. It contains 70 nodes and 96 interactions.

(C) The third network is the set of interactions among transcription
factors as inferred in [13] from sequence comparisons. We have

considered the network corresponding to a p-value of 0.001
and 2 bindings (83 nodes, 131 interactions).

(D) The last network contains all the transcriptional interactions
among genes and regulators shown by [11] with a p-value
below 0.001. It contains 2419 nodes and 4344 interactions.

3.5.1 Inference process with gene-deletion expression profiles
We first applied our inference algorithm to the large-scale network
(D) extracted from [11] using a panel of expression profiles for 210
gene-deletion experiments [40]. The information given by this panel
is quite small, since 1,6% of all the products in the network is on
average observed, and 12% of the edges (input and output) of the
network are observed in at least one expression profile. Using this
data, we obtain 162 regulatory roles.

We validated our prediction with a literature-curated network on
Yeast [41]. We found that among the 162 sign-predictions, 12 were
referenced with a known interaction in the database, and 9 with a
good sign.

Gene-deletion expression profiles were used so we could compare
our results to path analysis methods [23, 20] since the latter can only
be applied to knock-out data (http://chianti.ucsd.edu/idekerlab/).
Other sign-regulation inference methods need either other sources
of gene-regulatory information (promoter binding information,
protein-protein information), or time-series data to be performed
[15, 18, 10].

Before comparing our inference results to the work of Yeang et
al., we tested the compatibility between their inferred network with
the 210 gene-deletion experiments. We obtained that their network
was incompatible with 28 of the 210 experiments. The comparison
of both results showed us that the method of Yeang et al. infers
234 roles of widely connected paths, while our method infers 162
roles in the branches of the network. Both results intersect on 17
interactions, and no contradiction in the inferred role was reported.
An illustration of these results is given in the Supplementary Web
site.

This suggests that our approach is complementary to path analy-
sis methods. Our explanation is the following: In [23, 20], network
inference algorithms identify probable paths of physical interac-
tions connecting a gene knockout to genes that are differentially
expressed as a result of that knockout. This leads to search for the
smallest number of interactions that carry the largest information in
the network. Hence, inferred interactions are located near the core

Experiment .
Description Reference Experiment
Identifier P I dpem‘ fier Description Reference
i
El Diauxic Shift 3
auxic S ! 1301 E10 Wild type response to DNA-damaging agents [36]
E2 Sporulation [33] .
. . Ell Mec1 mutant response to DNA-damaging agents [36]
E3 Expression analysis of Snf2 mutant [34] . .
. . . El2 Glycosylation defects on gene expression [37]
E4 Expression analysis of Swil mutant [34] .
. E13 Cells grown to early log-phase in YPE [29]
ES5 Pho metabolism [35] . . .
. . (Rich medium with 2% of Ethanol)
E6 Nitrogen Depletion [28] .
. El4 Cells grown to early log-phase in YPG [29]
E7 Stationary Phase [28] K . .
° ° (Rich medium with 2% of Glycerol)
E8 Heat Shock from 21°C to 37°C (28] El5 Titratable promoter alleles - Erol mutant [38]
E9 Heat Shock from 17°C to 37°C 28] P

Table 3. List of genome expression experiments of S. Cerevisiae used in the inference process. Experiments contain information on steady state shift and their

curated data is available in SGD (Saccharomyces Genome Database) [39].
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Average Predictions
. numbe;g of In/Out Inferred MBM Int. MBM Int Total Inf. of the
Interaction network Nodes | Edges observed R Type .
observed . signs Typel rate naive
simulnat. ILILIV .
nodes algorithm
(A) Core of
Lee transcriptional 11 3
nelwoi 31 52 28% 46 21.1%) (5.7%) 0 26.8% 11%
[11,31]
(B) Extended
Lee transcriptional 29 7
network 70 96 26% 70 (30.2%) (7.2%) 0 37.4% 15,6%
[11]
(C) Inferred network
[12,13] 21 4
threshold = 0.001 ; 83 131 33% o1 (16%) (3%) 0 19% 1%
bindings=2
(D) Global transcriptional 631 198 281 463
network [11] 2419 4344 30% 2270 (14.’5%) (4.5%) (6.5%) 1%) 32% 13.9%
p-value = 0.001 filter k=3 no filter

Table 4. Budding yeast transcriptional regulatory networks on which the sign inference algorithm was applied. For each network 14 or 15 different expression
profiles were used for calculating the inference. The set of observations provided by one expression profile, was composed by at least two expressed/repressed
(ratio over/under 2-fold) genes of the network. The Input/Output observed simultaneously column, is an indicator of the maximum possible number of sign-
inferred interactions. There are three different inference results: Inferred signs, signs fixed in a unique way by all experiments, MBM Interactions of Typel,
the set of non-repeated interactions that belong to all the multiple behavior modules of Typel detected, and MBM Interactions of Typell 1,1V, the number of
non-repeated interactions belonging to MBM of Type ILIILIV. For all the inference results a percentage concerning the total number of edges of the network,
is calculated. The Total inference rate represents the percentage of the total number of edges that was inferred (inferred signs plus interactions in MBM). It is

compared to the results of the naive algorithm.

of the network (even though not exactly in the core). On the con-
trary, as we already detailed it, the combinatorics of interaction in
the core of the network is too intricate to be determined from a few
hundreds of parse expression profiles with our algorithm, and we
concentrate on interactions around the core.

3.5.2 Inference with stress perturbation expression profiles In
order to overcome the problem raised by the small amount of in-
formation contained in [40], we have selected stress perturbation
experiments. This data corresponds to curated information avail-
able in SGD (Saccharomyces Genome Database) [39]. When time
series profiles were available, we selected the last time expression
array. Therefore, we collected and treated 15 sets of arrays described
in Table 3. For each expression array, we sorted the measured
genes/regulators in four classes: 2-fold induced, 2-fold repressed,
non-observed and zero variation. We were only interested in the ex-
pression of genes that belong to any of the four networks we studied.
Full datasets are available in the Supplementary Web site.

As for E. Coli network, it appeared that all networks (A), (B), (C)
and (D) are not consistent with the whole set of expression arrays
and ambiguities appeared. We performed our inference algorithm.
We identified motifs that hold ambiguities, and we marked them as
Multiple Behavior Modules of type I, IT and III, as described in Sec.
3.1. The algorithm also generates a set of inferred signs. Then we
applied the filtered algorithm (with filter & = 3) to the large-scale
network (D).

We obtain our total inference rate adding the number of inferred
signs fixed in a unique way to the number of non-repeated inter-
actions that belong to all the detected multiple behavior modules
and dividing it by the number of edges in the network. In Table
4 we show the inference rate for Networks (A), (B), (C) and (D).
Depending on the network, the rate of inference goes from 19% to

37%. Hence, the rates of inference are very similar to the theoreti-
cal rates obtained for E. Coli network, still with a small number of
perturbation experiments (14 or 15).

We validated the inferred interaction by comparing them to the
literature-curated network published in [41]. We first obtained that
among the 631 interactions predicted when no filtering is applied,
23 are annotated in the network, and seven annotations are con-
tradictory to our predictions. However, among the 198 interactions
predicted with a filter parameter k£ = 3, 19 are annotated in the net-
work, and only one annotation is contradictory to our predictions.
As in the case of E. Coli, we conclude that filtering is a good way to
make strong predictions even when the model is not precise enough.
‘We also compared the sign predictions to the predictions of the naive
inference algorithm. We found that the naive algorithm usually pre-
dicts half of the signs that we obtain. In Fig. 7 we illustrate the
inferred interactions for Network (B), that is, the Transcriptional
network among transcription factors produced in [11].

As mentioned already, the algorithm identified a large number of
ambiguities. The exhaustive list of MBM is given in the Supple-
mentary Web site. We notice that MBM of Type I are detected in
the four networks; we list the Type I modules of size 2 found for the
networks (A), (B) and (C) in Table 5. In contrast, MBM of Type 11,
IIT and IV are only detected, in an important number, for Network
(D) following the distribution: 85.4% of Type I, 5.3% of Type III
and 9.3% of Type IV. In network (D), all the results were obtained
after 3 iterations of the inference algorithm. For each MBM, a pre-
cise biological study of the species should allow to understand the
origin of the ambiguity: error in expression data, missing interac-
tion in the model or changing in the sign of the interaction during
the experimentation.
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Figure 7. Transcriptional regulatory network among transcription factors (70 nodes, 96 edges) extracted from [11]. A total of 29 interactions were inferred:
arrows in green, respectively in red, correspond to positive, respectively negative, interactions inferred; blue arrows correspond to the detected multiple
behavior modules of Typel. Diagram layout is performed automatically using the Cytoscape package [42].

3.6 Contribution of expression profiles to the inference

In order to evaluate the contribution of the 14 experiments used for
the inference in the global network provided in [11] (2419 nodes
and 4344 arcs), we addressed the following question: assuming that
all inferred roles are correct, which is the experiment that causes
the suppression of most of the inferred roles? For example, in Fig.
1 expression data related to YPD Broth to Stationary Phase [28],
caused the suppression of the inferred interactions of the module of
Type II.

We compared the 14 expression profiles according to the MBM
of Typell, III and IV that are detected by using an element of the
dataset. MBM of Typel are not included in this computation, since

they do not invalidate any interaction role, as no interaction role is
inferred before their detection. The results of this comparison are
shown in Fig. 8. The fourth chart illustrates that the real contribu-
tion of each expression profile does not depends on the amount of
observations.

4 DISCUSSION

In this work we show how a qualitative reasoning framework can
be used to infer the role of transcription factor based on expression
profiles. The regulatory effect of a transcription factor on its target
genes can either be an activation or a repression. Our framework

Interaction network Actor Target Experiment 1 Experiment 2
Core of Lee YAP6 CINS Expression during' Sporulation [33] YPD Broth to Stationary Phase [28]
network GRF10 MBPI1 YPD Broth to Stationary Phase [28] Mec1 mutant + Heat [36]
PDHI MSN4 Nitrogen Depletion [28] Heat shock 21 to 37 [28]
YAP6 CINS Expression during Sporulation [33] YPD Broth to Stationary Phase [28]
RAP1 SIP4 Expression during Sporulation [33] Expression during the diauxic shift [30]
Extended Lee SKN7 NRG1 YPD Broth to Stationary Phase [28] Expression during the diauxic shift [30]
network PHDI1 SOK2 Heat shock 21 to 37 [28] YPD Broth to Stationary Phase [28]
RAP1 RCS1 Wild type + Heat [36] Transition from fermentative to glycerol-based respiratory growth [29]
PHDI1 MSN4 Nitrogen Depletion [28] Heat shock 21 to 37 [28]
HAP4 PUT3 Expression during the diauxic shift [30] Snf2 mutant, YPD [34]
SWI5 ASH1 Expression regulated by the PHO pathway [35] YPD Broth to Stationary Phase [28]
Maclssac SKN7 NRGI1 YPD Broth to Stationary Phase [28] Nitrogen Depletion [28]
inferred network NRG1 YAP7 Expression regulated by the PHO pathway [35] Transition from fermentative to glycerol-based respiratory growth [29]
NRG1 GAT3 Glycosylation [37] Transition from fermentative to glycerol-based respiratory growth [29]

Table 5. Result of the diagnosis procedure for three networks related to budding yeast S. Cerevisiae (core, extended transcriptional networks of Lee, inferred
network of Maclsaac). We found ambiguities between single interactions and pairs of data (we call them Multiple Behavior Modules of Type I and size 2). For
each ambiguous interaction found, we list two experiments that deduce a different role of interaction among these genes.
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Figure 8. Comparison of 14 experiments used in the sign-inference process
for the global transcriptional network in [11] (2419 genes, 4344 interac-
tions). Each experiment has a twofold contribution: it spots inconsistent
modules (MBM, that are further excluded from inference) and it predicts
interaction roles. Some experiments have more predictive power, just be-
cause they include more genes. In order to normalize the predictive power,
we divide the percentage of predictions by the percentage of observed nodes.
For each experiment we have estimated, from top to down: (First) Number
of 2-fold expressed or 2-fold repressed genes. (Second) Percentage of edges
in the spotted MBMs of type ILIILIV divided by the percentage of observed
nodes. (Third) Percentage of inferred interactions divided by the percentage
of observed nodes. (Fourth) Real contribution of each experiment, calculated
by subtracting the third quantity (inference) from the second quantity (elimi-
nated inconsistency); negative values correspond to experiments whose main
role is to spot ambiguities.

models a single qualitative rule, which basically says that the varia-
tion of expression for a gene should be explained by at least one of
its regulators.

While intuitive and simple, this rule is sufficient to infer a sig-
nificant number of regulatory effects from a reasonable amount of
expression profiles.

On computational grounds, we designed algorithms that are able
to cope with systems consisting of several thousands of genes. Our
methods can thus readily be applied to networks and expression
data that are produced by current high-throughput measurement
techniques.

Inferring the role of transcription factor from expression profile
can be seen as a particular case of network reconstruction. Let us
now review some of the most relevant approaches in this domain.

Looking for high correlation or mutual information in expres-
sion profiles [16, 43] can be used to find interactions among genes.
Much progress has been done over the past few years to improve
the quality of statistical estimators or to detect indirect correlations,
and some promising results were obtained in higher eukaryotes [43].
There remains some open problems however. First, the relation be-
tween network structure and correlation is not one to one (inference
procedures rely on calculating pseudoinverses of singular matrices).
Consequently, many false positive or false negatives exist among
the inferred interactions. Moreover, the orientation of the inferred
interactions (A acts on B) is impossible to tell if both A and B are
transcription factors. Other non-parametric statistical methods are
designed to test hypothetical causality relations [14].

Bayesian networks have been widely applied to gene network
reconstruction [44]. Though it is limited to the class of acyclic
graphs (regulation loops are excluded), the framework of Bayesian
networks is attractive because it offers an intuitive, graphical rep-
resentation of regulatory networks, and a simple way to deal
with stochasticity in regulatory networks. This approach is how-
ever demanding, both in computational resources and experimental
measurements.

Segal and coworkers [15] proposed a probabilistic model to in-
fer transcriptional networks from promoter sequences and gene
expression data. They introduce a principled framework to inte-
grate heterogeneous sources of information. Computing the most
probable model in this setting requires to solve a hard non linear
optimization problem.

Network inference based on ordinary differential equation relates
changes in RNA concentration to each other and to an external
perturbation [45, 46]. AS ODE’s are deterministic, the inferred in-
teractions represent influences and not statistical dependencies as
the other methods. It yields signed directed graphs. The main re-
striction is that it requires knowledge on the perturbed gene in each
experiment.

More recently, some methods focused on paths of interactions
[19, 20]. Global expression profiles are used to validate models
of transcriptional regulation inferred from protein-protein interac-
tion, genome-wide location analysis and expression data. A network
inference algorithm identifies probable paths of physical interac-
tions connecting a gene knockout to genes that are differentially
expressed as a result of that knockout. These methods are really
dependent on the topology of the networks: complex networks in
which many competing or alternative paths connect a knockout to
differentially expressed genes may be difficult to infer. Then, dy-
namical Boolean analysis is efficient to infer competing behaviors
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on models containing tens of products [20, 31]. The main restric-
tion to this method is that expression profiles have to result from a
gene-deletion perturbation.

In this work, we rely on a discrete modeling framework, which
consists in calculating an over-approximation of the set of possi-
ble observations, by abstracting noisy quantitative values into more
robust properties. In contrast, statistical methods deal with experi-
mental noise by explicitly modeling the noise distribution, provided
enough measurements are available — which usually means hun-
dreds of independent experiments. Moreover while most methods
report the most likely model given the data, we describe the (pos-
sibly huge) set of consistent experimental behaviors with a system
of qualitative constraints. Then we look for invariants in this set. In
the worst case, not a single regulatory effect can be deduced from
the set of constraints, whereas computing the most likely model pro-
vides with signs for all regulations. However, we expect the inferred
regulations to be more robust. Another crucial difference is that the
system of constraints might have no solution at all. In combination
with a diagnosis procedure, we illustrated how this approach can be
a relevant tool for the curation of network databases.

We compared our inference approach to a naive inference algo-
rithm and path analysis methods introduced in [23, 20]. As detailed
above, all other inference methods need additional information to
infer the signs of regulations. We found that both our algorithm
and path analyses infer non-trivial interactions. Both approaches are
complementary: path analyses identify coupled with boolean analy-
sis allows to infer the signs of interactions located in paths that are
connected to a large number of targets; whereas our method yields
information on paths connected to a quite small number of targets.
Another difference is that paths analysis requires gene-deletion per-
turbation expression profiles, while our method give better results
with stress perturbation experiments (though it can be applied to
any type of experiment).

Using simulations we investigated the dependence between the
number of inferred signs and the number of available observations.
Not surprisingly we noticed that the topology of the regulatory graph
alone had a strong influence on the estimated relationship. This
was illustrated by computing statistics both on a complete regula-
tory network and on its core, as defined in the Methods section.
The complete network is characterized by an over-representation
of feedback-free regulatory cascades, which are controlled by a
small number of transcription factors. In this setting, the number
of inferred signs grows quasi continuously with the number of ob-
servations. In contrast, the core network does not obey the simple
law “the more you observe, the better’”: some expression profiles
are clearly more informative than others. A challenging sequel to
this work deals with experimental planification: given some con-
trol parameters, how to find the most informative experiments while
keeping their number as low as possible ?

As a practical assessment of our method, we conducted sign in-
ference experiments on E. Coli and S. Cerevisiae, using curated
expression measurements, and regulatory networks either already
published or based on chIP-chip data. When expression profiles
mostly consisted in genetic perturbations, the inference rate was
quite low, even though comparable to the results of paths analysis
[20]. When expression profiles consisted in stress perturbation, our
inference results corresponded to the theoretical rate of inference.

For smaller networks, of about 100 interactions, we were able to in-
fer 20% of the regulatory roles. For bigger networks, of thousands
interactions, we were only able to infer the 14%, however, a huge
number of inconsistencies (that we called multiple behaviour mod-
ules) were detected. Even if we were able to state some corrections
over the model or data, all our inferences and corrections proposed
depend on the model we worked with. If the orientation sense of
some interaction was mistaken, our inferences will be mistaken as
well. In our opinion, what is even more relevant than correctly in-
ferring signed regulations among genes is the ability to detect and
isolate situations where different data sources are not consistent with
each other. Moreover, if we group some of the MBM found accord-
ing to the common genes they share, it is possible to assign a higher
relevance to the correction of some specific interaction or data; in
other words, it is possible to choose which of all the interactions is
the most inappropriate.

5 CONCLUSION

In this work, we showed that our approach is suitable to infer reg-
ulatory roles of transcription factor from a limited amount of data.
More precisely, we could infer 30-40% of the networks we stud-
ied from about 20-30 perturbation expression arrays. We believe
that our approach is complementary to previous statistical meth-
ods: while qualitative modeling is a less accurate description of
regulatory networks, it requires less data in order to make robust
predictions. Thus, it is more adapted to situations where diverse but
even limited expression profiles (some tens) are available, instead of
the large panel of expression profiles usually needed for statistical
methods.

We proposed a characterization of sub-networks that are more
difficult to infer, called the core of a network. We showed on sim-
ulated data that in these core networks an unfeasible number of
experiments is necessary to infer a small number of signs with high
probability. For these core networks, two different strategies may
be adopted. The first strategy is to build a more accurate model for
these restricted subnetworks, using dynamic modeling techniques
(see ([32] for a review), The alternative is to develop experiment
design in our qualitative framework: find suitable values for control
parameters to infer the maximum number of signs.

Finally, we illustrated another advantage of discrete modeling,
namely that models can be submitted to exhaustive verification and
diagnosis. As we show it in this paper it is possible to reason on sys-
tems with thousands of observations, constraints and variables, and
provide intuitive diagnosis representations automatically when ex-
pression profiles happen to be ambiguous with the regulation model.
As a follow-up to this work, we plan to deepen diagnosis represen-
tation, and eventually propose automatic hypothesis generation for
the existence of defects.

6 METHODS

Problem statement We consider the set of equations derived from a given
interaction graph G

XFa> SjXfforl<i<n, 1<k<r )

Jj—i
where X lk stands for the sign of variation of species ¢ in experiment k, and
S the sign of the influence of species j on species 4. Recall that the graph G

itself comes from chIP-chip experiments or sequence analysis. Using expres-
sion arrays, we obtain an experimental value for some variables X f, which
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will be denoted xf; more generally uppercase (resp. lowercase) letters will
stand for variables of the systems (resp. constants +, — or 0).

A single equation in the system (4) can be viewed as a predicate
P; (X, S) where i denotes a node in the graph and k one of the r
available experiments. If the value for some variables in the equation is
known, the predicate resulting from their instantiation will be denoted
P, p (X, S)[z*, s].

Our problem can now be stated as follows: given a set of expression
profiles !, ..., ", decide if the predicate:

P(X,58) = A

1<i<n, 1<k<r

P; (X, 8)[="] 5

can be satisfied. If so, find all variables that take the same value in all
admissible valuations (so called hard components of the system).

Decision diagram encoding In a previous work [26], we showed how the set
of solutions of a qualitative system can be computed as a decision diagram
[47]. A decision diagram is a data structure meant to represent functions on
finite domains ; it is widely used for the verification of circuits or network
protocols. Using such a compact representation of the set of solutions, we
proposed efficient algorithms for computing solutions of the systems, hard
components, and other properties of a qualitative system. Back to our prob-
lem, in order to predict the regulatory role of transcription factors on their
target genes, it is enough to compute the decision diagram representing the
predicate (5), and compute its hard components as proposed in [26]. This
approach is suitable for systems of at most a couple of hundred variables.
Above this limit, the decision diagram is too large in memory complexity.
In our case however, we consider systems of about 4000 variables at most,
which is far too large for the above mentioned algorithms.

In order to cope with the size of the problem, we propose to investigate a
particular case, when all species are observed, in all experiments. In this
case, i # j implies that P; (X, S)[z"] and P; 1 (X, S)[z"] share no
variables. This means that P may be satisfied if and only if each predicate

P.(8)= J\ 3XPi(X, 9" (6)
1<k<r

may be satisfied. As a consequence, a variable S;; is a hard component
of P if and only if it is a hard component of P; .. P; . correspond to the
constraints which relate species  to its predecessors in G for all experiments.
The number of variables in P; . is exactly the in-degree of species ¢ in G,
which is at most 10-20 in biological networks.

As soon as some species are not observed in some experiment, the pred-
icates P; . share some variables and it is not guaranteed to find all hard
components by studying them separately. A brief investigation showed (data
not shown) that due to the topology of the graph, most of the equations
are not independent any more, even with few missing nodes. Note however,
that any hard component of P; . still is a hard component of P. The same
statement holds for

Pp(X)= A 3SPi(X,8)"] ©)
1<i<n

where P. j, corresponds to the constraints that relate all species in G' for
a single experiment. Relying on this result, we implemented the following
algorithm

In practice, this algorithm is very effective in terms of computation time
and number of hard components found. However, as already stated, it is not
guaranteed to find all hard components of P. This is what motivates the
technique described in the next paragraph.

Solving with Answer Set Programming In order to solve large qualitative
systems, we also tried to encode the problem as a logic program, in the set-
ting of answer set programming (ASP). While decision diagrams represent
the set of all solutions, finding a model for a logic program provides one
solution. In order to find hard components, it is enough to check for each
variable V/, if there exists a solution such that V' = + and another solution

Input:
the predicates P; . and P. ; for all ¢ and k&
observed variations x

Output:
a set s of hard components of P

s—10

while True do
s' «— U, hard_components(P;.[z", s])
if s’ = () then return s
s—sUs
z' — |J, hard-components(P. ,[z*, s))
if 2’ = () then return s

r—zUz
end

Algorithm 1: Heuristic for finding hard components in large
interaction networks with many expression profiles.

such that V' = —. The ASP program we used in order to solve the quali-
tative system is given in supplementary materials. In the following we will
denote by asp_solve(P) the call to the ASP solver on the predicate P. The
returned value is an admissible valuation if there is one, or | otherwise. The
complete algorithm is reported below

Algorithm:Hard components using ASP

Input:
the predicates P
observed variations x
Output:
a set h of hard components of P

h—10

C —{Sjlj — i}

s* « asp_solve(P)

if s* = 1 then return L

while C # () do
choose V in C'

s < asp_solve(P[V = —sy/])
if s = L then
h—{(V,sv)}Uh
else
delete from C all W in C's.t. any sy, # sw
end
end

Algorithm 2: Exact algorithm for finding the set of hard compo-
nents of P, based on logic programming.

We use clasp for solving ASP programs [48], which performs as-
tonishingly well on our data. The procedure described in Algorithm 2 is
particularly efficient to find non hard components: generating one solution
may be enough to prove non hardness of many variables at a time.

To sum up, in order to solve a system of qualitative equations (4) with
only partial observations, we use Algorithm 1 first and thus determine most
(if not all) hard components. Then, Algorithm 2 is used for the remaining
components, which are nearly all non hard.

Reduction technique As mentioned in the Result section, interaction graphs
may be reduced in a way that preserves the satisfiability of the associated
qualitative system. Consider a graph G with defined signs on its edges. If

15



P. Veber?, C. Guziolowski?, M. Le Borgne®, O. Radulescu®<, A. Siegel!

some node n has no successor, then delete it from G. Note then, that any so-
lution of the qualitative system associated to the new graph can be extended
in a solution to the system associated to G. The same statement holds if one
iteratively delete all nodes in the graph with no successor. The result of this
procedure is the subgraph of G such that any node is either on a cycle, or has
a cycle downstream. We refer to it as the core of the interaction graph.

The core of an interaction graph corresponds to the most difficult part to
solve, because extending a solution for the core to the entire graph can be
done in polynomial time, using a breadth-first traverse.

Diagnosis for noisy data When working with real-life data, it may happen
that the predicate P defined in Eq. (5) cannot be satisfied. This may be due
to three (non exclusive) reasons:

e areported expression data is wrong
e an arrow (or more generally a subgraph) is missing
o the sign on an edge depends on the state of the system

In the third case, the conditions for deriving Eq. (1) are not fulfilled for one
node and its qualitative equation should be discarded. This, however, does
not affect the validity of the remaining equation.

In all cases, isolating the cause of the problem is a hard task. We propose
the following diagnosis approach: as P is a conjunction of smaller predi-
cates, it might happen that some subsets of the predicates are not satisfiable
yet. Our strategy is then to find a “small” subsets of predicates which can-
not be satisfied. A particularly interesting feature of this approach is that by
selecting subsets of P; . predicates, the result might directly be interpreted
and visualized as a subgraph of the original model.

How to determine if a sign can be inferred In section 2, we have seen
some examples showing that even when all feasible observations are avail-
able, it might not be possible to infer all signs in the interaction graph.
‘Whether or not a sign can be inferred depends on the topology of the graph,
but also on the actual signs on interactions. In practice, it is thus impossible
to tell from the unsigned graph only if a sign can be recovered. However,
it is still interesting to evaluate on fully signed interaction networks which
part can be inferred. A trivial algorithm for this consists in explicitly gener-
ating all feasible observations and use the algorithms described above. This
is unfeasible due to the number of observations.

With the notations introduced above, consider an observation X and sign
variables S for an interaction graph. P;(X, S) denotes the constraint that
link the variation of a node ¢ to that of its predecessors given the signs of the
interactions. Moreover, the real signs in the graph are denoted by s. For each
node ¢, we build the predicate giving the feasible observations on node ¢ and
its predecessors, given the rest of the graph and the real signs s

0i(X) = 3X i tiyupreacy [\ Pi(X.s)
1<i<n

Then, the constraint that we can derive on .S variables is: for any ob-
servation X that is feasible P;(X,.S) should hold. This constraint is more
formally defined by

CZ(S) = VXOl(X) = Pi()(7 S)

Finally, the hard components of C; are exactly the signs that can be
inferred using all feasible observations. Let us sum up the procedure:

1. compute P(X,S) = Aj<;<,, Pi(X,s)

. compute O; from P and the actual signs s

. compute Cj, the constraints of signs given all feasible observations

RIS I S

. compute the hard components of C;, which are exactly the signs that
can be inferred.

If it is not possible to compute P(X,S) (mainly because the interaction
graph is too large), we use a more sophisticated approach based on a modular
decomposition of the interaction graph. The resulting algorithm can be found
in the Supplementary materials.

SUPPLEMENTARY MATERIAL

Inference algorithms and all the results obtained for the S. cerevisiae
regulatory network can be found at:

www.irisa.fr/symbiose/interactionNetworks/supplementaryInference.html
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Résumé

Les techniques de biologie moléculaire dites haut-débit permettent de mesurer un
grand nombre de variables simultanément. Elles sont aujourd’hui couramment utilisées
et produisent des masses importantes de données. Leur exploitation est compliquée par
le bruit généralement observé dans les mesures, et ce d’autant plus que ces dernieres
sont en général trop onéreuses pour étre suffisamment reproduites. La question abordée
dans cette these porte sur 'intégration et ’exploitation des données haut-débit : chaque
source de données mesurant un aspect du fonctionnement cellulaire, comment les com-
biner dans un modeéle et en tirer des conclusions pertinentes sur le plan biologique ?
Nous introduisons un critere de consistance entre un modele graphique des régulations
cellulaires et des données de déplacement d’équilibre. Nous montrons ensuite com-
ment utiliser ce critere comme guide pour formuler des prédictions ou proposer des
corrections en cas d’incompatibilité. Ces différentes taches impliquent la résolution
de contraintes & variables sur domaines finis, pour lesquelles nous proposons deux ap-
proches complémentaires. La premiere est basée sur la notion de diagramme de décision,
qui est une structure de données utilisée pour la vérification des circuits ; la deuxieme
fait appel a des techniques récentes de programmation logique. L utilisation de ces tech-
niques est illustrée avec des données réelles sur la bactérie E. coli et sur la levure. Les
réseaux étudiés comportent jusqu’a plusieurs milliers de genes et de régulations. Nous
montrons enfin, sur ces données, comment notre critére de consistance nous permet
d’arriver a des prédictions robustes, ainsi que des corrections pertinentes du modele
étudié.

Abstract

High-throughput techniques in molecular biology are able to measure a huge number
of variables simultaneously. They are currently used as a routine investigation method
and therefore produce large amounts of information. The analysis of high throughtput
data is particularly difficult, due to their usual high level of noise, and the lack of
independant samples for the same experiment. This thesis deals with the integration and
the analysis of high throughput data : each type of data can be thought of as measuring
a certain aspect of a biological process, so how to combine these heterogeneous data in
order to deduce relevant conclusions ? To this end, we introduce a compatibility criterion
between a graphical model of cellular regulations and equilibrium shift data. We then
show how this criterion can be used to derive predictions or to propose corrections
in case of an incompatibility. This tasks require the resolution of constraints on finite
domain variables, and we developped two approaches for these problems. The first one
is based on the notion of decision diagrams, which is classical data structure used for
circuit verification ; the second approach we propose relies on recent techniques from
logical programming. Finally, we applied our approach to real data on E. coli and yeast.
The networks we considered have up to several thousands of genes and regulations. We
show on these data that our consistency criterion can effectively be used to derive
robust predictions, as well as relevant corrections to the model under study.



