
No d’ordre: 3684

THÈSE

Présentée devant

l’Université de Rennes 1

pour obtenir

le grade de : Docteur de l’Université de Rennes 1
Mention Informatique

par

Philippe Veber

Équipe d’accueil : SYMBIOSE - IRISA
École Doctorale : Matisse

Composante universitaire : IFSIC

Titre de la thèse :

Modélisation grande échelle de réseaux biologiques :
vérification par contraintes booléennes de la cohérence des données

soutenue le 17 décembre 2007 devant la commission d’examen

Président : Laurent Trilling Pr. Université de Grenoble 1
Rapporteurs : Alexander Bockmayr Pr. Freie Universität Berlin

Jean-Paul Comet Pr. Université de Nice Sophia Antipolis
Examinateurs : François Képès Directeur de recherche CNRS

Michel Le Borgne MCF Université de Rennes 1 (codir. thèse)
Rumen Andonov Pr. Université de Rennes 1 (dir. thèse)

Membres invités : Anne Siegel Chargé de recherche CNRS
Torsten Schaub Pr. Université de Potsdam

Remerciements

Mon premier souvenir d’apprenti chercheur, c’est un petit bonhomme bulgare qui
m’accueille avec son accent rigolo et son sourire de bienheureux. Ce jour-là, je me suis
dit : “Ça peut pas être un mauvais job”. Cinq ans après et un doctorat en poche j’en suis
toujours convaincu, sans toutefois oublier combien mes collègues et amis ont contribué
à rendre mon travail tout à la fois agréable et stimulant. J’ai beaucoup usé de leur
temps et de leur patience durant ces trois années de thèse, et quelques remerciements
sont bien le moins que je puisse faire pour eux. À dire vrai, j’espère qu’ils n’auront pas
attendu ces quelques lignes pour connâıtre la gratitude et l’amitié que j’ai pour eux.

Cette thèse, ou du moins l’essentiel de son contenu, est le fruit d’un authentique
travail d’équipe du groupe “Réseaux” du projet Symbiose, constitué (durant ma thèse)
de Jeremy Gruel, Carito Guziolowski, Michel Le Borgne, Ovidiu Radulescu, Anne Sie-
gel et moi-même. Rétrospectivement, je suis très satisfait (et un peu amusé) de voir
comment les compétences de chacun se sont articulées pour former un tout cohérent et
– je l’espère – digne d’intérêt. Il y eu des heures de gloire, des phases de houle mais . . .
que de chemin parcouru ensemble ! Plus spécifiquement, je voudrais remercier mes en-
cadrants sur ce projet, à savoir Michel et Anne. Michel tout d’abord, pour tout ce
temps qu’il m’a consacré, tant pour me rendre un peu moins ignorant que pour écouter
les idées – pas toujours bien fûtées – que je venais lui exposer tous les deux jours (le
pauvre, quand j’y repense). Il a été suffisamment patient pour me laisser vadrouiller sur
plusieurs thèmes, pour m’aider, jusque dans les parties techniques, à valider des idées
dont j’étais le seul supporter. En tout cas, j’ai passé de vrais bons moment de réflexion
et j’ai appris énormément grâce à lui. Anne a tenu la promesse faite mon premier jour
de thèse : s’assurer, sur tous les plans, que je mènerais à bien ma thèse. Je dois dire
que j’ai été particulièrement pénible depuis les premières pages de ce mémoire jusqu’au
jour de la soutenance, et qu’Anne a déployé beaucoup d’énergie pour que les choses
soient faites en temps et en heure. Et avec le sourire ! Merci à vous deux, vous avez été
des encadrants hors-pairs.

Je ne voudrais pas oublier Rumen Andonov et Nicola Yanev, mes parrains bulgares,
qui m’ont initié au métier de chercheur, et suivi de près depuis lors. Eux aussi, ont pris
de leur temps pour m’instruire et me donner mes chances sur des problèmes et des
questions qu’ils ont su rendre passionnants. Je remercie tout particulièrement Rumen
pour m’avoir également fait faire mes premiers pas en tant qu’enseignant. Je crois que
j’y ai pris goût.

Grâce à Nathalie Théret, je peux dire que j’ai vraiment travaillé à l’interface entre

i

informatique et biologie. Je lui dois tout ce que je sais en biologie et ses efforts hebdo-
madaires pour raccrocher nos développements un peu näıfs à la pratique expérimentale
sur le vivant m’ont énormément appris. Je lui ai malheureusement bien mal rendu le
temps qu’elle m’a consacré, mais attention, je n’ai pas dit mon dernier mot !

Je souhaite également remercier Jeremy, pour ses innombrables défaites au ping-
pong, qui ont beaucoup contribué à mon bien-être. Tous ses efforts (malheureusement
vains) pendant trois ans sont touchants, quelque part. J’en profite également pour
démentir la rumeur selon laquelle il aurait remporté notre dernière rencontre. Pure
hérésie.

Autant dire que l’ambiance au sein de l’équipe Symbiose a été excellente durant
mon séjour, et j’en remercie chacun des membres. Sans oublier (comme il se doit) son
grand patron alias Jacques Nicolas, dont la présence contribue beaucoup à la réussite
scientifique et humaine de l’équipe. Voilà un chef qui écoute plus qu’il ne parle (sauf
en réunion d’équipe . . .). Bref, merci mille fois pour l’attention que tu portes aux gens
qui t’entourent.

J’ai travaillé durant les derniers mois de ma thèse dans le groupe de Torsten Schaub
de l’université de Potsdam. J’y ai passé un été formidable, grâce notamment aux efforts
qu’ont déployés Torsten, Martin, Steve et Sven pour m’accueillir.

Enfin, je voudrais remercier chacun des membres de mon jury, pour l’intérêt qu’ils
ont porté à ce mémoire, ainsi que leurs excellentes questions et remarques durant et
après la soutenance. Merci tout particulièrement à mes rapporteurs Jean-Paul Comet
et Alexander Bockmayr pour leur relecture attentive et leurs corrections. Je suis à la
fois très content et honoré que Laurent Trilling ait accepté de présider à mon jury. Je ne
suis pas sûr de mériter tous ses compliments mais qu’importe, ils m’ont fait rudement
plaisir !

P.S. Je me permets de ne pas remercier Xavier, Guillaume et Goulven pour l’affiche
de thèse qu’ils m’ont sournoisement préparée. Attention aux représailles . . .

Table des matières

Remerciements i

Table des matières ii

Notations vii

1 Introduction 1
1.1 Motivations . 1
1.2 Approche suivie . 2
1.3 Sur les données . 4
1.4 Travaux connexes . 8

1.4.1 Panorama . 8
1.4.2 Modèles physiques de réseaux biologiques 10

1.5 Nos contributions . 11

2 Présentation générale de l’approche : modélisation de l’opéron lactose 13
2.1 Vérification . 17
2.2 Prédiction . 18

3 Équations qualitatives pour la consistance des données 21
3.1 Formalisation . 21

3.1.1 Le graphe d’interaction et ses étiquetages 21
3.1.2 Algèbre des signes . 23
3.1.3 Contrainte de consistance . 25
3.1.4 Propriétés des contraintes qualitatives 27

3.2 Justification différentielle . 29
3.2.1 Graphe d’interaction . 30
3.2.2 Réponse statique à une perturbation 31
3.2.3 Hypothèses de modélisation . 32
3.2.4 Déplacement d’équilibre et variations 33
3.2.5 Discussion . 35
3.2.6 Cinétiques usuelles en modélisation 38
3.2.7 Graphes de réactions . 38

3.3 Justification booléenne . 41

iii

iv Table des matières

3.3.1 Graphe d’interaction . 41
3.3.2 Déplacement d’équilibre . 42

4 Résolution par diagrammes de décision 45
4.1 Diagrammes de décision . 46

4.1.1 Définition . 46
4.1.2 Opérations sur les diagrammes 47
4.1.3 Fonctions à variables dans un ensemble fini 52

4.2 Problème de vérification . 54
4.2.1 Diagramme associé à une contrainte qualitative 54
4.2.2 Algorithme pour la vérification 56

4.3 Problème de prédiction . 57
4.3.1 Invariant de l’ensemble des modèles 57
4.3.2 Marginales . 59

4.4 Diagnostic des contraintes non satisfiables 63
4.4.1 Données bruitées . 64
4.4.2 Reconstruction de réseau . 64
4.4.3 Recherche des sous-systèmes incompatibles 65
4.4.4 Calcul des diagnostics . 65

4.5 Réduction, décomposition des systèmes 67
4.5.1 Réduction préservant l’existence de solution 67
4.5.2 Décomposition . 68
4.5.3 Calcul de la consistance selon une décomposition 70
4.5.4 Calcul des invariants selon une décomposition 70
4.5.5 Choix de la décomposition . 72

5 Résolution par Answer Set Programming 75
5.1 Une introduction à la programmation par ensemble réponse 75

5.1.1 Syntaxe . 76
5.1.2 Sémantique des modèles stables 77
5.1.3 Variables . 80
5.1.4 Contraintes d’intégrité . 81
5.1.5 Contraintes de cardinalité . 82
5.1.6 Optimisation . 83
5.1.7 Complexité et résolution . 83

5.2 Consistance aux sommets . 84
5.2.1 Codage des données . 85
5.2.2 Génération des solutions . 85
5.2.3 Test des solutions . 86

5.3 Prédiction . 86
5.4 Contrainte non satisfiable . 87

Table des matières v

6 Validation expérimentale 89
6.1 Prédiction de la réponse à une perturbation 89

6.1.1 Construction du graphe d’interaction 90
6.1.2 Confrontation aux données d’expression issues de la littérature,

premier essai . 90
6.1.3 Diagnostic par isolement des défauts 91
6.1.4 Ajout des facteurs σ dans le modèle 92
6.1.5 Prédiction de la réponse globale au stress nutritionnel 93

6.2 Inférence de graphes d’interactions . 97
6.2.1 Limites théoriques de l’approche 97
6.2.2 Validation par des mesures d’expression 99
6.2.3 Application chez S. cerevisiae . 100

7 Discussion 103
7.1 Travaux connexes . 103

7.1.1 Circuits du graphe d’interaction 103
7.1.2 Régulons . 104
7.1.3 Chemins métaboliques . 104
7.1.4 Cascades de régulations . 105
7.1.5 Bilan . 105

7.2 Chemins dans le graphe d’interaction . 106
7.2.1 Le modèle de Yeang-Ideker-Jaakkola (YIJ) 106
7.2.2 Relation modèle – données . 107
7.2.3 Consistance de chemin . 108
7.2.4 Consistance au sommet et consistance de chemin 109
7.2.5 Chemins et déplacement d’équilibre 110
7.2.6 Bilan . 111

8 Conclusion 113
8.1 Bilan . 113
8.2 Perspectives . 116

A Inférence de l’effet des facteurs de transcription sur leurs gènes cibles119

B Liste de publications 137

Bibliographie 147

vi Table des matières

Notations

Conventions générales

– ensembles en majuscules, italiques et police ordinaire : A,E, F . . .
– éléments d’un ensemble de type non déterminé (ou non déterminant) en minus-

cule, italique et police ordinaire : x, f ∈ F . . .
– ensemble des variables d’une fonction comme les ensembles ordinaires : dans
f(X,Y), X et Y sont des ensembles de variables.

– objets structurés (arbres, graphes, automates) en majuscule, italique et police
dite caligraphique : A,G.

– termes en majuscule et police sans serif : X, y,C.

Notations spécifiques

|X| cardinal de l’ensemble X
|π| longueur d’un chemin π dans un graphe

deg−G (s) degré entrant d’un sommet s dans le graphe G
deg+

G (s) degré sortant d’un sommet s dans le graphe G
predG(s) ensemble des prédecesseurs d’un sommet s dans le graphe G

(on notera pred(i) s’il est clair d’après le contexte que l’on
parle de G)

dom(f) domaine (ensemble de définition) d’une fonction f
T(X) où T est un terme, et X un ensemble de variables. Précision

(optionnelle) des variables libres du terme.
[x1 := c1, . . .] désigne la substitution σ définie par σ(xi) = ci.
∃X T où X = {x1, . . . , xn} est un ensemble de variables, et T est

un terme. Équivalent à ∃x1∃x2 . . .∃xn T.

vii

viii Notations

Chapitre 1

Introduction

1.1 Motivations

La recherche en biologie moléculaire dispose depuis quelques années déjà de tech-
niques expérimentales qui permettent de mesurer un grand nombre de variables simul-
tanément, avec un nombre limité d’interventions humaines. Ces progrès sont le fruit de
deux efforts de recherche orthogonaux, à savoir la miniaturisation des instruments de
mesure, et la robotisation des tâches. On parle souvent de mesures ((haut-débit)), ex-
pression qui désigne un ensemble assez hétérogène de techniques et de types de données
expérimentales, allant du séquençage des génomes à la recherche systématique d’inter-
actions moléculaires. Toutes ces techniques sont de plus en plus utilisées en routine, et
produisent des masses de données très conséquentes, le plus souvent mises à disposition
sur des interfaces web. L’ambition que ces données suscitent, c’est de permettre une
étude globale d’un système biologique, intégrant des informations les plus complètes
possible sur l’expression des gènes, les interactions au sein de la cellule etc . . . On
cherche ainsi à modéliser le comportement d’un système comme la résultante d’un
grand nombre d’interactions entre ses éléments. Cette approche, connue sous le nom de
biologie systémique est bien entendu complémentaire d’une approche réductionniste où
l’on considère les systèmes les plus simples possible afin d’en déterminer les mécanismes
élémentaires.

Cette apparente avalanche de données doit être quelque peu nuancée. Les mesures
haut-débit restent des techniques onéreuses ; en pratique, cela signifie que pour une
étude ciblée, on ne peut matériellement réaliser qu’un petit nombre d’expériences de
ce type, en regard du nombre de variables mesurées, et du bruit généralement observé.
Pour fixer les idées, disons que les techniques courantes affichent de l’ordre du millier
de variables mesurées, et sont au plus utilisées une dizaine de fois en pratique1. On
peut bien sûr compter sur les données déjà disponibles dans des conditions voisines
de l’étude, au prix d’une diminution – peut-être considérable – du rapport signal sur
bruit. L’exploitation des données haut-débit est donc particulièrement difficile, non
pas seulement à cause du volume d’information en jeu, mais aussi parce qu’elle doit

1ce qui est peu, attendu qu’une même expérience doit être répétée au minimum entre 3 et 5 fois

1

2 Introduction

être adaptée à la qualité des données et au déséquilibre entre le nombre de variables
mesurées et le nombre de mesures disponibles.

Intéressons-nous maintenant à une deuxième difficulté : aussi surprenant que cela
puisse parâıtre de prime abord, il n’est absolument pas trivial de préciser ce que l’on
attend d’une ((analyse)) des données haut-débit. Il s’agit d’une problématique générale
en biologie systémique : parvenir à formuler des questions ou des propriétés d’intérêt
pour le système que l’on étudie est, dans ce domaine, un problème à part entière. Les
raisons de cette difficulté sont diverses, à commencer par le fait qu’il est relativement
ardu de relier les processus biologiques étudiés (apoptose, adaptation à un stress) à des
acteurs moléculaires précis (gènes, protéines . . .). Or si l’on s’intéresse le plus souvent
aux propriétés desdits processus, ce sont bien les espèces chimiques que l’on mesure.
Dans le cas des données haut-débit, on peut évoquer une difficulté plus spécifique :
ce type de mesure est généralement réalisé comme un travail exploratoire ; pour un
phénomène donné, les techniques de mesure haut-débit donnent une image globale du
système, à partir de laquelle on espère débuter un travail d’investigation plus ciblé. Pour
cela, il faut pouvoir repérer dans la masse de données recueillies des éléments suscep-
tibles d’être intéressants pour l’élucidation du phénomène étudié. Dit autrement, il faut
savoir interpréter les données produites, c’est-à-dire y distinguer ce qui est surprenant
de ce qui est attendu, ce qui fait sens de ce qui est contradictoire avec les connaissances
sur le système ; puis dans un deuxième temps être capable d’utiliser les données comme
une base pour générer des hypothèses réfutables par l’expérience.

Ces considérations nous amènent au problème étudié dans cette thèse : pour un
processus biologique donné, on dispose de données haut-débit provenant de différentes
sources. Comment comparer les données entre elles et tester leur cohérence ? Comment
les combiner pour en déduire des informations nouvelles ?

1.2 Approche suivie

Pour répondre à ces questions, nous introduisons un formalisme permettant d’intégrer
un large spectre de données haut-débit. Dans ce formalisme, les données expérimentales
ou les connaissances s’interprètent soit comme des éléments d’un modèle physique des
interactions cellulaires, soit comme des mesures sur l’état de ce modèle. Nous pro-
posons dans ce cadre une notion formelle de consistance entre modèle et mesures
expérimentales. Cette notion de consistance est à la base d’une démarche complète
d’analyse de données, décrite en figure 1.1. Partant des données existantes (compre-
nant des mesures expérimentales et les régulations connues d’un système), nous testons
en premier lieu leur cohérence. Dans le cas où ce test échoue, nous montrons des ap-
proches de diagnostic nous permettant d’en comprendre la cause. En prenant appui
sur ce diagnostic, on peut rechercher des corrections, soit sur la base de sources bi-
bliographiques, soit en étudiant l’ensemble des corrections possibles. Une fois que l’on
a obtenu un modèle cohérent avec les données, il peut être utilisé pour produire des
prédictions sur le système et ses variables non observées. Cela inclut notamment la
problématique de reverse-engineering, c’est-à-dire la découverte de tout ou partie des

Approche suivie 3

Diagnostic Correction

Données Consistance Modèle

Prédiction

EXPERIMENTATION
Contrôle

Plans d’expérience

Fig. 1.1 – Cycle d’analyse des données haut-débit

mécanismes à l’œuvre dans un système donné à partir de mesures expérimentales. Les
prédictions obtenues pourront enfin guider les expérimentations suivantes, soit par une
vérification directe, soit éventuellement dans le cadre de plans d’expériences.

Le formalisme que nous proposons est adapté aux caractéristiques des données haut-
débit, que nous résumons comme suit :

1. elles sont en général fortement bruitées et peu répliquées ;

2. elles portent sur un grand nombre de variables, mais sur peu de conditions
différentes ;

3. elles représentent un volume considérable d’information.

Le premier point nous conduira d’une part à adopter une approche qualitative, robuste
aux valeurs numériques bruitées ; il motive surtout notre approche basée sur l’intro-
duction d’un critère de consistance entre les sources de données, et son utilisation pour
détecter, voire corriger les valeurs aberrantes. Le deuxième point implique qu’il nous
faudra travailler avec des modèles sous-déterminés, c’est-à-dire en admettant qu’il y a
plusieurs modèles plausibles d’après les données disponibles. Ainsi, nous devrons être
capables de proposer des prédictions malgré l’incertitude sur le modèle réel. Mieux en-
core, on pourra s’intéresser à la conception d’expériences permettant de déterminer le
modèle réel le plus efficacement possible. Enfin, le troisième point nous obligera à soi-
gner tout particulièrement les aspects algorithmiques associés à chacune de ces tâches.
Nous voulons à présent mentionner quelques uns des types de données haut-débit les
plus courants ; nous nous appuyons notamment pour cela sur la revue de Joyce et
Palsson [48].

4 Introduction

1.3 Sur les données

Données d’expression Il s’agit de mesures sur le transcriptome des cellules, c’est-à-
dire l’ensemble des molécules d’ARN présentes à un instant donné dans un tissu donné.
Ces ARN peuvent coder pour des protéines ou avoir une activité propre (transport
des acides aminés, régulation d’autres ARN, modifications du génome . . .). Les tech-
niques les plus utilisées sont notamment les puces à ADN, la PCR quantitative ou la
méthode SAGE. Plus précisément, ces techniques mesurent la quantité d’ARN présente
dans un échantillon à l’aide de sondes qui sont spécifiques de chaque gène. Certaines
puces à ADN par exemple sont munies de plusieurs dizaines de milliers de sondes, et
servent à réaliser des mesures dites pangénomique, c’est-à-dire portant sur l’ensemble
des séquences génomiques transcrites connues.

La valeur trouvée pour chaque sonde ne donne la quantité d’ARN présente dans
l’échantillon qu’à une constante multiplicative près. Celle-ci dépend notamment de la
taille de l’échantillon, et de constantes de l’appareil de mesure, le tout étant difficile à
étalonner. C’est pourquoi on procède en général par comparaison avec une condition
de référence : par exemple, cellules en culture contre cellules soumises à un stress, cel-
lules tumorales contre cellules saines, cellules nerveuses contre cellules musculaires. Le
résultat d’une mesure d’expression est donc un vecteur contenant pour chaque transcrit
le ratio entre les valeurs trouvées dans la condition d’intérêt et la condition de référence.

La technique la plus courante aujourd’hui est la puce à ADN2, qui est une plaque
sur laquelle sont fixées des sondes. Ces sondes sont constituées d’une séquence d’ADN
complémentaire d’une séquence recherchée. Les plaques peuvent contenir jusqu’à plu-
sieurs dizaines de milliers de sondes, et l’on peut choisir la composition de chaque
plaque. Les quantités typiques d’ARN peuvent énormément varier d’un ARN à l’autre,
et les signaux forts rendent les signaux faibles peu précis. C’est pourquoi on trouve
des plaques dédiées pour certains types d’ARN qui sont connus pour être peu exprimés
(ARN de facteurs de transcription ou de micro-ARN par exemple). La précision que l’on
obtient pour les ratios d’expression est de l’ordre de l’unité (voir figure 1.2). Pour des
mesures plus précises, on a recours à la RT-PCR (pour Real Time Polymerase Chain
Reaction). La technique de PCR permet de créer un grand nombre de copies d’un brin
d’ADN dont la séquence est connue, même si l’on ne dispose initialement que d’un
petit nombre d’exemplaires. Lors d’une RT-PCR, on itère des phases de copies (dites
d’amplification) et la vitesse d’apparition du brin d’ADN (mesurée par fluorescence) en
donne la quantité initiale. La RT-PCR offre une précision de l’ordre du dixième, mais
devient relativement lourde au-dessus de la centaine de cibles mesurées.

Dans tous les cas, il faut en premier lieu obtenir l’ARN contenu dans les cellules
(ARN total), par une opération d’extraction. L’ARN obtenu est ((converti)) en ADN,
par rétrotranscription. Cette opération est nécessaire parce les molécules d’ARN sont
particulièrement instables, contrairement aux châınes d’ADN. C’est pour cela qu’on
parle de puces à ADN, ou d’amplification de l’ADN.

Il faut en pratique disposer d’une quantité suffisante d’ARN total, et pour cela uti-
2La seule base de données GEO [8] comptait en septembre 2006 plus de 120000 de ces puces, réparties

sur plus de 200 organismes.

Sur les données 5

(a) (b)

Fig. 1.2 – (a) Mesure d’expression sur un échantillon de poumon humain, extraite
de [49]. Le même échantillon a été analysé sur deux puces de même modèle. Chaque
point correspond à une sonde de la puce. Chaque sonde correspond spécifiquement à
un ARN transcrit. Sur chaque axe est représentée la mesure d’expression normalisée
obtenue sur chaque puce. Dans le cas idéal, tous les points devraient se trouver sur la
droite d’équation y = x. Les droites vertes correspondent à une variation d’un facteur
2 (augmentation et diminution respectivement). (b) Même type de comparaison, mais
cette fois entre deux échantillons issus de tissus différents.

liser un échantillon suffisamment important. Par conséquent, cela oblige à travailler sur
un échantillon non homogène, parce qu’un tissu peut contenir plusieurs types cellulaires
très distincts, et parce que les cellules d’un même type sont le plus souvent dans des
états notablement différents. Il existe des contextes expérimentaux dans lesquels on
peut ((synchroniser)) les cellules, mais la plupart du temps, une mesure d’expression
est une mesure ((en moyenne)) et peut fort bien ne correspondre à l’état d’aucune
cellule en particulier. Il existe des approches comme [7] qui proposent de corriger ce
problème sous certaines conditions, mais elles sont en pratique rarement applicables.

Électrophorèse sur gels bidimensionnels De même que l’on peut, à l’aide d’une
puce à ADN, mesurer la quantité de chaque séquence d’ARN dans un échantillon,
on voudrait pouvoir mesurer la quantité des protéines présentes ; en quelque sorte,
disposer d’une ((puce à protéines)). Malheureusement, les choses sont plus compliquées.
La différence importante est que la notion de séquence complémentaire n’existe pas
chez les protéines. Il est donc extrêmement difficile de fabriquer une sonde spécifique
d’une protéine donnée (voir plus loin avec la technique de chIP-chip). Pour explorer le
protéome d’une cellule (l’ensemble des protéines présentes), la méthode la plus efficace
à l’heure actuelle semble être les gels bidimensionnels, qui sont des plaques recouvertes
d’un milieu particulier sur lequel on fait migrer les protéines extraites d’un échantillon.
Leur déplacement est provoqué dans une dimension, par un champ électrique et dans
l’autre, par un gradient de pH. On dit que l’on obtient une bonne résolution quand
chaque tache est individualisée et ne contient qu’une seule sorte de protéine. Si c’est
le cas, on peut alors mesurer la quantité de protéines présentes en mesurant la surface

6 Introduction

de la tache qui lui correspond. Reste – et c’est là la plus grande difficulté – à identifier
la protéine associée à chaque tache. Il s’agit en pratique de l’étape limitante en terme
de débit. La procédure la plus performante actuellement fait appel à des techniques de
spectrométrie de masse. Notons bien qu’il n’y a pas une relation simple entre la quantité
d’un ARN donné et celle de la protéine correspondante. Ceci est dû à l’existence de
régulations dites post-transcriptionnelles, qui peuvent éventuellement dégrader un ARN
avant qu’il ne soit traduit en protéine.

Chromatographie/Spectrométrie La technique précédente peut être adaptée pour
explorer le métabolome d’une cellule, c’est-à-dire l’ensemble des métabolites présentes
dans un tissu. Les métabolites sont des molécules impliquées dans la régulation éner-
gétique et dans la structure (cytosquelette) des cellules. Dans ce cas ; l’électrophorèse
est remplacée par des techniques de chromatographie : la migration n’est plus provoquée
par des champs électriques mais par le déplacement d’un fluide (gaz ou liquide).

Séquençage C’est sans nul doute la source la plus ancienne de données haut-débit. Le
séquençage de génome est l’un des protocoles les plus automatisés à l’heure actuelle. La
mise en place de nombreux centres a permis d’obtenir en l’espace de quelques années
plusieurs centaines de génomes complets. Selon la base de données GOLD [61], on
comptait en mai 2007 près de 700 genomes complètement séquencés, et plus de 1800
projets de séquençage en cours, soit un total dépassant les 2500 espèces3. D’après les
estimations courantes chacun de ces génomes contient de plusieurs centaines à quelques
dizaines de milliers de gènes codant pour des protéines ou des petits ARN.

Disposer d’un génome a essentiellement deux bénéfices. Premièrement on peut y
rechercher des indices sur le fonctionnement de la cellule par recherche directe de la
séquence. On sait par exemple déterminer les protéines codées dans un génome et cer-
taines de leurs variations (épissage alternatif notamment), ou encore – dans une certaine
mesure – détecter les sites dans le génomes où se lient les facteurs de transcription. Le
deuxième bénéfice, bien plus important en pratique, est de faciliter nombre de manipu-
lations expérimentales touchant à la transcription, à commencer par la conception des
sondes pour les mesures d’expression.

Par ailleurs, le génome séquencé correspond bien à un individu particulier dans une
espèce donnée. Pour ne pas biaiser les conclusions d’une étude il est donc important
de connâıtre les variations existant entre les individus d’une même espèces. Le type le
plus simple de variation est la variation ponctuelle d’un nucléotide ou SNP (pour Single
Nucleotide Polymorphism). Il existe également des bases de données de SNP, voir par
exemple [65].

ChIP-chip Cette technique permet de détecter tous les sites de fixation d’un facteur
de transcription donné sur le génome. Le protocole est le suivant : les protéines liées à
l’ADN dans la cellule sont fixées à l’aide d’un produit particulier, puis l’ADN est extrait
et fragmenté en petits brins par ultrasons. Il est le plus souvent possible, quoique

3dont, il faut le préciser, un grand nombre d’êtres unicellulaires

Sur les données 7

très technique, de fabriquer des anticorps qui se lient spécifiquement à une protéine
donnée. Si l’on dispose d’un tel anticorps, on peut l’utiliser pour marquer les complexes
protéine-ADN d’un facteur de transcription particulier, puis les séparer du reste. Le
complexe est ensuite détruit, et on extrait uniquement les courts brins d’ADN. Cette
phase correspond à la partie ((ChIP)) (pour Chromatin Immuno-Precipitation). La
partie ((chip)) est une analyse de l’ensemble des brins d’ADN par puce à ADN classique.
L’ensemble permet donc de détecter toutes les séquences du génome qui sont des sites
de fixation d’un facteur de transcription dans une condition donnée. L’application de
cette technique peut mettre à jour des milliers de sites dans le génome. Néanmoins
elle ne renseigne pas sur l’effet des liaisons découvertes. En particulier, la fixation d’un
facteur de transcription peut fort bien n’avoir aucun effet sur la transcription des gènes.

Double hybride Il s’agit d’une technique permettant de détecter à très grande
échelle les couples de protéines capables de former un complexe. Le principe de la
manipulation est le suivant : supposons que l’on cherche à tester la complexation de
deux protéines A et B ; on construit dans un organisme simple (principalement la le-
vure) un système rapporteur, qui est constitué d’un facteur de transcription d’une part
et d’un gène cible de ce facteur d’autre part. Le gène en question produit une protéine
phosphorescente, dont la présence sera donc détectable facilement. Le facteur de trans-
cription n’est pas produit par l’organisme directement ; à la place on introduit dans le
génome de l’organisme un gène codant pour la protéine A fusionnée à un morceau du
facteur, et un gène B codant pour la protéine B fusionnée à l’autre morceau du facteur.
Si A et B forment une interaction, les 2 parties du facteur de transcription formeront
un complexe actif et on observera une fluorescence. Ce principe peut être automatisé
pour tester plusieurs dizaines de milliers de couples, comme dans [80].

Extraction de la littérature À bien y réfléchir, la source d’information la plus
conséquente se trouve probablement dans les centaines de milliers d’articles publiés
depuis trois ou quatre décennies, dont la plupart est répertoriée (au moins en ce qui
concerne les résumés) dans le serveur Pubmed du NCBI4. L’information y est cependant
((cachée)) dans du texte en langue naturelle, et par conséquent difficilement accessible
à un traitement automatique5. Plusieurs groupes [101, 46, 37, 50, 40] y ont répondu de
manière très pragmatique : puisqu’il est impossible d’extraire automatiquement et de
manière fiable l’information dispersée dans la littérature, il suffit de l’extraire manuelle-
ment, quitte à cibler les problématiques et mettre suffisamment de personnes à la tâche.
Certaines bases de données ainsi développées contiennent jusqu’à quelques dizaines de
milliers d’interactions. La plupart de ces bases (à l’exception notable de Kegg et de
RegulonDB) sont développées par des sociétés privées et ne sont pas dans le domaine
public. Outre l’effort immense qu’une telle entreprise constitue, il faut aussi considérer

4Accessible à l’adresse http://www.ncbi.nlm.nih.gov/sites/entrez
5Nous n’ignorons pas qu’il existe un corpus de recherche très important sur l’extraction d’information

depuis un texte écrit en langue naturelle, et beaucoup d’applications à la biologie. Néanmoins les
résultats obtenus jusqu’à présent ne sont à notre connaissance pas assez fiables pour servir d’entrée à
des trâıtements automatiques à grande échelle.

8 Introduction

les problèmes liés à la formalisation du contenu des publications : quelles informations
extraire ? Comment spécifier le contexte de l’étude ? Même partielles, ces données sont
essentielles du fait de leur grande fiabilité. Notons qu’à ce jour les bases de données
issues de la littérature se limitent aux interactions. Il n’existe à notre connaissance
qu’une base de données portant sur des observations (évolution temporelle, réponse
typique à une perturbation) [37].

1.4 Travaux connexes

1.4.1 Panorama

Grâce aux puces à ADN notamment, il est aujourd’hui relativement simple, quoi-
qu’encore coûteux d’obtenir une image globale de la réponse transcriptionnelle d’une
cellule à une perturbation. En revanche l’exploitation de ces données pose encore
problème : sous sa forme brute, une mesure d’expression est un résultat peu lisible
et très volumineux. Elle peut bien sûr dans un premier temps servir à vérifier ce que
l’on sait déjà. Le problème est nettement plus complexe en revanche, dès que l’on sou-
haite s’appuyer dessus pour inférer des mécanismes ou guider l’expérimentation plus
avant.

L’utilisation la plus simple (et la plus courante) des mesures d’expression à l’échelle
génomique, c’est le criblage de gènes impliqués dans un phénomène biologique donné.
Les transcrits exhibant une forte variation entre les deux conditions (c’est-à-dire supé-
rieure à un certain seuil) sont alors utilisés comme candidats prioritaires pour l’investi-
gation des mécanismes dudit phénomène. Ici, deux difficultés apparaissent en pratique.
La première est liée au choix du seuil au-dessus duquel une variation est jugée signi-
ficative. Il existe une littérature abondante sur le sujet (voir les revues rapides dans
[86, 49]) ; mais comme on peut le constater sur la figure 1.2, le niveau de bruit est
relativement important dans le cas des puces à ADN. Est en général jugée significative
une variation d’un facteur au moins 2 ou 3. Pourtant rien n’exclut a priori qu’une
variation faible – disons trop faible pour sortir significativement du bruit de fond – ait
un rôle important dans un phénomène donné. Il semble donc difficile de sélectionner
une liste de gènes à partir des seules données d’expression. Deuxièmement, l’expérience
montre qu’il y a très souvent plusieurs centaines de gènes dont la variation est signifi-
cative. Une bonne partie d’entre eux sont en général décrits dans la littérature, mais
il ne serait guère raisonnable de se lancer dans une compilation manuelle des données
disponibles sur les gènes identifiés – ne serait-ce qu’à cause du temps nécessaire à sa
constitution, bien supérieur au temps nécessaire à la production des mesures d’expres-
sion. Notons bien que de toute façon, le problème n’aurait été en rien résolu : on aurait
transformé une masse de données numériques en une masse de texte guère plus propice
à l’exploitation.

Ces constats ont amené à un grand nombre de propositions, que nous regroupons en
trois catégories. La première [72] consiste à annoter chaque gène avec des informations
diverses issues de bases de données publiques (dont, typiquement plusieurs mesures
d’expression), puis à utiliser des instruments d’analyse statistique pour structurer l’en-

Travaux connexes 9

semble des candidats, par des méthodes de clustering. L’intérêt est qu’on diminue ainsi
le nombre d’entités à considérer, et que l’on fait apparâıtre des groupes pouvant –
dans le meilleur des cas – avoir une pertinence biologique. C’est une approche à double
tranchant : d’un côté elle est intéressante parce qu’elle permet d’intégrer (au travers
de la distance utilisée lors du clustering) des informations très diverses sur les gènes
candidats (cocitations dans les articles, interactions connues, description ontologique
[20], coexpressions dans d’autres conditions) ; de l’autre il devient difficile d’expliquer
le regroupement de deux gènes, à mesure qu’on ajoute des informations. Il apparâıt en
pratique que ces approches de type data mining sont un bon moyen de faire ressortir
des candidats, ou de suggérer des liens fonctionnels entre plusieurs gènes. Leur limite
est qu’elles calculent un résultat qui n’est pas réfutable par l’expérience. Il n’est donc
pas facile d’évaluer objectivement la qualité du résultat. De plus elles ne fournissent
pas d’explication physique des liens trouvés : une fois quelques candidats mis en avant,
le travail d’élucidation des mécanismes reste entier.

Une deuxième approche consiste à utiliser les données d’expression comme entrée
dans des problèmes d’apprentissage (classification ou régression). Autrement dit, il
s’agit de proposer des modèles statistiques liant les données d’expression (et éventuel-
lement d’autres sources d’information) à des propriétés vérifiables. Donnons quelques
exemples. Les travaux décrits dans [9, 99] sont des tentatives de classification des tu-
meurs dans différents cancers à partir de profils d’expression. Ces classifications cor-
respondent à des stades ou des conditions cliniques et peuvent être utiles au choix
d’un traitement approprié. Les données d’expression ont été également utilisées pour
la prédiction d’interactions protéine-protéine [102], de réseaux génétiques [64]. Comme
dans les approches de data-mining, il existe des outils puissants pour combiner d’autres
types de données aux mesures d’expression. Citons notamment les développements
produits autour des fonctions noyaux revus dans [99]. Les prédictions obtenues sur la
structure du système peuvent ensuite être testées expérimentalement.

En classification ou en régression, l’objectif est donc d’estimer une grandeur par-
ticulière à partir d’observations et de connaissances sur le système. La troisième et
dernière approche que nous souhaitons mentionner est l’utilisation des données d’ex-
pression dans un modèle physique des réseaux de réactions. Dans ce cadre, on définit
explicitement les états du système et son évolution dans le temps ou sous l’action d’une
perturbation. La modélisation des cinétiques chimiques par des équations différentielles
ou des processus stochastiques en sont des exemples. Le principal avantage de ce type
d’approche est de permettre l’intégration de données diverses dans un langage plus
lisible que les mesures de similarité utilisées en apprentissage. On évite ainsi le côté
((bôıte noire)) des prédictions réalisées en classification notamment. Le travail rap-
porté dans le présent mémoire appartient à cette catégorie. Notons néanmoins qu’il
n’y a pas de frontière nette entre modèles physiques d’une part, et modèles statis-
tiques d’autre part. C’est particulièrement clair dans [56], où Kundaje et al montrent
que découvrir la fonction de régulation d’un gène à partir de sa séquence promotrice
peut se ramener à un problème de classification supervisée. Les propositions à base de
réseaux bayésiens (voir [68] pour une introduction) en sont un autre exemple.

10 Introduction

1.4.2 Modèles physiques de réseaux biologiques

L’énumération faite au paragraphe 1.3 montre que les données haut-débit peuvent
généralement être distinguées en deux catégories, selon qu’elles portent sur la structure
et les mécanismes élémentaires du système étudié (réactions biochimiques) ou sur son
état (variation en concentration par exemple). Ces deux types d’information ont en
commun – encore que pour des raisons différentes – d’être de nature qualitative. Dans
le premier cas, la raison en est que s’il est techniquement possible de détecter l’exis-
tence de réactions à grande échelle, il est toujours délicat d’en connâıtre les constantes
cinétiques ; dans le second cas, les mesures apparaissent comme une grandeur physique
quantitative (ratio d’expression, de quantités mesurées), mais elles sont le plus souvent
fort bruitées. Cette variabilité correspond majoritairement à une variabilité biologique
des échantillons, mais également aux limites des instruments de mesures, comme nous
le voyons sur la figure 1.2.

Pour concevoir un modèle physique d’un système en présence de données bruitées
et incomplètes, les modèles probabilistes sont une option attractive : les informa-
tions sur la structure sont codées par des variables aléatoires discrètes représentant
généralement un graphe, et les mesures quantitatives sont supposées suivre une distri-
bution paramétrique. Ses paramètres – notamment les caractéristiques du bruit, et les
constantes cinétiques – sont estimés à partir des données selon un critère d’optimisa-
tion, de type maximum de vraisemblance. La piste la plus étudiée repose sur l’emploi de
réseaux bayésiens [82, 83, 29, 15, 67]. Ces approches ont principalement deux faiblesses :
premièrement, elles reposent sur des problèmes d’optimisation non convexes, c’est-à-
dire pouvant comporter des optima locaux ; dès que les modèles comportent quelques
dizaines de variables, il devient particulièrement difficile de trouver un optimum glo-
bal. Deuxièmement, même en supposant un modèle optimal trouvé, celui-ci peut être
très différent des modèles quasi-optimaux. Autrement dit, l’inférence par maximisation
d’un score est potentiellement peu robuste. Ce problème a une solution6 élégante – mais
coûteuse d’un point de vue calculatoire – consistant à étudier la distribution postérieure,
comme cela est fait dans les approches bayésiennes pour la phylogénie [44]. Enfin, l’uti-
lisation de méthodes probabilistes nécessite des échantillons suffisamment importants
pour estimer les paramètres du modèle. On peut penser d’après la littérature [5] que
la limite basse d’applicabilité des méthodes probabilistes se situe autour de 100 à 300
mesures indépendantes. Or il est bien rare en pratique de disposer d’autant de données
pour un seul système.

Une réponse partielle à ces problèmes peut être trouvée dans les approches décrites
dans [11, 6, 97], où les modèles probabilistes sont remplacés par des équations différen-
tielles ordinaires, le plus souvent linéaires. Les techniques d’estimation sous-jacentes
sont plus abordables sur le plan complexité (résolution de systèmes linéaires, optimi-
sation convexe) et le traitement du bruit requiert moins de paramètres (interpolation,
estimation au sens des moindres carrés). L’étude réalisée dans [5] confirme l’intuition :
ces méthodes se comportent mieux que les méthodes probabilistes dans le cas où peu de
données sont disponibles ; et les différences s’atténuent avec l’augmentation du nombre

6Solution qui, à notre connaissance, n’est pas souvent mise en œuvre

Nos contributions 11

d’expériences. Néanmoins dans les deux approches, il faut pouvoir fournir un nombre
suffisant d’expériences indépendantes.

Le raisonnement qualitatif est une alternative pour traiter des problèmes où les
données sont imprécises et/ou incomplètes [55, 94, 41]. L’approche en raisonnement
qualitatif consiste à sur-approximer l’ensemble des comportements observables, en abs-
trayant des propriétés plus robustes des mesures, comme leur signe, ou leur ordre de
grandeur. Les relations quantitatives sont à leur tour abstraites en contraintes qualita-
tives, qui constituent des conditions nécessaires (mais pas suffisantes) à vérifier. Cette
démarche a déjà été appliquée en biologie systémique pour modéliser la dynamique
des réseaux génétiques [79, 22, 10], ou des réseaux de signalisation [16, 38]. Dans tous
ces travaux, le processus d’abstraction qualitative permet de dériver une notion de
cohérence entre un modèle et des mesures expérimentales adaptée à la qualité et la
précision des données disponibles. Le travail présenté dans cette thèse procède de la
même démarche, appliquée à l’étude des données haut-débit.

1.5 Nos contributions

Nous présentons maintenant les différentes contributions de ce travail de thèse.

Critère de consistance et contraintes qualitatives Nous introduisons un critère
de consistance entre un modèle simple des interactions cellulaires et des mesures expéri-
mentales. Ce critère stipule essentiellement que la variation d’une espèce entre deux
états d’un système donné doit toujours pouvoir être expliquée par la variation d’une
espèce qui la régule. Nous exprimons cette règle intuitive comme une contrainte sur
variables à domaines finis, dont la résolution est montrée NP-complète.

Par ailleurs, nous démontrons la validité de notre critère de consistance dans un
cadre différentiel. Cette étude précise les limites d’applicabilité de notre formalisme, et
fournit des guides précieux pour l’interprétation des données.

Algorithmes pour l’étude des contraintes qualitatives La deuxième contribu-
tion de ce travail porte sur la résolution et l’étude des contraintes qualitatives. Nous
proposons deux approches offrant des possibilités complémentaires. La première utilise
les diagrammes de décision pour représenter explicitement mais de manière compacte
l’ensemble des solutions de la contrainte. Cette approche est associée à des techniques
de décomposition et de réduction que nous décrivons, afin d’accrôıtre significative-
ment la taille des contraintes pouvant être traitées. La deuxième approche fait appel à
des techniques récentes de programmation logique : nous montrons comment coder la
résolution des contraintes qualitatives par des programmes logiques, et nous utilisons
des solveurs dédiés pour rechercher efficacement une solution à une contrainte qualita-
tive. Nous verrons que cette méthode permet de vérifier certaines propriétés de manière
beaucoup plus efficace que la précédente.

12 Introduction

Validation à grande échelle de l’approche Nous décrivons enfin deux applica-
tions de nos développements sur données réelles. La première consiste à prédire la
réponse transcriptionnelle globale de la bactérie E. coli à partir de données bibliogra-
phiques ; la deuxième aborde un cas particulier de reconstruction de réseau génétique,
où l’on cherche à inférer l’effet des facteurs de transcription (activation ou inhibition)
sur leurs gènes cibles. Ces deux applications démontrent d’une part la capacité de nos
algorithmes à traiter un volume d’information réaliste : les réseaux considérés com-
portent plusieurs milliers de gènes et de régulations et sont confronté à plusieurs di-
zaines de mesures d’expression. D’autre part, nous montrons par ces expériences que
notre critère de consistance est un guide fiable et informatif pour l’analyse de données.
Les prédictions obtenues par notre approche ont pu être validées de manière significa-
tive, et les désaccords importants nous ont permis dans plusieurs cas de corriger nos
modèles.

La suite de ce document est structurée comme suit : nous commençons par donner
une présentation générale et intuitive de notre approche au chapitre 2 ; nous introdui-
sons ensuite formellement notre notion de consistance et la modélisation associée au
chapitre 3. Les deux chapitres suivants détaillent les méthodes algorithmiques utilisées
pour la résolution et l’étude des contraintes qualitatives. Suivent enfin les applications
sur données réelles au chapitre 6.

Chapitre 2

Présentation générale de
l’approche : modélisation de
l’opéron lactose

Dans ce chapitre, nous illustrons sur un exemple simple la démarche détaillée dans
cette thèse. Il s’agit moins ici d’en faire un exposé formel que de la présenter de manière
pragmatique et – nous l’espérons – intuitive.

Les données d’expression Nous avons vu en introduction que les données d’ex-
pression fournies par les puces à ADN sont caractérisées par un bruit très important
relativement au nombre de variables observées et au nombre de réplicats effectués. Pour
s’en apercevoir, on peut par exemple examiner les données produites dans les travaux de
Maurer et al [66], qui portent sur la réponse génétique de la bactérie E. coli à différents
pH dans le milieu de culture. Les bactéries ont été exposée à trois pH distincts, et pour
chaque pH, cinq réplicats ont été produits. Pour chaque pH et chaque réplicat, une
puce à ADN a été utilisée pour mesurer le niveau d’expression d’environ 3800 gènes.
Un extrait des résultats est donné en table 2.1.

Les mesures qui y sont présentées correspondent au niveau d’expression des gènes
(à l’état stable) quand les bactéries ont été cultivées sur un milieu à pH de 5 ou pH
de 7. Le traitement statistique effectué sur les mesures brutes assure que ces données
sont normalisées, c’est-à-dire qu’elles sont comparables d’un gène à l’autre. La première
observation est que selon le gène il peut y avoir un écart relatif à la moyenne dépassant
les 25% (voir table 2.2). Le bruit observé est dû d’une part à l’instrument de mesure
(comme illustré à la figure 1.2), et d’autre part à la variabilité des échantillons biolo-
giques. Il est clair qu’un échantillon de 5 mesures est insuffisant pour estimer une valeur
moyenne, et ce d’autant plus que la loi du bruit n’est pas connue, et a priori difficile à
modéliser. Il ne s’agit pas ici d’un cas au pire : la plupart des données disponibles sont
moins, voire pas du tout répliquées.

13

14 Présentation générale de l’approche : modélisation de l’opéron lactose

Gène
Expression sous pH 5 Expression sous pH 7

1 2 3 4 5 1 2 3 4 5
agaA 128.7 347.1 344.1 346.6 381.4 620.5 558.5 420.0 393.7 419.2
agaB 12.7 18.8 14.5 35.6 16.3 6.5 17.6 4.6 12.6 16.0
agaC 23.5 66.5 78.1 70.8 71.3 85.6 78.4 53.9 63.5 53.5
agaI 51.7 65.1 125.3 116.4 104.0 248.4 104.9 167.7 198.2 175.4
agp 657.3 1019.4 1142.2 1254.3 1060.8 1711.4 1048.8 1551.6 1040.5 1289.6
alaX 6481.9 8344.6 8435.7 7064.6 4838.6 51.9 5855.5 5646.2 6318.4 6245.0
aldA 1588.1 1689.7 1489.3 1494.4 1227.9 1126.5 631.1 553.6 526.6 918.1

Tab. 2.1 – Extrait des résultats obtenus dans [66]. Chaque ligne correspond à un gène de
E. coli, chaque colonne correspond à un couple (condition,réplicat). Le tableau donne
les mesures du niveau d’expression des gènes pour cinq réplicats et deux conditions
(pH=5 et pH=7).

Gène
pH = 5 pH = 7

µ σ µ σ

agaA 309.58 91.48 482.38 90.13
agaB 19.58 8.26 11.46 5.12
agaC 62.04 19.62 66.98 12.98
agaI 92.50 28.96 178.92 46.51
agp 1026.80 201.40 1328.38 267.98
alaX 7033.08 1327.25 4823.40 2398.56
aldA 1497.88 153.56 751.18 233.50

Tab. 2.2 – Statistiques élémentaires sur les données d’expression de la table 2.1. Les
colonnes d’indice µ correspondent à l’expression moyenne dans chaque condition ; les
colonnes σ à l’écart-type.

15

Gene agaA agaB agaC agaI agp alaX aldA
Variation pH 5 → 7 + 0/? 0/? + + – –

Tab. 2.3 – Interprétation des données présentées dans le tableau 2.1. Les données
quantitatives sont remplacées par le signe de variation en expression entre les deux
conditions

Interprétation qualitative Quelle information peut-on tirer de ces données d’ex-
pression pour caractériser le passage d’un pH faible à un pH neutre ? La dispersion
observée rapportée à la taille de l’échantillon rend une interprétation numérique (sous
la forme d’une moyenne, ou d’un intervalle de confiance) un peu hasardeuse. Nous
proposons dans ce travail de ne considérer que le signe de la variation entre les deux
conditions. C’est-à-dire qu’il nous faut décider, à partir de ces données si l’expression de
chaque gène a augmenté ou diminué de manière significative. Au moins intuitivement, il
semble que cette interprétation soit moins problématique : dans la table 2.1, il est à peu
près clair que les gènes agaA, agaI, agp, alaX et aldA ont une variation significative,
respectivement positive, positive, positive, négative, négative. L’algorithme – trop näıf
– derrière cette interprétation consiste à calculer la soustraction des moyennes pour
chaque condition, et rendre son signe. Dans le cas où l’écart relatif des moyennes est
trop faible, on peut au choix, assigner une variation nulle (négligeable), soit déclarer
la variation inconnue. Ces deux alternatives ne sont bien sûr pas équivalentes : il faut
choisir entre exploiter toute l’information disponible ou se préserver des erreurs d’in-
terprétation. Nous verrons plus loin une façon de trancher.

La démarche que nous suivons consiste donc à abstraire des données quantitatives
bruitées en attributs moins précis mais plus robustes, en l’occurrence le signe des gran-
deurs. Sur notre exemple, on obtient ainsi la mesure donnée en table 2.3.

Un modèle des interactions cellulaires Pour exploiter ces données, nous pro-
posons de les comparer à d’autres informations disponibles sur le système étudié, à
commencer par les régulations génétiques décrites dans la littérature. Classiquement,
ces régulations sont représentées sous la forme d’un graphe, où chaque sommet corres-
pond à un gène, et chaque arc représente une régulation. Les arcs sont de deux types,
selon que la régulation est une activation ou une inhibition. Ces graphes – souvent
appelés graphes d’interaction – sont généralement construits par une fouille ciblée des
publications disponibles sur un sujet donné, ce qui peut demander un effort conséquent.
On trouve par exemple des graphes sur les gènes contrôlant la segmentation chez la dro-
sophile [17], sur le cycle cellulaire des mammifères [54] ou même un graphe synthétisant
l’ensemble des régulations transcriptionnelles connues chez la bactérie E. coli [37]. Nous
en donnons quelques exemples à la figure 2.1.

D’un point de vue expérimental, il est relativement simple1 de tester l’existence
d’une régulation génétique, voire d’en connâıtre l’effet (activation ou inhibition) ; ce
type d’information peut facilement être trouvé dans la littérature. En revanche, il est

1Cela nécessite néanmoins un travail important

16 Présentation générale de l’approche : modélisation de l’opéron lactose

A B C

(a)

D

E

F

(b)

Fig. 2.1 – Exemples de graphe d’interaction. Les flèches d’extrémité triangulaire (en
vert) représentent des activations, les flèches d’extrémité en T (en rouge) représentent
des inhibitions.

beaucoup plus difficile d’obtenir des renseignements quantitatifs sur la régulation. Les
graphes d’interaction sont donc adaptés à la précision des données disponibles, même
si comme nous le verrons, ils ne sont pas une description univoque d’un système donné.

Critère de consistance Il nous faut maintenant donner une relation entre un graphe
d’interaction et les mesures d’expression. Commençons par un cas simple, en examinant
le graphe donné en figure 2.1(a). Il semble assez clair que si l’on fait augmenter A, qui
est un activateur de B, alors B doit également augmenter. Le gène B inhibant C, on
s’attend à ce que C diminue. De manière analogue, si on fait diminuer A, B et C doivent
respectivement diminuer et augmenter. Que se passe-t-il lorsqu’un gène est régulé par
plusieurs autres gènes, comme dans le graphe présenté en figure 2.1(b) ? Supposons
que D et E augmentent tous les deux, ceux-ci ayant des effets contraires sur F , il est
impossible de conclure sur sa variation. Il faudrait pour cela disposer d’informations
plus précises. Dans ce cas, on admettra n’importe quelle variation pour F . En revanche
si D diminue et E augmente, les deux régulateurs tendent à faire diminuer la quantité
de F et seule une variation négative peut être admise.

Les raisonnements que nous venons d’effectuer peuvent être synthétisés en une for-
mule simple : toute variation en expression d’un gène doit pouvoir être expliquée par
la variation d’au moins un de ses régulateurs. Nous appellerons une règle de ce genre
un critère de consistance entre le modèle des régulations (le graphe d’interaction) et
les données d’expression. Nous allons maintenant voir plus en détail comment utiliser
ce critère pour étudier un système. Nous illustrerons notre démarche sur l’exemple de
l’opéron lactose, dont le graphe d’interaction est donné en figure 2.2.

L’opéron lactose Sans trop entrer dans les détails, donnons quelques indications
sur le fonctionnement de ce système. Le glucose et le lactose sont des sucres, mais seul
le glucose est suffisamment ((simple)) pour être utilisé directement par la bactérie E.
coli. Si le milieu de culture contient du lactose, mais pas de glucose, la bactérie utilise
un mécanisme lui permettant de réaliser la conversion. Le symbole Le représente le
lactose présent dans le milieu de culture, Li le lactose présent dans la bactérie, G le
glucose. La transformation comporte deux étapes : d’abord l’entrée du lactose dans la
cellule via l’action de la perméase LacY, puis transformation en glucose par l’enzyme

Vérification 17

Le

Li

G

LacY

LacZ

LacI

A

cAMP-CRP

Fig. 2.2 – Graphe d’interaction pour l’opéron lactose chez E. coli.

LacZ avec production d’allolactose A. Cette châıne de production est habituellement
inhibée par le facteur LacI, mais elle peut être activée par le complexe cAMP-CRP si
le niveau de glucose dans la cellule est suffisamment bas. Dans ce système, Le et G
doivent être considérés comme des entrées, c’est-à-dire des espèces dont la variation
n’est pas expliquée dans le modèle, mais dépend également de facteurs extérieurs. Le
lactose dans le milieu extérieur est bien entendu contrôlé par l’expérimentateur ; quant
au glucose, son niveau dépend d’autres mécanismes qui ne sont pas représentés dans le
graphe d’interaction.

2.1 Vérification

La première utilisation du critère de consistance consiste, comme nous l’avons déjà
esquissé, à vérifier la compatibilité de données d’expression avec les régulations connues
du système étudié. Soit par exemple les mesures données au tableau 2.4. La mesure µ1

est compatible avec le graphe de l’opéron lactose. En effet on peut vérifier que pour
chaque sommet (hormis Le et G qui sont des entrées) toutes les variations peuvent être
expliquées. Plus précisément elles respectent bien notre critère de consistance parce que
pour tout sommet, on peut trouver un prédécesseur avec une influence du signe porté
par le sommet. Ainsi la diminution de Li s’explique par la diminution de LacY, qui
s’explique par l’augmentation de LacI etc . . .

En revanche la mesure µ2 n’est pas compatible avec le graphe d’interaction : les
variations de LacY, A et cAMP-CRP ne sont pas explicables par la variation de leurs
régulateurs. Par exemple LacY augmente selon µ2, mais LacI ne varie pas (donc ne peut
expliquer aucune variation) et cAMP-CRP – un activateur de LacY – diminue ; il ne

18 Présentation générale de l’approche : modélisation de l’opéron lactose

Produit Le Li G LacY LacZ LacI A cAMP-CRP
µ1 – – 0 – – + – 0
µ2 + + 0 + – 0 0 –
µ3 + ? – ? ? + ? ?
µ4 ? ? ? – + ? ? 0

Tab. 2.4 – Exemples de mesures pour l’opéron lactose décrit en figure 2.2.

peut donc pas expliquer l’augmentation de LacY. Plus globalement, on peut dénombrer
77 mesures compatibles avec le graphe d’interaction, sur un total de 38 = 6561 possi-
bilités2, soit un ratio d’environ 1.2%.

On voit ici qu’il est relativement simple de vérifier le critère de consistance, lorsque
tous les sommets du graphe sont observés. Que se passe-t-il lorsque les mesures sont
partielles ? On dira qu’une mesure partielle satisfait au critère de consistance si l’on
peut trouver des valeurs pour les sommets non observés, telles que l’ensemble vérifie le
critère de consistance. Sous cette définition, la mesure µ3 est compatible avec le graphe
d’interaction, parce que la mesure :

Produit Le Li G LacY LacZ LacI A cAMP-CRP
µ′3 + 0 – – – + – +

étend µ3 et respecte le critère de consistance. En revanche, la mesure µ4 n’est pas com-
patible avec le graphe d’interaction parce que toute extension contredit le critère de
consistance. La vérification est plus difficile dans le cas de données manquantes, puis-
qu’elle se ramène à une résolution (trouver une valeur pour les inconnues qui respecte
une contrainte donnée). Dans cet exemple, les données manquantes correspondent à des
mesures incomplètes ; plus généralement, les inconnues peuvent porter sur l’effet d’une
régulation (activation ou inhibition), ou même sur son existence.

2.2 Prédiction

Lorsque l’on dispose de mesures compatibles avec un graphe d’interaction, on peut
les utiliser pour prédire la valeur des variables non observées (variation d’un gène dans
une condition donnée, effet ou existence d’une régulation). Par prédire, on signifie dans
ce travail ((déduire par l’intermédiaire du critère de consistance)) 3. Par exemple, dans
le cas du graphe décrit en fig. 2.1(a), nous avons vu que si l’on connâıt la variation de A,
alors on connâıt également la variation de B et C. Les choses se compliquent pour des
systèmes plus étendus : revenons à l’opéron lactose, et supposons que l’on ne dispose
que de la mesure µ3. Celle-ci est consistante avec le graphe, et admet 5 extensions,

2Si, pour une question d’interprétation des données que l’on verra plus loin, on décide d’exclure la
variation nulle, alors il y a 18 mesures compatibles avec le graphe d’interaction, sur un total de 28 = 256
possibilités.

3Il existe d’autres modes de prédiction, notamment la prédiction par modèle optimal : soit un
ensemble de modèle, on associe à chacun un score ou une probabilité en fonction de son adéquation
avec les données. Les prédictions correspondent au modèle le plus vraisemblable/probable.

Prédiction 19

Produit Le Li G LacY LacZ LacI A cAMP-CRP
µ1

3 + 0 – – – + – +
µ2

3 + – – – – + – +
µ3

3 + + – – – + – +
µ4

3 + + – 0 – + – +
µ5

3 + + – + – + – +

Tab. 2.5 – Extensions de la mesure µ3 qui sont consistantes avec le graphe d’interaction
de l’opéron lactose.

Produit Le Li G LacY LacZ LacI A cAMP-CRP
+ 1 1

3 0.6 0.6 1 0 1 0.2
0 0 1

3 0.2 0.2 0 0 0 0.2
– 0 1

3 0.2 0.2 0 1 0 0.6

Tab. 2.6 – Loi de probabilité des variations pour chaque espèce, en supposant une
augmentation de Le et une diminution de LacI. Les différentes possibilités d’extension
sont considérées comme équiprobables.

données dans le tableau 2.5. Un examen de ces solutions au problème de vérification
montre qu’outre Le, G et LacI qui sont fixées par la mesure, LacZ, cAMP-CRP et A
n’admettent qu’une seule variation ; on en déduit que si Le et LacI augmentent, et G
diminue alors nécessairement LacZ et A diminuent pendant que cAMP-CRP augmente.
Récapitulons : on dispose de données incomplètes sur un système et ses réponses à des
perturbations. Le critère de consistance décrit l’ensemble des valeurs admissibles pour
les données manquantes. Enfin on appelle prédictions les invariants de cet ensemble.

On peut également s’intéresser à une notion de prédiction moins forte : d’après le
tableau 2.5, LacY n’est pas invariant, mais prend dans 3 possibilités d’extension sur 5 la
valeur –. En considérant les différentes possibilités comme équiprobables, on peut ainsi
établir une loi de probabilité discrète sur les valeurs que peut prendre chaque variable
non observée. Un exemple est donné au tableau 2.6, dans le cas où l’on observe une
augmentation de Le et une diminution de LacI.

Bilan

Nous avons décrit de manière informelle les premiers pas d’une analyse de données
telle que proposée dans ce travail. Nous avons en particulier insisté sur la phase d’in-
terprétation des données brutes, leur confrontation avec un modèle graphique des
régulations du système (étape de vérification), et la recherche de prédictions sur les
variables non observées. Dans le reste de ce travail, nous formalisons cette démarche,
et nous montrons comment réaliser efficacement les déductions sur le modèle et les
données. Le prochain chapitre précise notamment la relation entre signe des régulations
et signe des variations et en propose plusieurs justifications.

20 Présentation générale de l’approche : modélisation de l’opéron lactose

Chapitre 3

Équations qualitatives pour la
consistance des données

Le problème posé dans cette thèse concerne le traitement de données haut-débit en
biologie moléculaire. Nous l’avons vu, il s’agit de réussir à intégrer des informations de
nature et d’origine hétérogènes, pour poser quatre types de questions :

– définir et tester la consistance entre ces données,
– prédire les variables non observées dans le cas où les données sont consistantes,
– aider au diagnostic en cas de non consistance, et aider à l’amendement de ces

informations
– aider à la conception d’expériences pertinentes.
Nous abordons dans ce chapitre la question de la représentation et de l’intégration

des informations disponibles. En introduction, nous avons distingué les sources d’infor-
mation selon qu’elles concernent la structure, ou l’état du système étudié. La modélisation
que nous proposons ici reprend cette dichotomie, en ce qu’elle comporte essentiellement
deux types d’objets : des graphes pour représenter la structure, et des étiquetages de
ce graphe pour représenter l’état. Le troisième et dernier ingrédient est une contrainte
que ces objets doivent vérifier pour être déclarés consistants.

Nous commençons par présenter sans justification la modélisation étudiée dans cette
thèse. Cette formulation servira de référence pour le reste du document. Nous évaluons
ensuite la pertinence de notre formalisation en démontrant sa validité dans un cadre
différentiel, puis booléen. L’intérêt de ces connexions sera de nous guider dans l’uti-
lisation pratique de notre formalisme, par exemple pour l’interprétation des données
quantitatives ou de réseaux de réactions complexes.

3.1 Formalisation

3.1.1 Le graphe d’interaction et ses étiquetages

Représentation du système Les systèmes que nous cherchons à représenter sont
des réseaux de réactions biochimiques, ce qui inclut les réseaux génétiques et les réseaux

21

22 Équations qualitatives pour la consistance des données

A

B

C

D

E

(a)

A

B

C

D

E

(b)

Fig. 3.1 – (a) Un exemple de graphe d’interaction. Les sommets sont des espèces
chimiques, les flèches représentent des régulations entre espèces. Les flèches vertes
(extrémités triangulaires) indiquent des activations, les flèches rouges (extrémités en
T) des inhibitions, les flèches noires (extrémité en cercle) des régulations dont l’effet
n’est pas connu. (b) Le même graphe d’interaction, où l’on a figuré une mesure (par-
tielle) des sommets. La couleur verte d’un sommet indique un accroissement du niveau
de l’espèce entre deux conditions expérimentales, la couleur rouge une diminution, la
couleur grise l’absence de variation. L’absence de coloration signifie que le sommet n’a
pas été mesuré

métaboliques. Nous représenterons de tels systèmes par un graphe orienté, appelé graphe
d’interaction, dont les sommets sont les espèces chimiques présentes dans le système. Il
peut typiquement s’agir de gènes (ou plus précisément, de leur transcrit), de protéines
ou de métabolites. Les arcs de ce graphe représentent les régulations existant entre les
différents espèces. Une flèche entre un produit A et un produit B signifie que A régule
B. On parle d’activation (resp. d’inhibition) quand la présence de A tend à augmenter
(resp. diminuer) le niveau de B. Pour représenter cette information, les arcs d’un graphe
d’interaction sont étiquetés par des signes {+,0,–, ?} selon que la régulation a un effet
activateur, nul, inhibiteur ou indéterminé respectivement. L’ensemble S = {+,0,–, ?}
est appelé algèbre des signes et nous l’aborderons plus en détail plus loin. Dans la
suite on appellera graphe d’interaction un triplet G = (V,E, ρ) où V est l’ensemble des
espèces chimiques du système, E ⊂ V × V est l’ensemble des régulations, et ρ : E → S
est un étiquetage partiel des régulations par des signes. La figure 3.1(a) montre un
exemple de graphe d’interaction.

Mesures expérimentales Comme nous l’avons évoqué au chapitre précédent, les
données disponibles en biologie moléculaire sont le plus souvent de nature comparative :
on ne mesure pas une grandeur, mais sa variation entre deux états d’un système, ou

Formalisation 23

deux conditions expérimentales. Le résultat est en général donné sous forme d’un ratio,
dans des assertions du type ((une dose d de X provoque une diminution de Y d’un
ratio r)). Selon la technique expérimentale utilisée, ledit ratio est plus ou moins fiable ;
il n’est d’ailleurs que très rarement donné avec une précision plus grande que l’unité.
Nous proposons dans ce travail de ne conserver que le signe de la variation. À savoir,
pour une expérience donnée, où l’on a comparé deux conditions expérimentales, nous
appellerons mesure une application généralement partielle µ : V → S \ {?}. Cette
mesure ne rapporte que les signes définis, c’est-à-dire connus avec certitude. Le domaine
(ensemble de départ) d’une mesure correspond donc à l’ensemble des sommets mesurés.
La figure 3.1(b) montre la représentation graphique que nous utiliserons par la suite
pour les mesures.

3.1.2 Algèbre des signes

Jusqu’ici nous avons proposé de représenter les informations disponibles sur un
réseau de réactions par un graphe dont les sommets et les arcs sont étiquetés par des
signes. Pour pouvoir expliciter la relation existant entre ces différents étiquetages, il
nous faut préciser cette notion de signe.

Définition et propriétés L’algèbre des signes est une abstraction de l’ensemble des
réels, qui permet de raisonner sur le signe d’expressions arithmétiques. On peut la
définir comme l’ensemble suivant de parties de R :

S P(R)
0 → {0}
+ → R∗

+

– → R∗
−

? → R

On note sgn : R → S l’application qui associe son signe à un réel. Par extension,
sgn associe à un ensemble de réels le plus petit signe (au sens de l’inclusion) conte-
nant cet ensemble. Pour toute opération ⊗ sur les réels on peut définir une opération
correspondante ⊗ dans l’algèbre des signes, en posant :

s ⊗ t = sgn({x⊗ y | x ∈ s, y ∈ t})

Nous utiliserons en particulier les opérations + et × que nous noterons plutôt + et ×.
Voici, pour l’exemple, leur table :

+ – 0 + ?
– – – ? ?
0 – 0 + ?
+ ? + + ?
? ? ? ? ?

× – 0 + ?
– + 0 – ?
0 0 0 0 0
+ – 0 + ?
? ? 0 ? ?

Remarquons que ? est absorbant pour + et 0 pour ×. Il reste enfin à ajouter l’abs-
traction de l’égalité, à savoir la compatibilité des signes, notée ≈, et définie par s ≈ t

24 Équations qualitatives pour la consistance des données

si et seulement si s ∩ t 6= ∅. Cela signifie que deux expressions sont déclarées de signe
compatible quand il est possible qu’elles soient de même signe. Cela donne la relation
suivante :

≈ – 0 + ?
– T F F T

0 F T F T

+ F F T T

? T T T T

dont il faut se méfier, parce qu’elle est bien réflexive et symétrique, mais pas tran-
sitive. Par exemple, + ≈ ? et ? ≈ – mais + 6≈ –. La fonction sgn vérifie par ailleurs la
relation suivante :

∀x, y, z ∈ R xy = z ⇒ sgn(x) sgn(y) = sgn(z)⇒ sgn(x) sgn(y) ≈ sgn(z)

ainsi que :
∀x, y, z ∈ R x+ y = z ⇒ sgn(x) + sgn(y) ≈ sgn(z)

Contraintes dans l’algèbre des signes Dans la suite, nous allons étudier des
contraintes qualitatives, que nous définissons comme un mot du langage suivant :

c ::=
∧

i∈I ci

| ∃v c | ∀v c
| p ≈ p

p ::= p× p | p + p | − p
| v
| + | 0 | – | ?

(3.1)

en prenant le symbole c comme axiome et où les symboles non terminaux c, p et
v représentent une contrainte, un polynôme et une variable respectivement. Ce que
nous appelons système qualitatif est donc un terme construit par induction, pouvant
comporter des variables. On aura recours à la notation C[σ] pour désigner l’effet d’une
substitution σ dans un terme, c’est-à-dire le remplacement de chaque variable libre v
de C dans le domaine de σ par σ(v).

La sémantique associée à ces termes est un peu particulière : on définit une solution
d’une contrainte qualitative comme une valuation de toutes les variables libres de cette
contrainte à valeurs dans {+,0,–} qui satisfait cette contrainte. La valeur ? est exclue
dans les solutions d’une contrainte, parce qu’elle n’apporte aucune information. Si une
variable peut prendre plusieurs valeurs pour lesquelles la contrainte est toujours vérifiée,
alors la contrainte admet plusieurs solutions, une pour chaque alternative. Mais chaque
solution est représentée sous la forme la plus précise possible, c’est-à-dire sans utiliser
le signe ?.

Nous allons à présent formuler la consistance entre un graphe d’interaction et un
ensemble de mesures comme une contrainte qualitative.

Formalisation 25

.

.

Fig. 3.2 – Résumé des cas où une variation d’une espèce est effectivement expliquée
par la variation des espèces qui la régulent. Première ligne : le sommet cible admet une
variation, on doit donc parmi les prédécesseurs pouvoir trouver une influence de même
signe. Deuxième ligne : si la variation du sommet est nulle, alors soit on peut trouver
deux contributions de signe opposé, soit tous les régulateurs ont une variation nulle

3.1.3 Contrainte de consistance

La notion de consistance que nous étudions dans ce travail exprime simplement
que toute variation observée doit avoir une cause. Plus précisément, toute variation
d’une espèce doit pouvoir être expliquée par la variation de l’un de ses régulateurs. Par
exemple si A augmente entre deux conditions expérimentales, on doit pouvoir trou-
ver une influence positive, par exemple l’action d’un activateur B de A qui augmente
également. Les différents cas possibles sont résumés dans la figure 3.2.

Plus formellement, soit G = (V,E, ρ) un graphe d’interaction et {µ1, . . . , µm} un en-
semble de mesures sur G. Pour chaque sommet i ∈ V , et chaque mesure k ∈ {1, . . . ,m},
on introduit la variable qualitative Xik. Cette variable représente le signe de variation
de l’espèce chimique i lors de l’expérience correspondant à la mesure k. On confondra
la mesure µk avec la substitution σ définie pour tout i ∈ dom(µk) par σ(Xik) = µk(i).
Pour chaque arc j → i de G, on introduit la variable Sji, qui représente le signe de la
régulation entre j et i. De même on confondra l’étiquetage du graphe d’interaction ρ
avec la substitution σ définie pour tout (j, i) ∈ dom(ρ) par σ(Sji) = ρ(j, i). On appelle
contrainte de consistance au sommet i pour la mesure k, la contrainte

Cik =

Xik ≈
∑

j∈pred(i)

SjiXjk

 [ρ, µk] (3.2)

Nous dirons qu’un graphe d’interaction G = (V,E, ρ) est consistant avec les mesures
µ = {µ1, . . . , µm} si la contrainte

Cµ
G =

∧
i∈V,1≤k≤m

Cik

admet une solution. Ce que nous appelons contrainte de consistance est donc une
conjonction d’équations ; il y a une équation par sommet et par mesure. Chaque équation
relie la variation du sommet associé à celle de ses prédécesseurs. Les variables libres
sont les variations non observées et les signes de régulation inconnus. Les variations Xik

non observées sont propres à chaque mesure, mais les signes sur les régulations Sji sont

26 Équations qualitatives pour la consistance des données

partagées entre les équations associées à chaque mesure. Par convention, la contrainte
C∅G désigne la contrainte obtenue avec une seule mesure de domaine vide. Dans ce cas,
on omettra généralement l’indice k. Cette contrainte sera utile notamment lorsque l’on
voudra parler de l’ensemble des mesures compatibles avec un graphe d’interaction. Dans
le reste du manuscrit, nous étudierons la contrainte Cµ

G et nous chercherons en particu-
lier des moyens efficaces pour extraire de l’information de l’ensemble de ses solutions.
Voici un premier exemple pour clarifier notre définition :

A

B

C

D

E

CA : XA ≈ −XB

CB : XB ≈ XA + SDBXD

CC : 0 ≈ XB + XD

CD : XD ≈ −XA

CE : – ≈ XD − XA

(3.3)

Le graphe d’interaction, ainsi qu’une mesure sont figurés à gauche selon les conven-
tions que nous avons introduites plus haut. À droite figurent les contraintes de consis-
tance à chaque sommet. Puisqu’il n’y a ici qu’une seule mesure, l’indice des me-
sures a été omis. La contrainte de consistance pour cet exemple est la conjonction
Cµ
G = CA ∧ CB ∧ CC ∧ CD ∧ CE . En voici les solutions :

XA XB XD SDB

+ – – +
– + + +

(3.4)

En pratique il peut s’avérer utile de pouvoir spécifier que certains sommets du
graphe d’interaction sont des entrées du modèle, c’est-à-dire que leur variation n’est
pas expliquée dans le modèle. Pour ces sommets, on se dispense donc d’ajouter une
contrainte. En particulier, si un sommet n’a pas de prédécesseur dans le graphe d’inter-
action, alors son unique variation admissible est 0, ce qui fait disparâıtre sa contribu-
tion dans toutes les autres contraintes. Pour cette raison, les sommets sans prédécesseur
dans le graphe d’interaction seront systématiquement considérés comme des entrées du
système.

Définition 1. (Consistance aux sommets, N -consistance) Soit un graphe d’interaction
G = (V,E, ρ), muni d’un ensemble d’entrées U , tel que {v ∈ V | deg−G (v) = 0} ⊂ U .
Sauf mention contraire U sera par défaut exactement l’ensemble des sommets sans
prédécesseurs. G est dit N -consistant avec un ensemble µ de mesures si la contrainte
qualitative

Cµ
G =

∧
i∈V \U,1≤k≤m

Cik

admet au moins une solution.

Formalisation 27

Passons à présent aux propriétés générales des contraintes qualitatives.

3.1.4 Propriétés des contraintes qualitatives

Les contraintes qualitatives peuvent ne pas avoir de solution, et quand elles en
ont, il n’y a pas nécessairement unicité (comme nous venons de le voir dans l’exemple
précédent). La propriété suivante donne des indications sur quelques cas particuliers.

Proposition 1. Soient G = (V,E, ρ) un graphe d’interaction et µ = {µ1, . . . , µm} un
ensemble de mesures.

1. C∅G admet une solution.

2. si s est une solution de C∅G alors −s est encore une solution

3. si dom(ρ) = E alors toute variable de Cµ
G peut prendre soit une valeur, soit les

valeurs + et – mais pas 0, soit n’importe quelle valeur.

Démonstration.

1. C’est la solution nulle.

2. On vérifie facilement que si pour s, t ∈ S, (−s)+(−t) = −(s+t), s×(−t) = −(s×t)
et s ≈ t ⇒ −s ≈ −t. L’assertion est ainsi prouvée par induction sur les termes
constituant une contrainte de consistance.

3. si dom(ρ) = E alors Cµ
G est une conjonction de contraintes linéaires, et le résultat

est alors donné par la proposition 1.12 à la page 27 de [95].

La résolution des contraintes qualitatives a été particulièrement étudiée dans le
cas de contraintes linéaires [94]. Ces développements proposent de transposer les ou-
tils connus en algèbre linéaire dans le cas qualitatif, comme le pivot de Gauss ou le
déterminant. Sur le plan algorithmique, cette tentative n’aboutit pas à des outils par-
ticulièrement performants, et qui sont de plus limités au cas linéaire.

Le problème de résolution de contraintes qualitatives est prouvé NP-complet dans
le cas des systèmes linéaires comme nous l’illustrons maintenant.

Théorème 1. La construction d’une solution à une contrainte qualitative linéaire est
un problème NP-complet.

Démonstration. On procède par réduction polynomiale de SAT. Soit à résoudre un
ensemble de clauses C = {C1, . . . , Cr} sur un ensemble de variable V . Chaque clause
Ci est une disjonction de littéraux de la forme v ou ¬v. Pour arriver au résultat, il suffit
de trouver un codage de C en un système qualitatif calculable en temps polynomial.
L’idée est d’associer la valeur T à + et F à –. Une variable propositionnelle v de V est
envoyée sur une variable qualitative v. Voici un tableau synthétisant la procédure de

28 Équations qualitatives pour la consistance des données

codage d’une clause :

clause contrainte qualitative
T → +
F → –

a ∈ V → a
¬a, a ∈ V → −a
l1 ∨ l2 · · · ∨ lk → l1 + l2 · · ·+ lk

La contrainte résultante de C est donnée par :∧
i=1,...,n

Ci ≈ +

Voici un exemple de la transformation : soit l’ensemble de clauses C = {x1 ∨ x2,¬x4 ∨
x2 ∨ x3,¬x1 ∨ x4}. La contrainte résultant du codage est :

C = (x1 + x2 ≈ +) ∧ (x3 + x2 − x4 ≈ +) ∧ (x4 − x1 ≈ +)

Il nous faut montrer comment une solution à ce système fournit une solution qui satisfait
les clauses de C. Si dans la valuation obtenue, on a v = + (resp. v = –) pour v ∈ V ,
alors on pose v = T (resp. v = F). Si on a v = 0, alors on choisit une valeur quelconque
pour v. Soit une clause Ci ∈ C, on note l’ensemble de ses littéraux {l1, . . . , lk}. La
valuation obtenue est une solution du système qualitatif donc au moins un des littéraux,
disons lj , est tel que lj = +. Soit par construction tel que lj = T. Réciproquement,
toute valuation des variables propositionnelles satisfaisant C fournit une solution à la
contrainte qualitative correspondante.

Toutefois il n’est pas immédiat de savoir si le problème reste difficile dans le cas des
contraintes issues de graphes d’interaction. Par exemple, dans le cas où le graphe d’inter-
action est acyclique et les seuls sommets observés sont les sommets sans prédécesseurs,
la résolution s’avère particulièrement simple :

Proposition 2. Soit G = (V,E, ρ) un graphe d’interaction acyclique et µ = {µ1, . . . , µm}
un ensemble de mesures. Si pour tous i et k, Xik ∈ dom(µk) ⇒ deg+

G (i) = 0 alors Cµ
G

admet une solution, calculable en temps polynomial.

Démonstration. Ce résultat est un cas particulier de la proposition 7 qui sera donnée
plus loin. Contentons-nous ici d’esquisser informellement la preuve.

Tout d’abord, si certains signes sur les arcs de G sont inconnus, on les fixe à des
valeurs arbitraires. Une fois fait, on partitionne les contraintes de consistance aux som-
mets selon les mesures, c’est-à-dire les sous-systèmes Cµk

G,k pour k = 1, . . . ,m où

Cµk
G,k =

∧
i∈V

Cik

Puisque tous les signes sur les arcs sont maintenant instanciés, les sous-systèmes que
nous avons construits ne partagent aucune variable. En effet, comme mentionné plus

Justification différentielle 29

haut, si l’on partitionne les équations de la contrainte de consistance selon les mesures,
alors les seules variables partagées sont les signes sur les arcs. Par conséquent, les sous-
systèmes que nous avons isolés peuvent être résolus séparément.

Pour chaque sous-système, on décide de l’affectation de chaque variable suivant un
tri topologique de G (qui existe, puisque G est acyclique). On commence donc par les
sommets sans prédécesseurs, qui sont nécessairement des entrées. Soit ils sont dans
le domaine de la mesure, auquel cas leur valeur est fixée, soit on choisit leur valeur
arbitrairement. Ensuite, pour chaque sommet, on décide de sa valeur après avoir décidé
de la valeur de ses prédécesseurs. Il suffit donc de prendre une valeur compatible avec
la somme qualitative sur les prédécesseurs, ce qui est toujours possible.

En revanche dans le cas général, le problème est encore NP-complet pour les systèmes
issus d’un graphe d’interaction :

Théorème 2. La construction d’une solution pour la contrainte Cµ
G associée à un

graphe d’interaction G et à un ensemble de mesures µ est un problème NP-complet.

Démonstration. On procède encore par réduction polynomiale de SAT. Soit à résoudre
un ensemble de clauses {C1, . . . , Cr} sur un ensemble de variables {x1, . . . , xs}. Chaque
clause Ci est un ensemble de littéraux de la forme xk ou ¬xk.

Soit le graphe (bipartite) G :
– dont l’ensemble des sommets est {C1, . . . , Cr}

⋃
{x1, . . . , xs},

– et où l’arc xj → Ci existe si xj apparâıt dans Ci. Cet arc est étiqueté par le signe
+ si xj ∈ Ci et par – si ¬xj ∈ Ci.

Enfin, on construit une mesure µ telle que µ(Ci) = + et n’est pas définie ailleurs.
Voici un exemple de cette construction, sur l’ensemble de clauses C = {x1 ∨ x2,¬x4 ∨
x2 ∨ x3,¬x1 ∨ x4} :

C1 C2 C3

x1 x2 x3 x4

La contrainte qualitative de consistance aux sommets entre G et µ est alors exactement
celle utilisée dans la preuve du théorème 1, ce qui prouve le résultat.

3.2 Justification différentielle

Le modèle de régulation que nous avons introduit au paragraphe précédent est rela-
tivement simple et par certains égards assez intuitif. Néanmoins, comment déterminer
s’il est une représentation adéquate des mécanismes à l’œuvre dans une cellule ? Le
meilleur moyen de trancher est bien entendu de vérifier par l’expérience les prédictions

30 Équations qualitatives pour la consistance des données

que l’on peut en tirer, et c’est l’objet des chapitres 4 et 5. Nous proposons dans ce pa-
ragraphe de montrer que notre formalisme peut être vu comme une conséquence d’un
modèle différentiel général de cinétique chimique.

Les équations différentielles ordinaires sont omniprésentes en biologie des systèmes,
et servent fréquemment à modéliser des réseaux biologiques de nature très différentes
(métabolisme [28, 39], transduction de signal [43, 52], régulation génétique [105, 19, 69]).
Les utiliser comme hypothèse pour dériver notre formalisme n’est donc pas absurde ;
l’intérêt principal de cette démarche sera de préciser les conditions d’application des
contraintes de consistance, et de guider l’interprétation des données expérimentales.
Nous commençons par introduire le formalisme différentiel, puis par énoncer un en-
semble d’hypothèses suffisant pour démontrer les contraintes de consistances dans le
cadre différentiel.

3.2.1 Graphe d’interaction

Définition On considère un ensemble de réactions chimiques impliquant n espèces.
On note X le vecteur de concentration. Le système est supposé suivre une dynamique
différentielle :

dX

dt
= F (X,U) (3.5)

où U est le vecteur de taille p représentant des entrées du système, c’est-à-dire des
variables contrôlées par l’environnement. La fonction F est une description quantita-
tive du système de réactions ; elle est généralement inconnue. Si F est dérivable, la
matrice jacobienne de F en (X,U) est la matrice (J(X,U) K(X,U)) où J(X,U) =
(∂Fi

∂Xj
(X,U))ij et K(X,U) = (∂Fi

∂Uj
(X,U))ij . On appelle graphe d’interaction en (X,U)

de F le graphe G(X,U) :
– dont les nœuds sont les entiers 1, . . . , n+ p
– où l’arc j → i existe si ∂Fi

∂Xj
(X,U) 6= 0 ou ∂Fi

∂Uj−n
(X,U) 6= 0. Les arcs sont étiquetés

par le signe de la dérivée partielle, qu’on notera s(j, i).
Notons que G(X,U) est bien un graphe d’interaction au sens défini dans le para-

graphe précédent : il y a un arc entre j et i si le niveau (ou concentration) de j influe sur
la vitesse de production de i. La différence majeure ici, c’est que le graphe d’interaction
peut dépendre de l’état et des entrées si F est non linéaire. Pour un état et une entrée
données, G(X,U) est appelé graphe d’interaction local ; le graphe d’interaction global
est obtenu en calculant l’union des graphes d’interaction locaux, et en prenant pour
étiquette d’un arc la somme qualitative des signes apparaissant sur cet arc pour tous
les graphes locaux.

Topologie et propriétés dynamiques La topologie des graphes d’interaction d’un
système donné peut renseigner sur ses propriétés dynamiques. Un premier résultat,
appelé première conjecture de Thomas dit informellement que la présence d’un circuit
positif dans le graphe d’interaction est une condition nécessaire à l’existence de plusieurs
états stables. Ce résultat a été énoncé dans différents cadres, plus ou moins généraux,

Justification différentielle 31

aussi bien différentiels que discrets. Soulé en propose une excellente revue dans [90] et
y démontre le théorème suivant :

Théorème 3 (Conjecture de Thomas, modèles différentiels avec dégradation). Soient
Ω ⊂ Rn un produit d’intervalles ouverts, F = (Fi) : Ω → Rn un vecteur de fonctions
différentiables. On considère le système d’équations différentielles :

dXi

dt
= Fi(X)− γiXi

où γ1, . . . , γn sont des réels strictement positifs.
Si l’on peut trouver deux vecteurs distincts X et Y dans Ω tels que

|Fi(X)− γiXi − Fi(Y) + γiYi| < γi|Xi − Yi|

alors il existe Z ∈ Ω tel que G(Z) contient un circuit positif.

On pourra également trouver des résultats plus précis dans [51] ou même d’autres
résultats concernant la stabilité des états d’équilibres [93].

La deuxième conjecture de Thomas dit quant à elle que la présence d’un circuit
négatif dans le graphe d’interaction est une condition nécessaire à l’existence d’oscilla-
tions stables ou amorties [87].

Enfin, une classe importante de systèmes dynamiques, appelés systèmes monotones
[2] est caractérisable en termes de graphe d’interaction. Plus précisément si un système
dynamique est de graphe d’interaction constant, et que celui-ci ne contient aucun cycle
(non-orienté) négatif, alors il est monotone [21]. Entre autres propriétés, les systèmes
monotones (bornés) convergent presque sûrement pour toute condition initiale vers un
état d’équilibre stable ; ils n’admettent pas d’attracteurs chaotique, ni même d’orbite
périodique.

3.2.2 Réponse statique à une perturbation

Un vecteur X est un état d’équilibre à entrée constante u si F (X,u) = 0 ; il est dit
stable si toutes les valeurs propres de J(X,u) ont leur partie réelle négative ; enfin il
est dit non dégénéré quand detJ(X,u) 6= 0.

Il est classique d’étudier un système différentiel non-linéaire autour d’un point
d’équilibre stable (x, u), en remplaçant l’équation (3.5), par sa linéarisation :

d∆X
dt

= J(x, u)∆X (3.6)

Ce système admet un voisinage dans lequel ses trajectoires sont confinées. Parce
que linéaire, il est simple à étudier et l’allure de ses trajectoires est caractérisée par les
valeurs propres de J(x, u). L’intérêt de la manœuvre vient de ce que les trajectoires
du système linéaire sont qualitativement similaires à celle du système d’origine. Plus
précisément le théorème de Hartman-Grobman dit que les trajectoires dans l’un et
l’autre cas sont homéomorphes (identiques à une fonction inversible et continue près).
On peut ainsi étudier le comportement des trajectoires autour du point d’équilibre.

32 Équations qualitatives pour la consistance des données

Dans la suite, nous ne nous préoccuperons jamais de la trajectoire du système
dynamique, mais seulement de la forme de ses nullclines. Une nullcline est une variété
{Fi(X,U) = 0}, et l’ensemble des états d’équilibre est l’intersection des nullclines. En
différentiant l’équation Fi(X,U) = 0, on calcule l’espace tangent en un point (x, u) de
la ie nullcline : ∑

j

∂Fi

∂Xj
(x, u)dXj +

∑
k

∂Fi

∂Uk
(x, u)dUk = 0

ou encore sous forme matricielle :

J(x, u)dX +K(x, u)dU = 0 (3.7)

Cette relation détermine l’effet (au premier ordre) dX d’une perturbation dU des
entrées du système. Elle montre le déplacement du point d’équilibre initial sous l’action
d’une perturbation, quand celle-ci est suffisamment faible. Ce que nous verrons dans la
suite, c’est ce qu’il reste de cette relation pour des perturbations d’intensité quelconque.

3.2.3 Hypothèses de modélisation

Comme nous venons de le voir, le graphe d’interaction d’un système différentiel
dépend en toute généralité de l’état dudit système. Dans la mesure où notre forma-
lisme ne représente pas l’état du système (mais seulement les variations d’états), il ne
nous est a priori pas possible de traiter des systèmes où le signe d’un arc du graphe
d’interaction peut varier en fonction de l’état ou des entrées du système. Il nous faut
donc explicitement rajouter l’hypothèse suivante :

Hypothèse 1 (H1). On considère une dynamique différentielle dX
dt = F (X,U) de

graphe d’interaction constant, définie sur Rn+p.

On appelle mesure un quatre-uplet (x(1), u(1), x(2), u(2)). Cette définition est cohérente
avec celle que nous avons donnée précédemment ; pour construire une mesure qualita-
tive, il suffit de calculer le vecteur des sgn(x(2)

i − x
(1)
i).

Hypothèse 2 (H2). Toute mesure (x(1), u(1), x(2), u(2)) est telle que x(1) (resp. x(2))
est un état d’équilibre sous u(1) (resp. u(2)) stable et non dégénéré.

Cette hypothèse signifie que nous restreignons notre analyse aux expériences de
déplacement d’équilibre : un système initialement au repos subit une perturbation, puis
revient à l’équilibre au bout d’un certain temps. Les données disponibles concernent
alors la variation entre état final et état initial.

L’hypothèse suivante dit essentiellement que les espèces du système sont soumises
à un phénomène de dégradation, d’intensité au moins linéaire en fonction de la concen-
tration. C’est une hypothèse analogue à celle utilisée par Soulé dans [89].

Hypothèse 3 (H3). Pour toute espèce i du système, on a

∃κi > 0 ∀(X,U) ∈ Rn+p
+

∂Fi

∂Xi
(X,U) < −κi (3.8)

Justification différentielle 33

Enfin, notre dernière hypothèse découle de ce que les concentrations sont des gran-
deurs positives.

Hypothèse 4 (H4). Pour toute espèce i du système et pour tout u, on a

Fi(X1, . . . , Xi = 0, . . . , u) ≥ 0 (3.9)

3.2.4 Déplacement d’équilibre et variations

Dans le cadre des hypothèses précédentes, nous proposons de déterminer des rela-
tions entre la variation d’un sommet du graphe d’interaction et celle de ses prédécesseurs.
Nous commençons par une version globale du théorème des fonctions implicites. On no-
tera X̂i le vecteur X dont on a ôté la ie coordonnée et Ŷ i le vecteur (X̂i, U).

Théorème 4. On considère une dynamique différentielle dX
dt = F (X,U) définie sur

Rn+p. Sous les hypothèse H1, H3 et H4, pour tout Ŷ i, l’équation Fi(Ŷ i, Xi) = 0 admet
une unique solution en Xi. Soit la fonction Φi définie par

∀Y ∈ Rn+p Fi(Y) = 0⇔ Xi = Φi(Ŷ i)

Alors

1. Φi est dérivable

2. si Z est une variable apparaissant dans le vecteur Ŷ i, alors Φi vérifie

∂Φi

∂Z
(Ŷ i) =

(
∂Fi

∂Xi
(Ŷ i,Φi(Ŷ i))

)−1 ∂Fi

∂Z
(Ŷ i,Φi(Ŷ i))

Démonstration. Soit l’application φi,Ŷ i : Xi 7→ Fi(Ŷi, Xi). Par l’hypothèse H4, on sait
que φi,Ŷ i(0) ≥ 0. La fonction φi,Ŷi

est dérivable parce que Fi l’est et l’hypothèse H3
implique que φ′

i,Ŷi
est partout négative. Plus précisément,

φi,Ŷi
(x) =

∫ x

0
φ′

i,Ŷi
(s)ds+ φi,Ŷi

(0) (3.10)

=
∫ x

0

∂Fi

∂Xi
(Ŷ i, s)ds+ φi,Ŷi

(0) (3.11)

≤
∫ x

0
−κids+ φi,Ŷi

(0) (3.12)

≤ −κix+ φi,Ŷi
(0) (3.13)

On déduit de cette borne que φi,Ŷi
(F (Ŷ i,0)

κi
) ≤ 0, puis par continuité et monotonie de

φi,Ŷi
qu’il existe un unique réel dans [0; F (Ŷ i,0)

κi
], noté Φi(Ŷ i), tel que φi,Ŷi

(Φi(Ŷ i)) = 0.
On a ainsi démontré l’existence et l’unicité de Φi. La dérivabilité et la formule

des dérivées partielles découlent de l’application du théorème des fonctions implicites,
version locale.

34 Équations qualitatives pour la consistance des données

Ce résultat permet d’établir une formule quantitative exprimant la variation entre
deux états stationnaires.

Théorème 5. Sous les hypothèses H1-H4, si Y (1) et Y (2) sont deux états stationnaires
du système alors la variation en concentration d’une espèce i entre les 2 états station-
naires Y (1) et Y (2) est donnée par :

X
(2)
i −X(1)

i =
∫

S
−
(
∂Fi

∂Xi
(Ŷ i,Φi(Ŷ i))

)−1 ∑
k∈pred(i)

∂Fi

∂Zk
(Ŷ i,Φi(Ŷ i))dZk (3.14)

où S est un chemin régulier quelconque entre ˆY (1)
i
et ˆY (2)

i
, et Zk représente la variable

Uk ou Xk selon que k est une entrée ou non.

Démonstration. Soit S une courbe régulière quelconque entre ˆY (1)
i
et ˆY (2)

i
. On a :

X
(2)
i −X(1)

i =Φi(ˆY (2)
i
)− Φi(ˆY (1)

i
) (3.15)

=
∫

S
dΦi (3.16)

=
∫

S

∑
Z∈Ŷ i

∂Φi

∂Z
dZ (3.17)

=
∫

S

∑
Z∈Ŷ i

−
(
∂Fi

∂Xi
(Ŷ i,Φi(Ŷ i))

)−1 ∂Fi

∂Z
(Ŷ i,Φi(Ŷ i))dZ (3.18)

On obtient la bonne formule en notant que si k 6∈ pred(i) dans le graphe d’interaction,
alors ∂Fi

∂Zk
= 0

À ce stade, il nous faut faire deux remarques. La première c’est que si l’hypothèse H3
ou H4 n’est pas vérifiée pour un sommet, rien n’empêche de dériver cette relation quan-
titative pour les autres sommets. Deuxièmement, nous n’avons à aucun moment parlé
du chemin réel suivi par le système entre les deux états stationnaires. En particulier,
ce chemin n’est pas celui utilisé pour l’intégration qui donne la formule.

Nous pouvons à présent donner une preuve de la contrainte (3.2) (contrainte de
consistance à un sommet i). Il s’agit comme nous allons le voir d’une version qualitative
du théorème 5.

Théorème 6. On considère une dynamique différentielle dX
dt = F (X,U) et G =

(V,E, ρ) son graphe d’interaction. Sous les hypothèses H1-H4, la variation x
(2)
i − x

(1)
i

au sommet i vérifie :

sgn(x(2)
i − x

(1)
i) ≈

∑
k∈pred(i)

ρ(k, i) sgn(z(2)
k − z

(1)
k) (3.19)

où z(l)
k représente la variable u(l)

k ou x(l)
k selon que k est une entrée ou non.

Justification différentielle 35

Démonstration. On commence par réordonner les termes dans l’équation (3.14) grâce
à la commutativité somme/intégrale (la somme est finie) :

x
(2)
i − x

(1)
i =

∑
k∈pred(i)

∫
S

(
− ∂Fi

∂Xi

)−1 ∂Fi

∂Xk
dZk (3.20)

Le terme
(
− ∂Fi

∂Xi

)−1
∂Fi
∂Zk

est de signe constant, et on a :

sgn(
(
− ∂Fi

∂Xi

)−1 ∂Fi

∂Zk
) = sgn(− ∂Fi

∂Xi
) sgn(

∂Fi

∂Zk
) (3.21)

= r(k, i) (3.22)

En utilisant la formule de la moyenne, on sait qu’il existe y ∈ S tel que :∫
S

(
− ∂Fi

∂Xi

)−1 ∂Fi

∂Zk
dXk = Aki(x

(2)
k − x

(1)
k) (3.23)

avec Aki =
(
− ∂Fi

∂Xi
(y,Φi(y)

)−1
∂Fi
∂Zk

(y,Φi(y)). On obtient ainsi :

z(2) − z(1) =
∑

k∈pred(i)

Aki(z
(2)
k − z

(1)
k) (3.24)

avec sgn(Aki) = r(k, i). D’où le résultat.

3.2.5 Discussion

Dynamique inconnue Dans le développement qui précède, nous avons supposé que
la seule information disponible sur le système était synthétisée dans le graphe d’in-
teraction. Notre motivation est de produire une méthode applicable sur de grands
systèmes où, en l’état actuel, la plupart des réactions ont une cinétique inconnue. No-
tons que toute conclusion obtenue dans ce cadre aura l’avantage d’être très générale car
ne dépendant pas d’une forme particulière pour la cinétique. L’obtention de résultats
indépendants du type de cinétique choisi ou de ses paramètre est un objectif important
dans les modèles par équations différentielles [18, 91, 74]. Il est en effet techniquement
très difficile d’estimer précisément la cinétique réelle des équations : il faut pour cela
isoler une réaction dans une condition expérimentale où les mesures sont possibles, ce
qui demande énormément de travail, quand cela est possible. De plus cette condition
est souvent fort différente du milieu intra-cellulaire, fort complexe et très encombré.
Pour cette raison, les constantes cinétiques durement acquises peuvent donc être bien
loin de la réalité. Les prédictions valides pour un large spectre de cinétiques sont pour
cette raison plus fiables. On peut également invoquer une deuxième raison : les cellules
sont connues pour être des systèmes particulièrement robustes à des changements de
condition (température, pression, concentration . . .). On préfère donc d’une manière
générale que les prédictions ne dépendent pas d’une valeur précise d’un paramètre.

36 Équations qualitatives pour la consistance des données

Il est vrai néanmoins (et nous y reviendrons plus loin), que l’on connâıt des grands
types de cinétiques pour les réactions biochimiques, comme les fonctions de Hill pour
les régulations génétiques, les lois d’action de masse pour la signalisation ou encore
les réactions de type Michaelis-Mentens pour le métabolisme [96]. Chaque type est ca-
ractérisé par un certain nombre de paramètres qui décrivent complètement la cinétique
d’une réaction. Il existe grosso modo, deux façons d’utiliser cette information :

– une approche numérique, qui consiste à estimer ces paramètres à partir d’un
nombre fini de mesures, soit à l’aide de séries temporelles [12], soit à l’aide de
données de perturbations [13], telles que celles que nous utilisons. Pour un système
comportant plusieurs dizaines de réactions, l’estimation des paramètres requiert
un nombre de mesures et une précision déraisonnables, compte tenu des tech-
niques actuelles.

– une approche qualitative, qui consiste à étudier des abstractions discrètes des
modèles différentiels [10]. Les techniques existantes sont très adaptées à la qualité
des mesures disponibles, mais d’une complexité prohibitive pour le traitement de
grands systèmes. De plus, ces approches sont limitées aux réseaux génétiques.

Dans les deux cas, il s’agit donc d’outils réservés à l’étude fine de ((petits)) systèmes.

Graphe d’interaction constant Nous l’avons vu à plusieurs reprises, le graphe d’in-
teraction dépend en toute généralité de l’état et des entrées du système. Or l’hypothèse
H1 stipule que nous ne travaillons qu’avec des graphes d’interaction constants. Cette
limitation n’a que peu de conséquences en pratique. La principale raison en est que
pour dériver la contrainte de consistance à un sommet, nous n’avons utilisé que des
conditions locales à ce sommet (dégradation, positivité des concentrations, influences
de signe constant). Par conséquent, si l’une de ces conditions n’est pas remplie pour
un sommet, cela n’affecte en rien les autres sommets du graphe d’interaction. Si une
interaction n’est pas de signe constant, elle invalide la contrainte du sommet à son
extrémité, mais rien de plus.

Dans nos expériences sur données réelles, nous avons trouvé des cas où le signe
d’une interaction peut changer en fonction de l’état. Un tel exemple est décrit chez
E. coli dans [42] : le promoteur du gène cdd contient trois sites de fixation le facteur
Crp, d’affinités différentes. L’étude met en évidence que Crp se lie à des sites différents
selon que la protéine CytR est présente ou non. La conformation globale empêche la
transcription dans le premier cas, et la permet dans le deuxième.

En pratique, il faut donc disposer de moyens permettant de détecter les régulations
de signe non constant, ce que nous verrons au chapitre suivant.

Séries temporelles L’hypothèse H2 restreint l’application de notre méthode aux
données de perturbation. Néanmoins il est assez courant de disposer de séries tempo-
relles, c’est-à-dire de mesures établies en régime transitoire. Le principal intérêt de ce
type de mesure est de faire apparâıtre une notion de causalité : si deux gènes g et g′

ont des variations systématiquement identiques sous diverses conditions, il n’est pas
possible à partir de données de perturbation de décider si g régule g′, ou si g′ régule

Justification différentielle 37

g, ou bien encore si g et g′ sont régulés par un gène tiers. Des mesures temporelles
peuvent permettre de lever cette ambigüıté si l’on observe systématiquement un gène
varier avant l’autre, ou si les deux gènes varient de façon synchrone. Il peut donc être –
selon le contexte – particulièrement dommageable de ne pas utiliser de telles données.

Nuançons quelque peu ce problème : il existe une littérature relativement riche
(voir [31, 97, 6] par exemple) sur la reconstruction de réseaux génétiques à partir de
séries temporelles, et se basant sur la modélisation suivante. En notant X le vecteur
des concentrations, et U le vecteur des entrées, ces travaux proposent de modéliser un
réseau génétique par la relation :

Ẋ(tk) = AX(tk) +BU(tk) (3.25)

où Ẋ représente le vecteur dérivé de X, et où A et B sont des matrices. Autrement
dit, ces travaux proposent de modéliser un réseau génétique par un système différentiel
linéaire. Il est clair, et particulièrement dans le cas des réseaux génétiques, que cette hy-
pothèse est fausse. Sur le plan quantitatif, il s’agit donc de modèles trop approximatifs.
En revanche, si le but se limite à reconstruire le graphe d’interaction, ces algorithmes
ont un comportement tout à fait respectable, comme le démontre la comparaison ef-
fectuée dans [5].

En prolongement de ce travail, on pourrait tenter d’exploiter la relation (3.25) en
qualitatif (c’est-à-dire l’interpréter dans l’algèbre des signes). D’un point de vue pra-
tique, cela apporterait quelques avantages : 1. exploiter des séries temporelles fortement
bruitées, 2. lever l’hypothèse de linéarité (linéaire dans l’algèbre des signes n’implique
absolument pas linéarité en quantitatif). On pourrait notamment comparer les graphes
obtenus dans les deux approches : traitement des données quantitatives puis abstraction
en graphe d’interaction d’une part ; abstraction des données en signes puis raisonne-
ments qualitatifs d’autre part.

Bilan Dans cette section, nous avons montré que si l’on peut parler du graphe d’in-
teraction d’un système, on peut sous certaines hypothèses dériver les contraintes de
consistance aux sommets. En particulier, ce cadre s’applique aux expériences où un
système initialement au repos converge vers un nouvel état d’équilibre après une per-
turbation de ses entrées. Rappelons qu’aucune hypothèse n’a été faite sur l’intensité de
cette perturbation.

L’objectif des paragraphes qui suivent est de revenir sur l’hypothèse du graphe
d’interaction constant. Il s’agit de mesurer les limites de cette hypothèse – tout autant
que de constater qu’elle est relativement générale, à condition de décrire le système
de manière suffisamment précise. Pour cela, on procédera en deux temps : d’abord
on étudiera le cas des cinétiques usuelles en modélisation, avec un système réduit à
une réaction ; puis on verra sous quelles conditions on peut conserver l’hypothèse dans
les systèmes à plusieurs réactions. Comme sous-produit important de cette étude, on
montrera sous quelles hypothèses on peut déduire le graphe d’intéraction d’un ensemble
de réactions, sans en demander une description explicite ou quantitative.

38 Équations qualitatives pour la consistance des données

3.2.6 Cinétiques usuelles en modélisation

La première étape consiste à montrer que les cinétiques habituellement utilisées dans
les modèles différentiels de réseaux biologiques donnent lieu à des graphes d’interaction
où les signes sont constants. Nous passons en revue quelques unes des cinétiques les
plus courantes [96].

Cinétiques linéaires Elles sont de la forme : Φ(X) = λ′X, où λ est un vecteur
de réels et λ′ désigne la transposée de λ. Les cinétiques linéaires sont utilisées pour
modéliser des phénomènes de transport passif d’un compartiment cellulaire à un autre,
la dégradation des espèces chimiques ou la dilution lors de la croissance de bactéries.
Leur dérivée partielle est donnée par :

∂φ

∂Xj
= λj

qui est signe constant.

Lois d’action de masse Cette cinétique constitue une bonne approximation lorsque
les réactions sont des processus élémentaires (transformations chimiques simples). Elles
sont de la forme Φ(X) = κi

∏
iX

αi
i . La dérivée partielle est donnée par :

∂Φ
∂Xi

= κiαiX
αi−1

∏
j 6=i

X
αj

j

qui est de signe constant.

Cinétique de Michaelis-Menten Elle décrit la transformation d’un substrat S en
un produit P lorsque celle-ci est catalysée par une enzyme E. Elle est de la forme
Φ(S,E) = E·S

k+S , où k est une constante positive. Les dérivées partielles sont :

∂Φ
∂E

=
S

k + S

∂Φ
∂S

=
kE

(k + S)2

qui sont de signe positif.
Dans la suite, on appellera réaction monotone une réaction dont la cinétique n’ad-

met que des dérivées partielles de signe constant et positif.

3.2.7 Graphes de réactions

Nous venons de montrer que pour les cinétiques les plus courantes en modélisation,
on peut associer à une réaction un graphe d’interaction dont les signes sont constants.
Nous étudions maintenant le cas des systèmes comportant plusieurs réactions. Nous
précisons les conditions permettant d’appliquer notre approche à l’étude des réseaux

Justification différentielle 39

métaboliques et de signalisation, tels qu’on peut les trouver dans Kegg [50] ou BIO-
BASE [101]. De plus nous montrons qu’une transformation purement graphique permet
de déduire le graphe d’interaction des descriptions fournies dans ces bases de données.

Les réseaux décrits dans les bases de données Kegg ou BIOBASE sont des réseaux
de réactions biochimiques, c’est-à-dire des graphes bipartis spécifiant les substrats et
les produits de chaque réaction. Nous en donnons la définition suivante :

Définition 2. (Graphe de réactions) Un graphe de réactions est un graphe orienté
biparti R = (P,R, I,O) où P représente l’ensemble des produits, R l’ensemble des
réactions, I ⊂ P × R les arcs d’entrée des réactions, O ⊂ R × P , et tel que ∀(i, r) ∈
P ×R ¬((i, r) ∈ I ∧ (r, i) ∈ O).

Un graphe de réactions est une description qualitative d’un système. S’agissant d’un
ensemble de réactions biochimiques, on peut lui donner une description quantitative,
à base d’équations différentielles. La définition qui suit explicite la compatibilité entre
ces deux descriptions :

Définition 3. (Système différentiel compatible avec un graphe de réactions) On dit
d’un système d’équations différentielles dX

dt = F (X) qu’il est compatible avec un graphe
de réactions R = (P,R, I,O) si il existe un ensemble de cinétiques monotones (Mr)r∈R

telles que :
– (i, r) ∈ I ⇔ ∂Mr

∂Xi
> 0

– (r, i) ∈ O ⇔ ∂Mr
∂Xi

= 0
– pour tout j ∈ P ,

Fi(X) =
∑

(r,i)∈O

Mr(X)−
∑

(i,r)∈I

Mr(X)− γiXi

où γi est une constante de dégradation.

Dans cette définition, toutes les réactions sont considérées comme non réversibles.
On représente donc les réactions réversibles par deux réactions distinctes. Nous pouvons
à présent formuler l’objectif de ce paragraphe : pour un graphe de réactions, nous avons
défini l’ensemble des dynamiques qui lui sont compatibles. Chacune de ces dynamiques
admet un graphe d’interaction. Nous formulons une condition purement graphique sur
le graphe de réactions pour que toutes les dynamiques admettent le même graphe
d’interaction. D’autre part nous montrons qu’on peut déduire ce graphe d’interaction
à partir du graphe de réactions.

Cette transformation graphe de réactions/graphe d’interaction est donnée dans la
définition suivante :

Définition 4. (Graphe d’interaction associé à un graphe de réactions) On appelle
graphe d’interaction associé à un graphe de réactions R = (P,R, I,O) le graphe GR de
sommets contenus dans P obtenu :

1. en plaçant un arc i –−→ j chaque fois qu’on a (i, r) ∈ I, (j, r) ∈ I et i 6= j,

2. en plaçant un arc j +−→ i chaque fois qu’on a (j, r) ∈ I, (r, i) ∈ O et i 6= j,

40 Équations qualitatives pour la consistance des données

3. en remplaçant tout couple d’arcs j +−→ i, j –−→ i par un unique arc j ?−→ i.

Nous pouvons à présent formuler le critère qui garantit que cette construction abou-
tit à un graphe d’interaction où tous les signes sont définis.

Théorème 7. Soient un graphe de réactions R = (P,R, I,O) et S un deuxième graphe
de réactions défini par :

S = ({p1, p2}, (3.26)
{r1, r2}, (3.27)
{(p1, r1), (p1, r2), (p2, r2)}, (3.28)
{(r1, p2)}) (3.29)

GR est sans signe ? si et seulement si R ne contient aucun sous-graphe isomorphe à S.

Démonstration.
⇒ Par contraposée, supposons R contient un sous-graphe T isomorphe à S. On re-
nomme les sommets de T comme ceux de S. Lors de la construction de GR, on ajoute
l’arc p1

–−→ p2 parce que (p1, r2) ∈ I et (p2, r2) ∈ I ; puis l’arc p1
+−→ p2 parce que

(p1, r1) ∈ I et (r1, p2) ∈ O ; finalement les arcs p1
–−→ p2 et p1

+−→ p2 sont remplacés
par p1

?−→ p2.
⇐ Pour la réciproque, on procède encore par contraposée. Supposons que GR contient
un arc p ?−→ q. Alors pendant la construction de GR, on a introduit successivement un
arc p +−→ q et un arc p –−→ q. De la première règle, on déduit qu’il existe une réaction
r telle que (p, r) ∈ I et (r, q) ∈ O ; on en déduit également que p 6= q (par définition
des graphes de réaction). De la deuxième, on a qu’il existe une réaction s telle que
(p, s) ∈ I et (q, s) ∈ I). On a nécessairement r 6= s puisque sinon on aurait (q, s) ∈ I et
(s, q) ∈ O. Par conséquent, le sous graphe de R engendré par p, q, r, s est isomorphe à
S.

Le résultat suivant montre que le graphe d’interaction déduit du graphe de réactions
est identique au graphe d’interaction des dynamiques compatibles avec le graphe de
réactions.

Théorème 8. Soient R un graphe de réactions, F une dynamique différentielle com-
patible, et G son graphe d’interaction global. Alors

GR sans signe ?⇒ GR = G

Démonstration. Supposons GR sans signe ?. Soit un sommet i, montrons qu’il a les
mêmes prédécesseurs dans GR et dans G. Soit j un autre sommet, on a :

∂Fi

∂Xj
=

∑
(r,i)∈O

∂Mr

∂Xj
−
∑

(i,r)∈I

∂Mr

∂Xj
− γi1i=j (3.30)

Justification booléenne 41

1er cas : i 6= j Supposons que les deux sommes de la formule ci-dessus sont à support
non vide : on peut trouver deux réactions r et s telles que (r, i) ∈ O, (i, s) ∈ I, ∂Mr

∂Xj
6= 0

et ∂Ms
∂Xj
6= 0. On a alors (r, i) ∈ O, (j, r) ∈ I, (j, s) ∈ I et (i, s) ∈ I. En effet, puisque

Mr est monotone, ∂Mr
∂Xj
6= 0 implique ∂Mr

∂Xj
> 0 (définition des cinétiques monotones) et

∂Mr
∂Xj

> 0 implique (j, r) ∈ I (définition des systèmes différentiels compatibles avec un
graphe de réactions). Nécessairement les réactions r et s sont distinctes sinon (i, s) ∈ I
et (s, i) ∈ O, ce qui contredit la définition des graphes de réactions. Le sous-graphe
engendré par p, q, r, s est isomorphe à S ce qui contredit l’hypothèse GR sans signe ?.
Par conséquent, l’une des sommes au moins est à support vide. Si les deux le sont, alors
j n’est pas un prédécesseur de i dans G ; de plus j n’est le substrat d’aucune réaction
consommant ou produisant i. Le sommet j n’est pas non plus un prédécesseur de i dans
GR. Si l’une des sommes est à support non vide, alors j est un prédécesseur de i dans
G et le signe de ∂Fi

∂Xj
est déterminé. L’arc et le signe sont également trouvés dans GR,

en employant l’une des deux premières règles de la définition 4.

2e cas : i = j Supposons qu’il existe une réaction r ∈ R telle que (r, i) ∈ O. Par
définition des dynamiques compatibles avec le graphe de réaction, ∂Mr

∂Xi
est nul. Donc

la première somme dans l’équation 3.30 est à support vide. Par conséquent, on obtient
bien ∂Fi

∂Xi
< 0.

Ce théorème montre que les graphes de réactions peuvent être convertis en graphe
d’interaction, de manière cohérente avec toute dynamique raisonnable. Le point im-
portant ici, c’est que à une condition près, le graphe d’interaction trouvé admet des
signes définis. De plus cette condition est vérifiable par un simple parcours du graphe
de réactions.

3.3 Justification booléenne

Nous reproduisons dans cette section un résultat dû à Adrien Richard qui montre
que la contrainte de consistance est également vérifiée dans le cadre des réseaux booléens
synchrones. Soit un ensemble de gènes indexé par {1, . . . , n}. L’état d’activation des
gènes est représenté par un vecteur booléen de {0, 1}n, et l’évolution du système est
donnée par une fonction F : {0, 1}n → {0, 1}n. Une trajectoire du réseau booléen est
une suite (Fn(x))n∈N pour un état initial x donné. Un état x est dit stable si c’est un
point fixe de F .

3.3.1 Graphe d’interaction

De manière analogue à ce que nous avons vu dans le cadre différentiel, on peut
définir une dérivée discrète de F et un graphe d’interaction. Pour un état x, on notera
xi le vecteur obtenu en inversant la ie coordonnée de x. On a alors la définition suivante :

Définition 5. (Graphe d’interaction) Pour x ∈ {0, 1}n, on appelle :

42 Équations qualitatives pour la consistance des données

– je dérivée discrète partielle de Fi la fonction

Fji(x) =
Fi(x)− F (xj)
xj − (xj)j

– et graphe d’interaction en x de F le graphe sur l’ensemble de sommets {1, . . . , n}
où figure l’arc j ε−→ i avec ε ∈ {+,–} si sgn(Fji(x)) = ε

Dans ce cadre, il existe aussi une formulation et des preuves des conjectures de
Thomas, que l’on pourra trouver dans [75, 77]. Comme là encore, le graphe d’interaction
dépend de l’état du système, et on peut parler de graphe d’interaction local et global.
Ceci nous conduira à ajouter explicitement une hypothèse, toutefois moins forte que
dans le cas différentiel :

Hypothèse 5 (H1). Le graphe d’interaction global de F est défini, c’est-à-dire que
r(j, i) =

∑
x∈{0,1}n sgn(Fji(x)) ∈ {+,0,–}.

3.3.2 Déplacement d’équilibre

Le résultat suivant montre que les équations qualitatives sont encore vérifiées dans
le cadre booléen synchrone, à une différence près.

Théorème 9 (Richard, 2007). Soit F une dynamique de graphe d’interaction défini.
Pour tous x, y ∈ {0, 1}n et tout i ∈ {1, . . . , n},

Fi(x) 6= Fi(y)⇒ sgn(Fi(y)− Fi(x)) ≈
n∑

j=1

r(j, i) sgn(yj − xj)

Démonstration. La preuve se fait par induction sur la distance de Hamming entre x et
y, définie par :

d(x, y) = #{ i | i ∈ {1, . . . , n}, xi 6= yi }
Cas initial : d(x, y) = 0 implique x = y et F (x) = F (y). La propriété est donc vérifiée.
Hérédité : supposons la propriété vraie pour tout couple (x, y) tel que d(x, y) ≤ N . Soit
(x, y) tel que d(x, y) = N + 1 et supposons Fi(x) 6= Fi(y). On pose :

α =
n∑

j=1

r(j, i) sgn(yj − xj)

Il nous faut démontrer sgn(Fi(y)−Fi(x)) ≈ α. Si α = ?, la propriété est vérifiée, sinon
on peut trouver k ∈ {1, . . . , n} tel que xk 6= yk, puisque d(x, y) ≥ 1. On a alors l’égalité
suivante :

β =
n∑

j=1

r(j, i) sgn(yj − (xk)j) =
n∑

j=1,j 6=k

r(j, i) sgn(yj − xj)

En posant
γ = r(k, i) sgn((xk)k − xk) = r(k, i) sgn(yk − xk)

on a α = β+γ (parce que ni α, ni β ni γ ne sont indéterminés. On distingue maintenant
deux cas :

Justification booléenne 43

• [Fi(xk) 6= Fi(xk)] Alors Fki(x) 6= 0, et comme F est de graphe d’interaction défini,
on a r(k, i) = Fki(x). D’après la définition de Fki on a donc :

Fi(xk)− Fi(x) = Fki(x)(xk − x)

d’où
sgn(Fi(xk)− Fi(x)) = r(k, i) sgn(xk − x)

par passage aux signes, ce qui donne

sgn(Fi(xk)− Fi(x)) = γ

Comme α, γ 6= 0, ?, on a α = γ. De plus Fi(x) 6= Fi(xk) et Fi(x) 6= Fi(y)
impliquent Fi(y) = Fi(xk). On obtient ainsi sgn(Fi(y)− Fi(x)) = α

• [Fi(xk) 6= Fi(xk)] Alors dans ce cas Fi(y) 6= Fi(xk). Comme d(y, xk) = d(y, x)−1,
on a par hypothèse d’induction :

sgn(Fi(y)− Fi(xk)) ≈ β

Comme β, α 6= ? et sgn(Fi(y) − Fi(xk)) = sgn(Fi(y) − Fi(xk)), on obtient
sgn(Fi(y)− Fi(xk)) = α

Notons bien que lorsqu’on a utilisé dans cette preuve des arguments de transitivité
dans l’algèbre des signes, nous avons montré avant que les termes substitués étaient
déterminés.

Théorème 10 (Déplacement d’équilibre dans le cas booléen). Soient F une dynamique
de graphe d’interaction défini, x et y deux états stables pour F . Alors pour tout i ∈
{1, . . . , n},

xi 6= yi ⇒ yi − xi ≈
∑
j→i

r(j, i) sgn(yj − xj)

Démonstration. Il suffit d’utiliser le théorème précédent en remarquant que Fi(x) = xi,
et que j → i si et seulement si r(j, i) 6= 0.

Le résultat que nous obtenons dans le cas booléen est moins fort que dans le cas
différentiel. Nous trouvons ici que si il y a variation non nulle, alors on doit pouvoir
l’expliquer par la variation d’un au moins des prédécesseurs du sommet dans le graphe
d’interaction global. Dans le cas d’une variation nulle, on ne peut pas conclure, comme
le montre cet exemple :

(0, 0)

(0, 1)

(1, 0)

(1, 1)

44 Équations qualitatives pour la consistance des données

En numérotant abscisses et ordonnées par 1 et 2 respectivement, on obtient

F12(0, 0) = F12(1, 0) = −1
F12(0, 1) = F12(1, 1) = 0

F21(0, 0) = F21(0, 1) = 1
F21(1, 0) = F21(1, 1) = 0

Ce qui signifie que F admet un graphe d’interaction défini. Si l’on choisit y = (1, 1) et
x = (1, 0), on obtient effectivement que la contrainte de consistance au sommet 1 n’est
pas vérifiée : d’une part y1 − x1 = 0, et d’autre part r(2, 1) = + et y2 − x2 = 1.

Le résultat obtenu dans le cas booléen synchrone est très similaire à celui obtenu
dans le cadre différentiel. Cette analogie vaut tout particulièrement pour l’hypothèse
de stationnarité des états comparés. Il faut noter que le résultat obtenu est un peu
moins fort dans le cas discret, puisque l’équation de consistance au sommet ne tient
que pour les sommets dont la variation est non nulle. Cette restriction à la contrainte
de consistance confirme ce qu’on peut intuitivement penser en pratique : il est difficile
de décider quand une variation observée est négligeable ou nulle. Cette difficulté est
mise en lumière dans le cadre booléen où les variables d’état sont discrétisées. La perte
de précision empêche dans ce cas – contrairement au cas différentiel – de mesurer des
variations trop faibles.

Bilan

Nous avons formalisé un critère de consistance entre un graphe d’interaction et des
mesures expérimentales comparant deux états stables du système. Nous déduisons de
ce critère des contraintes reliant le signe des régulations dans le graphe d’interaction
aux signes de variation des espèces du système. Ces contraintes, appelées contraintes
qualitative de consistance aux sommets, sont exprimées comme des termes interprétés
dans l’algèbre des signes. En particulier, la résolution de ces contraintes est un problème
NP-complet.

Afin de mieux saisir les limites d’applicabilité de ce critère de consistance, nous
avons entrepris d’en démontrer la validité dans un cadre différentiel. Cette étude met
en évidence des conditions sur la stationnarité des états comparés, et sur la monotonicité
des réactions constituant le système. Nous rapportons une démarche analogue dans le
cadre des réseaux booléens synchrones, qui confirme ces résultats.

Nous passons à présent à l’étude des contraintes qualitatives. Cette étude inclut non
seulement leur résolution, mais également le calcul de certaines propriétés de l’ensemble
de leurs solutions. Dans tous les cas, ces problèmes sont au moins NP-complets ; les
applications visées impliquant le traitement de grands volumes de données, il nous faut
fournir des algorithmes particulièrement efficaces. Nous proposerons deux approches,
décrites dans les deux prochains chapitres.

Chapitre 4

Résolution par diagrammes de
décision

Nous avons défini au chapitre précédent une notion de consistance entre des données
de perturbation et un modèle graphique des interactions cellulaires. Pour un graphe G et
un ensemble µ de mesures, nous avons introduit la contrainte qualitative Cµ

G qui décrit
la compatibilité entre le graphe d’interaction G et les données de variation µ. Nous
montrons à présent comment résoudre ces contraintes qualitatives. Une part importante
de cette étude a été publiée dans [98]

Calculer l’ensemble des solutions d’une contrainte L’approche que nous sui-
vons vise à calculer efficacement toutes les solutions d’une contrainte, plutôt qu’une
seule. Ceci nous permettra notamment d’étudier des propriétés de l’ensemble des solu-
tions. Cependant, le nombre de solutions aux contraintes de consistance est généralement
très élevé, même pour des graphes d’interactions de dimension modeste. Notre approche
repose pour cette raison sur l’utilisation d’un diagramme de décision, qui est une struc-
ture de données utilisée en vérification de circuit et en model checking. Les diagrammes
de décision nous fourniront une représentation compacte de l’ensemble des solutions
d’une contrainte. Ils nous permettront en outre par un parcours approprié de calculer
des propriétés diverses de l’ensemble des solutions.

Définition des tâches d’analyse Une fois l’utilisation des diagrammes de décision
précisée, nous introduisons et formulons précisément les problèmes liés à notre démarche
d’analyse (voir figure 1.1). Nous aborderons successivement les tâches de vérification, de
prédiction et de correction/diagnostic ; nous montrerons comment résoudre efficacement
chaque problème par un parcours approprié du diagramme de décision.

Passage à l’échelle Les algorithmes que nous introduisons dans un premier temps
supposent que l’on peut construire intégralement le diagramme de décision associé à
une contrainte qualitative. Dans les applications que nous visons – notamment l’étude
de réseaux transcriptionnels étendus – cela n’est pas toujours possible à cause de la

45

46 Résolution par diagrammes de décision

x

y

z

F w

T F

z

T w

T F

y

z

F w

T F

z

T F

Fig. 4.1 – L’arbre de décision associé à la fonction booléenne F (w, x, y, z) =
((y ⊗ z) ∨ (x ∧ w ∧ ¬z)) ∧ (w ∨ ¬y), où ⊗ désigne le ou exclusif et x ≺ y ≺ z ≺ w.

taille du diagramme. Nous étudions à la fin de ce chapitre des approches de réduction
et de décomposition de contraintes permettant d’analyser des données à l’échelle d’un
organisme simple.

4.1 Diagrammes de décision

4.1.1 Définition

Un diagramme de décision est une structure de données permettant de représenter
de manière compacte des fonctions booléennes. Nous l’introduisons ici en plusieurs
étapes. On dispose d’un ensemble de variables (binaires) et d’un ensemble de constantes.
Leur union est munie d’un ordre total ≺ tel que pour toute constante c et toute variable
V on a V ≺ c.

Définition 6. On appelle arbre de décision un arbre binaire dont les sommets internes
sont des variables, dont les feuilles sont des constantes, et tel que :

– tout chemin de la racine à une feuille est croissant pour ≺
– pour tout sous arbre A = (V,A0,A1) on a A0 6= A1

À tout arbre de décision A on peut associer une fonction booléenne FA de la façon
suivante. On note X1, . . . ,Xn les variables présentes dans A, ordonnées selon ≺. Une
valuation des variables Xi décrit un chemin de la racine à une feuille dans A : c’est
le chemin tel qu’en chaque noeud interne Xi de A, on choisit la branche de gauche si
Xi = T dans la valuation, et la branche de droite sinon. FA est alors définie comme
la fonction qui à toute valuation de X1, . . . ,Xn associe la constante au bout du chemin
dans A décrit par cette valuation.

Diagrammes de décision 47

La fonction u : A 7→ FA est injective sur son image. Les fonctions qui ne sont
pas dans l’image de u sont toujours de la forme F (X,Y) = G(X) où G est dans
l’image de u. Autrement dit, ce sont les fonctions définies avec des variables ((inutiles)).
Ce détail aura son importance lorsque nous voudrons définir le nombre de solutions
d’une contrainte qualitative. Pour rendre u bijective on peut quotienter l’ensemble des
fonctions booléennes avec la relation d’équivalence F ∼ G quand F (X,Y) = G(X,Z)
pour tous X,Y, Z. Dans la suite on confondra sauf mention contraire une fonction
booléenne et sa classe d’équivalence selon ∼.

Ainsi pour une fonction F , l’arbre de décision associé est l’unique A tel que u(A) ∼
F . On appelle support de F l’ensemble des variables apparaissant dans A. Notons que
le support de F ne dépend pas de ≺.

Un arbre de décision est une représentation simple d’une fonction booléenne mais de
peu d’intérêt sur le plan algorithmique : sa taille, en nombre de noeuds crôıt en O(2n)
où n est le cardinal du support de la fonction représentée. L’idée exploitée dans les dia-
grammes de décision est qu’un arbre de décision A peut contenir plusieurs sous-arbres
identiques. Auquel cas, on décide de ne le représenter qu’une seule fois en mémoire.
Intuitivement, cela revient à fusionner les sous-arbres, et par conséquent à transfor-
mer l’arbre en graphe orienté acyclique. Donnons-en maintenant une définition plus
formelle.

Définition 7. Soit une fonction booléenne F , et AF = u−1(F) l’arbre de décision
associé. Le diagramme de décision DF de F est le graphe :

– dont les sommets sont les sous-arbres de AF ,
– et où il existe un arc a T−→ b (resp. a F−→ b) si b est le fils gauche (resp. droit)

de a dans AF .

DF est une représentation compacte de AF , c’est-à-dire où l’on a supprimé les re-
dondances. Dans les cas favorables, la taille de DF est notablement plus faible que
celle de AF . Le gain en taille dépend de l’ordre des variables ; cependant, déterminer
l’ordre optimal est un problème NP-complet [14]. En pratique, les implémentations dis-
posent d’heuristiques de réordonnancement de variables. La transformation d’un arbre
de décision en un diagramme est bijective. Il en découle qu’à une fonction booléenne
correspond un unique diagramme de décision, et réciproquement.

4.1.2 Opérations sur les diagrammes

Nous présentons maintenant les opérations couramment disponibles sur les dia-
grammes de décision. C’est l’occasion d’introduire les notations qui seront utilisées
dans les algorithmes qui sont l’objet de ce chapitre, tout autant que de se familiariser
avec la manipulation des diagrammes. L’ensemble des opérations sera présenté sous la
forme d’un type abstrait, dans l’esprit de [30].

Constructeurs élémentaires Nous considérerons essentiellement trois types, à sa-
voir constant, variable, et diagram. Le type constant représentera selon le contexte des

48 Résolution par diagrammes de décision

x

y

z

F

z

w

F

T

T

y

z

F

F

T F

T

F

T

T F

T

T

F

Fig. 4.2 – Diagramme de décision associé à l’arbre donné en figure 4.1. Notons le gain
en nombre de sommets, passé de 21 à 9.

booléens ou des signes ; variable représente les symboles de variables qualitatives. L’ap-
pel Leaf(c) construit le diagramme constitué d’une seule feuille qui est la constante c,
qui représente la classe d’équivalence des fonctions à variables qualitatives constantes
valant c. L’appel Node(V, d1, d2) construit un diagramme qui se lit ((si V = +, alors
d1 sinon (V = –) d2)). L’usage de la fonction Node est un peu délicat, parce qu’il faut
l’appeler avec des paramètres qui respectent la définition des diagrammes de décision.
Pour la première condition (monotonie des variables sur un chemin), il faut ajouter une
précondition à l’appel, disant que la variable du nœud créé doit être plus petite selon
≺ que les variables se trouvant à la racine des diagrammes fils. Le plus souvent, les
diagrammes sont construits récursivement à partir d’autres diagrammes, ce qui aide à
vérifier cet invariant. Pour la deuxième condition on opte en général pour une solution
différente : l’appel Node(V, d, d) retourne d.

Pour ces deux constructeurs, il est essentiel de maintenir l’invariant selon lequel
un nœud donné n’a qu’une seule représentation en mémoire. Pour cela, on utilise des
tables de hachage pour stocker les feuilles et les nœuds présents en mémoire centrale.
Ces tables sont vérifiées avant de créer de nouveaux diagrammes. Nous utiliserons la
notation == pour parler d’égalité physique (c’est-à-dire le fait que deux objets ont une
même représentation en mémoire). Rappelons que l’égalité physique implique l’égalité
structurelle (i.e. l’égalité des valeurs représentées), mais que la réciproque est fausse
en général. Les choses sont différentes dans le cas des diagrammes de décision, où une
implémentation doit vérifier pour tous diagrammes d1, d2, d1 = d2 ⇔ d1 == d2. Cet

Diagrammes de décision 49

invariant est une conséquence de propriétés suivantes sur les constructeurs :

c = c′ ⇒ Leaf(c) == Leaf(c′)
d1 == d′1 ∧ d2 == d′2 ∧ x = x′ ⇒ node(x, d1, d2) == node(x′, d′1, d

′
2).

Visiteurs Nous aurons également besoin d’outils pour inspecter les diagrammes. La
fonction is const distingue les diagrammes qui sont des feuilles ; la fonction root
fournit la variable racine d’un diagramme qui n’est pas une feuille ; les fonctions dthen
et delse donnent les fils gauche et droit respectivement d’un diagramme qui n’est pas
une feuille. On a par exemple l’invariant suivant : root(node(x, d1, d2)) == x. Ou encore
d1 6= d2 ⇒ delse(node(x, d1, d2)) == d2

Opérations définie sur l’ensemble d’arrivée Pour définir des opérations sur les
fonctions, on peut simplement se servir des opérations existant sur l’espace d’arrivée.
Soit p un opérateur unaire sur les constantes, et soit F une fonction booléenne, sur les
variables X1, . . . , Xn (on les suppose ordonnées). Le calcul du diagramme de p ◦ F se
base sur l’identité suivante :

– si F est une constante f alors p(F) = p(f)
– sinon

p(F (X1, . . . , Xn)) =
{
p(F (+, X2, . . . , Xn)) si X1 = +
p(F (–, X2, . . . , Xn)) sinon

(4.1)

De là, on calcule Dp◦F à partir de DF par l’algorithme suivant :

Function op unaire(op : constant → constant, d : diagram)

if is const(d) then
return leaf(op(to const(d)))

else
f0 ← op unaire(op, dthen(d))
f1 ← op unaire(op, delse(d))
return node(root(d), f0, f1)

Cet algorithme est remarquablement simple. Toutefois, la représentation compacte
des diagrammes ne doit pas faire oublier que l’on travaille in fine sur un arbre binaire.
Une conséquence directe est que l’algorithme présenté plus haut est en O(2n) si n est
le nombre de variables dans le support de la fonction booléenne. En effet, même si
chaque sous-arbre n’est représenté qu’une seule fois en mémoire, cet algorithme les
visite autant de fois qu’ils apparaissent dans l’arbre de décision.

Pour s’en sortir, on a recours à des techniques de mise en cache des résultats. Cette
amélioration est décisive en pratique, puisque dans le meilleur des cas, elle ramène
le nombre de calcul en temps quasi-linéaire en la taille du diagramme (quadratique
pour les opérations binaires, cf infra). Pour alléger les algorithmes, on ne mentionnera
plus la gestion des caches dans les algorithmes. Profitons néanmoins de l’exemple des
opérateurs unaires pour illustrer la démarche. Elle se transpose sans difficulté majeure
dans les algorithmes à venir.

50 Résolution par diagrammes de décision

Function op unaire’(op : constant → constant, d : diagram)

if is const(d) then
return leaf(op(to const(d)))

else
try return lookup(op, d)
if échec then

f0 ← op unaire’(op, dthen(d))
f1 ← op unaire’(op, delse(d))
store(op, d)
return node(root(d), f0, f1)

où lookup et store sont les opérations permettant de consulter et entrer une va-
leur dans le cache respectivement. Dans le même ordre d’idée, on peut construire des
opérations sur les fonctions booléennes à l’aide d’opérations binaires sur les constantes.
Soit une opération binaire⊕, ainsi que deux fonctions F etG sur les variablesX1, . . . , Xn.
Comme précédemment, on décompose par rapport à la plus petite variable.

– si F et G sont constantes et valent f et g respectivement, (F ⊕G)(X1, . . . , Xn) =
f ⊕ g

– sinon, on a

(F ⊕G)(X1, . . . , Xn) =
{
F (+, X2, . . . , Xn)⊕G(+, X2, . . . , Xn) si X1 = +
F (–, X2, . . . , Xn)⊕G(–, X2, . . . , Xn) sinon

(4.2)

Évaluation Un diagramme représentant une fonction, on doit pouvoir évaluer cette
fonction pour une valeur donnée de ses variables. Plus précisément, soit un diagramme
D représentant une fonction f de variables x1, . . . , xn, et soit une substitution σ définie
par σ(xi) = ai, on souhaite calculer f(a1, . . . , an). Il suffit pour cela de ((descendre))

dans le diagramme, en choisissant à chaque nœud xi le sous-arbre correspondant à la
valeur ai.

Function eval(d : diagram, σ : variable → constant)
Pre : support(d) ⊂ dom(σ)
if is const(d) then

return to const(d)
else

if σ(root(d)) = + then
return eval(dthen(d))

else
return eval(delse(d))

Élimination de quantificateurs Terminons cette courte introduction par deux
autres opérations qui seront utiles par la suite, à savoir l’élimination des quantifica-

Diagrammes de décision 51

teurs ∃ et ∀. Formellement, on considère un prédicat p(X,Y) – c’est-à-dire une fonction
booléenne à valeurs dans B – et il s’agit de trouver un nouveau prédicat q tel que q(X)
est vrai si et seulement si il existe une valeur pour Y telle que p(X,Y). On notera
q(X) = ∃Y p(X,Y). Dans le cas fini, cette question a une réponse particulièrement
simple :

q(X) =
∨

y1,...,yk∈B
p(X, y1, . . . , yk) (4.3)

Néanmoins, un algorithme näıf qui s’aventurerait à calculer cette disjonction de 2k

termes serait bien peu utile. Une façon plus réaliste de procéder consisterait à éliminer
successivement les variables :

∃Yk . . .∃Y1 P (X,Y1, . . . , Yk)
= ∃Yk . . .∃Y2 P (X,+, Y2, . . . , Yk) ∨ P (X,–, Y2, . . . , Yk)

= ∃Yk . . .∃Y2 P
(1)(X,Y2, . . . , Yk)

= ∃Yk . . .∃Y3 P
(1)(X,+, Y3, . . . , Yk) ∨ P (1)(X,–, Y3, . . . , Yk, 1)

= ∃Yk . . .∃Y3 P
(2)(X,Y3, . . . , Yk)

. . .

À chaque étape de ce développement, l’une des variables est éliminée en calculant
la disjonction correspondant aux valeurs qu’elle peut prendre. Plus précisément, la
fonction P (i) correspond à la fonction P où l’on a éliminé les variables Y1 à Yi. Dans
les cas favorables (c’est-à-dire le plus souvent en pratique), la taille des diagrammes
représentant les P (i) crôıt lentement avec i, voire pas du tout. En s’appuyant sur la
représentation en diagrammes de décision, on peut proposer un algorithme qui effectue
les k éliminations en un seul passage, comme dans la fonction exists. On obtiendrait
l’élimination de ∀ de la même manière en remplaçant dans l’algorithme le ou par un
et. On voit sur cet exemple une façon de procéder que l’on appliquera régulièrement :
grouper plusieurs opérations lors du parcours récursif du diagramme. Ici, on effectue
les k éliminations en un seul parcours.

Function exists(Y : variable set, d : diagram)

if is const(d) then
return d

else
f0 ← exists(Y, dthen(d))
f1 ← exists(Y, delse(d))
if root(d) ∈ Y then

return op binaire(or, f0, f1)
else

return node(root(d), f0, f1)

52 Résolution par diagrammes de décision

Synthèse Nous récapitulons les opérations (et les notations) introduites dans le type
abstrait présenté à la page 53. La syntaxe suivie est un langage proche des signatures
de modules dans Objective Caml.

4.1.3 Fonctions à variables dans un ensemble fini

Il est tout à fait possible de généraliser les diagrammes de décision aux fonctions
à variables dans un ensemble fini quelconque. La démarche est la même, sauf que
l’on considère des arbres n-aires au lieu d’arbres binaires. Plus précisément si l’on
dispose d’un ensemble V de variables prenant leurs valeurs dans un ensemble fini E =
{e1, . . . , en}, un arbre de décision A = (x,A1, . . . ,An) doit être tel que ∃i, j Ai 6= Aj .

Du point de vue implémentation, les choses sont nettement moins simples, et en
pratique la plupart des bibliothèques disponibles ne proposent que les diagrammes
pour fonctions booléennes. On peut donner deux raisons principales à cela :

– la condition sine qua non pour calculer avec les diagrammes de décisions, c’est
que le diagramme tienne en mémoire principale. Une bonne implémentation doit
donc veiller à optimiser la description du diagramme en mémoire. De ce point
de vue, il est nettement plus simple de connâıtre à l’avance l’arité de l’arbre de
décision.

– des variables pouvant prendre plus de deux valeurs peuvent toujours être codées
en utilisant plusieurs variables binaires. Dans ce cas, on utilise plus de variables.
Cependant une question (ouverte) est de savoir dans quel cas on fait apparâıtre
le plus de redondances.

– on peut même simuler le comportement d’une implémentation d’arbre n-aire en
jouant sur l’ordre d’apparition des variables. À une variable x sur un domaine fini
à n éléments est associé un ensemble de k = dlog2 ne variables binaires x1, . . . , xk.
De plus on impose que les variables xi soient consécutives selon ≺, c’est-à-dire
xi ≺ y ≺ xi+2 ⇒ y = xi+1. Enfin, on transforme tout arbre n-aire en un arbre
binaire de façon à trouver le ie sous-arbre du premier au bout du chemin dans le
deuxième qui correspond au codage binaire de i. Voici un exemple pour n = 3.

x

f2

2

f1

1

f0

0

x1

f2

T

x2

f1

T

f0

F

F

Ce codage est légèrement plus volumineux qu’une implémentation directe des
diagrammes de décision n-aires. Mais il présente l’avantage de reposer sur des
implémentations très efficaces. Notamment on pourrait – mais cela reste à faire
– répondre à la question évoquée au point précédent en comparant la taille des
diagrammes quand on relâche la contrainte sur l’ordre des xi.

Dans ce qui suit, nous représentons les contraintes qualitatives à l’aide de dia-

Diagrammes de décision 53

Module BDD
type variable
type constant
type diagram

// Visiteurs
val is const : diagram → bool
val to const : diagram → constant

[Pre : to const(d) if is const(d)]
val root : diagram → variable

[Pre : root(d) if ¬is const(d)]
val dthen : diagram → diagram

[Pre : dthen(d) if ¬is const(d)]
val delse : diagram → diagram

[Pre : delse(d) if ¬is const(d)]

invariant d : diagram ⇒ ¬(dthen(d) = delse(d))

// Constructeurs
val leaf : constant → diagram

[Post : c = c′ ⇒ leaf(c) == leaf(c′)]
[Post : to const(leaf(c)) = c]

val node : variable → diagram → diagram → diagram
[Pre : node(v, t, f) if is const(t) ∨ v ≺ root(t)]
[Pre : node(v, t, f) if is const(f) ∨ v ≺ root(f)]
[Post : root(node(v, t, f)) = v]
[Post : node(v, t, f) == node(v, t, f)]
[Post : dthen(node(v, t, f)) == t]
[Post : delse(node(v, t, f)) == f]

// Opérations
val op unaire : (constant → constant) → diagram → diagram
val op binaire : (constante → constant → constant) → diagram → diagram →
diagram

// Élimination de quantificateurs
val exists : variable set → diagram → diagram
val forall : variable set → diagram → diagram

54 Résolution par diagrammes de décision

grammes de décisions. Les variables qualitatives ont un domaine à trois valeurs (+, –,
et 0) et nous aurons donc besoin de diagrammes ternaires. Pour la réalisation des
algorithmes nous nous sommes appuyés sur le logiciel Sigali [63], qui possède une
implémentation dédiée des diagrammes ternaires. Nous avons supposé, mais pas vérifié,
que cette option était la plus appropriée pour limiter l’espace mémoire consommé par
les diagrammes. Dans la suite, nous exposerons des algorithmes travaillant sur des
arbres binaires, pour alléger leur présentation. À cette fin, nous limiterons le domaine
des variables à {+,–}, excluant ainsi la valeur 0. Le développement qui précède montre
une façon simple d’adapter nos propositions au cas de variables sur domaines finis1.

4.2 Problème de vérification

4.2.1 Diagramme associé à une contrainte qualitative

Une contrainte qualitative peut être vue comme une fonction booléenne, à savoir
la fonction indicatrice des solutions de la contrainte. Ce que nous proposons dans ce
chapitre, c’est de représenter une contrainte qualitative sous la forme d’un diagramme
de décision. Plus précisément, il s’agit d’une représentation en extension – mais com-
pacte – de l’ensemble des solutions d’une contrainte qualitative ; nous verrons comment
répondre à plusieurs questions sur l’ensemble des solutions par des parcours récursifs
du diagramme. Nous commençons par préciser sa construction.

Comme déjà mentionné, la façon la plus simple de construire le diagramme de
décision d’une fonction est de procéder de proche en proche, ou plus précisément en
suivant la structure de l’expression définissant la fonction. Ici, il suffit de définir par
induction le diagramme associé à une contrainte qualitative, comme montré dans la
fonction of term définie plus loin.

Il nous reste maintenant à préciser la relation entre l’ensemble des solutions d’une
contrainte C et le diagramme of term(C). Intuitivement, il suffit de suivre un chemin
de la racine du diagramme à la feuille T pour obtenir une solution. Sur ce chemin,
il peut manquer certaines variables apparaissant dans C ; ces variables peuvent alors
prendre n’importe quelle valeur.

Plus formellement, soient C une contrainte qualitative, et D = of term(C). Un
chemin π de D est dit chemin solution s’il part de la racine et finit au sommet T,
c’est-à-dire s’il est de la forme xi1

si1−→ xi2

si2−→ . . . xik

sik−→ T, où si1 , . . . , sik sont dans
{+,–}. On associe à π une valuation vπ telle que vπ(xir) = sir . L’application vπ est
en général une valuation partielle de C, c’est-à-dire dom(vπ) ⊂ support(C). On note
valC(π) l’ensemble des valuations totales de C qui sont des prolongements de vπ.

Proposition 3. Soit S = {valC(π) | π chemin solution dans D}. S est une partition
de l’ensemble des solutions de C.

1Notre implémentation dédiée au cas des variables à trois valeurs conduit à des algorithmes similaires
à ceux exposés dans cette thèse, mais un peu compliqués par la présence de trois fils à chaque nœud,
au lieu de deux.

Problème de vérification 55

Function of term(T : term)

match T with∧
i∈I ci

if I = ∅ then
return leaf(T)

else
Let j ∈ I
return op binaire(and, of term(cj), of term(

∧
i∈I\{j} ci))

∃v c
return exists({v}, c)

∀v c
return forall({v}, c)

p⊗ q
return op binaire(⊗, of term(p), of term(q))

−p
return op unaire(−, of term(p))

v
return node(v, leaf(+), leaf(–))

c ∈ S
return leaf(c)

56 Résolution par diagrammes de décision

A

B

D

C

XA ≈ XB − XC

XB ≈ XA − XC

XD ≈ XA

Fig. 4.3 – Exemple de graphe d’interaction et de la contrainte de consistance associée
pour la construction des diagrammes.

Démonstration.

1. les éléments de S sont non vides Soit π un chemin solution dans D. valC(π)
est au minimum de cardinal 1 si vπ est une valuation totale.

2. les éléments de S ont une intersection vide Soit π′ un chemin solution
distinct de π. Les chemins π et π′ admettent un préfixe commun de longueur maximale u
contenant au moins la racine de D, et ne contenant pas T (sinon π et π′ sont identiques).
π est de la forme u s−→ v et π′ de la forme u t−→ v′ avec s 6= t. Soit x le dernier
sommet de u. Pour toutes valuations (v, v′) ∈ valC(π) × valC(π′), on a par conséquent
v(x) 6= v′(x).

3. L’union des éléments de S est l’ensemble des solutions de C Soit une
solution de C. Alors cette valuation décrit un chemin (unique) dans D qui se termine
par la feuille T.

Voyons cette construction à l’œuvre sur un exemple, avec le graphe d’interaction
présenté en figure 4.3. Le sommet C est considéré par défaut comme une entrée parce
qu’il n’a aucun prédécesseur. Le tableau 4.1 donne les principales phases de la construc-
tion de la contrainte. La variable XC n’apparâıt pas dans le diagramme final, qui admet
deux chemins solution π1 = XA

+−→ XB
+−→ XD

+−→ T et π2 = XA
–−→ XB

–−→ XD
–−→

T. Chaque chemin permet de construire deux solutions à la contrainte qualitative, une
pour chaque valeur de XC .

4.2.2 Algorithme pour la vérification

Une fois l’ordre sur les variables fixé, les diagrammes de décision fournissent une
représentation canonique de nos contraintes qualitatives. Dit d’une autre manière, deux
contraintes qualitatives sont équivalentes (décrivent le même ensemble de solutions) si

Problème de prédiction 57

XA XB − XC XD ≈ XA XB ≈ XA − XC XA ≈ XB − XC

XA ≈ XB − XC

XB ≈ XA − XC

XD ≈ XA

+ -

A

+ -?

C C

B

T F

D

+ -

D

- +

A

+ -

T F

C

+ -

C

- +

B

+

-

B

-

+

A

+ -

TF

C

+-

C

-+

B

+

-

B

-

+

A

+ -

T F

D

+ -

D

- +

B

-

+

B

+

-

A

+-

Tab. 4.1 – Principales étapes de construction pour le graphe d’interaction donné en
figure 4.3. À chaque expression sur la première ligne correspond juste en dessous son
diagramme pour l’ordre XA ≺ XB ≺ XC ≺ XD. De gauche à droite, les exemples choisis
illustrent la construction de diagramme pour une variable, une expression polynomiale
à partir des digrammes des variables, une égalité qualitative à partir des diagrammes
des variables, une égalité qualitative à partir des diagrammes d’expressions polyno-
miales (deux exemples), et enfin une conjonction à partir des diagrammes d’égalités
qualitatives.

elles ont même ensemble de variables libres et même diagramme2. Nous utiliserons
souvent un cas particulier important : quand un diagramme n’a aucun chemin de la
racine vers T, alors il est nécessairement égal au diagramme contenant la seule feuille
F. Cela nous permet de tester facilement l’existence d’une solution à une contrainte à
partir de son diagramme.

Proposition 4. Soit une contrainte qualitative C, et D le diagramme de décision as-
socié. La contrainte C admet une solution si et seulement si D n’est pas réduit à la
feuille F.

Nous avons à ce stade obtenu un algorithme pour le problème suivant :

Problème 1 (Vérification sous N -consistance). Soient un graphe d’interaction G =
(V,E, ρ), et un ensemble µ de mesures. Déterminer si G et µ sont N -consistants.

Il suffit de calculer la contrainte Cµ
G introduite dans la définition 1, calculer son dia-

gramme et vérifier qu’il est différent du diagramme F.

4.3 Problème de prédiction

4.3.1 Invariant de l’ensemble des modèles

Une contrainte qualitative décrit un ensemble de solutions. Il n’y a a priori aucune
raison d’en privilégier une, mais on peut en revanche s’intéresser aux invariants de cet

2Notons que le test d’égalité des diagrammes se réduit même à un test d’égalité physique, puisque
les implémentations assurent l’unicité de la représentation en mémoire.

58 Résolution par diagrammes de décision

ensemble, c’est-à-dire aux propriétés vraies pour toute solution de la contrainte. Dit
autrement, un invariant est une conséquence de la contrainte. Dans la suite, nous tra-
vaillerons uniquement sur des invariants simples, qui stipulent qu’une variable donnée
prend la même valeur dans toutes les solutions de la contrainte.

Définition 8 (Invariant). Soit une variable v et un signe s dans S∗. Le couple (v, s)
est un invariant d’une contrainte satisfiable C sur l’ensemble de variables X si s′ 6=
s⇒ ¬∃X C[v := s′].

Il découle de la définition que toute solution v de C vérifie v(v) = s. La recherche des
invariants d’une contrainte est un problème de prédiction, que nous étudions mainte-
nant :

Problème 2 (Prédiction sous N -consistance). Déterminer tous les invariants d’une
contrainte.

Voici un premier algorithme, calqué sur la définition :

Function invariant(1)(d : diagram)

Pre : d 6= leaf(F)

V ← support(d)
for x ∈ V do

E ← {s ∈ S | eval(d, [x := s]) 6= leaf(F)}
if |E| > 1 then V ← V \ {x}

return V

Pour chaque variable x, l’algorithme calcule les diagrammes de C[x := s] pour s dans
S∗. Si le diagramme obtenu est la constante F alors il n’est pas possible de trouver une
solution de C telle que x = s. L’ensemble E contient donc les signes possibles pour x.
Par conséquent :

– puisque C est satisfiable (précondition) E contient au moins un élément
– x peut former un invariant ssi E contient au plus un élément.

Cet algorithme est simple, mais nécessite le calcul de |S∗|.| support(d)| diagrammes, à
travers l’emploi de la fonction eval. Voyons à présent comment caractériser les inva-
riants directement dans le diagramme de décision.

Proposition 5. Soit C une contrainte, et DC son diagramme de décision. (x, s) est un
invariant de C ssi :

– x est dans le support de DC

– tout chemin de la racine à la feuille T est de la forme . . . x s−→ . . .

La première condition implique que DC n’est pas une constante, et par conséquent
que C admet au moins une solution. Cette propriété justifie l’algorithme récursif values
donné plus bas. À un diagramme D représentant une contrainte C et une variable x,
l’algorithme values associe l’ensemble des valeurs s telles que C[x := s] admet une
solution. Pour s’en convaincre, examinons les trois cas (disjoints et exhaustifs) envisagés
dans l’algorithme :

Problème de prédiction 59

1. si D est une constante ou si la variable de tête de D suit x pour l’ordre ≺, cela
signifie que x n’apparâıt pas dans D, et n’est donc pas contrainte.

2. si la variable de tête de D est x alors on vérifie l’existence de solutions pour x = +
et pour x = –. Par définition du diagramme, les nœuds fils de D représentent les
contraintes C[x = +] et C[x = –]. On teste l’existence de solution de chacune de
ces deux contraintes en les comparant au diagramme constant F.

3. si la variable de tête w de D n’est pas x, alors on utilise la relation suivante

{s | C[x = s]} = {s | C[x = s,w = +]} ∪ {s | C[x = s,w = –]}

Function values(x : variable, d : diagram)

Pre : d 6= leaf(F)

case is const(d) ∨ x ≺ root(d)
return {+,–}

case x = root(d)
P+ ← if dthen(d) = leaf(F) then {–} else ∅
P– ← if dfalse(d) = leaf(F) then {+} else ∅
return P+ ∪ P–

case x � root(d)
return values(dthen(d)) ∪ values(delse(d))

On peut en fait calculer en un seul parcours du diagramme tous les invariants,
comme montré dans la fonction invariant(2) définie plus bas. Cette fonction retourne
un ensemble de couples variable/valeur qui sont des invariants du diagramme considéré.
Le cas terminal de la récursion dit qu’une constante n’admet aucun invariant. Si le
diagramme considéré est un nœud, alors soit un seul de ses fils mène à la feuille T – et
alors on a trouvé un invariant, que l’on ajoute à ceux que l’on trouve récursivement ;
soit les deux fils peuvent conduire à la feuille T. Dans ce cas la variable correspondant
au nœud n’est pas un invariant, et on cherche récursivement les invariants dans chaque
branche. On utilise enfin le fait que si un couple n’est pas présent dans les deux résultats,
alors il n’est pas un invariant dans l’un des fils, ou alors la valeur de la variable est
différente dans les deux fils.

4.3.2 Marginales

Définition Un invariant est une conséquence d’une contrainte donnée, et constitue
pour cette raison une prédiction bona fides d’un modèle. On peut également s’intéresser
à une notion moins forte, que nous introduisons ici. La contrainte de consistance Cµ

G
définie au paragraphe 3.1.3 décrit l’ensemble des modèles admissibles. En supposant
tous ces modèles sont équiprobables, on peut s’intéresser à la probabilité qu’une variable
x prenne la valeur s, soit P[x = s|Cµ

G]. Cette probabilité peut être calculée en comptant
les solutions de la contrainte.

60 Résolution par diagrammes de décision

Function invariant(2)(d : diagram)

if is const(d) then
return ∅

case dthen(d) = leaf(F)
return {(root(d),–)} ∪ invariant(2)(delse(d))

case delse(d) = leaf(F)
return {(root(d),+)} ∪ invariant(2)(dthen(d))

otherwise
I+ ← invariant(2)(dthen(d))
I– ← invariant(2)(delse(d))
return I+ ∩ I–

Solutions de la contrainte et chemin dans le diagramme À première vue –
mais à première vue seulement – on pourrait penser que compter les solutions d’une
contrainte revient à compter les chemins de la racine du diagramme au sommet T.
Cette approche simple est malheureusement fausse, puisque comme on l’a vu, on peut
associer plusieurs solutions à chaque chemin de la racine à la feuille T. On peut le voir
sur l’exemple présenté en figure 4.3 : le système qualitatif comporte 4 variables, mais
le support du diagramme représentant les solutions de ce système n’en a plus que 3 ;
la variable représentant la variation du sommet C n’est pas contrainte, et n’apparâıt
donc pas dans le diagramme. En conséquence, il y a deux chemins dans le diagramme
qui mènent au sommet T, mais bien quatre solutions à la contrainte initiale.

Comme nous l’avons déjà vu, un diagramme de décision est une représentation
canonique pour une classe d’équivalence de fonctions booléennes. Ces fonctions diffèrent
par leur ensemble de départ, vu comme un ensemble de variables. Pour désigner une
fonction – ou une contrainte – booléenne, il faut donc donner à la fois son diagramme
et l’ensemble de ses variables. C’est pour cette raison qu’on ne peut compter le nombre
de solutions d’une contrainte à partir de son seul diagramme.

Valuations associées à un chemin Donnons-nous une contrainte C, son diagramme
de décision DC, et un chemin π de la racine au sommet T. Nous avons introduit au
paragraphe 4.2.1 la valuation partielle vπ décrite par π, ainsi que l’ensemble valC(π)
des solutions de C qui sont des prolongements de vπ. Soit X l’ensemble des variables
libres de C. Pour construire un prolongement de vπ sur X, il suffit de choisir une valeur
parmi deux pour chaque variable de C n’apparaissant pas dans π. On en déduit l’égalité
suivante :

| valC(π)| = 2|X|−|π|+1 (4.4)

Pour obtenir le nombre total de solutions de la contrainte (noté #C), on somme
| valC(π)| pour tous les chemins π de la racine à la feuille T :

#C =
∑
π

| valC(π)| (4.5)

Problème de prédiction 61

Cette formule n’est pas encore très opérationnelle ; nous voyons à présent une formule
de récurrence qui constitue la base d’un algorithme sur les diagrammes de décision.

Formulation récursive Il suffit de décomposer le terme par rapport à une variable
libre. Soit x une variable libre dans C, on a :

#C = #C[x := +] + #C[x := –] (4.6)

Cette relation est utile pour le calcul récursif que nous proposons avec la fonction
cardinal définie plus bas. Cette fonction reçoit en argument la représentation cano-
nique d’une contrainte, i.e. son diagramme et l’ensemble de ses variables libres. La
précondition indiquée assure que le support du diagramme est bien contenu dans les
variables libres de la contrainte. Trois cas sont envisagés : tout d’abord, si le diagramme
est constant, alors le résultat est donné par la formule (4.4). Dans le cas contraire, le dia-
gramme a une variable de tête, que l’on va comparer à la variable libre de la contrainte
la plus prioritaire. Si elles sont égales, on applique la formule (4.6). Si la contrainte
admet une variable libre plus prioritaire que la racine du diagramme, cela signifie que
la variable en question n’apparâıt pas dans le diagramme, et que par conséquent les
diagrammes de C[x := +] et C[x := –] sont identiques, d’où la récurrence employée.
Dans les deux cas, la précondition pour l’appel récursif de la fonction cardinal est bien
vérifiée. Enfin le cas où la variable à la racine du diagramme est strictement plus prio-
ritaire que les variables libres du diagramme ne peut pas arriver, parce qu’il contredit
la précondition.

Function cardinal(d : diagram, S : variable set)
Pre : support(d) ⊆ S
if is const(d) then

return 2|S|

x← minS // Minimum selon ≺
if root(d) = x then

n1 ← cardinal(dthen(d), S \ {x})
n2 ← cardinal(delse(d), S \ {x})
return n1 + n2

if root(s) ≺ x then
return 2× cardinal(d, S \ {x})

Proportion de solutions Avec cet équipement, nous pouvons calculer la probabilité
qu’une variable x prenne la valeur s sous la contrainte C. Elle s’exprime par :

P[x = s|C] =
#C[x := s]

#C

Comme nous l’avons vu, le nombre de solutions d’une contrainte dépend du nombre de
ses variables libres et ce, même si certaines de ces variables peuvent prendre n’importe

62 Résolution par diagrammes de décision

quelle valeur. De telles variables n’apparaissent pas dans le diagramme de la contrainte.
Cela signifie que l’on peut augmenter ((artificiellement)) le nombre de solutions en ajou-
tant des termes dans une conjonction qui sont des tautologies et qui ont des variables
libres (comme x ≈ ? par exemple).

Nous allons voir maintenant que cette propriété désagréable disparâıt quand on
considère non plus le nombre de solutions d’une contrainte, mais le rapport entre le
nombre de solutions et le nombre total de valuations des variables de la contrainte.
Cette proportion de solutions est invariante quand on ajoute des ((variables inutiles)) à
la contrainte. Soit C une contrainte etX l’ensemble de ses variables libres. La proportion
de solutions de C est définie comme :

ρC =
#C

2|X|

La proposition suivante dit essentiellement que cette grandeur est indépendante de
l’ensemble des variables libres de la contrainte.

Proposition 6. La fonction C 7→ ρC est constante sur une classe d’équivalence selon
∼ (voir définition page 47).

Démonstration. Soit une contrainte booléenne C, etX l’ensemble de ses variables libres.
Le couple (DC, X) où DC est le diagramme de décision de C désigne C de manière
univoque. Nous avons en particulier support(DC) ⊆ X. Nous pouvons considérer 3
cas :

1. DC = T. Toute valuation des variables de X est une solution donc ρC = 1
2. DC = F. Aucune valuation des variables de X n’est une solution donc ρC = 0
3. Alors soit x la variable à la racine de DC. On a :

ρC =
#C

2|X|

=
#C[x := +] + #C[x := –]

2|X|

=
1
2
(
#C[x := +]

2|X|−1
+

#C[x := –]
2|X|−1

)

=
1
2
(
#C[x := +]

2|X\{x}| +
#C[x := –]

2|X\{x}|)

=
ρC[x:=+] + ρC[x:=–]

2

Dans chacun des cas, la proportion ne dépend pas de X, mais seulement du diagramme
DC, qui est constant sur une classe d’équivalence selon ∼.

Calcul de la proportion de solutions On déduit de cette preuve un algorithme
pour le calcul de la proportion, décrit dans la fonction proportion. La fonction procède
récursivement sur le diagramme de décision en reprenant les trois cas de la preuve
ci-dessus.

Diagnostic des contraintes non satisfiables 63

Function proportion(d : diagram)

case d = leaf(T)
return 1

case d = leaf(F)
return 0

otherwise
p+ ← proportion(dthen(d))
p– ← proportion(delse(d))
return p++p–

2

Calcul des marginales On considère à nouveau une contrainte C, X l’ensemble de
ses variables libres, et x une variable quelconque. On voit maintenant par un calcul
rapide que la marginale P[x := s|C] est elle aussi constante sur une classe d’équivalence
selon ∼ :

P[x = s|C] =
#C[x := s]

#C

=
#C[x := s]

2|X|
2|X|

#C

=
2ρC[x:=s]

ρC

Les marginales peuvent être calculées en construisant le diagramme de C[x := +] pour
chaque x dans X, et obtenir le résultat par la formule ci-dessus.

Notons pour finir un point important sur l’implémentation : le nombre de solutions
d’une contrainte crôıt au pire en 2n si n est le nombre de variables dans le support du
diagramme. En pratique, le nombre de modèles satisfaisant la contrainte est souvent
très élevé, et pour éviter les débordements il faut avoir recours à des entiers de taille
arbitraire. Les proportions sont elles calculées sous forme de rationnels.

4.4 Diagnostic des contraintes non satisfiables

Jusqu’ici, nous n’avons considéré que le cas où la contrainte étudiée est satisfiable.
Lorsque ce n’est pas le cas, on aimerait pouvoir circonscrire des raisons possibles pour
ce problème. Si un graphe n’est pas compatible avec des observations, ce peut être pour
trois raisons :

– signe erroné
– flèche manquante
– équation non applicable (voir la discussion sur les hypothèses dans le cadre

différentiel au chapitre précédent).
Nous proposons une formulation générale pour définir ce type de problème et ce

que nous appellerons un diagnostic.

64 Résolution par diagrammes de décision

Définition 9. Soit C une contrainte et σ une substitution, telles que C[σ] n’admet
aucune solution. On appelle correction une substitution σ′ de même domaine, telle que
C[σ′] admette une solution.

La distance entre deux mesures σ et σ′ de même domaine est le nombre de leurs
différences. Plus précisément,

d(σ, σ′) = |{x ∈ dom(σ)|σ(x) 6= σ′(x)}|

Une correction est un diagnostic si d(σ, σ′) est minimale.

La fonction que nous venons de définir est bien une distance : comme les fonctions
ont même domaine, il s’agit de la distance de Hamming. Voyons tout de suite comment
cette définition se spécialise en différents problèmes pratiques.

4.4.1 Données bruitées

Les données de puces à ADN fournissent le rapport des concentrations/niveau d’ex-
pression entre deux conditions expérimentales. Quand le rapport est significativement
différent de 1, l’interprétation en un signe de variation est relativement sûre. Néanmoins
pour la plupart des gènes, la variation n’est pas significative, et peut mener à une in-
terprétation incorrecte : un ratio légèrement supérieur à 1 doit-il être entré dans le
modèle comme une variation positive, ou nulle, ou carrément rejetée ? On peut envisa-
ger deux stratégies :

– soit rejeter toutes les ratios en-dessous d’un certain seuil, au risque de perdre de
l’information,

– soit garder toutes les données, quitte à obtenir une contrainte qualitative sans
solution.

La deuxième alternative requiert de disposer d’un outil permettant d’identifier les
données peu fiables. Voici une façon de procéder :

– construire la contrainte de consistance aux sommets C∅G
– construire la mesure µθ correspondant aux données expérimentales, avec l’in-

terprétation suivante :
ratio pour x µ(x)
r < −θ → –
−θ < r < θ → 0

θ < r → +

– dans le cas où C[µθ] n’est pas satisfiable, déterminer l’ensemble des diagnostics
– chercher dans l’ensemble des diagnostics les invariants, ou calculer les marginales.

4.4.2 Reconstruction de réseau

Une problématique récurrente en biologie moléculaire consiste à déterminer les inter-
actions moléculaires dans un système biologique donné, à partir de données de pertur-
bation. La quantité de données disponible est en général très insuffisante pour suffire
à cet objectif. Plus formellement, cela signifie que le problème inverse est mal posé,

Diagnostic des contraintes non satisfiables 65

c’est-à-dire qu’il admet un grand nombre de solutions. On impose donc en général un
critère de parcimonie, qui limite le nombre de solutions. Ce genre de tâche entre tout
à fait dans notre problématique :

– on considère un graphe d’interaction G complet, dont les arcs sont étiquetés avec
un signe, éventuellement nul. Ainsi, les équations qualitatives sont de la forme :

Xik ≈
∑
j∈G

SjiXjk

– on considère la mesure µ où les données expérimentales sont intégrées comme
au-dessus, et où l’on ajoute µ(Sji) = 0.

– le problème de reconstruction consiste alors à trouver l’ensemble des µ′ qui sont
des diagnostics de µ, et à y chercher des invariants ou calculer les marginales

4.4.3 Recherche des sous-systèmes incompatibles

Une contrainte C est une conjonction de contraintes plus simples, notées Cik. Cha-
cune de ces contraintes Cik est associée à un sommet i et une mesure k. Pour faciliter la
lecture et la compréhension des inconsistances détectées, une possibilité consiste à iso-
ler les contraintes qui en sont à l’origine ; et si possible d’en isoler le plus petit nombre
possible. Là encore notre formulation permet d’aborder ce problème :

– à chaque contrainte Cik, on associe une variable booléenne Bik, et on considère
les contraintes :

C′ik = Bik ∨ Cik[µk]

et leur conjonction :
C′ =

∧
i,k

C′ik

– on se donne la mesure µ telle que µ(Bik) = F
– si C[µ] n’est pas satisfiable alors on calcule les diagnostics µ′

4.4.4 Calcul des diagnostics

Nous montrons à présent comment calculer tous les diagnostics d’une contrainte non
consistante avec une mesure (voir la fonction diagnostic). Comme dans les sections
précédentes, il s’agit d’un calcul récursif sur le diagramme représentant la contrainte.
La difficulté ici repose sur le stockage des diagnostics trouvés, qui peuvent en effet
être très nombreux. L’astuce consiste à stocker l’ensemble des diagnostics comme un
diagramme de décision. La valeur calculée par la fonction diagnostic est une paire,
comportant la distance de la mesure à ses diagnostics et l’ensemble des diagnostics,
lui-même représenté par un diagramme.

Pour alléger la présentation, nous avons introduit une fonction lin qui est un
constructeur de diagramme analogue à node, et qui reçoit trois arguments : une variable
x, un diagramme D et un signe s. La fonction lin construit le diagramme avec x à la
racine, avec D pour le fils correspondant au signe s, et leaf(F) pour l’autre fils.

66 Résolution par diagrammes de décision

Function diagnostic(d : diagram, µ : substitution)
Output: une paire (δ, C) où C représente l’ensemble des diagnostics de d[µ]

if d = leaf(F) then return (∞, d)
if dom(µ) = ∅ then return (0, leaf(T))
x← mindom(µ) // minimum selon ≺
if d = leaf(T) then

(δ,m)← diagnostic(d, µ/ dom(µ)\{x})
return (0, lin(x,m, µ(x)))

if root(d) ≺ x then
(δ+,m+)← diagnostic(dthen(d), µ)
(δ–,m–)← diagnostic(delse(d), µ)
δ ← min {δ+, δ–}
return (δ,

∨
s∈{+,–},δs=δ lin(root(d),ms, s))

if root(d) � x then
(δ,m)← diagnostic(d, dthen(µ))
return lin(x,m, µ(X))

if root(d) = x then
(δ+,m+)← diagnostic(dthen(d), µ/ dom(µ)\{x})
(δ–,m–)← diagnostic(delse(d), µ/ dom(µ)\{x})
if µ(x) = + then δ– ← δ– + 1 else δ+ ← δ+ + 1
δ ← min {δ+, δ–}
return (δ,

∨
s∈{+,–},δs=δ lin(x,ms, s))

Réduction, décomposition des systèmes 67

Une limite importante de cet algorithme est qu’il requiert la construction de la
contrainte (c’est-à-dire la conjonction complète). Or celle-ci peut contenir un grand
nombre de variables et ne pas tenir en mémoire centrale. C’est un sérieux handicap
pour la reconstruction de graphe d’interaction : le nombre de variables de la contrainte
crôıt évidemment en O(n2) si n est le nombre de gènes.

4.5 Réduction, décomposition des systèmes

Tous les algorithmes que nous avons proposés jusqu’à présent pour étudier une
contrainte supposent de construire au préalable son diagramme de décision. C’est vrai
aussi bien pour trouver les solutions, les prédictions et les diagnostics d’une contrainte
donnée. Il s’agit là d’une faiblesse importante de cette approche, puisque si le nombre
de variables augmente trop, le diagramme peut ne plus tenir en mémoire centrale.

Nous proposons ici de déterminer si l’on peut répondre aux mêmes questions sans
jamais calculer le diagramme complet. Pour cela, nous allons étudier les contraintes qui
sont des conjonctions et qui sont telles qu’une variable donnée apparâıt dans un petit
nombre de contraintes.

Définition 10 (Graphe d’une conjonction). Soit C =
∧

1≤i≤n Ci(X(i)), où X(i) est l’en-
semble des variables libres apparaissant dans la contrainte Ci. Le graphe de la conjonc-
tion C noté GC est le graphe biparti défini comme suit :

– les sommets de GC sont d’une part les contraintes Ci pour 1 ≤ i ≤ n, et d’autre
part les variables libres de C.

– pour chaque contrainte Ci et pour chaque variable x ∈ X(i), le graphe contient
l’arête {x,Ci}

Nous utiliserons ce graphe pour étudier les systèmes obtenus en sélectionnant un
sous-ensemble des contraintes de la conjonction. Pour obtenir le sous-graphe correspond
à un sous-ensemble de la conjonction, il suffit de construire le sous-graphe engendré par
les sommets contrainte correspondant et tous leurs voisins directs. On parlera notam-
ment de sous-graphe induit par un sous-ensemble de contraintes, que l’on notera < E >.

4.5.1 Réduction préservant l’existence de solution

Dans ce paragraphe, nous exploitons la forme particulière des contraintes de consis-
tance aux sommets.

Proposition 7. Soit une contrainte C =
∧

1≤i≤n Ci(X(i)). Si GC contient un som-
met contrainte Ck relié à un sommet variable v de degré 1, alors la contrainte D =∧

1≤i≤n,i6=k Ci(X(i)) est telle que toute solution de D peut être étendue en une solution
de C.

Démonstration. Soit une solution µ de D. La variable v n’apparâıt que dans la contrainte
Ck, donc il suffit de trouver une valeur de v rendant Ck satisfiable. La contrainte Ck est
de la forme X1 ≈ X2 + · · ·+ Xl. Soit i tel que Xi = v.

68 Résolution par diagrammes de décision

1. si i = 1, alors c = (X2 + · · ·+ Xl)[µ] est une constante. Si c = ? toute valeur pour
v convient. Sinon, il suffit de poser v = c.

2. si i > 1, il suffit de poser v = µ(X1).

Proposition 8. Soient une contrainte C =
∧

1≤i≤n Ci(X(i)) et GC le graphe de la
conjonction. On considère l’application t : C 7→

∧
i∈E\F Ci(X(i)), où E = {Ci | 1 ≤ i ≤

n} et F = {Ck | ∃v {Ck, v} ∈ GC ∧ deg(v) = 1}.

1. La suite
(
tk(C)

)
k

admet une limite, appelée contrainte réduite.

2. Toute solution de la contrainte réduite peut être étendue en une solution de la
contrainte originale.

Démonstration. La fonction t est décroissante au sens de l’inclusion, en identifiant les
conjonctions à l’ensemble des contraintes dans la conjonction. La suite

(
tk(C)

)
k

est
donc elle aussi décroissante et elle est de plus minorée par ∅. Par conséquent elle admet
une limite.

Nous venons de définir une opération de réduction du système, telle que toute so-
lution du système réduit peut être étendue pour construire une solution du système
original. De plus, la preuve donne un algorithme effectif et simple pour cette construc-
tion.

4.5.2 Décomposition

Si la réduction décrite ci-dessus n’est pas suffisante, nous recourons à une approche
de type ((diviser pour régner)). Notons que d’autres formes de décomposition des
réseaux biologiques (et notamment des graphes d’interaction) ont déjà été abordées
[21], avec toutefois des motivations différentes. Soit une contrainte de la forme :

C(X,Y, Z) = C1(X,Y) ∧ C2(Y, Z)

où X et Z sont des ensembles de variables disjoints. Pour un calcul donné, on effec-
tuera un traitement sur chaque partie de la conjonction, puis on combinera les résultats
intermédiaires pour obtenir le résultat final. La récurrence dépend du calcul effectué,
mais dans tous les cas, on évite ainsi de construire un diagramme sur les variables X,
Y et Z, susceptible d’avoir une représentation en mémoire trop volumineuse.

Ce procédé est applicable récursivement, jusqu’à ce que les sous-systèmes contiennent
un nombre suffisamment petit de variables. Pour simplifier la présentation, nous intro-
duisons une représentation explicite de cette procédure.

Définition 11 (Décomposition). Soit une contrainte C(X) =
∧

1≤i≤n Ci(X(i)), on ap-
pelle décomposition de C de grain θ un arbre binaire dont les sommets sont des sous-
ensembles de {1, . . . , n}, tel que :

Réduction, décomposition des systèmes 69

– une feuille F est telle que le support de la contrainte
∧

i∈F Ci(X(i)) contient au
plus θ éléments.

– pour tout nœud N , ses fils N0 et N1 forment une partition de N .

Les feuilles d’une décomposition sont des sous-systèmes dont le diagramme est a
priori de taille suffisamment petite. Le ((suffisamment)) dépend bien évidemment
de l’implémentation, d’où l’existence du paramètre θ. Notons dès à présent qu’une
condition nécessaire et suffisante pour l’existence d’une décomposition est qu’aucune
des contraintes Ci n’ait un support de cardinal supérieur à θ.

Remarquons, enfin, que la condition sur les feuilles est difficile à vérifier : pour
connâıtre le support d’une contrainte, il faut en construire le diagramme, ce qui est un
calcul coûteux. En pratique, on utilisera une borne supérieure simple à obtenir, à savoir
le nombre de variables libres dans la contrainte.

Nous définissons à présent trois étiquetages d’une décomposition. Ces étiquetages
décrivent les variables présentes dans le sous-système associé à chaque nœud. Soit C
une contrainte et A une décomposition de C. Pour tout sommet N de A, on note
V(N) =

⋃
i∈N X(i) l’ensemble des variables libres apparaissant dans au moins une des

contraintes Ci(X(i)) pour i ∈ N . Nous aurons aussi besoin de l’étiquette notée X (N)
qui correspond à l’ensemble des variables ((privées)) de N : ce sont les variables qui
apparaissent uniquement dans le sous-système correspondant à N . On définit enfin le
complémentaire, noté Y(N) qui correspond aux variables du sous-système décrit par
N qui sont partagées avec d’autres équations hors de N . Ces deux derniers étiquetages
sont mutuellement récursifs, à partir de la racine de A :

– Soit R la racine de A, on pose :

X (R) = V(R)

– Soit un nœud N ayant deux fils N0 et N1 respectivement fils gauche et droit, on
pose :

X (N0) = V(N0) \ (V(N1) ∪ Y(N))
X (N1) = V(N1) \ (V(N0) ∪ Y(N))

– Pour tout sommet N de A, on pose

Y(N) = V(N) \ X (N)

Si un nœud M est dans la descendance d’un nœud N , alors le système décrit par
M est un sous-système (au sens de l’inclusion de l’ensemble des contraintes) de N .
Les étiquetages que nous avons introduits décrivent l’ensemble des variables présentes
dans chaque sous-système de la décomposition. Des sommets situés sur des branches
différentes de la décomposition ont une intersection vide, mais les sous-systèmes qu’ils
représentent peuvent avoir des variables en commun. L’étiquetage V donne l’ensemble
des variables de chaque sous-système. L’étiquetage X donne les variables d’un sous-
système qui apparaissent uniquement dans sa branche ; l’étiquetage Y correspond aux
variables du sous-système qui apparaissent au moins une fois dans une autre branche de
l’arbre. On s’autorisera à appliquer ces étiquetages à des arbres, ce qui par convention
correspond à appliquer sur l’unique sommet de l’arbre s’il s’agit d’une feuille, ou sur la
racine de l’arbre sinon.

70 Résolution par diagrammes de décision

4.5.3 Calcul de la consistance selon une décomposition

Nous montrons à présent comment décider de l’existence d’une solution à une
conjonction, sans calculer le diagramme représentant la conjonction. La proposition
suivante justifie l’emploi des décompositions introduites au-dessus.

Proposition 9. Soient C(X) =
∧

1≤i≤n Ci(X(i)), et (A,B) une partition de X. Alors

∃X C(X) ≡ ∃(A ∩B)

(
∃(A \B)

∧
i∈A

Ci(X(i))

)
∧

(
∃(B \A)

∧
i∈B

Ci(X(i))

)

L’astuce proposée consiste à diviser la conjonction en deux parties (en profitant
de l’associativité de ∧), à éliminer les variables n’apparaissant que dans une seule
des deux parties, et enfin à calculer la conjonction, avec (dans les cas favorables) un
nombre réduit de variables. Dans la terminologie introduite au paragraphe précédent,
cela donne : si dans la décomposition on a un nœud N possédant deux fils N0 et N1,
alors on peut calculer les diagrammes correspondant à N0 et N1, éliminer les variables
X (N0) et X (N1) dans chacun des diagrammes, calculer la conjonction, puis éliminer
les variables dans Y(N). Cette relation est mise à profit dans l’algorithme décrit dans
la fonction consistency.

Function consistency(C : diagram set, A : decomposition)

case A is a leaf F
return exists(X (F), conjuction({ci ∈ C | i ∈ F}))

case A is a node (N,A0,A1)
r0 ← consistency(C,A0)
r1 ← consistency(C,A1)
return exists(X (N), conjuction({r0, r1}))

Soit C =
∧

1≤i≤n Ci(X(i)) une contrainte et A une décomposition de C. Un appel
consistency(C,A) calcule, pour chaque sommet S de A, le diagramme de la contrainte :

∃X (S)
∧
i∈S

Ci(X(i))

En particulier l’appel de la fonction retourne le diagramme de ∃X C(X) qui est la
constante T ou F selon que la contrainte a, ou non, une solution.

4.5.4 Calcul des invariants selon une décomposition

Nous montrons à présent comment calculer les invariants d’une contrainte sans
calculer explicitement cette contrainte. Nous restons dans les mêmes conditions que
précédemment : soit une contrainte C =

∧
1≤i≤n Ci(X(i)) et A une décomposition de

C. Nous aurons notamment besoin de la fonction γ qui à un sommet S de A associe
le diagramme de ∃X (S)

∧
i∈S Ci(X(i)). Il s’agit précisément des diagrammes calculés

Réduction, décomposition des systèmes 71

par l’algorithme précédent, et nous les supposerons pré-calculés, et accessibles en temps
constant.

L’idée que nous exploitons est la suivante : supposons que l’on partitionne l’ensemble
des contraintes formant la conjonction en deux sous-systèmes A et B ; les variables libres
de A se divisent en deux catégories, selon qu’elles sont également libres dans B ou non
(c’est-à-dire si elles sont dans X (A) ou dans Y(A) respectivement). Pour calculer les
invariants sur les variables ((privées)) de A, on calcule séparément les deux sous-
systèmes, puis on élimine les variables ((privées)) de B dans le diagramme de B. On
calcule ensuite la conjonction des diagrammes de A et B (dans laquelle n’apparaissent
plus les variables privées de B), et on y recherche les invariants qui concernent des
variables de A. Cette procédure est justifiée par la proposition suivante.

Proposition 10. Soit une contrainte C(X,Y, Z) = C1(X,Y)∧C2(Y, Z) telle que X et
Z sont des ensembles de variables disjoints. Soient

CX(X,Y) = C1(X,Y) ∧ (∃Z C2(Y, Z))
CZ(Y, Z) = C2(Y, Z) ∧ (∃X C1(X,Y))

On a alors :
inv(C(X,Y, Z)) = inv(CX(X,Y)) ∪ inv(CZ(Y, Z))

Le même principe peut être appliqué récursivement, en suivant une décomposition.
Cela est illustré dans la fonction invariants∗ qui est, à un détail près, une application
directe de la formule ci-dessus.

Function invariants∗(C : diagram set, A : decomposition, R : diagram)

case A is a leaf F
return invariant(conjuction({ci ∈ C | i ∈ F} ∪ {R}))

case A is a node (N,A0,A1)
R0 ← exists(V(A1) \ V(A0), conjuction({R, γ(A1)}))
R1 ← exists(V(A0) \ V(A1), conjuction({R, γ(A0)}))
I0 ← invariants∗(C,A0,R0)
I1 ← invariants∗(C,A1,R1)
return I0 ∪ I1

Le principe de l’algorithme est le suivant : soit un appel invariants∗(C, A, R). In-
tuitivement, l’ensemble C représente la conjonction complète, l’arbre A le sous-système
courant, et le diagramme R la contrainte exercée sur le sous-système courant par le reste
de la conjonction. On note S le sous-système courant, qui est un ensemble de contraintes
inclu dans C. Le résultat de cet appel est l’ensemble des invariants concernant les va-
riables libres de S. Si on tombe sur une feuille, alors le diagramme de S a suffisamment
peu de variables libres pour être calculé ; R correspond au diagramme de C \ S où l’on
a éliminé toutes les variables qui n’apparaissent pas dans S. Son support est donc inclu

72 Résolution par diagrammes de décision

dans celui du diagramme de S. On peut par conséquent calculer leur conjonction, et
donc les invariants. Si A est un nœud, alors on calcule récursivement les invariants
dans chacun des sous-systèmes de S (c’est-à-dire ceux qui correspondent aux fils de
A). Pour procédér à ces appels récursifs, il faut notamment calculer la conjonction
des contraintes dans le reste du système. Là encore, il faut calculer les conjonctions et
les éliminations de variables dans un ordre correct, et limitant autant que possible le
nombre de variables libres dans le support des intermédiaires de calcul. On parvient
ainsi à limiter le support de R au cardinal de Y(A).

L’efficacité pratique des procédés de décomposition décrits jusqu’ici dépend clai-
rement de la décomposition choisie. Pour clôre ce chapitre nous montrons comment
caractériser une ((bonne)) décomposition, et comment la calculer.

4.5.5 Choix de la décomposition

Nous suggérons deux critères pour évaluer une décomposition. En premier lieu, le
but de ces décompositions est d’éviter la construction d’un diagramme comportant
trop de variables. Pour cela, les deux sous-systèmes produits à chaque étape de la
décomposition doivent avoir le minimum de variables en commun. Pour s’en convaincre,
il suffit de regarder le cas limite : dans le meilleur des cas, les deux sous-systèmes ne
partagent pas de variables et peuvent être traités indépendamment.

Deuxièmement, une bonne décomposition doit comporter le minimum de sommets,
pour limiter le nombre d’opérations à effectuer. Cela implique d’arriver par partitions
successives à des sous-systèmes de support ((suffisamment petit)) le plus rapidement
possible. Une stratégie simple consiste à imposer qu’à chaque étape la partition choisie
détermine deux sous-systèmes comportant à peu près le même nombre de variables.

En suivant à la lettre ces deux critères, on arrive au problème d’optimisation sui-
vant : pour une décomposition A donnée, soit k le nombre de ses sommets, et pour tout
S ∈ A, on définit

αS =
{

−∞ si S est une feuille
|Y(S0) ∩ Y(S1)| si S0 et S1 sont les fils de S

La décomposition recherchée est celle minimisant l’objectif suivant :

obj = k + λmax
S∈A

αS

où λ est un paramètre permettant de contrôler l’importance relative des 2 critères.
Il faut bien admettre que ce problème est un peu compliqué, et que par ailleurs, sa
résolution exacte n’est pas à proprement parler cruciale.

Dans cet esprit, nous proposons dans la suite un algorithme glouton pour déterminer
une décomposition. Son principe est le suivant : si un système donné comporte trop de
variables dans son support, alors on choisit une partition des contraintes, telle que les
deux sous-systèmes ainsi formés aient le moins de variables en commun, et approxima-
tivement le même nombre de variables au total. Cette même procédure est appliquée
récursivement, jusqu’à ce que le nombre de variables dans le support des sous-systèmes
aux feuilles soit assez petit.

Réduction, décomposition des systèmes 73

Chaque étape de décomposition en deux parties peut être vue comme un problème
de graphe : soit C(X) =

∧
1≤i≤n Ci(X(i)) une contrainte et G = (C, V,E) le graphe de

conjonction associé, où C est l’ensemble des contraintes Ci, V est l’ensemble des va-
riables apparaissant dans C et E l’ensemble des arêtes du graphe. G est un graphe biparti
contraintes – variables. Les voisins d’une contrainte dans G sont les variables apparais-
sant dans la contrainte. Par extension, les voisins d’un ensemble de sommets contrainte
sont exactement les variables apparaissant dans la conjonction de ces contraintes, ce
que nous avons noté V(E) pour tout ensemble E de contraintes. Avec ces notations,
donnons maintenant un énoncé formel du problème de partition posé à chaque étape
de la décomposition.

Problème : DECOMP-STEP
Données : graphe de conjonction G = (C, V,E), réel ε
Solution : partition {A,B} de C telle que

|V(A)| ≤ 1+ε
2 |V|

|V(B)| ≤ 1+ε
2 |V|

|V(A) ∩ V(B)| est minimal
Ce problème de partition peut être vu comme une variante d’un problème bien

connu en théorie des graphes, connu sous le nom de Minimum Bisection Problem.
Ce dernier consiste à déterminer une partition des sommets d’un graphe non orienté
en deux parties de cardinal égal et minimisant la capacité des arêtes coupées par la
partition. Sa généralisation aux partitions de taille k ((k, ε) balanced partitioning en
anglais)[1] est également bien étudiée. Il s’agit dans tous les cas de problèmes difficiles :
Minimum Bisection Problem est prouvé NP-complet, et la meilleure approximation en
temps polynomial est en O(log2(n)) où n est le nombre de sommets dans le graphe. Nous
adaptons maintenant la preuve de NP-complétude à DECOMP-STEP, qui procède par
réduction de MAX-CUT, défini comme suit :

Problème : MAX-CUT
Données : graphe non orienté G = (V,E)
Solution : une partition {A,B} de V telle que

{{a, b} ∈ E | a ∈ A ∧ b ∈ B} est de cardi-
nal minimal

Théorème 11. DECOMP-STEP est NP-complet.

Démonstration. Considérons pour commencer une variante de DECOMP-STEP, nommée
DECOMP-STEP’, où le nombre de variables partagées doit être maximisé au lieu d’être
minimisé. DECOMP-STEP’ peut être réduit en DECOMP-STEP (et réciproquement)
par une transformation simple du graphe : plutôt que de relier une contrainte à ses
variables libres, on relie une contrainte C aux variables qui n’apparaissent pas dans C.

Soit G = (V,E) un graphe non orienté. On construit le graphe biparti H = (V ∪
W,E,E′) où :

– W est un ensemble de cardinal |V | disjoint de V
– E′ est l’ensemble construit en ajoutant deux arêtes {v, {v, v′}} et {v′, {v, v′}}

pour toute arête {v, v′} ∈ E.
La solution de DECOMP-STEP’ sur H et ε = 0 fournit une solution à MAX-CUT

sur G, en retirant de A et B les sommets de W .

74 Résolution par diagrammes de décision

Il nous reste enfin à préciser l’algorithme que nous avons utilisé pour résoudre le
problème DECOMP-STEP. Il existe un certain nombre d’algorithmes d’approximation
pour le problème Minimum Bisection Problem, et ceux-ci peuvent être adaptés pour
DECOMP-STEP. À cette possibilité, nous avons préféré l’utilisation de techniques de
résolution de contraintes booléennes décrites au prochain chapitre. Notons pour finir
que de tels problèmes de partitionnement de graphes biologiques vérifiant certaines
propriétés et partageant un minimum de sommets ont déjà été introduits dans d’autres
contextes, notamment dans des études de modularité des systèmes différentiels [53], ou
dans le cadre des systèmes différentiels monotones [21].

Bilan

Dans ce chapitre nous avons décrit une méthode de résolution des contraintes qua-
litatives, basée sur les diagrammes de décision. Nous avons tout d’abord montré com-
ment calculer efficacement l’ensemble des solutions d’une contrainte donnée à partir
d’opérations de composition des diagrammes. Le résultat est une structure de données
représentant de manière compacte chacune des solutions ; le gain en espace est obtenu
en exploitant les redondances trouvées entre les solutions. Dans un deuxième temps,
nous avons mis à profit cette structure de données pour étudier l’ensemble des solu-
tions. Ainsi on peut, par le biais de procédures récursives parcourant le diagramme en
profondeur, calculer les invariants d’une contraintes, les probabilités marginales sous
une contrainte de chaque variable, ou les corrections minimales à effectuer pour rendre
une contrainte compatible avec une mesure.

Le prix à payer pour ces résultats, c’est le risque permanent de tomber sur une
contrainte dont la représentation en mémoire sous forme de diagramme de décision
est trop volumineuse. Ce problème nous a conduit à mettre au point des procédures
de réduction et de décomposition des systèmes qualitatifs. Celles-ci sont applicables
quand une contrainte est une conjonction de contraintes comportant un petit nombre
de variables ; elles visent à produire le résultat demandé sur une contrainte sans jamais
construire complètement son diagramme.

Ces approches sont des réponses appropriées, mais il faut bien avouer qu’elles com-
pliquent un peu les calculs, et qu’elles ne sont pas toujours applicables. Notamment,
dès que l’une des contraintes dans une conjonction comporte un grand nombre de va-
riables, on ne peut plus trouver de décomposition adéquate. Ce cas particulier survient
en pratique dans les problématiques de reconstruction de réseau comme décrites au
paragraphe 4.4.2.

Nous avons pour cette raison proposé une seconde approche, qui repose sur des
techniques de résolution de contraintes booléennes. La stratégie est cette fois totalement
différente : pour une contrainte donnée, on cherche cette fois seulement à déterminer
une solution. Le compromis recherché est de faciliter le traitement de données plus
volumineuses, quitte à perdre certaines des possibilités offertes par les diagrammes de
décision.

Chapitre 5

Résolution par Answer Set
Programming

Nous revisitons dans ce chapitre les problèmes formulés plus haut à l’aide de tech-
niques de résolution de contraintes booléennes. Plus précisément, il s’agit d’étudier
les possibilités offertes par la programmation par ensemble réponse pour aborder les
problèmes de vérification, prédiction, correction/diagnostic. Il s’agit d’une technique
relativement récente, qui peut être vue comme l’intersection de deux axes de recherche :

1. la définition d’un langage et d’une sémantique pour les programmes logiques
facilitant la modélisation de problèmes

2. la recherche d’un moteur de résolution efficace pour déterminer le ou les modèles
d’un programme logique.

Cette combinaison permet d’appliquer la programmation par ensemble réponse pour
résoudre des problèmes combinatoires éventuellement difficiles. La démarche consiste à
écrire un programme logique dont les modèles sont exactement les solutions du problème
considéré ; on s’appuie ensuite sur un solveur dédié pour trouver les modèles du pro-
gramme logique. L’efficacité actuelle des solveurs disponibles rend cette approche tout
à fait réaliste, même pour le traitement de données volumineuses.

Dans la suite, nous introduisons brièvement la programmation par ensemble réponse,
puis nous montrons comment l’utiliser pour résoudre les problèmes de vérification, de
prédiction et de diagnostic/correction.

5.1 Une introduction à la programmation par ensemble
réponse

La programmation par ensemble réponse (Answer Set Programming, ASP) désigne
une famille de langages de programmation logique. Cette famille est caractérisée par
la sémantique commune utilisée, dites des modèles stables, que nous introduirons plus
loin. Brièvement, un programme ASP décrit un ensemble d’atomes à l’aide de règles. Un
atome est un terme, au sens habituel en programmation logique. L’ensemble d’atomes

75

76 Résolution par Answer Set Programming

décrit est appelé ensemble réponse (answer set) ou modèle du programme logique. Les
règles stipulent essentiellement que si certains atomes sont dans l’ensemble réponse
(corps positif d’une règle), et que d’autres atomes ne s’y trouvent pas (corps négatif
d’une règle), alors un ou plusieurs atomes (tête de la règle) doivent se trouver dans
l’ensemble réponse.

Un atome peut être vu comme un fait, et les règles comme des déductions permises
pour déterminer de nouveaux faits. La sémantique des modèles stables assure 1. que
l’ensemble réponse d’un programme en vérifie toutes les règles (autrement dit, que c’est
un modèle du programme), 2. que tout atome dans l’ensemble réponse est justifié par
au moins une règle du programme.

Dans la suite, nous introduisons en détail les programmes normaux (normal logic
programs), qui sont une variante de la programmation par ensemble réponse. Nous
mentionnerons ensuite plusieurs extensions.

5.1.1 Syntaxe

Nous nous limitons pour le moment aux programmes logiques où tous les atomes
sont des constantes d’un ensemble A. Un programme logique Π est un ensemble de
règles de la forme suivante :

h︸︷︷︸
tête

← a1, . . . , an︸ ︷︷ ︸
corps positif

, not b1, . . . , not bm︸ ︷︷ ︸
corps négatif

avec m,n ≥ 0, où h, a1, . . . , an, b1, . . . , bm ∈ A. L’opérateur not est appelé négation
par défaut (negation as failure). On note head(r) la tête h d’une règle r, body(r) =
{a1, . . . , an, b1, . . . , bm} le corps de r, body+(r) = {a1, . . . , ak} le corps positif de r et
body−(r) = {b1, . . . , bm} le corps négatif de r. Voici des exemples quelconques de règles
syntaxiquement correctes :

a ←
p ← not q
q ← a, c, not p

Les deux propriétés d’un ensemble réponse E que nous avons énoncées plus haut s’ex-
priment de la manière suivante :

– pour toute règle r d’un programme logique Π, si body+(r) ⊂ E et body−(r)∩E =
∅ alors head(r) ∈ E

– pour tout a ∈ E, on peut trouver r dans Π telle que head(Π) = a, body+(r) ⊂ E
et body−(r) ∩ E = ∅.

Ces deux propriétés ne caractérisent pas complètement les ensembles réponses. Nous
donnons à présent leur définition qui est basée sur la notion de modèle stable introduit
dans [33].

Une introduction à la programmation par ensemble réponse 77

5.1.2 Sémantique des modèles stables

Cas des programmes définis Un programme logique Π est défini (basic program)
s’il ne contient pas de négation par défaut, c’est-à-dire si :

∀r ∈ Π body−(r) = ∅

Dans ce cas particulier, la définition de l’ensemble réponse est naturelle : un ensemble
réponse est l’ensemble des déductions possibles en utilisant les règles du programme.
Cet ensemble est unique et se construit facilement, comme nous allons le voir. Pour un
programme défini Π, on note αΠ l’application définie par :

αΠ :
{

2A → 2A

X 7→ X ∪ head({r | r ∈ Π,body+(r) ⊂ X})

L’application αΠ calcule les conséquences d’un ensemble d’atomes selon Π et les ajoute
à son argument. Dit autrement, pour un ensemble d’atomes X, on applique les règles
ayant tous leurs prérequis dans X, et on ajoute les têtes de ces règles à X. Cette
application est donc croissante au sens de l’inclusion.

Voyons ce qui arrive si on itère cette opération. Soit H l’ensemble des atomes se
trouvant en tête d’une règle de Π, et soit X ⊂ H ; on a alors αΠ(X) ⊂ H. On en déduit
que la suite (αn

Π(∅))n est bornée (par H). Elle admet par conséquent une limite, que
l’on note Cn(Π). Cn(Π) est l’ensemble des atomes que l’on peut déduire en utilisant
un nombre fini de règles de Π. Plus formellement, Cn(Π) est l’unique plus petit point
fixe de αΠ et correspond donc au plus petit ensemble clos par les règles du programme
Π. On dira que c’est l’ensemble réponse de Π dans le cas défini.

Réduit d’un programme par rapport à un ensemble d’atomes Passons main-
tenant au cas général : on appelle réduit d’un programme Π par rapport à un ensemble
d’atomes X le programme

ΠX =
{
head(r)← body+(r) | r ∈ Π,body−(r) ∩X = ∅

}
Le passage au réduit transforme un programme logique en un programme défini, en

supprimant :
– les prérequis négatifs des règles,
– les règles qui ne sont pas applicables à cause de certains atomes présents dans X

Ensembles réponse d’un programme normal Puisque ΠX est un programme
défini, on peut calculer son ensemble réponse Cn(ΠX). On appelle ensemble réponse (ou
modèle stable) d’un programme logique Π tout ensemble d’atomes X tel que Cn(ΠX) =
X. Intuitivement, on peut comprendre cette définition de la manière suivante. Pour
qu’un ensemble d’atomes X soit un ensemble réponse, ce doit être un modèle où tout
atome admet une preuve, sous la forme d’une suite d’applications de règles. Pour savoir
si X est un ensemble réponse, il faut donc commencer par supprimer toutes les règles
qui ne sont pas applicables sous X, à cause des négations par défaut. Dans les règles

78 Résolution par Answer Set Programming

restantes, le corps négatif n’est donc pas utile. C’est ainsi le réduit de Π par X que
l’on a calculé. Maintenant, si les conséquences de ΠX sont exactement X, cela signifie
que tout atome de X a une preuve valide, et que rien de plus ne peut être prouvé
en utilisant les règles applicables. L’idée derrière les ensembles réponse consiste à se
donner un ensemble de faits (les atomes) et à en apprécier la cohérence. On le jugera
cohérent si sous l’hypothèse que ces faits décrivent correctement une situation, chacun
d’eux admet une preuve finie, non circulaire par applications successives de règles.

Voyons cette définition à l’œuvre sur un exemple. Pour le programme

p ← not q
q ← not p

(5.1)

les différents possibilités sont résumées dans le tableau suivant :

X ΠX Cn(ΠX)

∅ p ←
q ← {p, q}

{p} p ← {p}
{q} q ← {q}
{p, q} ∅ ∅

qui montrent que seuls {p} et {q} sont des ensembles réponses. En effet ce sont les seuls
ensembles X tels que Cn(ΠX) = X. Ce programme exprime donc l’exclusion mutuelle
des atomes p et q.

Considérons maintenant le programme

p← not p

et les différentes possibilités

X ΠX Cn(Π)
∅ p ← {p}
{p} ∅ ∅

Ce programme n’a pas d’ensemble réponse et nous y aurons recours plus tard pour
augmenter le langage des programmes logiques. Après avoir vu la définition des en-
sembles réponse, et quelques exemples, il nous reste à les distinguer d’autres définitions
de modèles a priori plus intuitives. Les modèles stables sont :

– des modèles minimaux (au sens de l’inclusion) : supposons que X et X ′ sont
deux modèles stables tels que X ′ ⊂ X. Alors nécessairement ΠX ⊂ ΠX′

, et
par conséquent Cn(ΠX) ⊂ Cn(ΠX′

) puisque ΠX et ΠX′
sont définis. Or comme

Cn(ΠX) = X et Cn(ΠX′
) = X ′, on a X = X ′. En revanche, les modèles mi-

nimaux ne sont pas forcément stables : le programme {p ← not p} admet un
(unique) modèle minimal {p}, mais pas d’ensemble réponse, comme nous l’avons
vu précédemment.

Une introduction à la programmation par ensemble réponse 79

– des modèles minimaux où tous les atomes sont supportés par l’application d’une
règle. Mais la réciproque est fausse, comme le montre l’exemple suivant :

p ← q
q ← p
r ← not q

(5.2)

{r} et {p, q} sont des modèles minimaux où tous les atomes sont supportés par
l’application d’une règle, mais seul {r} est un ensemble réponse. En effet, Π{p,q} =
{p ← q, q ← p} et Cn(Π{p,q}) = ∅. L’ensemble {p, q} n’est donc pas stable ;
intuitivement la raison en est qu’il n’est pas possible de trouver des preuves non-
circulaires pour la présence de p et q.

Avant de passer à la suite, et aux extensions des programmes normaux, essayons
de bien comprendre ce qui fait la difficulté ici. Les programmes définis constituent un
fragment de logique classique, celui des clauses de Horn. Il est très facile de définir
des modèles raisonnables de ce type de programme, et ces modèles ont deux propriétés
importantes : premièrement les programmes définis admettent un unique modèle ; en-
suite, il s’agit d’une sémantique monotone : si j’ajoute des règles au programme, le
modèle ne peut qu’augmenter, au sens de l’inclusion. L’utilisation de la négation par
défaut perturbe complètement ces propriétés : l’ajout de nouveaux faits ou de nouvelles
règles peut diminuer le modèle (considérer par exemple les programmes {p ← not q}
et {p ← not q, q ←}). On parle dans ce cas de logique non monotone. Dès qu’un pro-
gramme comporte des négations par défaut, il peut avoir plusieurs modèles modèles
minimaux, et la question revient à définir le, ou les ((bons)) modèles.

Pour finir, insistons bien sur le fait que la négation par défaut est très différente de
la négation en logique classique. Si un modèle vérifie not p, cela signifie qu’on ne peut
pas trouver de preuve de p sous ce modèle. Illustrons cette différence sur un ((classique))

de logique non-monotone, avec ce programme décrivant le protocole à observer avant
de traverser une voie de chemin de fer :

check ← not ¬check
¬check ← not check
train ← not ¬train, check
¬train ← not train, check
cross ← not train

Les deux premières lignes stipulent que l’on peut ou non vérifier avant de traverser, selon
que l’ensemble réponse contient check ou ¬check (les deux premières règles assurent
l’exclusion mutuelle, comme vu plus haut). Les deux lignes suivantes signifient que si
l’on vérifie avant de traverser, on peut prouver la présence ou l’absence de train (selon
le même mécanisme d’exclusion mutuelle). La dernière ligne donne la condition pour
traverser la voie. Le problème de ce protocole est qu’il admet, entre autres, le modèle
{¬check, cross}, c’est-à-dire ((traverser sans regarder)). En effet, si ¬check est dans le
modèle, alors check ne peut pas y être ; par conséquent ni train, ni ¬train ne peuvent
être dans le modèle. Dit plus simplement, si on ne vérifie pas, on ne peut prouver ni

80 Résolution par Answer Set Programming

la présence, ni l’absence de train. La dernière règle dit en substance : ((traverser si
on ne peut pas prouver la présence de train)), au lieu de dire ((traverser si l’on peut
prouver l’absence de train)). Or il vaut mieux – on en conviendra – prouver l’absence
de train avant de traverser. Pour cela, la règle cross← not train doit être corrigée en
cross← ¬train.

5.1.3 Variables

Le langage des atomes peut être enrichi pour faciliter la modélisation de problèmes.
On se donne trois ensembles dénombrables et disjoints de symboles C = {c1, c2, . . .},
V = {v1, v2, . . .} et P = {p1, p2, . . .}, qui sont respectivement les constantes, les va-
riables et les prédicats. Un atome est un terme sur ces ensembles de symboles :

a ::= ci︸︷︷︸
constante

| vj︸︷︷︸
variable

| pk(a1, . . . , an)︸ ︷︷ ︸
prédicat

L’utilisation des variables permet, comme en Prolog, de séparer un programme
logique en un ensemble de règles génériques d’une part, et une base de faits d’autre
part. Les termes quant à eux, permettent de représenter les relations. Illustrons tout
de suite leur utilisation, avec le programme suivant :

t(X,Y) ← r(X,Y)
t(X,Z) ← t(X,Y), r(Y, Z)

r(1, 2)
r(1, 3)
r(2, 5)
r(3, 4)

Dans ce programme, le prédicat r représente une relation, dont les éléments sont donnés
dans la deuxième partie du programme. La première partie définit la fermeture transi-
tive de la relation, de manière générique. L’unique ensemble réponse de ce programme
est

{r(1, 2), r(1, 3), r(2, 5), r(3, 4), t(1, 2), t(1, 3), t(2, 5), t(3, 4), t(1, 5), t(1, 4)}

Comme en Prolog, on adoptera d’une part la notation pred/k pour spécifier l’arité
des prédicats, et d’autre part la convention selon laquelle seules les variables com-
mencent par une majuscule. Dans le programme précédent, on a par exemple utilisé les
prédicats t/2 et r/2, et parlé des atomes t(X,Y). Pour définir la sémantique des pro-
grammes avec variables – comme d’ailleurs pour en trouver un modèle – on passe par
une étape dite de grounding, qui instancie les variables avec des termes ne contenant
plus que des constantes.

Une introduction à la programmation par ensemble réponse 81

5.1.4 Contraintes d’intégrité

Certaines pratiques apparentées à de l’ingénierie logicielle peuvent aider à formu-
ler ce que l’on a en tête. L’une de ces ((méthodologies)) consiste à séparer les règles
génériques en deux parties, l’une dite de génération et l’autre de test. Les premières ont
pour fonction de décrire un sur-ensemble des solutions, les secondes d’y sélectionner les
solutions par des sortes de filtres, appelés contraintes d’intégrité.

Pour illustrer cette démarche, revenons sur le programme (5.1). Nous avons vu que
ses ensembles réponse sont {p} et {q} et en avons déduit que ce programme assurait
l’exclusion mutuelle de p et q. Ce n’est que partiellement vrai puisque si les deux règles
sont utilisées dans un programme plus grand, on peut tout à fait produire p et q par
d’autres moyens. Par exemple

p ← not q
q ← not p
p ← r
q ← r
r

admet {p, q, r} comme unique ensemble réponse. Pour exprimer précisément l’ex-
clusion mutuelle de deux atomes, on utilisera le programme :

p ← not q
q ← not p
← p, q

où la troisième règle est une contrainte d’intégrité signifiant que si p et q sont dans
l’ensemble alors ce n’est pas un ensemble réponse. Plus généralement les contraintes
d’intégrité sont des règles de tête vide, soit de la forme :

ci ::= ← a, . . . , a, not a, . . . , not a

Les solutions vérifiant le prérequis d’une contrainte d’intégrité sont éliminées. Il n’est
pas nécessaire d’adapter la sémantique définie plus haut pour intégrer les contraintes
d’intégrité : un programme comportant des contraintes d’intégrité peut être transformé
en un programme normal équivalent. On introduit à cet effet un symbole ⊥ représentant
la valeur logique faux, qui ne peut pas être utilisé dans un programme logique avec
contraintes d’intégrité. Toute contrainte d’intégrité

← a1, . . . , an, not b1, . . . , not bn

est transformée en :

⊥ ← not ⊥, a1, . . . , an, not b1, . . . , not bn

Si le prérequis d’une contrainte d’intégrité est vérifié, alors il reste une règle de type
⊥ ← not ⊥. où ⊥ ne peut être produit par aucune autre règle. Nous avons vu qu’alors le
programme n’admet aucun ensemble réponse. Nous verrons dans la suite de nombreuses
utilisations de ces contraintes d’intégrité.

82 Résolution par Answer Set Programming

5.1.5 Contraintes de cardinalité

Le programme (5.1) permet de définir les ensembles réponses contenant un et un
seul atome parmi deux. Les contraintes de cardinalité sont une généralisation de cette
construction. On écrira une expression de la forme k {a1, . . . , an} l pour désigner un
sous-ensemble des ai de cardinal compris entre k et l. Les contraintes de cardinalité
peuvent apparâıtre aussi bien dans la tête d’une règle que dans le corps. Dans le premier
cas, la contrainte doit être respectée dans l’ensemble réponse ; dans le deuxième, elle
constitue un prérequis à l’applicabilité de la règle. On pourra trouver la sémantique
précise des programmes logiques avec contraintes de cardinalité dans [85].

Ainsi le programme (5.1) se code plus naturellement en {1 {p, q} 1.}. La syntaxe
inclut également une notation en intention de l’ensemble des ai. Voyons en exemple le
programme suivant :

d(1..4)
1 {c(X) : d(X)} 3

La notation d(1..4) est un raccourci pour la règle d(1) d(2) d(3) d(4) ; les ensembles
réponse sont les sous-ensembles de cardinal 1 à 3 de {c(1), c(2), c(3), c(4)} ajoutés à
{d(1), d(2), d(3), d(4)}.

Pour illustrer l’approche ((générer puis tester)) décrite au paragraphe précédent,
intéressons-nous à la résolution du problème de coloration de graphe. Soit un graphe
non orienté G, et un ensemble (fini) de couleurs ; le problème de coloration revient à
attribuer à chaque sommet du graphe une couleur de telle façon que deux sommets
adjacents n’ont pas la même couleur. Il faut dans un premier temps coder les données
du problème : on écrit pour ça une première partie du programme qui constitue une
base de faits :

vertex(allemagne)
vertex(espagne)
vertex(france)
. . .
edge(allemagne, france).
edge(allemagne, suisse).
edge(france, italie).
. . .
col(bleu)
col(rouge)
. . .

Vient ensuite une partie générique, c’est-à-dire exprimée à l’aide de variables, qui pro-
duit les solutions au problème, et spécifie les contraintes qu’elles doivent respecter :

génération : 1 {label(V,C) : col(C)} 1 ← vertex(V)
test : ← label(V,C), label(W,C), edge(V,W)

Le prédicat label/2 représente l’association sommet/couleur. La première règle force la
présence dans tout ensemble réponse d’un atome label précisant la couleur de chaque

Une introduction à la programmation par ensemble réponse 83

sommet. Cette règle ((produit)) des solutions. La deuxième règle est une contrainte
d’intégrité, qui élimine une solution si deux sommets voisins dans le graphe ont la même
couleur.

Nous retrouvons dans ce programme le découpage typique que nous avons décrit
plus haut. Tout d’abord, la séparation entre une partie générique (avec des variables),
et la base de faits (suite d’atomes). La partie générique est elle-même divisée entre une
partie génération (première ligne) et une partie test (la deuxième ligne).

5.1.6 Optimisation

Nous l’avons vu à plusieurs reprises, un programme logique peut avoir plusieurs
modèles stables. Il peut donc se révéler utile de spécifier une fonction objectif pour
sélectionner davantage les différents modèles. On l’exprimera par une commande de la
forme suivante :

minimize {a1 = w1, . . . , an = wn, not b1 = wn+1, . . . , not bm = wn+m}

Le poids d’un ensemble réponse est la somme des poids des atomes le constituant.
Utilisons tout de suite cette construction pour spécifier dans le programme précédent
les colorations minimales d’un graphe :

1 {label(V,C) : col(C)} 1 ← vertex(V).

← label(V,C), label(W,C), edge(V,W),
vertex(V), vertex(W).

used(C) ← col(C), vertex(V), label(V,C).

minimize {used(C) : col(C)}.

Nous n’avons reproduit ici que la partie générique. Comme précédemment, la première
règle dit que pour chaque sommet, il faut choisir une couleur parmi celles définies par
le prédicat col/1. La règle d’intégrité qui suit assure que deux sommets voisins dans
le graphe ne peuvent avoir la même couleur. La troisième règle introduit le prédicat
used/1 qui représente l’ensemble des couleurs utilisées dans la coloration. Enfin la
directive minimize assure que l’ensemble réponse fourni utilise un nombre minimal de
couleurs pour rendre une coloration correcte.

5.1.7 Complexité et résolution

Déterminer un modèle stable d’un programme normal est un problème NP : pour
vérifier une solution il suffit de calculer le réduit, puis le modèle minimal du réduit,
toutes choses que l’on peut faire en temps polynomial. Par ailleurs, il est très facile (et
c’est bien l’intérêt de la programmation par ensemble réponse, vu comme un langage)
de réduire un problème NP-complet à la recherche d’un modèle stable. Nous avons déjà
vu l’exemple de la coloration de graphe, et l’application développée dans ce chapitre

84 Résolution par Answer Set Programming

en sera un autre. Les extensions revues dans les paragraphes qui précèdent sont toutes
NP-complètes.

Il existe un certain nombre de solveurs pour la recherche de modèles stables, en
particulier smodels [92], dlv [58], cmodels [60] et clasp [32]. Dans tous les cas, ces
solveurs utilisent des techniques proches de celles mises en œuvre dans les solveurs SAT,
tels que miniSAT ou zchaff. Ainsi ils bénéficient des progrès considérables effectués
depuis deux dizaines d’années dans ce domaine.

Sans entrer dans le détail de fonctionnement des solveurs, mentionnons néanmoins
une différence importante entre les solveurs ASP et les solveurs SAT. Pour une classe
assez grande de programmes logiques, il existe une transformation de ces programmes
en une formule de logique propositionnelle telle que les modèles stables des programmes
sont exactement les modèles de la formule. Les programmes en question sont dits
((tight)) dans la littérature, la transformation est appelée complétion de Clark. Cette
propriété, démontrée par F. Fages [26] assure donc que les programmes tight peuvent
être résolus à l’aide d’un solveur SAT. Les programmes non tight sont les programmes
possédant des dépendances circulaires positives. Nous en avons donné un exemple plus
haut, avec le programme (5.2) : dans un modèle stable, chaque atome a une preuve sous
la forme d’une suite finie de règles. Or les solveurs SAT ne procèdent pas à ce genre
de vérification. Quelle incidence en pratique ? La principale conséquence, c’est que les
programmes non tight sont nettement plus difficiles à exprimer et à résoudre en logique
propositionnelle qu’en programmation par ensemble réponse.

Avant de revenir aux contraintes qualitatives, rappelons les caractéristiques ma-
jeures de la programmation par ensemble réponse :

1. un langage déclaratif pour la modélisation de problèmes de recherche, à savoir les
programmes logiques, augmenté de constructions telles que les contraintes de car-
dinalité (génération de modèles), les contraintes d’intégrité (filtrage de modèles)
et directives d’optimisation (modèles minimaux),

2. l’existence de solveurs performants, similaires aux ou basés sur les solveurs SAT,
permettant de résoudre des problèmes combinatoires réputés durs.

Nous allons à présent proposer une formulation de la contrainte de consistance par
un programme logique : les solutions de la contraintes seront données exactement par
les ensembles réponse du programme.

5.2 Consistance aux sommets

Nous proposons ici un codage des solutions d’une contrainte qualitative comme
ensembles réponse d’un programme logique. Suivant la méthodologie proposée plus
haut, un tel programme sera constitué de trois parties : la première pour les données,
la deuxième pour la génération des solutions, et la dernière pour le test des solutions.

Consistance aux sommets 85

5.2.1 Codage des données

Le graphe d’interaction est codé à l’aide de deux prédicats : vertex/1 pour les
sommets et edge/2 pour les arcs. Comme toujours, un graphe d’interaction est étiqueté
par des signes, que nous définissons ici comme les atomes p, n et z pour +, – et 0
respectivement. La variation observée d’un sommet I dans la mesure K sera donnée
par le prédicat m/3 ; un atome m(heatshock, cro, n) dit donc que lors d’une expérience
de choc thermique, l’expression du gène cro a diminué. Le signe des arcs est donné par
le prédicat r/3 : un atome r(cro, crp, p) dit que le gène cro active le gène crp. Voici par
exemple le résultat de ce codage sur l’exemple donné en figure 3.1(b).

sign(p) sign(n) sign(z)
measure(µ1)

vertex(”A”) vertex(”B”) vertex(”C”)
vertex(”D”) vertex(”E”)

m(µ1, ”B”, n) m(µ1, ”C”, z)
m(µ1, ”D”, p) m(µ1, ”E”, n)

edge(”A”, ”B”) edge(”A”, ”D”) edge(”B”, ”A”)
edge(”A”, ”E”) edge(”B”, ”C”) edge(”C”, ”E”)
edge(”D”, ”B”) edge(”D”, ”C”) edge(”D”, ”E”)

r(”A”, ”B”, p) r(”A”, ”D”, n) r(”A”, ”E”, n)
r(”B”, ”A”, n) r(”B”, ”C”, p) r(”C”, ”E”, n)
r(”D”, ”C”, p) r(”D”, ”E”, p)

5.2.2 Génération des solutions

Les solutions que nous cherchons sont composées des variations aux sommets et des
régulations portées par chaque interaction. Le signe des régulations est décrit par le
prédicat r/3 que nous avons déjà introduit. La variation d’un sommet dans une mesure
est donnée par le prédicat x/3 : par exemple, l’atome x(µ, ”araC”, z) signifie que dans
la mesure µ, l’expression du gène araC n’a pas varié. La génération des solutions est
donnée par :

1 { x(K, I, S) : sign(S) } 1 ← vertex(I),measure(K).
1 { r(J, I, S) : sign(S) } 1 ← edge(J, I).

La première règle spécifie que pour chaque sommet et chaque mesure, un ensemble
réponse doit spécifier une variation dans {+,–,0} ; de manière analogue la deuxième
règle indique que chaque régulation porte un signe. Il ne reste plus qu’à ajouter les
contraintes de consistance.

86 Résolution par Answer Set Programming

5.2.3 Test des solutions

Il faut en premier lieu faire correspondre les variations de chaque sommet (prédicats
x/3) avec les variations observées (prédicats m/3). C’est assuré par les contraintes
d’intégrité suivantes :

← m(K, I, S), not x(K, I, S)

Pour la contrainte de consistance, nous procédons en deux étapes, en commençant par
identifier les contributions de chaque signe non nul.

contrib(K, I, p) ← r(J, I, S), x(K,J, S), S 6= z
contrib(K, I, n) ← r(J, I, S), x(K,J, T), S 6= T, S 6= z, T 6= z

Les prédicats contrib/3 sont des indicateurs de la présence de termes de chaque signe
non nul dans la somme (3.2). Plus précisément, un ensemble réponse contient un atome
contrib(µ, g, s) si, dans la solution trouvée, le membre droit de l’équation (3.2) as-
sociée à g et µ contient un terme de signe s non nul. Puis nous indiquons l’effet des
contributions :

x(K, I, p) ← contrib(K, I, p), not contrib(K, I, n), vertex(I)
x(K, I, n) ← contrib(K, I, n), not contrib(K, I, p), vertex(I)
x(K, I, z) ← not contrib(K, I, p), not contrib(K, I, n), vertex(I).

S’il n’y a que des termes strictement positifs (resp. négatifs) dans la partie droite de
l’équation (3.2), alors la première (resp. deuxième) règle implique une variation positive
(resp. négative) qui exclut – par l’effet des contraintes de cardinalité sur x/3 – toute
autre variation. S’il n’y a aucun terme non nul, alors la variation doit être nulle. Enfin
s’il y a un terme positif et un terme négatif, alors la variation n’est pas contrainte.

Un ensemble réponse de ce programme fournit exactement une solution à la contrainte
de consistance aux sommets. Réciproquement, toute solution permet de construire un
ensemble réponse. Nous avons donc ici un deuxième algorithme pour le problème de
vérification sous consistance aux sommets.

5.3 Prédiction

Comme nous l’avons montré, on peut faire correspondre l’ensemble des solutions
d’une contrainte qualitative et l’ensemble des ensembles réponse d’un programme lo-
gique. Rechercher les invariants de l’ensemble des solutions revient donc à chercher les
invariants dans l’ensemble des ensembles réponses, c’est-à-dire l’intersection de tous les
ensembles réponse. Une première idée consiste à utiliser la capacité de certains solveurs
ASP à énumérer tous les ensembles réponses d’un programme donné. Dans notre cas
cette stratégie n’est pas adaptée, à cause du nombre de solutions généralement observé.
Nous recourrons donc à une stratégie par contre-exemples : 1. calculer un ensemble-
réponse, 2. pour chaque atome a dans cet ensemble réponse, calculer un nouvel ensemble
réponse ne contenant pas a. Cette approche est détaillée dans l’algorithme 15.

Contrainte non satisfiable 87

Algorithm 15: Algorithme de calcul des invariants d’un programme logique
Input: un programme logique Π admettant au moins un modèle
Output: un ensemble I d’atomes, intersection de tous les modèles de Π.

R← TrouverModele(Π)
for a ∈ R do

if Π ∪ {← not a} admet un modèle M then
R← (R \ {a}) ∩M

return R

Donnons quelques arguments pour justifier l’algorithme, à commencer par la ter-
minaison : le programme Π admet un modèle par hypothèse, et ce modèle est fini.
Par conséquent l’unique boucle de l’algorithme termine. Concernant la correction, on
remarque que le premier modèle trouvé et stocké dans R contient nécessairement l’in-
tersection de tous les modèles de Π. Pour chaque atome a de R, si il existe un modèle
de Π ne contenant pas a, alors a n’est pas dans l’intersection et doit être retiré de R.
De plus, tout atome de R qui n’est pas dans le nouveau modèle trouvé ne peut pas être
dans l’intersection1. Ainsi, à l’issue de la boucle on a pour chaque atome a initialement
dans R :

– soit cherché un modèle ne contenant pas a, et a ne substiste dans R à l’issue de
la boucle que si un tel modèle n’existe pas

– soit éliminé a de R grâce à un des modèles de Π calculé durant l’itération
À l’issue de la boucle, tous les atomes substitant dans R sont donc bien dans l’inter-
section.

Au chapitre précédent, nous avons introduit une deuxième notion de prédiction,
avec le calcul des probabilités marginales pour chaque variable. À la base de ce calcul
se trouvait la possibilité de compter efficacement le nombre de solutions d’une contrainte
qualitative. Comme nous venons de l’évoquer, les solveurs ne peuvent (dans le meilleur
des cas) compter les modèles d’un programme qu’en les énumérant explicitement. Cette
approche n’est pas praticable parce que le nombre de solutions crôıt en général très vite
avec le nombre de variables de la contrainte.

5.4 Contrainte non satisfiable

La recherche de diagnostic, comme proposée en définition 9, se traduit ici de la
manière suivante. Soit une contrainte qualitative C, et une mesure µ. Nous avons vu
comment calculer un programme logique Π dont les ensembles réponses cöıncident avec
les solutions de C. Par ailleurs la mesure µ peut être traduite en un ensemble d’atomes
M , où chaque atome précise l’association (variable,valeur). La contrainte C est alors
compatible avec la mesure µ si l’on peut trouver un ensemble réponse X contenant
M . Si ce n’est pas le cas, on cherchera un ensemble réponse affichant le minimum de

1Il s’agit là d’une optimisation, qui peut être ignorée sans nuire à la correction de l’algorithme.

88 Résolution par Answer Set Programming

divergences avec M .
Plus formellement, pour un programme logique Π et un ensemble d’atomes M , on

cherche un ensemble réponse X de Π tel que M ⊂ X et tel que le cardinal de M \X
est minimal. Pour y arriver, il suffit d’ajouter au programme Π la directive suivante :

minimize {not a1, . . . , not an}

avec M = {a1, . . . , an}.

Bilan

Nous avons présenté une solution basée sur la programmation par ensemble réponse
pour les différentes tâches d’analyse des données. Rappelons que contrairement à l’ap-
proche proposée au chapitre précédent, la démarche consiste ici à ne calculer qu’une
seule solution à la contrainte étudiée. Il s’agissait donc de cerner les gains et les limites
que cela implique pour l’analyse de données.

Pour la vérification, nous avons proposé un programme logique dont les modèles sont
exactement les solutions de la contrainte de consistance aux sommets. En anticipant
sur les résultats du chapitre suivant, il est clair que le gain escompté est bien là : la
vérification de consistance entre un graphe d’interaction de plusieurs milliers de gènes
et quelques dizaines de mesures ne pose aucun problème.

Le même programme logique est utilisé pour la recherche des invariants, dans le
cadre d’un algorithme simple de recherche de contre-exemples. On montre au passage
que le calcul des invariants ne nécessite pas vraiment de calculer l’ensemble des solu-
tions. À l’inverse, le calcul des probabilités marginales n’est pas réalisable (au moins
simplement) avec ASP, parce que l’énumération (nécessaire, dans ce cas) des solutions
est beaucoup trop longue en pratique.

Nous avons enfin montré comment traduire la recherche de diagnostic en une formu-
lation générale sur les ensembles réponse. Celle-ci fait notamment appel aux directives
d’optimisation disponibles sur la plupart des solveurs ASP.

Le chapitre qui suit porte sur la validation de notre approche avec des données
réelles et/ou de volume réaliste ; du point de vue algorithmique, il s’agit de vérifier le
passage à l’échelle des méthodes que nous avons proposées. Elles devront notamment
permettre – c’est notre but initial – le traitement de données haut-débit telles que des
mesures d’expression, où plusieurs milliers de variables sont mesurées simultanément.

Chapitre 6

Validation expérimentale

Les deux derniers chapitres ont détaillé plusieurs approches pour la résolution et
l’étude des contraintes qualitatives. Le présent chapitre présente l’application des algo-
rithmes décrits à des données réelles, avec essentiellement deux objectifs :

1. évaluer la pertinence de notre modélisation qualitative. Permet-elle de décrire
correctement un système réel et d’apporter des prédictions non triviales ?

2. déterminer si les algorithmes passent à l’échelle, c’est-à-dire s’ils sont utilisables
sur des données telles que rencontrées en pratique.

Cette validation expérimentale porte majoritairement sur les problèmes de vérification
et prédiction, et de correction/diagnostic dans une moindre mesure. Elle comporte trois
volets : la première étude porte sur un des organismes les mieux étudiés à l’heure ac-
tuelle, à savoir la bactérie E. coli, dont il s’agit de déterminer la réponse globale à un
stress nutritionnel ; la deuxième partie s’intéresse à la reconstruction du réseau trans-
criptionnel de S. cerevisiae, qui est un problème très étudié [67, 104, 15, 59, 64]. Nous
comparons notamment nos résultats avec ceux obtenus dans [104]. Cette comparaison
est étendue sur le plan théorique dans la troisième partie.

6.1 Prédiction de la réponse à une perturbation

Nous avons cherché dans un premier temps à vérifier que la règle de consistance
que nous avons proposée est effectivement observée dans les données réelles. Dans ce
but nous nous sommes intéressé au réseau transcriptionnel de la bactérie E. coli et
à sa réponse sous l’effet d’un stress nutritionnel. Notre démarche est la suivante : 1.
construire un graphe d’interaction à partir des informations disponibles dans les bases
de données publiques, 2. vérifier sa consistance avec des données issues de la littérature
décrivant la réponse typique de la bactérie à un stress nutritionnel, 3. utiliser ces données
pour prédire les variations dans le reste du réseau, 4. confronter ces prédictions à des
mesures obtenues par puces à ADN.

89

90 Validation expérimentale

IHF

IhfB

IhfA

BA

Fur

fur fiu aceA

Fig. 6.1 – Exemples de régulations trouvées dans RegulonDB. (A) Inhibition du gène
fiu par la protéine Fur (produite par le gène fur). On lui fait correspondre l’interaction
fur –−→ fiu. (B) Production du dimère IHF par deux gènes ihfA et ihfB (un pour
chaque sous-unité). Le complexe IHF active l’expression du gène aceA. On en déduit
les interactions ihfA +−→ IHF, ihfB +−→ IHF et IHF +−→ aceA.

6.1.1 Construction du graphe d’interaction

Nous avons utilisé la base de données RegulonDB [37] qui synthétise les informations
disponibles sur les régulations transcriptionnelles de la bactérie E. coli. Elle propose
notamment pour chaque gène, une liste des facteurs de transcription intervenant dans sa
régulation, leur site de fixation et parfois quelques détails sur leur mécanisme d’action.

Pour construire notre graphe d’interaction, nous avons collecté les régulations conte-
nues dans la table ((transcription factor to gene interactions)) de RegulonDB (version
de mars 2006). Celle-ci se présente comme une liste d’interactions A s−→ B où s est un
signe (éventuellement indéterminé ou dépendant de l’état) et où A et B sont des gènes
ou des protéines selon le cas :

– si une protéine A produite par un gène a est l’un des facteurs de transcription
régulant l’expression du gène b, alors on on crée l’interaction a→ b,

– si une protéine A est un complexe régulant l’expression d’un gène b, on crée l’in-
teraction A→ b (on trouve dans le réseau transcriptionnel de E. coli exactement
4 dimères, à savoir IHF, HU, RcsB et GatR),

– si un gène a produit un élément d’un complexe protéique B, on crée l’interaction
a→ B.

Cette construction est illustrée à la figure 6.1. Les sommets sans prédécesseurs dans
le graphe obtenu sont considérés comme des entrées du système. Nous avons de cette
manière obtenu un graphe d’interaction contenant 1258 sommets et 2526 arcs, dont 160
portant un signe indéterminé. La structure du graphe est assez particulière, on notera
notamment l’existence de 7 sommets (crp, fnr, IHF, fis, arcA, narL et lrp) ayant plus
de 80 successeurs.

6.1.2 Confrontation aux données d’expression issues de la littérature,
premier essai

Afin de valider notre réseau, nous avons voulu tester sa cohérence avec des données
d’expression considérées comme particulièrement fiables. Nous avons pour cela utilisé

Prédiction de la réponse à une perturbation 91

Tab. 6.1 – Variations pour 40 transcrits sous stress nutritionnel, comme fourni dans la
base RegulonDB, version de mars 2006.

(a)

gene effect
acnA +
acrA +
adhE +
appB +
appC +
appY +
blc +
bolA +

(b)

gene effect
csiE +
cspD +
dnaN +
dppA +
fic +
gabP +
gadA +
gadB +

(c)

gene effect
gadC +
hmp +
hns +
hyaA +
ihfA −
ihfB −
lrp +
mpl +

(d)

gene effect
osmB +
osmE +
osmY +
otsA +
otsB +
polA +
proP +
proX +

(e)

gene effect
recF +
rob +
sdaA −
sohB −
treA +
yeiL +
yfiD +
yihI −

des informations également mises à disposition dans RegulonDB. Il s’agit de tables re-
censant les variations connues de certains gènes pour quelques conditions expérimentales.
Chaque variation est fournie avec les publications apportant sa preuve expérimentale.
L’une des tables en particulier porte sur la réponse d’E. coli à un stress nutritionnel,
et comporte 40 variations ; nous la reproduisons au tableau 6.1.

Il s’avère que ces 40 mesures ne sont pas consistantes avec le graphe d’interaction
que nous avons construit. Pour en comprendre la raison, nous nous sommes appuyés
sur la démarche proposée au paragraphe 4.4.3, qui consiste à isoler un sous-ensemble
de contraintes dont la conjonction n’admet aucune solution. On appellera un tel sous-
ensemble un défaut à la règle de consistance. Nous développons maintenant la recherche
et l’analyse pratique de ces défauts.

6.1.3 Diagnostic par isolement des défauts

La contrainte de consistance que nous avons donnée à la définition 1 est une conjonc-
tion de contraintes locales, c’est-à-dire se rapportant à un sommet et ses prédécesseurs
(et une mesure). Si une conjonction n’admet pas de solution, on peut toujours essayer
de trouver des sous-ensembles de contraintes qui n’admettent pas non plus de solu-
tion. Dans le meilleur des cas, ces sous-ensembles sont suffisamment petits pour être
facilement interprétables.

Pour faciliter cette interprétation, on peut utiliser le fait que chaque contrainte locale
correspond à un sous-graphe du graphe d’interaction : il s’agit du sous-graphe engendré
par le sommet attaché à la contrainte locale et ses prédécesseurs. Un sous-ensemble de
contraintes locales correspond donc aussi à un sous-graphe du graphe d’interaction :
le sous-graphe engendré par tous les sommets associés aux contraintes locales, et leurs
prédécesseurs.

L’approche proposée au paragraphe 4.4.3 consiste à déterminer un sous-ensemble de
contraintes locales dont la conjonction n’admet aucune solution, où le sous-ensemble
en question est de cardinal minimal. Si le sous-ensemble est suffisamment petit, on
peut donc en tirer une représentation simple, sous forme d’un graphe et des mesures

92 Validation expérimentale

ifhA

ihfB

IHF

(a)

CIHF : XIHF ≈ −XihfA − XihfB

CihfA : XihfA ≈ XIHF

CihfB : XihfB ≈ XIHF

(b)

Fig. 6.2 – (a) Sous-graphe inconsistant avec les données du tableau 6.1. (b) Contrainte
qualitative correspondante

qui posent problème. Une approche alternative, plus simple d’un point de vue calcu-
latoire, consiste à chercher des sous-ensembles minimaux au sens de l’inclusion. Les
sous-ensembles inconsistants de cardinal minimal sont aussi minimaux au sens de l’in-
clusion mais la réciproque est fausse. En pratique, nous commençons par calculer un
ensemble ⊂-minimal, ce qui est relativement facile d’un point de vue algorithmique. Si
ce dernier est trop gros pour être facilement interprétable, nous recourons à la recherche
d’ensembles de cardinal minimal.

Illustrons à présent le résultat de cette démarche sur notre problème. Comme on
peut le voir sur la figure 6.2(a), on peut isoler un sous-système, composé des sommets
ihfA, ihfB et IHF, qui n’est pas compatible avec les variations données en tableau 6.1.
Cela peut se voir sur la contrainte qualitative associée à ce système, donnée en figure
6.2(b). La conjonction des contraintes CIHF, CihfA et CihfB n’admet que la solution nulle
partout, ce qui est contradictoire avec l’observation rapportée dans RegulonDB. Même
sans regarder de près les équations, on remarque tout de suite sur le graphe d’interaction
qu’il n’y a aucune boucle positive dans le graphe d’interaction. Par conséquent, le
système n’admet qu’un seul état stable et la seule variation observable suite à un
déplacement d’équilibre est la variation nulle.

6.1.4 Ajout des facteurs σ dans le modèle

Cette observation nous a conduit à rechercher d’autres régulateurs des gènes ihfA
et ihfB, et finalement à considérer l’action des facteurs σ que nous avions initialement
omis dans le modèle. Les facteurs σ sont des protéines intervenant dans l’initiation de la
transcription et elles régulent de ce fait un très grand nombre de gènes. Ces régulations
sont également recensées dans RegulonDB, et nous les avons ajoutées à notre modèle.
Le tableau 6.2 indique le nombre de gènes cibles pour chaque facteur σ. Le graphe
d’interaction obtenu comporte cette fois 1529 sommets et 3802 arcs, dont 175 de signe
indéterminé ; il est présenté en figure 6.5. En particulier notre sous-graphe inconsistant
est modifié comme présenté en figure 6.3(a). La contrainte correspondante 6.3(b) admet

Prédiction de la réponse à une perturbation 93

Tab. 6.2 – Nombre de gènes cibles pour chaque facteur σ (régulations répertoriées dans
RegulonDB, version de mars 2006)

Protéine Gène Gènes cibles
σ70 rpoD 1047
σ38 rpoS 114
σ54 rpoN 100
σ24 rpoE 48
σ32 rpoH 29
σ19 fecI 7

cette fois une variation négative pour ihfA et ihfB.
Néanmoins il s’avère que ce nouveau réseau n’est toujours pas compatible avec les

données bibliographiques sur la réponse au stress nutritionnel. Le diagnostic produit
dans ce cas est présenté en figure 6.4(a). Cette fois le problème est un peu plus com-
plexe : si ihfA et ihfB diminuent, alors IHF doit également diminuer. Or si c’est le
cas, seule une augmentation de rpoD pourrait justifier l’augmentation de dppA. Par
ailleurs rpoS ne peut qu’augmenter, puisqu’il est le seul régulateur connu de fic, qui
augmente. Mais alors, il n’y a pas d’explication à la diminution de ihfA. Nous nous
sommes cette fois tourné vers les données, et nous avons trouvé que l’annotation four-
nie par RegulonDB (version de mars 2006) pour ihfA et ihfB est en contradiction avec
les publications qui doivent la justifier. On trouve notamment dans [3] l’extrait suivant :

[. . .] transcription of himA and himD promoters increases as the E. coli
cells enter the stationary phase of growth [. . .]

où himA et himD sont des synonymes de ihfA et ihfB respectivement ; l’entrée en phase
stationnaire correspond à la réaction physiologique des bactéries sous l’effet d’un stress
nutritionnel1. Une fois les deux annotations corrigées, les données bibliographiques sur
le stress nutritionnel sont consistantes avec le graphe d’interaction avec facteurs σ.

6.1.5 Prédiction de la réponse globale au stress nutritionnel

Disposant de données sûres mais partielles sur la réponse d’E. coli à un stress nutri-
tionnel, nous avons cherché à prédire les variations dans le reste du réseau. Nous avons
obtenu au total 381 variations prédites (invariants de la contrainte qualitative associée
au graphe et aux données bibliographiques), soit approximativement un quart des som-
mets du graphe d’interaction. Afin de valider ces prédictions nous les avons comparées
à des données expérimentales sur l’entrée en phase stationnaire. Plus précisément les
prédictions ont été comparée à des résultats de puces à ADN réalisées dans [47] et
[100]. Ces données sont compilées et mises à disposition dans la base de données Gene
Expression Omnibus (GEO).

1La phase stationnaire est ainsi nommée parce que les bactéries cessent de se multiplier.

94 Validation expérimentale

ifhA

ihfB

IHF

rpoD

rpoS

(a)

CIHF : XIHF ≈ −XihfA − XihfB

CihfA : XihfA ≈ XIHF + XrpoS + XrpoD

CihfB : XihfB ≈ XIHF + XrpoS + XrpoD

(b)

Fig. 6.3 – Correction du graphe d’interaction, selon les données disponibles sur les
facteurs σ.

ifhA

ihfB

IHF

rpoD

rpoS

dppA fic

(a)

CIHF : XIHF ≈ −XihfA − XihfB

CihfA : XihfA ≈ XIHF + XrpoS + XrpoD

Cfic : Xfic ≈ XrpoS

CdppA : XdppA ≈ XrpoD

(b)

Fig. 6.4 – Sous-graphe inconsistant avec les données bibliographiques, après ajout des
régulations par les facteurs σ

Prédiction de la réponse à une perturbation 95

rcA crp

fis

rpoS

rpoH

agaA agaV agaW agaZ

araC

araAaraB araD araE araF araG araH araJ

aceAaceB

aceEaceF

aceK

acnA acnB aldAb0725

caiA caiB caiC caiD caiE caiT

dctA

focA

fumAfumB

glpA glpB glpC

glpD

gltA

lpdA

mdh

pflB

ptsG rhaTsdhA sdhB sdhC sdhD

sucA sucB sucC sucD

treB treC

argG infB metY nusA pnp rbfA rpsO truB yhbC

acs

agp

aldB

ansB aspA

bglB bglF bglG

caiF

cdd

chbA chbB chbCchbF chbG

chbR

cirA

cpdB

crr

csiD

csiE

cstA cyaAcytR

dadA dadX

dcuA

dcuB

deoA deoB deoC deoD dsdA dsdX

dusB

ebgA ebgC

entA entB entC entD entE

envZ

epd

exuT

fadL

fbaA

fecA fecB fecC fecD fecE

fepA fiu

fixA fixB fixC fixX

flhCflhD

focB

fucA fucI fucK fucO fucP

fucR

fucU

fur

gabDgabPgabT

gadAgadB gadC

gadX

galEgalK galM galP

galS

galT

gapA

gcd

glgA glgC glgP

glgSglnA

glnG

glnL

glpE

glpF

glpG

glpK

glpQ

glpR

glpT

glpX

gntK

gntP

gntT

gntU

gntX gntY

guaA guaB

gutM

gutQ

gyrA

hlyE

hpt

hupA hupB

hyfA hyfB hyfC hyfD hyfE hyfF hyfG hyfH hyfI hyfJ

hyfR

idnD idnK idnO

idnR

idnT

ilvB ilvN ivbL

lacA lacY lacZ

lamB

lsrA lsrB lsrC lsrD lsrF lsrG

lyxKmalE malF malG

malI

malK malM malP malQ malS

malT

malX malY

manXmanYmanZ

melAmelB

melR

mglAmglB mglC

mhpA mhpB mhpC mhpD mhpE mhpF

mlc

mpl

mtlA mtlD

mtlRnagA nagB

nagC

nagDnagE

nanA

nanC

nanE nanK nanT

nmpC

nupC

nupG

ompA

ompF

ompRosmY

oxyR

paaA paaB paaC paaD paaE paaF paaG paaH paaI paaJ paaK paaZ

pdhR

pgk ppiA

proP

prpB prpC prpD prpE

prpR

psiEptsH ptsI

putP

rbsA rbsB rbsC rbsDrbsK

rbsR

rhaA rhaBrhaD

rhaR

rhaS

serA

sgbE sgbH sgbU

sodB

sohB

speC

spf

srlAsrlB srlD srlE

srlR

tdcA

tdcB tdcC tdcD tdcE tdcF tdcG

tnaA tnaB tnaC

trxA

tsx

ubiG

udp ugpA ugpB ugpC ugpE ugpQ

uhpT

uidAuidB

ulaA ulaB ulaC ulaD ulaE ulaF

uxaA uxaBuxaC

uxuA uxuB

uxuR

xseA

xylA xylBxylFxylG xylH

xylR

ybdB

ygaF

yhcHyhfA

yiaJ

yiaK yiaL yiaM yiaN yiaO

yjcG yjcH

hns

ndhnuoA nuoB nuoCnuoE nuoF nuoG nuoH nuoI nuoJ nuoK nuoL nuoM nuoN

nrdA nrdBadhE

cysG nirB nirC nirD

nrfA nrfB nrfC nrfD nrfE nrfF nrfG

alaT

alaU alaV

alaW alaX argU argW argX aspV

glnQ

glnU glnV glnW glnX

gltT gltU

gltV

gltW

glyT glyU gyrB hisR ileT

ileU ileV

ksgA leuP leuQ leuT leuV leuW leuX lysT lysV lysW

marA

marB

marR

mazE mazF metT metUpdxA pheU pheV proK proL proMqueA rrfA

rrfB rrfC rrfD

rrfE

rrfF rrfG rrfH

rrlA

rrlB rrlC rrlD

rrlE

rrlG rrlH

rrnA

rrnB rrnC rrnD

rrnE

rrnG rrnH

serT serX

sra

thrT thrU

thrV

thrWtopA tprtrmA tyrT tyrU tyrV valT valU valX valY

ygjG

fnr

narL arcA

ackAcydA cydBcydC cydD

cyoA cyoB cyoC cyoD cyoE

dcuC

hemA

moeA moeB

sodA

tpx

ubiA ubiC

yfiD

moaAmoaB moaC moaD moaE

frdA frdB frdC frdD ccmAccmB ccmCccmD ccmE ccmFccmG ccmH

dmsA dmsB dmsC

fdhFfdnG fdnH fdnI

gatA gatB gatC gatD gatY gatZ

hcp hcr hmp

hypB hypC hypD hypE kbl

metBmetLnapA napB napC napD napF napG napH

narG narH narI narJ narK

narV narW narXnarY narZ

nikA nikB nikC nikD nikE

nikR

norV norW

nrdD nrdG

oppA oppB oppCoppD oppF

pgmA

pyrD

rimM rplB rplC rplDrplE rplF rplM rplN rplO rplPrplR rplS rplT rplV rplWrplX rpmCrpmD rpmJ rpsCrpsE rpsH rpsI rpsJrpsN rpsP rpsQ rpsSsecY speD speE

talA

tdh

trmD

yeiLadiA

cadA cadB

fliA

fliY fliZfliC

hdeA hdeB hdeD rcsA

bolA

chiA cspD

fimA fimC fimDfimE fimF fimG fimH fimI

micF

mukB mukE mukF

nhaA

osmC

proV proW proX

smtA

stpA

IHF

glcA glcB glcD glcE glcF glcGcarA carB

ompC

hycA hycB hycC hycD hycE hycF hycG hycH hycIhypA sufA sufB sufC sufD sufE sufS

ihfA

ihfB amiA dppA dppB dppC dppD dppF dpsecpDglnH glnP hemFhtrEibpB ilvA ilvD ilvE ilvG_1 ilvG_2 ilvL ilvM mtr osmE phoUpspA pspB pspC pspD pspE pspG pstA pstB pstC pstSrtcA rtcB tyrP ulaG

hyaA hyaB hyaC hyaD hyaE hyaF hybA hybB hybC hybD hybE hybF hybG hybOtorA torC torD

rpoD

rpoN

fecIacrA acrB

ada

aidB

alkAalkB

agaR

agaB agaC agaD agaI agaS agaY

slp

alsR

alsA alsB alsC alsE alsI

appA appB appC

betA betB

betI

betT

fadA fadBicd dnaN recF

argR

argB argC argD argE argF argH argI

astA astBastC astD astE

asnC

asnA

bioA bioB bioC bioD bioF

cadC cbl

cpxR

cpxA cpxP

csgA csgB

dsbA rdoA

tsr

cspAcusR

cusA cusB cusC cusF cusS

cynR

cynS cynT cynX

cysB

cysA cysC cysD cysH cysI cysJ cysK cysM cysN cysP cysU cysW

dsdC

emrR

emrA emrB

evgA

evgS

fabAfadD uspA

fliL fliM fliN fliO fliP fliQ fliR

edaeddfruA fruB fruK pckA pfkA ppsA pykF

entF entS exbB exbD

fecR

fepB fepC fepD fepE fepG fes fhuA fhuB fhuC fhuD fhuF

metH

metJnohA purRsraI tonB yhhY yodA

gltB gltD gltF

gndlrp purA

galR

gcvA

gcvBgcvH gcvP gcvT

gcvRglcC

gntRilvY

ilvC

iscR

iscA iscS iscU

kdpAkdpB kdpC

leuA leuB leuC leuD leuL

lexA

dinF dinG dnaG ftsK polB recA recN recX rpsU ssb sulA umuC umuD uvrA uvrB uvrD

ilvH ilvI livF livG livH livJ livK livM lysU sdaA

lysR

lysA

fprinaA nfnBnfo

pqiA pqiB

putAzwf

ahpC ahpF

metA

metC metF metI metK metN metQ

glyA

mhpR

mngR

modA modB modC

codAcodBgdhA

nadBpncB

glmS glmU

agn43 katG trxC

paaX

phoB

asr b4103 phnC phnD phnE phnF phnG phnH phnI phnJ phnK phnL phnM phnN phnO phnP phoA phoE phoH phoR psiFmgtA

treR

pspF

cvpA glnB hflD prsA purB purC purD purE purF purH purK purL purM purN pyrC speA speB ubiX

ftsA ftsZosmB wcaA wcaB wza wzb wzc

ftsQ

soxR

soxS

fldB nfsA ribA rimK ybjC ybjN

trpR

aroHaroLaroM trpA trpB trpC trpD trpE trpLyaiA

tyrR

aroF aroG aroP tyrA tyrB

xapR

xapA xapB

zntA znuB znuCaccA accB accC accD ampC amyA rpe aroK aroB gph damX dam trpS arsC arsR arsB asnT asnU asnV atpG atpH atpD atpC atpE atpA atpF atpI atpB bcp bglX btuB

cbpA

cedA

cfa

chpS chpB clpA cls cmk rpsA corA creD creC creA creB csrB cutAnlpB dapA dcuD dut slmA efp fimBhflB rrmJ fxsA gloA gltX glyV glyX glyY cysT glyW leuZ gmr hemN hepA fdx hscA hscB ileXimp infC kdsA kdtA leuU lysC lysPmdoG mdoH menA menB menC menE metW metV metZ mfd ddlB ftsI mraY murD murE murG ftsL mraZ mraW murC murF ftsW

narU

yebC ruvC nudB

otsA otsB

paaY pcnB folK pgi pheP pntA pntBppiD pth ychF relArfaC rfaL rfaF hldD rfaI rfaJ rfaP rfaQ rfaS rfaY rfaZ rfaK rfaB rfaG rnb rnc acpS pdxJ recO era yhbH ptsN npr yhbJ rplQ rpoA rpsD rpsM rpsK

rsd

serU serV argV argY argQ argZ serW ssuC ssuE ssuD ssuB ssuA thrL thrA thrB thrC upp uraA valV valW ves xseB dxs yajO ispA yebB rihB ychA ychQ yjaB hflK hfq yjeF yjeE miaA hflX hflC amiB mutL

fumC

csgD

csgE csgFcsgG

gadE poxB goransP blc dpbA fic gadY katE msyB pfkB tktB treA uspB xthA ybjP yehW yehY yehZ yehX yggE yiaG ldcC

atoA atoBatoD atoE

hydN hypF

amtB glnK nacargT ddpA ddpB ddpC ddpD ddpF ddpX hisJ hisM hisP hisQ ycdG ycdH ycdI ycdJ ycdK ycdL ycdM yeaG yeaH yhdW yhdX yhdY yhdZ

zraR

zraS

gltI gltJ gltL gltK kch yaiS ybhK puuP yfhK zraP

rpoE

bacA dsbC ecfI

fabZ

htrA

lpxAlpxD

psd

skp

smpA

cutCecfA ecfD yggN ecfG ecfH ecfJ ecfK ecfL fkpA tufA fusA surA lpxP rseC rseA rseB sbmA sixA apaH apaG yaeL ybaB yeaY yfeY yiiS

lon

clpB clpX clpP dnaJ dnaK groS grpE hslV hslU htgA htpG htpX htrC ibpA pphA

acrR

adiY

allR

allA allB allS gcl glxK glxR hyi ybbV ybbW ybbY

allC allD ylbA

alpA

appY

hcaR

lctD lctP

lctRydeA

hcaB hcaC hcaD hcaEhcaF

argP

dnaA

polA

atoC

baeR

acrDbaeS mdtA mdtB mdtCmdtD

birA

ycgR yhjH

fhuE mntHnrdE nrdFnrdH nrdI ygaCasnBybaS

potF potG potHpotI

HU

malZ

grxA

tauA tauB tauC tauD

cheA cheW motAmotB

ung

csiR

cspE

cueR

copA cueOdcuR

deoR

dhaR

dhaK dhaL dhaM

ebgR

envY

emrK

tufB

exuR

fabR

fabB

fadR

fadI fadJ

iclR

fhlA

aerflgK flgN flgM fliD fliS fliT flxA tar trg

fruR

glk

metE

metR

aroA serC RcsB

gadW gatR_2

GatR

gatR_1

pgmseqA

hdfR

kdgR

kdpE

lacI

leuO

dinQ insK molR_1phr ruvA ruvB tisA tisB uvrC uvrY ydjM

lrhA

lsrR

mngAmngB

mntRmodE

nadRnanR

narP nhaR

norR

phoP

borDhemL mgrB pagP phoQ rstA rstB slyB ybjG yrbL

qseB

bdm

rcsB

rob

rtcR

sdaR

garD garK garL garP garR gudD gudP gudX rnpB

sdiA

slyA fldA

tdcR

torR

uhpA

uidR

ulaR

ydeO

zntR zur

sigma19

Fig. 6.5 – Graphe d’interaction pour le réseau transcriptionnel d’E. coli avec facteurs σ.

Comme mentionné au chapitre 2, ainsi qu’au paragraphe 4.4.1, l’interprétation des
données brutes en signes passe par la définition d’un seuil, au-dessus duquel la varia-
tion mesurée est jugée significative. Si la variation est trop faible, on peut au choix la
considérer nulle ou inconnue. Nous avons opté pour la deuxième possibilité, en com-
mençant par un seuil nul : toutes les données sont interprétées en signes + et – uni-
quement. Pour être cohérent avec ce choix, les calculs de prédictions ont également été
faits en excluant les solutions contenant des variations nulles. Ainsi les prédictions sont
également dans {+,–}.

Tab. 6.3 – Validation des prédictions obtenues à partir des données bibliographiques.
Les prédictions sont comparées à des données de puces à ADN, provenant de [47] et
[100].

Source de données Nombre de gènes comparés Gènes validés (%)
Phase stationnaire après 20 minutes 292 51.71%
Phase stationnaire après 60 minutes 281 51.2%

Les résultats de la comparaison sont donnés au tableau 6.3. Nous avons inclus dans
cette comparaison deux temps expérimentaux (20 et 60 minutes). Dans chaque cas,
il y a des variations manquantes (mesure brute absente), et la deuxième colonne du
tableau montre le nombre de gènes qui sont à la fois prédits par notre approche et dont
la mesure est disponible dans la source. La troisième colonne donne le pourcentage de
gènes dans cette intersection qui ont effectivement un signe commun.

Les chiffres obtenus sont à première vue peu encourageants : les prédictions font
à peine mieux qu’un tirage aléatoire. Néanmoins ce résultat peut être partiellement
dû au bruit dans les données : comme indiqué ci-dessus, nous n’avons initialement

96 Validation expérimentale

(a) (b)

Fig. 6.6 – Prédiction de la réponse au stress nutritionnel. Les courbes montrent
l’évolution des résultats en fonction du seuillage des données. On se donne un seuil
en dessous duquel les variations mesurées sont jugées non significatives. Dans ce cas, la
variable concernée est déclarée non observée. Plus on choisit un seuil élevé, moins on
garde de données, mais plus ces données sont fiables. (a) Pourcentage de prédictions
correctes en fonction du seuil. (b) Nombre de gènes conservés en fonction du seuil.

effectué aucun filtrage sur les données. En choisissant un seuil en-dessous duquel les
variations sont ignorées, on peut s’attendre à observer une meilleure concordance entre
les prédictions et les données. Pour le vérifier, nous avons itéré le calcul pour diverses
valeurs du seuil ; le tracé est donné en figure 6.6.

La première courbe donne le pourcentage de prédictions validées en fonction du seuil
choisi. Plus le seuil est élevé, plus on exclut de gènes de la comparaison. Le nombre de
gènes considérés (c’est-à-dire qui ont une variation expérimentale suffisante et qui sont
prédits par notre approche) est donné en fonction du seuil sur la courbe de droite. Ainsi,
lorsque l’on sélectionne les gènes dont la variation est la plus importante, le taux de
prédiction s’améliore sensiblement. Cet effet n’est pas très étonnant si l’on se souvient
du niveau de bruit généralement observé dans les mesures d’expression (voir figure
1.2), et particulièrement pour les gènes faiblement exprimés dans les deux conditions
comparées.

Il reste que le pourcentage de prédictions validées est loin d’être parfait, même
après avoir choisi un seuil très restrictif. Nous nous sommes donc intéressés aux er-
reurs de prédiction les plus flagrantes, c’est-à-dire pour lesquelles la variation mesurée
ne pose aucun problème d’interprétation. C’est notamment le cas pour le gène ilvC
dont l’expression devrait augmenter d’après notre modèle, et qui diminue en fait for-
tement. Le gène ilvC n’admet qu’un seul activateur, à savoir le gène ilvY, qui n’a lui
même qu’un seul activateur, à savoir rpoD. Ce dernier est prédit comme augmentant à
l’entrée en phase stationnaire, ce qui implique l’augmentation de ilvY et de ilvC. Une
recherche bibliographique nous a conduit à des publications portant spécifiquement sur
la régulation de ces gènes [76, 70]. Ces travaux montrent l’influence des phénomènes
de super-hélicité de l’ADN dans la régulation transcriptionnelle de ces gènes. On peut
notamment lire dans [76] :

Inférence de graphes d’interactions 97

Evidence that this promoter coupling is DNA supercoiling-dependent is
provided by the observation that a novobiocin-induced decrease in global
negative superhelicity results in an increase in ilvY promoter activity and
a decrease in ilvC promoter activity predicted by the in vitro data. We
suggest that this transcriptional coupling is important for coordinating basal
level expression of the ilvYC operon with the nutritional and environmental
conditions of cell growth.

Des travaux expérimentaux [4] montrent que le phénomène de superhélicité tend à dimi-
nuer lors du passage en phase stationnaire. Cet évènement, provoqué in vitro dans [76]
conduit à une diminution de l’activité transcriptionnelle du gène ilvC, et une augmen-
tation pour le gène ilvY. En complétant notre modèle avec l’incluence de la topologie
de l’ADN, nous obtenons une correction validée de notre modèle.

6.2 Inférence de graphes d’interactions

Nous abordons maintenant un deuxième problème essentiel en biologie systémique :
la reconstruction de modèles à partir de données expérimentales – reverse-engineering
dans la littérature. Dans notre contexte, il s’agit de construire un graphe d’interaction
compatible avec des données de déplacement d’équilibre. Nous nous sommes intéressés
à un cas particulier de ce problème, où l’on suppose les arcs du graphe d’interaction
connus, et où seuls les signes sur les arcs sont à déterminer.

L’intérêt pratique de cette question est de permettre l’intégration des données chIP-
on-chip avec les mesures d’expression : les premières fournissent les arcs du graphe d’in-
teraction, puisqu’elles déterminent les cibles des facteurs de transcription ; les deuxièmes
vont nous permettre de déduire le signe des arcs, c’est-à-dire l’effet (activation ou in-
hibition) de ces facteurs de transcription sur leurs cibles.

L’intégralité de ce travail est reproduite en annexe A, et nous en synthétisons ici
les principaux résultats. Nous avons procédé en trois étapes, partant de données bien
validées et/ou artificielles sur la bactérie E. coli, pour arriver à un contexte d’utilisation
réaliste chez la levure. En voici les grandes lignes.

6.2.1 Limites théoriques de l’approche

Inférence à partir d’une seule mesure On peut commencer par une remarque
simple : si un gène a admet un unique régulateur b, alors il suffit d’une seule mesure
voyant a et b varier pour déterminer l’effet de la régulation. Elle est positive si a
et b varient dans le même sens, négative sinon. En supposant que l’on mesure tous les
sommets d’un graphe d’interaction donné, ce raisonnement simple règle donc la question
pour tous les sommets n’ayant qu’un seul prédécesseur. Sur le graphe d’interaction issu
de RegulonDB, cela représente plus de 600 régulations (sur un total de 3802). La valeur
ajoutée de notre approche est donc de savoir combiner plusieurs mesures pour déduire
le signe des régulations dans le cas général.

98 Validation expérimentale

20 40 60 80 100 120 140 160 180 200
0.15

0.2

0.25

0.3

0.35

fr
ac

tio
n

of
 in

fe
re

nc
e

number of expression profiles

 whole network 1529 nodes 3802 edges

Fig. 6.7 – Statistique du nombre de signes déduits à l’aide d’un nombre donné de
mesures. En abscisse, nombre de mesures disponibles ; en ordonnées le nombre de signes
de régulation que l’on peut en déduire.

Inférence à partir de plusieurs mesures Si l’on dispose de plusieurs mesures,
nous étudions les invariants de la contrainte de consistance, et rapportons tous les
invariants qui sont des signes (les invariants peuvent également être des variations
non mesurées). Plus précisément, pour un graphe d’interaction G entièrement signé,
on calcule un ensemble de k solutions de la contrainte de consistance C∅G , notées µ =
{µ1, . . . , µk}. On construit le graphe H, qui a les mêmes arcs que G mais où aucun
signe n’est connu. Enfin, on cherche les invariants de la contrainte Cµ

H. Pour étudier
l’intérêt pratique de cette approche, nous examinons son comportement sur le graphe
d’interaction basé sur RegulonDB (voir section précédente). Ce réseau étant entièrement
signé, nous l’avons utilisé pour générer aléatoirement des mesures compatibles. Plus
précisément, pour un entier k donné, on génère aléatoirement k mesures compatibles
avec le graphe d’interaction. On construit ensuite une version non signée de ce graphe
d’interaction, que l’on combine avec les k mesures pour obtenir les signes prédits, dont
on compte le nombre. Cette opération est répétée une centaine de fois pour obtenir une
statistique du nombre de signes déduits à l’aide de k mesures. Le résultat obtenu est
donné en figure 6.7. On retrouve, à l’origine de la courbe, les régulations inférables par
une seule mesure. La courbe monte rapidement vers un plateau supérieur à 35%. Nous
voyons notamment qu’on peut en moyenne déterminer 30% des régulations du graphe
à l’aide d’environ 30 mesures.

Réalisation Pour l’inférence des régulations, le calcul des invariants peut, au choix
être effectué par un moteur ASP soit en utilisant les diagrammes de décision et notre
méthode de décomposition. Le calcul des simulations est relativement coûteux, aussi
nous avons cherché à optimiser autant que faire ce peut le calcul des invariants. À
cette fin, nous l’avons décomposé en deux parties. La première consiste à calculer des
parties bien choisies de la contrainte de consistance avec des diagrammes de décision.
Nous obtenons ainsi la plupart des invariants dans un temps relativement court. La
deuxième phase utilise le moteur ASP clasp pour prouver la non-invariance des autres
variables. La procédure complète est détaillée dans l’article reproduit en annexe.

Inférence de graphes d’interactions 99

Signes inférables La courbe 6.7 semble indiquer l’existence d’une limite au nombre
de signes pouvant être retrouvés, correspondant à un peu plus de 35% du graphe d’in-
teraction. Nous pouvons en fait calculer cette limite exactement, en déterminant les
signes que l’on peut déduire quand toutes les mesures compatibles sont disponibles.
L’algorithme näıf consistant à générer toutes les mesures explicitement, puis à les uti-
liser comme au paragraphe précédent n’est pas envisageable. On peut procéder de la
manière suivante : la contrainte C∅G construite plus haut décrit toutes les mesures com-
patibles avec G. De plus toute mesure compatible avec G doit être compatible avec H,
ce qui se traduit par la contrainte :

∀X C∅G [X]⇒ C∅H[X,S]

qui porte sur les variables de signe uniquement, et dont on peut calculer les invariants.
Ces invariants sont les seuls signes inférables à partir de mesures expérimentales. Notons
bien la raison de cette limitation : il est impossible de prouver expérimentalement qu’une
mesure arbitraire n’est pas compatible avec le système étudié. Dans le cas contraire, on
pourrait remplacer dans la formule ci-dessus l’implication par une équivalence, et tous
les signes seraient inférable, moyennant le bon ensemble d’observations.

Sur notre graphe d’interaction pour E. coli, nous obtenons que 40.8% des régulations
sont inférables, c’est-à-dire un peu plus de 1550 signes. Ce maximum peut n’être atteint
que pour un très grand nombre de mesures. Le calcul a été réalisé grâce aux procédures
sur les diagrammes de décision, en utilisant les techniques de décomposition sur les
contraintes qualitatives décrites au paragraphe 4.5.2.

Bilan Cette étude sur le réseau transcriptionnel d’E. coli nous permet d’évaluer les
limites de l’inférence de régulation par contraintes de consistance, dans le cas où les
données – ou du moins leur interprétation qualitative – ne sont pas bruitées. Nous
voyons ainsi que tous les signes de sont pas inférables, et d’autres ne le sont qu’au prix
d’un très grand nombre de mesures. Néanmoins, nous montrons sur cet exemple qu’un
petit nombre de mesures permet déjà d’approcher de manière significative cette limite.

6.2.2 Validation par des mesures d’expression

Prédictions sous données non consistantes Dans une deuxième étape, nous rem-
plaçons les mesures artificielles par des données d’expressions, compilée dans [27]. Dans
ce cadre, les mesures peuvent ne pas être consistantes avec le graphe d’interaction que
nous avons construit. Les données expérimentales peuvent donc nous amener à déduire
des signes erronés (c’est-à-dire non conformes à l’annotation données dans RegulonDB).
Plus ennuyeux, les données peuvent ne pas être consistantes avec le graphe non signé.
On peut en donner un exemple simple : soit un système composé de deux espèces A et
B avec une régulation B → A. Supposons qu’on dispose de deux mesures µ1(A) = +,
µ1(B) = + d’une part, et µ1(A) = +, µ1(B) = – d’autre part. L’ensemble n’est pas
consistant, car la contrainte qualitative de consistance aux sommets n’admet aucune
solution. A fortiori, on ne peut donc pas calculer les invariants. Il nous faut donc
répondre à la question suivante : comment obtenir (définir ?) des prédictions lorsque les

100 Validation expérimentale

données expérimentales ne sont pas consistantes avec le graphe d’interaction non signé ?
La réponse la plus sage consiste à détecter chaque défaut à la règle de consistance, et
examiner manuellement le problème. Il n’est toutefois pas toujours possible d’investir
le temps nécessaire pour arriver corriger complètement les défauts.

Un algorithme pour la prédiction en présence de bruit Nous avons ici proposé
une approche intuitive proche de la notion de diagnostic. En voici les grandes lignes :

– soit un graphe non signé, et un ensemble de mesures qui ne sont pas consistantes
avec ce graphe

– en utilisant l’approche de diagnostic décrite plus haut (voir paragraphe 6.1.3), on
isole un sous-ensemble d’équations et de mesures inconsistantes, que l’on supprime
de la contrainte de consistance.

– cette opération est répétée jusqu’à obtenir un graphe et des données consistants
pour lesquels on calcule les invariants sur les signes des régulations,

– pour chaque prédiction, on appelle indice de confiance le nombre de mesures
compatibles avec la prédiction.

Il s’agit donc essentiellement de retirer des données jusqu’à arriver à une contrainte
satisfiable, sur laquelle on peut calculer des prédictions. Bien sûr cette approche n’est
pas pleinement satisfaisante, puisque les données mises à l’écart ne sont pas uniquement
déterminées : plusieurs sous-ensembles de données et d’équations peuvent expliquer
l’inconsistance constatée. Néanmoins cette approche a le mérite de la simplicité, et
nous permet d’observer l’intérêt ((grandeur nature)) de la notion de diagnostic (par le
biais de l’indice de confiance).

Résultats expérimentaux Les résultats obtenus par l’algorithme ci-dessus sont
donnés en figure 6.8. Pour l’indice de confiance le plus faible (k = 1), on obtient 183
signes, mais 42% de ceux-ci sont conformes à l’annotation de RegulonDB. Pour des
indices de confiance plus élevés, le nombre de prédictions chute (c’est attendu), mais
le taux de faux-positifs diminue également de manière sensible, arrivant à 8% pour
k = 15.

Bilan Nous avons montré une approche simple pour la formulation de prédictions
dans le cas de données non consistantes. Son principe peut être perfectionné, mais
elle illustre déjà l’intérêt pratique de la notion de diagnostic, puisqu’elle privilégie les
prédictions confirmées par le plus grand nombre d’observations (c’est-à-dire celles qui
en contredisent le minimum).

6.2.3 Application chez S. cerevisiae

La dernière étape de ce travail expérimental consiste à appliquer l’algorithme de
prédiction décrit plus haut dans un contexte plus difficile : le graphe d’interaction
provient cette fois de données chIP-on-chip, et constitue donc un modèle beaucoup
moins fiable que le réseau fourni par RegulonDB pour la bactérie E. coli.

Inférence de graphes d’interactions 101

k.1 k.2 k.3 k.4 k.5 k.6 k.7 k.8 k.9 k.10 k.11 k.12 k.13 k.14 k.15

Number of expression profiles validating inference (k)

N
um

be
r

of
 in

fe
rr

ed
 r

ol
es

0
50

10
0

15
0

77

106

32

54

29

52

28

49

24

50

21

49

21

48

21

47

20

47

19

44

19

43

16

44

14

42

9

41

3

33

Fig. 6.8 – Résultats de l’inférence des signes de régulation sur le réseau d’E. coli, à
partir de données d’expression.

Données Nous avons étudié quatre réseaux transcriptionnels, correspondant aux
données produites par Lee et al [57] et Macisaac et al [62]. Les trois premiers sont
de taille modeste (moins de 100 sommets) car limités aux facteurs de transcriptions.
Le dernier regroupe toutes les cibles des facteurs de transcriptions étudiés dans [57] ;
il compte plus de 2400 sommets et 4300 régulations. Les mesures d’expression utilisées
sont celles qui ont été compilées dans [45].

Résultats Comme avec le réseau transcriptionnel d’E. coli, les réseaux que nous
avons construits ne sont pas consistants avec les données d’expression. La procédure de
diagnostic décrite plus haut nous a permis d’isoler les défauts à la règle de consistance ;
il s’avère que les défauts typiques tombent systématiquement dans un des cas montrés
en figure 6.9. Dans le cas du plus grand graphe, nous avons compté plus de 740 de
ces défauts, couvrant un peu moins de 18% du graphe d’interaction total. En utilisant
l’algorithme de prédiction décrit plus haut, nous obtenons 631 signes prédits avec un
indice de confiance supérieur à 1, et 198 avec un indice supérieur à 3. Pour valider ces
prédictions, nous utilisons comme référence le réseau construit dans [35] à partir de
données bibliographiques. Sur les 198 régulations prédites avec un indice supérieur à 3,
19 sont annotées dans le réseau et 18 concordent.

Bilan

Nous avons exposé dans ce chapitre deux applications de notre approche sur des
données réelles. La première porte sur la réponse transcriptionnelle de la bactérie E. coli
à un stress nutritionnel : il s’agissait, partant d’un graphe d’interaction complètement
annoté, et d’un ensemble (restreint) d’observations issues de la littérature, de prédire
la réponse globale de la bactérie. Dans la seconde application, le but était de prédire

102 Validation expérimentale

Fig. 6.9 – Cas typiques de défaut à la contrainte de consistance, trouvés dans les
données sur S. cerevisiae.

l’influence des facteurs de transcription sur leurs gènes cibles, en combinant des données
chIP-on-chip et des données d’expression. Nous avons dans un premier temps démontré
la faisabilité de la méthode en utilisant des données fiables sur la bactérie E. coli, puis
produit des prédictions à partir de données sur la levure.

Validation algorithmique Ces expérimentations répondent positivement à la ques-
tion du passage à l’échelle : les algorithmes que nous avons proposés sont à même de
traiter des données transcriptomiques portant sur plusieurs milliers de transcrits, dans
un temps qui n’excède pas quelques minutes. À ce titre, nos deux méthodes de résolution
(par diagramme de décision, ou par programmation logique) ont un comportement si-
milaire, même si l’utilisation des diagrammes de décision pour de si grands systèmes
reste délicate – notamment à cause des passages obligés de réduction/décomposition
des contraintes. L’utilisation du solveur ASP clasp donne en revanche des résultats
tout à fait satisfaisants, pour une utilisation relativement simple.

Analyse de données Ces travaux sur données réelles amènent à une observation
capitale : le critère de consistance n’est généralement pas vérifié dans les mesures
expérimentales disponibles. Quoique décevant de prime abord, ce résultat est au contraire
un formidable levier pour l’analyse de données, puisque nous avons mis en évidence que
l’étude des défauts permet dans de nombreux cas de corriger le modèle étudié, ou les
données utilisées. Dit autrement, nous avons proposé un modèle suffisamment peu précis
pour s’accommoder des données disponibles, mais qui néanmoins peut guider vers des
connaissances nouvelles sur le système étudié.

Chapitre 7

Discussion

Nous avons à présent décrit en détail notre approche, tant en ce qui concerne son
principe que ses aptitudes au traitement de données réelles. Nous proposons dans ce
chapitre de resituer notre travail parmi d’autres contributions abordant la comparaison
grande échelle d’un modèle graphique et de données expérimentales. Nous approfon-
dissons notamment la comparaison avec l’approche développée par Yeang, Ideker et
Jaakkola [103].

7.1 Travaux connexes

Notre travail peut être vu comme une proposition pour relier une représentation gra-
phique d’un système biologique au comportement dudit système. La relation que nous
avons décrite est basée sur un modèle physique qui donne d’une part une sémantique à la
représentation graphique, et d’autre part une interprétation des mesures expérimentales.
Cette relation porte essentiellement sur une propriété topologique (prédécesseurs d’un
sommet) sur un type de graphe (les graphes d’interaction) et un type de mesure (signe
des variations entre deux états d’équilibre). Nous allons dans un premier temps men-
tionner un certain nombre de travaux abordant, dans des contextes distincts, la même
question : comment expliquer ou prédire des observations expérimentales sur un système
à partir de sa description sous forme d’un graphe ?

7.1.1 Circuits du graphe d’interaction

Nous avons déjà cité au paragraphe 3.2.1 quelques résultats connus sur le graphe
d’interaction d’un système. Ainsi, l’absence de circuit positif implique l’unicité de
l’équilibre d’un système ; l’absence de circuit négatif implique l’absence d’oscillations
amorties ou entretenues. Par ces résultats, on a donc relié des propriétés dynamiques
(unicité de l’équilibre par exemple) aux circuits d’un graphe d’interaction, sous di-
verses sémantiques (modèles différentiels avec ou sans dégradation [89], réseau booléens
[75]/multi-valués [77] . . .).

103

104 Discussion

7.1.2 Régulons

Gutiérriez et collègues [36] ont adopté une approche très similaire au travail présenté
dans cette thèse : ils proposent de comparer des connaissances issues de la littérature
(en particulier le contenu de la base RegulonDB étudiée au chapitre 6) à des mesures
sur le transcriptome de la bactérie E. coli dans différentes conditions expérimentales.
Le modèle physique justifiant la comparaison intègre des connaissances générales sur
la régulation transcriptionnelle chez les prokaryotes. De manière analogue à ce qui est
présenté dans cette thèse, ce formalisme explicite la relation entre l’état d’un gène et
celui de ses prédécesseurs. Il introduit notamment la notion de régulon, qui désigne les
ensembles de gènes ayant exactement le même ensemble de prédécesseurs. Tout comme
la comparaison données/modèle nous a permis de déterminer l’effet des facteurs de
transcription sur leurs gènes cibles, elle permet dans ce cadre d’inférer les fonctions de
régulation propres à chaque régulon.

7.1.3 Chemins métaboliques

On appelle métabolites les ((petites)) molécules1 présentes dans le milieu cellu-
laire qui sont liées à la production d’énergie ou des structures cellulaires (cela inclut
les acides aminés, acides nucléiques, lipides et sucres simples). Les mécanismes de pro-
duction d’énergie, de synthèse ou de destruction des métabolites (l’ensemble est appelé
métabolisme) est souvent représenté par un graphe de réactions analogue à ce que
nous avons utilisé au paragraphe 3.2.7. Chaque réaction transforme ou assemble des
métabolites par le biais d’une réaction enzymatique ; chaque réaction est donc associée
à l’enzyme qui la catalyse, et on s’intéresse au flux de métabolites transformées par la
réaction. Ce flux est dans certains cas mesurable, et en partie fonction des régulations
génétiques : si le gène codant pour l’enzyme n’est pas exprimé, alors le flux à travers la
réaction associée est nul. Pour relier ces observations au graphe de réactions, on a re-
cours à une analyse de flux à l’équilibre (Flux Balance Analysis, FBA) [81] : on suppose
que les réactions suivent une dynamique différentielle et on étudie l’ensemble des flux
à l’équilibre compatibles avec les observations. Cet ensemble peut être infini, donc dif-
ficile à visualiser, mais s’avère être le noyau d’une application linéaire de rang fini. On
peut donc en rechercher une famille génératrice finie ; chaque vecteur de flux dans cette
famille peut être représenté par un sous-graphe ((actif)). Notamment, si un vecteur de
flux a peu de composantes non-nulles, cette représentation fait apparâıtre des chemins
métaboliques (metabolic pathways), c’est-à-dire une suite de transformations menant ty-
piquement de métabolites simples à la production d’énergie ou de biomasse. On obtient
finalement que tout flux à l’équilibre est une superposition de chemins métaboliques
simples. On a ainsi relié des observations sur les flux métaboliques à un graphe de
réactions en faisant l’hypothèse d’un modèle différentiel à l’équilibre. L’analyse offre
par ailleurs une visualisation intuitive des états de flux possibles comme superposition
de chemins métaboliques.

1Elles sont petites à côté des protéines, typiquement. Elles constituent en général les briques de
bases de structures moléculaires plus complexes.

Travaux connexes 105

7.1.4 Cascades de régulations

La réponse d’une cellule aux signaux présents dans l’environnement passe par une
série de réactions et de mécanismes physiques, comprenant notamment des interactions
avec des récepteurs sur la membrane, des phénomènes de transport par des vésicules,
des interactions protéine/protéine et la régulation de gènes dans le noyau. Là encore on
s’intéresse aux chemins en tant qu’ils constituent des suites d’évènements reliant une
perturbation à une réaction observable. Les chemins trouvés sont appelées cascades de
régulation (regulatory pathways) ; ils diffèrent des chemins métaboliques par le modèle
physique sous-jacent : les chemins métaboliques correspondent à des flux équilibrés
minimaux (en un certain sens) ; les cascades de régulations sont des chemins explicatifs
reliant une perturbation à ses effets observables2. Nous mentionnerons deux approches
précisant cette notion de chemins explicatifs. La première, implémentée dans les logiciels
BIOCHAM [16] et Pathway Logic [25], consiste à interpréter un graphe de réactions
comme un ensemble de règles de réécriture : l’état d’un système est représenté par
un vecteur de booléens (absence/présence de chaque espèce), et cet état est modifié
par l’application des règles. Les règles sont applicables dès que tous les substrats de la
réaction sont présents. Pour relier des observations expérimentales (état d’activation
des gènes suite à une perturbation) au graphe de réactions, on recherche donc une suite
d’applications de règles menant du profil initial au profil final. On montre dans [25] que
sous la sémantique choisie, cela correspond à un sous-graphe du graphe de réactions,
qui correspond à la cascade de régulation expliquant la réponse à la perturbation. La
deuxième approche [103], que nous détaillons plus loin, permet d’étudier les effets d’une
délétion de gène (knock-out) : par manipulation génétique on produit une variété d’un
organisme où l’un des gènes ne s’exprime plus. On soumet les deux variétés (sauvage
et mutante) aux mêmes conditions et on compare les différences de comportement.
Les observations portent typiquement sur l’expression des gènes et correspondent aux
variations entre les deux souches. Dès lors, l’objectif est de chercher à expliquer toute
variation observée par une suite de régulations (chemin dans le graphe) partant du gène
muté.

7.1.5 Bilan

Nous avons revu quelques approches proposées pour comparer une représentation
graphique à des observations expérimentales, via l’introduction d’un modèle physique.
La comparaison avec notre approche n’est pas systématiquement possible, puisque les
types de données expérimentales utilisés dans chaque approche ne sont pas toujours
compatibles. Il n’en reste pas moins que chaque approche fournit un critère de consis-
tance – au sens où nous l’avons définit dans cette thèse – entre une représentation du

2Formellement, rien n’empêche de rechercher des chemins explicatifs dans les réseaux métaboliques,
ni d’appliquer des méthodes de Flux Balance Analysis aux réseaux de signalisation (comme par exemple
dans [71]). Le choix du bon outil reste avant tout une question de modélisation (que cherche-t-on ?) et
d’adéquation aux données disponibles. La différence que nous avons voulu souligner est que les chemins
métaboliques sont des composantes simples d’un état d’équilibre, alors que les chemins explicatifs
doivent être vus comme des séries d’évènements.

106 Discussion

système et des données expérimentales. L’existence de ces différents critères de consis-
tance pose naturellement la question de leur comparaison. Étant donnés deux critères
A et B, cela demande :

1. d’expliciter un cadre formel pour leur comparaison, c’est-à-dire une interprétation
commune des données ;

2. de déterminer si des modèles admis par A sont admis par B (et réciproquement) ;

3. d’étudier, dans le cas où une telle inclusion n’existe pas, l’intersection des deux
critères.

Donnons-en un exemple : prenons comme critère A la satisfaction des contraintes
introduites dans cette thèse, et comme critère B l’existence d’une trajectoire dans
un modèle différentiel linéaire par morceaux, comme ceux définis dans [87], [24] ou
[78]. Ces modèles sont connus pour être des abstractions qualitatives de systèmes
différentiels continus. En particulier [88], le modèle discrétisé conserve exactement l’en-
semble des points stationnaires du modèle continu. Cela implique en particulier que tout
déplacement d’équilibre du modèle discrétisé est admis par nos équations qualitatives.
On en déduit que le critère B est plus restrictif que le critère A.

Nous passons à présent à une comparaison plus détaillée entre notre approche et
celle développée par Yeang, Ideker et Jaakkola dans [103]. Cette étude est facilitée
par la relative proximité entre les modèles que nous utilisons. Elle illustre notamment
l’intérêt d’expliciter et de comparer les critères de consistance données/modèle.

7.2 Chemins dans le graphe d’interaction

Les travaux de Yeang et al [103, 104] portent sur la modélisation des expériences
dites de knock-out (délétion de gène), où l’on construit une souche bactérienne ((mu-
tante)) à partir d’une souche ((sauvage)). La mutation consiste généralement à suppri-
mer l’activité d’un gène, voire deux. Quand la mutation n’est pas létale, on compare
alors la réponse des deux souches à une même perturbation. Sur le plan modélisation,
l’objectif est de relier les effets de la délétion (c’est-à-dire les variations observées) au
rôle connu du gène inactivé. Notamment, on cherche à faire apparâıtre une notion de
chemin (pathway dans la littérature) menant de la cause (gène inactivé) aux effets
(variations observées).

7.2.1 Le modèle de Yeang-Ideker-Jaakkola (YIJ)

Le modèle YIJ [103] intègre les interactions protéine/protéine et protéine/ADN
connues ou supposées dans une structure de graphe. Les arcs du graphe sont étiquetés
par un signe + ou – indiquant l’effet d’un gène (ou d’une protéine) sur un autre gène. On
suppose disposer par ailleurs de données de knock-out : pour chaque délétion de gène,
on connâıt les effets sur le reste des sommets du graphe (augmentation, diminution,
pas d’effet significatif).

Nous introduisons maintenant plus formellement ce modèle en en excluant les
éléments liés aux interactions protéine/protéine. Cette hypothèse ne modifie pas fon-

Chemins dans le graphe d’interaction 107

damentalement les conclusions de cette étude, et en facilite grandement l’exposition :
le graphe du modèle YIJ est alors tout à fait analogue à un graphe d’interaction.

Description du modèle et des données Les éléments du modèle sont les suivants :
– un ensemble de gènes V = {g1, . . . , gn}
– un ensemble d’arcs (dirigés) E ⊂ V ×V , représentant l’ensemble des interactions

protéine-ADN potentielles, c’est-à-dire celles pour lesquelles, il existe un support
expérimental minimum (par exemple, p-valeur raisonnable dans une expérience
de chIP-on-chip). On suppose qu’aucune autre interaction n’existe en dehors de
celles-ci.

– des variables binaires XE = {xe | e ∈ E} indiquant qu’une interaction est fonc-
tionnelle (autrement dit, qu’une liaison protéine-ADN est réellement suivie d’ef-
fet).

– des variables qualitatives (i.e. à valeurs dans S) SE = {se | e ∈ E} indiquant
l’effet de l’interaction (activation, inhibition, sans effet)

– une collection de knock-outs, qui est un sous-ensemble K de V × V × S dont les
triplets (gi, gj , kij) sont tels que gi 6= gj et kij représente la variation de gj entre
un knock-out de gi et la condition de référence.

Pour un gène i muté, on s’intéresse à l’ensemble des chemins de i vers j où j est un
autre gène du modèle. Cet ensemble est noté Πij . Pour un chemin a ∈ Πij , on notera
Ea l’ensemble des arcs de a et Xa (resp. Sa) l’ensemble des variables xe (resp. se) pour
e dans Ea.

7.2.2 Relation modèle – données

Pour déterminer la valeur des paramètres d’un modèle (existence des arcs avec les
variables xe, signe des régulations avec les variables se), le modèle YIJ est étiqueté par
une loi de probabilité, dont nous décrivons la construction. Soit un triplet (gi, gj , kij) ∈
K, on introduit pour tout a ∈ Πij la fonction ψija définie par :

ψija(Xa, Sa) =
∏

e∈Ea

1[xe = 1] · 1

[∏
e∈Ea

se = kij

]

où 1[] représente la fonction indicatrice. La fonction ψija est à 1 si a est un chemin
explicatif pour l’effet de la délétion de gi sur gj . Il faut ensuite pouvoir détecter que
l’un au moins des chemins entre gi et gj est un chemin explicatif. La fonction ψij calcule
la disjonction des indicatrices ψija :

ψij(XE , SE) = 1−
∏

a∈Πij

(1− ψija(Xa, Ea))

La loi de probabilité complète pour un modèle et des données de knock-out est donnée
par :

P(XE , SE) =
∏

(gi,gj ,kij)∈K

ψij(XE , SE) (7.1)

108 Discussion

Cette relation exprime une hypothèse d’indépendance entre les chemins explicatifs choi-
sis. Le modèle peut aussi intégrer, selon la même hypothèse d’indépendance (donc en
ajoutant quelques termes multiplicatifs) les indices de confiance généralement fournis
avec les mesures expérimentales.

7.2.3 Consistance de chemin

La forme des lois de probabilité introduites dans le modèle YIJ suggère une notion
de consistance basée sur les chemins dans un graphe d’interaction. Nous la formulons
à présent dans le cadre introduit au chapitre 3.

Rappelons tout d’abord que l’on cherche à définir la consistance entre d’une part
un graphe d’interaction G = (V,E, ρ) et un ensemble de mesures {µ1, . . . , µr}. Le
graphe G est en tout généralité partiellement signé, et muni d’un ensemble U d’entrées.
L’ensemble U décrit les espèces dont la variation dépend aussi de l’environnement.
Il contient donc les éventuels gènes mutés, ainsi que toute espèce dont le niveau est
influencé par l’environnement.

Nous appellerons consistance de chemin la situation où pour tout sommet (hors
entrées), on peut trouver une entrée et un chemin de l’entrée audit sommet, tel que
les signes du chemin et des variations soient compatibles. Plus précisément, à tout
sommet i et toute expérience k, on associe une variable Xik, et à toute régulation j → i
la variable Sji. Pour un sommet i ∈ V \ U , on considère l’ensemble Πui des chemins
partant de u ∈ U et arrivant à i. Soit π1 = u, . . . , π|π| = i un tel chemin. On appelle signe
du chemin le produit (dans l’algèbre des signes) Sπ =

∏
j∈1,...,|π|−1 Sπjπj+1 . On définit

µ(Xik) = µk(i) pour i ∈ V et k ∈ {1, . . . , r}, et ρ(Sji) = ρ(j, i) pour (j, i) ∈ dom(ρ).

Définition 12 (Consistance de chemin, P-consistance). On dit que G et M = {µ1, . . . , µr}
sont P-consistants si la contrainte qualitative

PM
G =

∧
i∈G\U,k∈1,...,r

Pik

admet une solution, avec

Pik =

Xik ≈
∑
u∈U

∑
π∈Πui

SπXuk


Commentons un peu cette définition. Si l’on souhaite modéliser une expérience de

délétion d’un gène l, il suffit de choisir U = {l} et poser µ(Xl) = –. Si un sommet i
de G admet une variation non nulle suite à la délétion, alors il faut trouver un chemin
π de l à i, tel que SπXl = Xi. Si la variation est nulle, alors soit i n’est pas accessible
depuis l, soit on peut trouver deux chemins, l’un de contribution positive, l’autre de
contribution négative3.

Examinons pour fixer les idées, l’exemple donné dans [103], représenté en figure
7.1. Le cas de gauche est bien P-consistant : il suffit par exemple de poser SAB =

3Pour être tout à fait précis, le modèle YIJ ne traite pas le cas des variations nulles.

Chemins dans le graphe d’interaction 109

A

B C

D E

(a)

A

B C

D E

(b)

Fig. 7.1 – Illustrations pour la consistance de chemins. Le premier cas est présenté
dans [103]. Les deux graphes ont une seule entrée : A.

SBD = SCE = XC = + et SAC = XC = –. En revanche, l’exemple de droite n’est pas
P-consistant : pour expliquer la variation nulle de D, il faudrait un chemin négatif et
un chemin positif, ce qui contraint SAC à +, mais alors il n’y a aucun chemin négatif
de A à E.

7.2.4 Consistance au sommet et consistance de chemin

Nous sommes à présent en possession de deux notions de consistance, qu’il serait
bon de pouvoir comparer. On peut en fait facilement prouver le résultat suivant :

Théorème 12. Il n’y a pas d’inclusion entre N -consistance et P-consistance.

Il suffit d’exhiber des contres-exemples, comme ceux donnés en figure 7.2. Le cas
(a) est P-consistant, mais pas N -consistant ; on peut en effet trouver des chemins
expliquant les variations de E et F à partir de la variation de A. Cependant, on ne
peut localement expliquer les variations opposées de E et F par la seule variation
de D. La compétition entre les voies A → B → D et A → C → D se résout en
D, et ne se propage pas à sa descendance dans le graphe d’interaction. Dans le cas
(b), les équations qualitatives sont effectivement vérifiées, mais il n’y a aucun chemin
explicatif entre l’entrée A et les sommets B et C. Il semble en effet étrange que le
système initialement à l’équilibre passe, sous l’effet d’une inhibition à un état où B et
C sont augmentés. Les variations de B et C ((s’autojustifient)), alors qu’elles devraient
découler d’une contrainte imposée sur les entrées.

Cette comparaison suggère que les deux critères de consistance sont complémentaires :
la consistance au sommet assure la cohérence des variations et des régulations directes ;
la consistance de chemins assure que les variations sont explicables par une sollicitation
extérieure au système.

110 Discussion

A

B C

D

E F

(a)

A

B C

(b)

Fig. 7.2 – Contre-exemples pour la preuve du théorème 12. (a) Cas P-consistant mais
pas N -consistant. (b) Cas N -consistant mais pas P-consistant. Les deux graphes ont
une seule entrée : A.

7.2.5 Chemins et déplacement d’équilibre

Nous avons cherché une justification différentielle au critère de consistance par che-
min, dans le cadre présenté au chapitre 3. Nous avons obtenu le résultat suivant, publié
dans [84] et sous une forme raffinée dans [73].

Théorème 13. Soit un système régi par une dynamique différentielle dX
dt = F (X,U).

Soit G = (V,E, ρ) le graphe d’interaction associé, et U l’ensemble de ses entrées. On
note G̊ le sous-graphe de G privé de ses entrées, et F̊ la restriction de F aux sommets
de G̊. Avec les hypothèses suivantes :

– H1 est vérifiée (voir chapitre 3),
– F̊ est non singulière,
– F̊ est de la forme

F̊ (X) = Ψ(X̂, X̊)− Λ′X̊

où Λ est un vecteur de réels strictement positifs et Ψ est une fonction bornée
vérifiant pour tout i ∈ G̊,

Ψi(X1, . . . , Xi = 0, . . . , X̂) > 0

– G̊ ne contient pas de boucle positive
Alors deux états d’équilibre stables X1 et X2 de F vérifient :

sgn(X2
i −X1

i) =
∑
u∈U

∑
π∈Π∗

ui

∏
k<|π|

ρ(πk, πk+1) sgn(X2
k −X2

k) (7.2)

où Π∗
ui est l’ensemble des chemins sans circuit de u à i tels que u est le seul sommet

dans U .

Chemins dans le graphe d’interaction 111

Ce résultat diffère sur deux points avec le critère de consistance de chemin. D’une
part, les contraintes sont plus fortes, à cause des conditions portant sur les chemins
explicatifs. Ceux-ci doivent être sans circuit et ne jamais revenir à une entrée. D’autre
part ses conditions d’application sont restreintes, puisque le résultat n’est valable que
pour les graphes d’interaction sans circuit positif.

7.2.6 Bilan

Nous avons explicité l’utilisation dans les travaux de Yeang et al [104, 103] d’une no-
tion de consistance, que nous avons appelée consistance de chemin. Nous avons montré
que cette notion n’est pas comparable au critère étudié dans cette thèse. Elle lui apporte
essentiellement le fait que toute variation s’explique, via une cascade de régulations,
par une perturbation appliquée au système considéré.

112 Discussion

Chapitre 8

Conclusion

8.1 Bilan

Problématique et approche suivie Le problème posé dans cette thèse porte sur
l’analyse des données haut-débit par des modèles physiques des interactions cellulaires.
Comme nous l’avons vu, cette question est compliquée par la nature des données dis-
ponibles qui portent sur un très grand nombre de variables, et sont le plus souvent
fortement bruitées et incomplètes.

Nous avons suivi une approche d’abstraction qualitative d’un modèle quantitatif, où
les grandeurs mesurées sont remplacées par leur signe. De manière analogue à ce qui est
proposé dans [23] et [38], nous dérivons du modèle quantitatif sous-jacent des relations
qui sont abstraites en contraintes purement discrètes. Ces contraintes, appelées ((critère
de consistance)), sont la base d’une comparaison entre la description du système (le
graphe d’interaction) et les données disponibles.

Ce critère de consistance s’inscrit dans une démarche générale d’analyse de données,
qui comporte quatre étapes (voir aussi figure 1.1) :

1. une phase de vérification, où le critère est utilisé pour décider de la compatibilité
entre les données et le modèle ;

2. une phase de diagnostic/correction en cas d’incompatibilité, consistant à déterminer
des causes possibles pour la non consistance, puis à modifier le modèle ou les
données ;

3. une phase de prédiction, quand le modèle et les données sont consistantes, où le
critère est utilisé pour déduire le comportement du système ;

4. enfin une phase de conception d’expériences, permettant de cibler l’acquisition de
nouvelles données.

Nous avons étudié les trois premières phases de cette démarche, que nous avons for-
malisées comme des problèmes de contraintes sur domaines finis. Nous avons apporté
plusieurs réponses algorithmiques à ces problèmes, qui ont été validées par des appli-
cations sur données réelles.

113

114 Conclusion

Modélisation discrète/modélisation quantitative L’objectif de ce travail est de
formuler un modèle qualitatif adapté au volume et à la qualité des données existantes. Il
s’agit de fournir une technique d’analyse des mesures globales (transcriptome, protéome,
métabolome etc) dans les conditions techniques prévisibles à court et moyen terme –
c’est-à-dire un contexte où les mesures haut-débit sont disponibles en nombre limité, et
très peu répliquées. Il ne s’agit pas d’un bon outil pour l’analyse ciblée d’un mécanisme ;
en comparaison, les modèles quantitatifs à base d’équations différentielles ou de proces-
sus stochastiques fournissent un cadre de modélisation beaucoup plus riche (tant sur le
plan de la description du système que sur ses propriétés).

Une question sous-jacente à ce travail est celle de l’application des méthodes quanti-
tatives comme les équations différentielles ordinaires ou les réseaux bayésiens à l’étude
des données haut-débit. Ces modèles requièrent l’estimation d’un nombre important
de paramètres réels, et nécessitent de ce fait une masse de données très importante,
qui n’est que rarement disponible en pratique. Nous voulons de plus attirer l’attention
sur les difficultés calculatoires liées à l’exploration de l’espace des paramètres dans les
approches différentielles et probabilistes. Elle repose le plus souvent sur des simulations
ou sur des problèmes d’optimisation non convexes, qui sont particulièrement coûteux
en temps de calcul et qui n’offrent en général aucune garantie d’exactitude.

L’approche que nous avons développée repose sur une modélisation discrète ; les
données bruitées ou les paramètres inconnus sont représentés par leur signe, et les
relations entre eux sont abstraites en contraintes à vérifier. L’étude et la résolution de
ces contraintes sont des problèmes beaucoup mieux mâıtrisés, pour lesquels nous avons
exhibé des algorithmes exacts. Ces algorithmes permettent une exploration exhaustive
de l’espace des paramètres ou des données manquantes, et fournissent des preuves des
propriétés trouvées.

Critère de consistance La première contribution de ce travail porte sur la modéli-
sation d’un formalisme adapté au traitement des données haut-débit. Nous l’avons vu,
le résultat est un compromis entre propriétés calculatoires, disponibilité des données et
précision de la description. Notre modèle repose sur deux types d’objets : d’une part un
graphe recensant les espèces chimiques présentes dans le système (gène, protéine, etc)
ainsi que les influences (positives ou négatives) des uns sur les autres ; d’autre part,
un étiquetage des sommets du graphe, indiquant la variation du niveau des espèces
entre deux mesures. Le critère de consistance que nous avons introduit stipule que la
variation de chaque sommet doit être expliquée par l’une au moins des influences qu’il
reçoit.

Nous avons formalisé cette règle intuitive en utilisant l’algèbre des signes, et montré
comment associer à un graphe d’interaction et des données une contrainte définissant
leur compatibilité. Nous avons ensuite démontré formellement la validité de cette con-
trainte dans un cadre différentiel. Cette démarche nous a notamment permis de cerner
les conditions d’applicabilité de notre critère de consistance.

Résolution de contraintes qualitatives En nous appuyant sur notre critère de
consistance, nous avons formulé de manière précise des problèmes liés à la vérification

Bilan 115

de la compatibilité données/modèles, à la prédiction des variables non observées et au
diagnostic des inconsistances. Ces problèmes se ramènent à la résolution et à l’étude de
contraintes booléennes exprimant des relations dans l’algèbre des signes. La deuxième
contribution de ce travail concerne la résolution de ces contraintes, pour laquelle nous
avons proposé deux approches.

La première utilise une structure de données appelée diagramme de décision pour
représenter l’ensemble des solutions des contraintes booléennes. Une fois construit, un
parcours récursif du diagramme permet d’obtenir diverses informations sur l’ensemble
des solutions. Nous avons détaillé la construction du diagramme, ainsi qu’une série d’al-
gorithmes répondant efficacement aux problèmes posés. La principale limite de cette
approche se situe au niveau de la construction du diagramme, dont la taille est au pire
exponentielle en fonction du nombre de variables de la contrainte. Ainsi l’utilisation
directe des diagrammes de décision se limite à des contraintes d’au plus quelques cen-
taines de variables. Pour cette raison, nous avons développé des méthodes de réduction
et de décomposition des contraintes qualitatives permettant d’étendre très sensiblement
leur applicabilité.

La deuxième approche fait appel à des techniques de résolution issues de la pro-
grammation logique. Nous avons montré comment construire un programme logique
dont les modèles sont exactement les solutions de la contrainte qualitative. En nous
appuyant sur les moteurs de résolution ASP, nous avons ainsi obtenu un algorithme
particulièrement efficace pour la résolution des contraintes qualitatives.

Nous avons également vu que ces deux techniques ne sont pas forcément adaptées
à tous les problèmes introduits. Le tableau 8.1 récapitule ces différences. En voici les
grandes lignes :

– le problème de vérification est nettement mieux résolu par l’approche programma-
tion logique. Dans nos expériences sur la levure par exemple, on a pu travailler sur
un réseau de plus de 2000 sommets et 4000 arcs non signés, et quelques dizaines de
mesures. Pour le problème de vérification, cela signifie résoudre une contrainte de
plusieurs dizaines de milliers de variables. Il serait particulièrement difficile (no-
tamment pour le choix de la décomposition) d’obtenir des performances similaires
à partir des diagrammes de décision.

– la recherche des invariants est du coup également plus efficace avec l’approche
programmation logique, grâce à la recherche de contre-exemples.

– en revanche, les diagrammes de décision sont clairement supérieurs dès que – ce
n’est pas une surprise – il est nécessaire d’énumérer ou de compter les solutions.
C’est le cas notamment avec le calcul des probabilités marginales.

– les diagrammes de décision sont également incontournables quand les contraintes
qualitatives contiennent plusieurs alternances de quantificateurs existentiels et
universels. Nous l’avons mentionné lors de la recherche des signes inférables au
paragraphe 6.2.1.

D’un point de vue modélisation, il faut souligner que l’utilisation de programmes
logiques est d’une souplesse bien supérieure à celle des diagrammes de décision. Certes
la sémantique des modèles stables joue parfois des tours au programmeur débutant (ou
distrait !), mais il nous semble nettement plus simple et plus sûr d’expérimenter de cette

116 Conclusion

Problème BDD ASP
Vérification sous consistance aux sommets •• • • •
Invariants d’une contrainte •• • • •
Probabilités marginales •
Paramètres inférables ••
Diagnostic • ••

Tab. 8.1 – Récapitulatif des problèmes formulés dans la thèse, et des algorithmes
proposés

façon de nouvelles idées, et ce d’autant plus que le résultat final est – au moins avec
l’habitude – particulièrement lisible.

Validation sur données réelles La troisième et dernière contribution de cette thèse
est un premier pas vers la validation expérimentale de notre approche. Nous avons no-
tamment travaillé sur l’application des notions de vérification et de prédiction à des
données réelles sur la bactérie E. coli et sur la levure. Dans une première expérience,
nous avons étudié la réponse transcriptionnelle globale d’E. coli à un stress nutritionnel.
Nous avons confirmé sur cet exemple la validité du critère de consistance, et montré
comment obtenir des corrections non triviales de notre modèle du réseau transcription-
nel. Notre seconde application porte sur la reconstruction de réseaux transcriptionnels
à partir de données d’expression. Nous avons étudié un cas particulier de ce problème,
où les régulations sont connues, mais pas leur effet. Nous avons montré, par une étude
préliminaire sur le réseau d’E. coli qu’un nombre limité de mesures (moins de 30) per-
met de déterminer une fraction raisonnable des régulations (de 15 à 40% environ).
L’application de cette approche pour l’intégration de données chIP-on-chip et données
d’expression chez la levure a confirmé ces estimations en fournissant des prédictions
que nous avons partiellement validées.

8.2 Perspectives

Le travail présenté dans cette thèse peut être selon nous prolongé selon trois axes,
que nous détaillons maintenant.

Nouvelles notions de consistance La première suite que nous suggérons concerne
l’étude de nouvelles notions de consistance entre données et modèle. Il s’agit notamment
de systématiser le genre de comparaison esquissée à la section 7.2. Un point de départ
consisterait à éclaircir la notion de chemin explicatif et à l’incorporer dans le critère de
consistance utilisé dans cette thèse. Nos études préliminaires dans ce sens montre que
la notion de consistance qui en résulte contraint significativement plus les données et
peut être efficacement traitée par les techniques de programmation logique utilisées au
chapitre 5. D’autres critères de consistance peuvent provenir d’une modélisation plus
spécifique des réseaux étudiés. Les travaux de Gutiérrez [36] peuvent être vus comme un

Perspectives 117

exemple de spécialisation des contraintes entre un sommet et ses prédécesseurs dans le
cas des réseaux génétiques. De manière analogue, un rapprochement avec les techniques
de flux à l’équilibre dans les réseaux métaboliques pourrait être envisagé, offrant ainsi
un formalisme d’étude grande échelle des mécanismes génétiques sur le métabolisme.

Traitement des données bruitées La contribution majeure de ce travail nous
semble être d’avoir exhibé une règle simple qui est généralement vérifiée dans les
systèmes biologiques, mais souvent mise en défaut dans les données expérimentales. Ce
double constat fait du critère de consistance que nous avons proposé un guide préciseux
pour l’analyse de données, à condition de traiter correctement les défauts trouvés. Il
nous apparâıt pour cette raison essentiel d’approfondir notre travail sur la partie diag-
nostic/correction de la démarche présentée en figure 1.1. Il convient notamment de
formaliser et de systématiser les approches utilisées au chapitre 6.

L’une des pistes, qui a été proposée dans le chapitre 4 mais non validée sur données
réelles, consiste à s’appuyer sur la notion de diagnostic : si une série de mesures est
incompatible avec un graphe donné, on calcule le nombre minimal de modifications (du
graphe et des données) permettant de vérifier le critère de consistance. Ces modifica-
tions minimales constituent ce que nous avons appelé des diagnostics de l’inconsistance.
Nous pensons que les invariants de l’ensemble des diagnostics peuvent constituer des
corrections particulièrement fiables pour les données et/ou le modèle. Cette approche
pourrait notamment être validée par l’une des applications, à savoir la reconstruction
de graphe d’interaction à partir de données.

Nous avons à plusieurs reprises souligné que l’interprétation des variations faibles
est difficile en pratique : soit on ne considère que les fortes variations, en perdant une
partie de l’information ; soit on considère aussi les faibles variations, quitte à rajouter
du bruit. Même en choisissant un compromis, nous avons observé un grand nombre
de défauts lors de l’étude des données d’expression. Beaucoup trop, en tout cas, pour
espérer les corriger tous, ce qui pourtant est nécessaire pour prédire les variables non
observées. La solution que nous envisageons consiste à introduire une notion d’invariant
sous correction minimale, permettant de proposer des prédictions même dans le cas où
les données ne sont pas compatibles avec le modèle. Dit autrement, on s’intéresse à
l’intersection des prédictions des modèles corrigés.

Ces propositions visent à formaliser l’interprétation des données bruitées. Elles
nécessitent avant même une étude algorithmique poussée, une validation à petite échelle
sur données réelles.

Plans d’expérience Le dernier axe que nous voudrions mentionner concerne la
conception d’expériences, que nous n’avons pas abordée dans ce travail. Brièvement,
on peut distinguer deux tâches. La première porte sur le contrôle des systèmes étudiés.
Étant donné un ensemble d’entrées, voire un nombre limité de modifications permises
du graphe d’interaction, comment provoquer à coup sûr une variation donnée ? Il s’agit
d’un problème difficile puisqu’il nécessite de trouver des valeurs pour certaines va-
riables d’une contrainte, telle que d’autres variables deviennent invariantes. Les outils

118 Conclusion

développés aux chapitres 4 et 5 peuvent fournir des solutions algorithmiques abordables.
Notamment, il semble possible de construire à l’aide des diagrammes de décision – et
pour des systèmes de taille raisonnable – la fonction qui à une valeur des entrées as-
socie l’ensemble des variables invariantes du système. Côté programmation logique, ce
type de problème doit pouvoir être abordé à l’aide de programmes disjonctifs [34]. La
deuxième tâche que nous identifions concerne la discrimination de modèles. Nous avons
vu que les graphes d’interactions peuvent être partiellement connus. L’existence de cer-
tains arcs peut être incertaine, ou le signe de certaines régulations peut manquer. Nous
avons montré comment travailler malgré l’incertitude sur le modèle réel, et raisonner
sur toutes les valeurs des variables non observées. Un problème intéressant consisterait
à déterminer, parmi un ensemble d’expériences techniquement réalisables, celles qui dis-
crimine le plus efficacement parmi les modèles admissibles. Idéalement, les expériences
proposées devraient, quelle que soit leur issue, invalider le plus grand nombre possible
de modèles.

Annexe A

Inférence de l’effet des facteurs
de transcription sur leurs gènes
cibles

Nous reproduisons ici un article non publié portant sur un cas particulier de recons-
truction de modèle à partir de données expérimentales. Nous supposons connus les arcs
du graphe d’interaction, mais pas leur signe. L’objectif est d’utiliser des données de
variation pour en déduire l’effet des régulations (activation ou inhibition). Cet article
complète le chapitre de validation expérimentale de notre approche et plus précisément
le résumé donné à la section 6.2

119

Inferring the role of transcription factors in regulatory

networks

P. Veber a, C. Guziolowski a, M. Le Borgneb, O. Radulescua,c, A. Siegeld

a Centre INRIA Rennes Bretagne Atlantique, IRISA, Rennes, France bUniversité de Rennes 1,

IRISA, Rennes, France c, Université de Rennes 1, IRMAR, Rennes, France d CNRS, UMR 6074,
IRISA, Rennes, France

ABSTRACT

Background Expression profiles obtained from multiple pertur-

bation experiments are increasingly used to reconstruct transcrip-

tional regulatory networks, from well studied, simple organisms

up to higher eukaryotes. Admittedly, a key ingredient in develop-

ing a reconstruction method is its ability to integrate heterogeneous

sources of information, as well as to comply with practical observ-

ability issues: measurements can be scarce or noisy. The purpose of

this work is (1) to build a formal model of regulations among genes;

(2) to check its consistency with gene expression data on stress per-

turbation assays; (3) to infer the regulatory role of transcription

factors as inducer or repressor if the model is consistent with ex-

pression profiles; (4) to isolate ambiguous pieces of information if

it is not.

Results We validate our methods on E. Coli network with a

compendium of expression profiles. We investigate the dependence

between the number of available expression profiles and the num-

ber of inferred regulations, in the case where all genes are observed.

This is done by simulating artificial observations for the transcrip-

tional network of E. Coli (1529 nodes and 3802 edges). We prove

that at most 40,8% of the network can be inferred and that 30 distinct

expression profiles are enough to infer 30% of the network on av-

erage. We repeat this procedure in the case of missing observations,

and show that our approach is robust to a significant proportion of

unobserved genes. Finally, we apply our inference algorithms to S.

Cerevisiae transcriptional network, and demonstrate that for small

scale subnetworks of S. Cerevisiae we are able to infer more than

20% of the regulations. For more complex networks, we are able to

detect and isolate inconsistencies between experimental sources and

a non negligible portion of the model (15% of all interactions).

Conclusions Our approach does not require accurate expression

levels, nor times series. Nevertheless, we show both on real and

artificial data that a relatively small number of perturbation exper-

iments are enough to determine a significant portion of regulatory

effects. This is a key practical asset compared to statistical methods

for network reconstruction. In addition, we illustrate the capability

of our method to validate networks. We conjecture that inconsisten-

cies we detected might be good candidates for further experimental

investigations.

Contact philippe.veber@irisa.fr

1 INTRODUCTION

A central problem in molecular genetics is to understand the tran-

scriptional regulation of gene expression. A transcription factor (TF)

is a protein that binds to a typical domain on the DNA and influences

transcription. Depending on the type of binding site, on the dis-

tance to the coding regions and on the presence of other molecules

that also bind to the DNA, the effect can either be a repression or

an activation of the transcription. Finding which gene is controlled

by which TF is a reverse engineering problem, usually named net-

work reconstruction. This question has been approached over the

past years by various groups.

A first approach to achieve this task consists in expanding in-

formation spread in the primary literature. A number of important

databases that take protein and regulatory interactions from the lit-

erature and curate them have been developed [1, 2, 3, 4, 5]. For

the bacteria E. Coli, RegulonDB is a dedicated database that con-

tains experimentally verified regulatory interactions [6]. For the

budding yeast (S. Cerevisiae), the Yeast Proteome Database contains

amounts of regulatory information [7]. Even in this latter case, the

amount of available information is not sufficient to build a reason-

ably accurate model of transcriptional regulation. It is nevertheless

an unavoidable starting point for network reconstruction.

The alternative to the literature-curated approach is a data-

driven approach. This approach is supported by the availability

of high-throughput experimental data, including microarray ex-

pression analysis of deletion mutants (simple or more rarely dou-

ble non-lethal knockouts), over expression of TF-encoding genes,

protein-protein interactions, protein localization or chIP-chip ex-

periments coupled with promoter sequence motifs. We may cite

several classes of methods: perturbations and knock-outs, microar-

ray analysis of promoter binding (chIP-chip), sequence analysis,

various microarray expression data analysis such as correlation,

mutual information or causality studies, Bayesian networks, path

analysis, information-theoretic approaches and ordinary differential

equations [8, 9, 10].

In short, most available approaches so far are based on a proba-

bilistic framework, which defines a probability distribution over the

set of models. Then, an optimization algorithm is applied in order to

determine the most likely model given by the data. Due to the size

of the inferred model, the optimal model may be a local but not a

global optimal. Hence, errors can appear and no consensual model

can be produced. As an illustration, a special attention has been

paid to the reconstruction of S. Cerevisiae network from chIP-chip

data and protein-protein interaction networks [11]. A first regulatory

network was obtained with promoter sequence analysis methods

[12, 13]. Non-parametric causality tests proposed some previously

undetected transcriptional regulatory motifs [14]. Bayesian analysis

also proposed transcriptional networks [15, 16]. Though, the results

obtained with the different methods do not coincide and a fully data-

driven search is in general subject to overfitting and to unfiability

[17].

. 1

P. Veber a, C. Guziolowski a, M. Le Borgneb, O. Radulescua,c, A. Siegeld

In regulatory networks, an important and nontrivial physiological

information is the regulatory role of transcription factors as inducer

of repressor, also called the sign of the interaction. This informa-

tion is needed if one wants to know for instance the physiological

effect of a change of external conditions or simply deduce the ef-

fect of a perturbation on the transcription factor. While this can be

achieved for one gene at a time with (long and expensive) dedi-

cated experiments, probabilistic methods such as Bayesian models

[18] of path analysis [19, 20] are capable to propose models from

high-throughput experimental data. However, as for the network

reconstruction task, these methods are based on optimization algo-

rithms to compute an optimal solution with respect to an interaction

model.

In this paper, we propose to use formal methods to compute the

sign of interactions on networks for which a topology is available.

By doing so, we are also capable of validating the topology of the

network. Roughly, expression profiles are used to constrain the pos-

sible regulatory roles of transcription factor, and we report those

regulations which are assigned the same role in all feasible models.

Thus, we over-approximate the set of feasible models, and then look

for invariants in this set. A similar idea was used in [21] in order to

check the consistency of gene expression assays. We use a deeper

formalisation and stronger algorithmic methods in order to achieve

the inference task.

We use different sources of large-scale data: gene expression

arrays provide indications on signs of interactions. When not avail-

able, ChIP-chip experiments provide a sketch for the topology of the

regulatory network. Indeed, microarray analysis of promoter bind-

ing (ChIP-chip) is an experimental procedure to determine the set

of genes controlled by a given transcription factor in given exper-

imental conditions [22]. A particularly interesting feature of this

approach is that it provides an in vivo assessment of transcription

factor binding. On the contrary, testing affinity of a protein for a

given DNA segment in vitro often results in false positive binding

sites.

The main tasks we address are the following:

1. Building a formal model of regulation for a set of genes, which

integrates information from ChIP-chip data, sequence analysis,

literature annotations;

2. Checking its consistency with expression profiles on perturba-

tion assays;

3. Inferring the regulatory role of transcription factors as inducer

or repressor if the model is consistent with expression profiles;

4. Isolating ambiguous pieces of information if it is not.

Both, probabilistic approaches and our formal approach mainly

aim to deal with incomplete knowledge and experimental noise.

However, statistical methods usually require a minimal number of

samples (about a hundred), because they explicitly model the distri-

bution of experimental noise. In practice it is feasible but very costly

to obtain enough expression profiles to apply them. In contrast,

our approach may be used even with less perturbation experiments

(some tens) at hand, which makes it a suitable alternative when

statistical methods cannot be applied.

Additionally, since our predictions are consensual with all pro-

files and since they are not based on heuristics, our methods are well

designed to validate networks inferred with probabilistic methods,

and eventually identify the location of inconsistencies.

The paper is organized as follows. Sec. 2 briefly introduces the

mathematical framework which is used to define and to test the con-

sistency between expression profiles and gene networks. In Sec. 3

we apply our algorithms to address three main issues.

• We illustrate and validate our formal method on the transcrip-

tional network of E. Coli (1529 nodes and 3802 edges), as

provided in RegulonDB [6], together with a compendium of

expression profiles [9]. We identified 20 inconsistent edges in

the graph.

• We investigate the dependence between the number of avail-

able observations and the number of inferred regulations, in the

case where all genes are observed. This is done by simulating

artificial observations for the transcriptional network of E. Coli.

We prove that at most 40,8% of the network can be inferred

and that 30 perturbation experiments are enough to infer 30%

of the network on average. By studying a reduced network,

we also comment about the complementarity between our ap-

proach and detailed analysis of times series using dynamical

modeling.

• We repeat this procedure in the case of missing observations,

and estimate how the proportion of unobserved genes affects

the number of inferred regulations. With these two situations

we also demonstrate that our approach is able to handle net-

works containing thousands of genes, with several hundreds of

observations.

• We apply our inference algorithms to S. Cerevisiae tran-

scriptional network, in order to assess their relevance in real

conditions. We demonstrate that for small scale subnetworks

of S. Cerevisiae we are able to infer more than 20% of the

roles of regulations. For more complex networks, we are able

to detect and isolate inconsistencies (also called ambiguities)

between expression profiles and a quite important part of the

model (15% of all the interactions).

The last two sections discuss the results we obtained, and give more

details on the algorithmic procedures.

2 APPROACH

2.1 Detecting the sign of a regulation and validating a

model

Our goal is to determine the regulatory action of a transcription fac-

tor on its target genes by using expression profiles. Let us illustrate

our purpose with a simple example.

We suppose that we are given the topology of a network (this

topology can be obtained from ChIP-chip data or any computational

network inference method). In this network, let us consider a node

A with a single predecessor. In other words, the model tells that the

protein B acts on the production of the gene coding for A and no

other protein acts on A.

Independently, we suppose that we have several gene expression

arrays at our disposal. One of these arrays indicates that A and B

simultaneously increase during a steady state experiment. Then, the

common sense says that B must have been as activator of A during

the experiment. More precisely, protein B cannot have inhibited

2

Inferring the role of transcription factors

Model Expression profiles Prediction

A

B

B increases

C increases

The action from B

to A is an activa-

tion.

Model Expression profiles Prediction

A

B

+ B increases

C decreases

Model and data

are ambigu-

ous (also called

incompatible).

gene A, since they both have increased. We say that the model

predicts that the sign of the interaction from B to A is positive.

This naive rule is actually used in a large class of models, we will

call it the naive inference rule. When several expression profiles are

available, the predictions of the different profiles can be compared.

If two expression profiles predict different signs for a given interac-

tion, there is a ambiguity or incompatibility between data and model.

Then, the ambiguity of the regulatory role can be attributed to three

factors: (1) a complex mechanism of regulation: the role of the in-

teraction is not constant in all contexts, (2) a missing interaction in

the model, (3) an error in the experimental source.

Algorithm:Naive Inference algorithm

Input:

A network with its topology

A set of expression profiles

Output:

a set of predicted signs

a set of ambiguous interactions

For all Node A with exactly one predecessor B

if A and B are observed simultaneously then return

prediction sign(B → A) = sign(A) ∗ sign(B)
if sign(B → A) was predicted different by another expression

profile then return Ambiguous arrow B → A

Let us consider now the case when A is activated by two proteins

B and C. No more natural deduction can be done when A and B

increase during an experiment, since the influence of C must be

taken into account. A model of interaction between A, B and C has

to be proposed. Probabilistic methods estimate the most probable

signs of regulations that fit with the theoretical model [18, 23].

Our point of view is different: we introduce a basic rule that shall

be checked by every interactions. This rule tells that any variation

of A must be explained by the variation of at least one of its pre-

decessors. Biologically, this assumes that the nature of differential

gene expression of a given gene is likely to affect the differential ex-

pression in other genes. Even if this is not universally true, this can

be viewed as a crude approximation of the real event. In previous

papers, we introduced a formal framework to justify this basic rule

under some reasonable assumptions. We also tested the consistency

between expression profiles and a graphical model of cellular inter-

actions. This formalism will be here introduced in an informal way ;

Model Expression profiles Prediction

A

C

B

+

+ B decreases

C decreases
A decreases

its full justification and extensions can be found in the references

[24, 25, 26, 27].

In our example, the basic rule means that if B and C activate A,

and both B and C are known to decrease during a steady state ex-

periment, A cannot be observed as increasing. Then A is predicted

to decrease. More generally, in our approach, we use the rule as

a constraint for the model. We write constraints for all the nodes

of the model and we use several approaches in order to solve the

system of constraints. From the study of the set of solutions, we

deduce which signs are surely determined by these rules. Then we

obtain minimal obligatory conditions on the signs, instead of most

probable signs given by probabilistic methods. Notice that by con-

struction, our constraints coincide with probabilistic models in the

predictions of the naive inference algorithm.

2.2 A formal approach

Consider a system of n chemical species {1, . . . , n}. These species

interact with each other and we model these interactions using an

interaction graph G = (V, E). The set of nodes is denoted by V

= {1, . . . , n}. There is an edge j → i ∈ E if the level of species

j influences the production rate of species i. Edges are labeled by

a sign {+, –} which indicates whether j activates or represses the

production of i.

In a typical stress perturbation experiment a system leaves an

initial steady state following a change in control parameters. Af-

ter waiting long enough, the system may reach a new steady state.

In genetic perturbation experiments, a gene of the cell is either

knocked-out or overexpressed; perturbed cells are then compared

to wild cells. Most high-throughput measurements provide the ratio

between initial and final levels, like in expression arrays for in-

stance. In many experimental settings, the numerical value is not

accurate enough to be taken “as it is”. The noise distribution may be

studied if enough measurements are available. Otherwise, it is safer

to rely only on a qualitative feature, such as the order of magnitude,

or the sign of the variation. Let us denote by sign(Xi) ∈ {+, –, 0}
the sign of variation of species i during a given perturbation exper-

iment, and by sign(j → i) ∈ {+, –} the sign of the edge j → i in

the interaction graph.

Let us fix species i such that there is no positive self-regulating

action on i. For every predecessor j of i, sign(j → i) ∗ sign(Xj)
provides the sign of the influence of j on the species i. Then, we can

write a constraint on the variation to interpret the rule previously

stated: the variation of species i is explained by the variation of at

least one of its predecessors in the graph.

sign(Xi) ≈
X

j→i

sign(j → i)sign(Xj). (1)

When the experiment is a genetic perturbation the same equation

stands for every node that was not genetically perturbed during the

3

P. Veber a, C. Guziolowski a, M. Le Borgneb, O. Radulescua,c, A. Siegeld

experiment and such that all its predecessors were not genetically

perturbed. If a predecessor XM of the node was knocked-out, the

equation becomes

sign(Xi) ≈ −sign(M → i) +
X

j→i,j 6=M

sign(j → i)sign(Xj).

(2)

The same holds with +sign(M → i) when the predecessor

XM was overexpressed. There is no equation for the genetically

perturbed node.

The sign algebra is the suitable framework to read these equa-

tions [26]. It is defined as the set {+, –, ?, 0}, provided with a sign

compatibility relation ≈, and arithmetic operations + and ×. The

following tables describe this algebra:

+ + – = ? + + + = + – + – = – + × – = – + × + = + – × – = +

+ + 0 = + 0 + 0 = 0 – + 0 = – + × 0 = 0 0 × 0 = 0 – × 0 = 0

? + – = ? ? + + = ? ? + ? = ? ? × – = ? ? × + = ? ? × ? = ?

? + 0 = ? ? × 0 = 0

+ 6≈ – + ≈ 0 – ≈ 0 ? ≈ + ? ≈ – ? ≈ 0

Even if the sign compatibility relation ≈ provides a rule for the

0 value, we are not able to infer with our approach regulations of

sign 0. This limitation is because the sign of an arrow in an inter-

action graph is only restricted to be {+, –}, thus we do not generate

an equation for products which have no variation during a specific

experiment.

For a given interaction graph G, we will refer to the qualitative

system associated to G as the set made up of constraint (1) for each

node in G. We say that node variations Xi ∈ {+, –, 0} are compati-

ble with the graph G when they satisfy all the constraints associated

to G using the sign compatibility relation ≈.

With this material at hand, let us come back to our original prob-

lem, namely to infer the regulatory role of transcription factors from

the combination of heterogeneous data. In the following we assume

that :

• The interaction graph is either given by a model to be validated,

or built from chIP-chip data and transcription factor binding

site searching in promoter sequences. Thus, as soon as a tran-

scription factor j binds to the promoter sequence of gene i, j

is assumed to regulate i. This is represented by an arrow j → i

in the interaction graph.

• The regulatory role of a transcription factor j on a gene i (as

inducer or repressor) is represented by the variable Sji, which

is constrained by Eqs. (1) or (2).

• Expression profiles provide the sign of the variation of the gene

expression for a set of r steady-state perturbation or mutant

experiments. In the following, xk
i will stand for the sign of the

observed variation of gene i in experiment k.

Our inference problem can now be stated as finding values in

{+, –} for Sji, subject to the constraints :

for all (1 ≤ i ≤ n), (1 ≤ k ≤ r),
i not genetically perturbed in the k-th experiment

8

<

:

xk
i ≈

P

j→i
Sjix

k
j if no genetic perturbations on all nodes j

xk
i ≈ −SMi +

P

j→i,j 6=l
Sjix

k
j if knocked-out node M

xk
i ≈ SMi +

P

j→i,j 6=l Sjix
k
j if overexpressed node M

(3)

Most of the time, this inference problem has a huge number of

solutions. However, some variables Sji may be assigned the same

value in all solutions of the system. Then, the recurrent value as-

signed to Sji is a logical consequence of the constraints (3), and

a prediction of the model. We will refer to these inferred interac-

tion signs as hard components of the qualitative system, that is, sign

variables Sji that have the same value in all solutions of a qualita-

tive system (3). When the inference problem has no solution, we say

that the model and the data are inconsistent or ambiguous.

Let us illustrate this formulation on a very simple (yet informa-

tive) example. Suppose that we have a system of three genes A, B,

C, where B and C influence A. The graph is shown in Table 1. Let

us say that for this interaction graph we obtained six experiments, in

each of them the variation of all products in the graph was observed

(see Table 1). Using some or all of the experiments provided in Ta-

ble 1 will lead us to a different qualitative system, as shown in Table

2, hence to different inference results. The process of inference for

this example can be summarized as follows: starting from a set of

experiments we generate the qualitative system of equations for our

graph, studying its compatibility we will be able to set values for the

signs of the regulations (edges of the interaction graph), but only we

will infer a sign if in all solutions of the system the sign is set to

the same value. Following with the example, in Table 2 we illus-

trate this process showing how the set of inferred signs of regulation

varies with the set of experiments provided.

A

C

B
Stress perturbation

expression profile
xA xB xC

e1 + + +

e2 + + –

e3 – + –

e4 – – –

e5 – – +

e6 + – +

Table 1. Interaction graph of three genes A, B, C, where B and C influence

A. Table with the variation of genes A,B, and C observed in six different

stress perturbation experiments.

2.3 Algorithmic procedure

When the signs on edges are known (i.e. fixed values of Sji) find-

ing compatible node variations Xi is a NP-complete problem [26].

When the node variations are known (i.e. fixed values of Xi) finding

the signs of edges Sji from Xi can be proven NP-complete in a very

similar way. Though, we have been able to design algorithms that

perform efficiently on a wide class of regulatory networks. These al-

gorithms predict signs of the edges when the network topology and

4

Inferring the role of transcription factors

the expression profiles are compatible. In case of incompatibility,

they identify ambiguous motifs and propose predictions on parts of

the network that are not concerned with ambiguities.

The general process flow is the following (see Sec. 6 for details):

Step 1 Sign Inference

Divide the graph into motifs (each node with its predeces-

sors). For each motif, find sign valuations (see Algorithm

1 in Sec.6) that are compatible with all expression profiles.

If there are no solutions, call the motif Multiple Behaviors

Module and remove it from the network.

Solve again the remaining equations and determine the edge

signs that are fixed to the same value in all the solutions.

These fixed signs are called edge hard components and

represent our predictions.

Step 2 Global test/correction of the inferred signs

Solutions at previous step are not guaranteed to be global. In-

deed, two node motifs at step 1 can be compatible separately,

but not altogether (with respect to all expression profiles).

This step checks global compatibility by solving the equa-

tions for each expression profile. New Multiple Behavior

Modules can be found and removed from the system.

Step 3 Extending the original set of observations

Once all conflicts removed, we get a set of solutions in which

signs are assessed to both nodes and edges. Node hard com-

ponents, representing inferred gene variations can be found

in the same way as we did for edges. We add the new vari-

ations to the set of observations and return to step 1. The

algorithm is iterated until no new signs are inferred.

Step 4 Filtering predictions

In the incompatible case, the validity of the predictions

depends on the accuracy of the model and on the correct

identification of the MBMs. The model can be incomplete

(missing interactions), and MBMs are not always identifi-

able in an unique way. Thus, it is useful to sort predictions

according to their reliability. Our filtering parameter is a

positive integer k representing the number of different ex-

periments with which the predicted sign is compatible. For a

filtering value k, all the predictions that are consistent with

less than k profiles are rejected.

The inference process then generates three results:

1. A set of multiple behavior modules (MBM), containing interac-

tions whose role was unclear and generated incompatibilities.

We have identified several types of MBMS:

• Modules of TypeI: these modules are composed of several

direct regulations of the same gene. These modules are

detected in the Step 1 of the algorithm. Most of the MBMs

of Type I are made of only one edge like illustrated in Fig.

1, but bigger examples exist.

• Modules of Type II, III, IV: these modules are detected

in Steps 2 or 3, hence, they contain either direct regula-

tions from the same gene or indirect regulations and/or

loops. Each of these regulations represent a consensus of

all the experiments, but when we attempt to assess them

globally, they lead to contradictions. The indices II-IV

have no topological meaning, they label the most frequent

situations illustrated in Fig. 1.

2. A set of inferred signs, meaning that all expression profiles fix

the sign of an interaction in a unique way.

3. A reliability ranking of inferred signs. The filtering parameter k

used for ranking is the number of different expression profiles

that validate a given sign.

On computational ground, the division between Step 1 (which

considers each small motif with all profiles together) and Step 2

(which considers the whole network with each profile separately) is

necessary to overcome the memory complexity of the search of solu-

tions. To handle large-scale systems, we combine a model-checking

approach by decision diagrams and constraint solvers (see details in

Sec. 6).

Since our basic rule is a crude approximation of real events, we

expect it to produce very robust predictions. On the other hand, a

regulatory network is only a rough description of a reaction network.

For certain interaction graphs, not a single sign may be inferred even

Experiments used Qualitative system Replacing values from experiments
Compatible solutions

(SBA, SCA)

Inferred signs

(identical in all solutions)

{e1} x1

A
≈ SBAx1

B
+ SCAx1

C
(+) ≈ SBA × (+) + SCA × (+)

(+, +)

(+, –)

(–, +)

∅

{e1, e2}
x1

A
≈ SBAx1

B
+ SCAx1

C

x2

A
≈ SBAx2

B
+ SCAx2

C

(+) ≈ SBA × (+) + SCA × (+)

(+) ≈ SBA × (+) + SCA × (–)

(+, +)

(+, –)
{SBA = +}

{e1, e2, e3}
x1

A
≈ SBAx1

B
+ SCAx1

C

x2

A
≈ SBAx2

B
+ SCAx2

C

x3

A
≈ SBAx3

B
+ SCAx3

C

(+) ≈ SBA × (+) + SCA × (+)

(+) ≈ SBA × (+) + SCA × (–)

(–) ≈ SBA × (+) + SCA × (–)

(+, +) {SBA = +, SCA = +}

Table 2. Sign inference process. In this example variables are only the roles of regulations (signs) in an interaction graph , the variations of the species in

the graph are obtained from the set of six experiments described in Table 1. For different sets of experiments we do not infer the same roles of regulations.

We observe in this example that if we take into account experiments {e1, e2, e3}, our qualitative system will have three constrains and not all valuations of

variables SBA and SCA satisfy this system according to the sign algebra rules. As we obtain unique values for these variables in the solution of the system,

we consider them as inferred.

5

P. Veber a, C. Guziolowski a, M. Le Borgneb, O. Radulescua,c, A. Siegeld

[Type I] [Type II] [Type III] [Type IV]

Figure 1. Classification of the multiple behavior modules (MBM). These

modules are some of the MBM found in the global regulatory network of

S. Cerevisiae extracted from [11]. Green and red interactions correspond to

inferred activations and repressions respectively. Genes are colored by their

expression level during certain experiment (green: more than 2-fold expres-

sion, red: less than 2-fold repression) (a) Type I modules are composed by

direct regulations of one gene by its predecessors. Sources of the conflict

in this example are: Heat shock 21◦C to 37◦C [28], and Cells grown to

early log-phase in YPE [29]. (b) Type II The genes in this module have

the same direct predecessor. Explanation: The interaction among SUM1 and

YFL040W is inferred at the beginning of the inference process, as an acti-

vation while among SUM1 and DIT2 is inferred as an inhibition. During the

correction step, expression profile related to YPD Broth to Stationary Phase

[28], shows that these two genes: YFL040W and DIT2 overexpress under

this condition. Resulting impossible to determine the state (overexpressed or

underexpressed) of SUM1, we mark this module as a MBM. (c) Type III The

genes in this module share a predecessor, but not the direct one. Source of

the conflict: Diauxic shift [30]. (d) Type IV The predecessor of one gene is

the successor of the other. Source of the conflict: Heat Shock 17◦C to 37◦C

[28].

with a high number of experiments. In Sec. 3, we comment the

maximum number of signs that can be inferred from a given graph.

3 RESULTS

In perturbation experiments, gene responses are observed follow-

ing changes of external conditions (temperature, nutritional stress,

etc.) or following gene inactivations, knock-outs or overexpression.

When expression profile is available for all the genes in the net-

work we say that we have a complete profile, otherwise the profile

is partial (data is missing). The effect of gene deletions is modelled

as the one of inactivations, which is imposing negative gene varia-

tions. Thus, we may say that we deal with perturbation experiments

that do not change the topology of the network. An experiment in

which topology is changed would be to record the effect of stresses

on mutants; this possibility will be discussed elsewhere.

In order to validate our formal approach, we evaluate the per-

centage of the network that might be recovered from a reasonable

number of perturbation experiments. We first provide theoretical

limits for the percentage of recovered signs. These limits depend on

the topology of the network. For the transcriptional network of E.

Coli, these limits are estimated first by a deterministic and then by

a statistical algorithm. The statistical approach uses artificial ran-

dom data. Then we combine expression profiles with a publicly

available structure of E. Coli network, and compute the percent-

age of recovered signs. Finally, we combine real expression profiles

with chIP-chip data on S. Cerevisiae, and evaluate the percentage of

recovered signs in a real setting.

On computational ground, we check that our algorithms are able

to handle large scale data, as produced by high-throughput mea-

surement techniques (expression arrays, chIP-chip data). This is

demonstrated in the following by considering networks of more than

several thousand genes.

3.1 Stress perturbation experiments: how many do you

need ?

For any given network topology, even when considering all possible

experimental perturbations and expression profiles, there are signs

that can not be determined (see Table 2). Sign inference has thus

a theoretical limit that we call theoretical percentage of recovered

signs. This limit is unique for a given network topology. If only

some perturbation experiments are available, and/or data is missing,

the percentage of inferred signs will be lower. For a given number

N of available expression profiles, the average percentage of recov-

ered signs is defined over all sets of N different expression profiles

compatible with the qualitative constraints Eqs. (1) and (2).

In this section, we calculate and comment the theoretical and

the average percentages of recovered signs for the transcriptional

network of E. Coli.

We first validate our method on the E. Coli network. We build the

interaction graph corresponding to E. Coli transcriptional network,

using the publicly available RegulonDB [6] as our reference. For

each transcriptional regulation A → B we add the corresponding

arrow between genes A and B in the interaction graph. This graph

will be referred to as the unsigned interaction graph.

From the unsigned interaction graph of E. Coli, we build the

signed interaction graph, by annotating the edges with a sign. Most

of the time, the regulatory action of a transcription factor is available

in RegulonDB. When it is unknown, or when it depends on the level

of the transcription factor itself, we arbitrarily choose the value +

for this regulation. This provides a graph with 1529 nodes and 3802

edges, all edges being signed. The signed interaction graph is used

to generate complete expression profiles that simulate the effect of

perturbations. More precisely, a perturbation experiment is repre-

sented by a set of gene expression variations {Xi}i=1,...,n. These

variations are not entirely random: they are constrained by Eqs.(1)

and (2). Then we forget the signs of network edges and we compute

the qualitative system with the signs of regulations as unknowns.

The theoretical maximum percentage of inference is given by the

number of signs that can be recovered assuming that expression pro-

files of all conceivable perturbation experiments are available. We

computed this maximum percentage by using constraint solvers (the

algorithm is given in Sec. 6). We found that at most 40.8% of the

signs in the network can be inferred, corresponding to Mmax =
1551 edges.

However, this maximum can be obtained only if all conceivable

(much more than 250) perturbation experiments are done, which is

not possible. We performed computations to understand the influ-

ence of the number of experiments N on the inference. For each

value of N , where N grows from 5 to 200, we generated 100 sets of

N random expression profiles. Each time our inference algorithm is

used to recover signs. Then, the average percentage of inference is

calculated as a function of N . The resulting statistics are shown in

Fig. 2.

When the number of experiments (X-axis) equals 1, the value

M1 = 609 corresponds to the average number of signs inferred

from a single perturbation experiment. These signs correspond to

6

Inferring the role of transcription factors

20 40 60 80 100 120 140 160 180 200
0.15

0.2

0.25

0.3

0.35

fr
a
c
ti
o
n
 o

f
in

fe
re

n
c
e

number of expression profiles

 whole network 1529 nodes 3802 edges

500 1000 1500 2000

0.25

0.3

0.35

0.4

0.45

fr
a
c
ti
o
n
 o

f
in

fe
re

n
c
e

number of expression profiles

Core of the network 28 nodes, 57 edges

Figure 2. (Both) Statistics of inference on the regulatory network of E. Coli from complete expression profiles. The signed interaction graph is used to

randomly generate sets of X artificial expression profiles which cover the whole network (complete expression profile). Each set of artificial profiles is then

used with the unsigned interaction graph to recover regulatory roles. X-axis: number of expression profiles in the dataset. Y-axis: percentage of recovered

signs in the unsigned interaction graph. This percentage may vary for a fixed number of expression profile in a set. Instead of plotting each dot corresponding

to a set, we represent the distribution by boxplots. Each boxplot vertically indicates the minimum, the first quartile, the median, the third quartile and

the maximum of the empiric distribution. Crosses show outliers (exceptional data points). The continuous line corresponds to the theoretical prediction

Y = M1 + M2(1− (1 − p)X), where M1 stands for the number of signs that should be inferred from any expression profile (that is, inferred by the naive

inference algorithm); and M2 denotes the number of signs that could be inferred with a probability p.

(Left) Statistics of inference for the whole E. Coli transcriptional network. We estimate that at most 37, 3% of the network can be inferred from a limited

number of different complete expression profiles. Among the inferred regulations, we estimate to M1 = 609 the number of signs that should be inferred from

any complete expression profile. The remaining M2 = 811 signs are inferred with a probability estimated to p = 0.049. Hence, 30 perturbation experiments

are enough to infer 30% of the network.

(Right) Statistics of inference for the core of the former graph (see definition of a core in the text). An estimation gives M1 = 18 and M2 = 9 so that the

maximum rate of inference is 47, 3%. Since p = 0.0011, the number of expression profiles required to obtain a given percentage of inference is much greater

than in the whole network.

single incoming regulatory interactions and are thus within the

scope of the naive inference algorithm. We deduce that the naive

inference algorithm allows to infer on average 18% of the signs in

the network.

Surprisingly, by using our method we can significantly improve

the naive inference, with little effort. For the whole E. Coli net-

work it appears that a few expression profiles are enough to infer a

significant percentage of the network. More precisely, 30 different

expression profiles may be enough to infer one third of the network,

that is about 1200 regulatory roles. Adding more expression profiles

continuously increases the percentage of inferred signs. We reach

a plateau close to 37,3% (this corresponds to M = 1450 signed

regulations) for N = 200.

The saturation aspect of the curve in Fig. 2 is compatible with

two hypotheses. According to the first hypothesis, on top of the

M1 single incoming regulations (that can be inferred with a sin-

gle expression profile), there are M2 interactions whose signs are

inferred with more than one expression profile. On average, a sin-

gle expression profile determines with probability p < 1 the sign of

interactions of the latter category. According to the second hypoth-

esis, the contributions of different experiments to the inference of

this type of interactions are independent. Thus, the average number

of inferred signs is M(N) = M1 + M2(1 − (1 − p)N). The two

numbers satisfy M1 + M2 < E (E is the total number of edges),

meaning that there are edges whose signs can not be inferred.

According to this estimate the position of the plateau is M =
M1 + M2 and should correspond to the theoretical maximum per-

centage of inferred signs Mmax. Actually, M < Mmax. The

difference, although negligible in practice (to obtain Mmax one

has to perform N > 1015 experiments) suggests that the plateau

has a very weak slope. This means that contributions of different

experiments to sign inference are weakly dependent.

The values of M1, M2, p estimate the efficiency of our method:

large p,M1,M2 mean small number of expression profiles needed

for inference. For the E. Coli full transcriptional network we have

p = 0.049 per observation. This means that we need about 20

profiles to reach half of the theoretical limit of our approach.

3.2 Inferring the core of the network

Obviously, not all interactions play the same role in the network.

The core is a subnetwork that naturally appears for computational

purpose and plays an important role in the system. It consists of all

oriented loops and of all oriented chains leading to loops. All ori-

ented chains leaving the core without returning are discarded when

reducing the network to its core. Acyclic graphs and in particular

trees have no core. The main property of the core is that if a system

of qualitative equations has no solution, then the reduced system

built from its core also have no solution. Hence it corresponds to

the most difficult part of the constraints to solve. It is obtained by

reduction techniques that are very similar to those used in [31] (see

details in Sec. 6). As an example, the core of E. Coli network only

has 28 nodes and 57 edges. It is shown in Fig. 3.

We applied the same inference process as before to this graph. Not

surprisingly, we noticed a rather different behavior when inferring

signs on a core graph than on a whole graph as demonstrated in Fig.

2. In this case we need much more experiments for inference: sets of

expression profiles contain from N = 50 to 2000 random profiles.

Two observations can be made from the corresponding statistics

of inference. First as can be seen on X-axis, a much greater num-

ber of experiments is required to reach a comparable percentage of

inference. Correspondingly, the value of p is much smaller than for

the full network. This confirms that the core is much more difficult

to infer than the rest of network. Second, Fig. 2. displays a much

less continuous behavior. More precisely, it shows that for the core,

7

P. Veber a, C. Guziolowski a, M. Le Borgneb, O. Radulescua,c, A. Siegeld

5 10 15 20 25 30 35

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

fr
a
c
ti
o
n
 o

f
in

fe
re

n
c
e

% of missing values

 d=0.14

5 10 15 20 25 30 35 40 45 50

0.1

0.15

0.2

0.25

0.3

fr
a
c
ti
o
n
 o

f
in

fe
re

n
c
e

% of missing values

 d=0.21

5 10 15 20 25 30 35 40 45 50

0.2

0.25

0.3

0.35

fr
a
c
ti
o
n
 o

f
in

fe
re

n
c
e

% of missing values

 d=0.36

Figure 4. (All) Statistics of inference on the regulatory network of E. Coli from partial expression profiles. The setting is the same than in Fig. (2), except for

the cardinal of an expression profile which is set to a given value, and for the variable on X-axis which is the percentage of missing values in the expression

profile. In each case, the dependence between average percentage of inference and percentage of missing values is qualitatively linear. The continuous line

corresponds to the theoretical prediction Mi = Mmax
i − d ∗ f ∗Mtotal, where d is the number of signs interactions that are no longer inferred when a node

is not observed, Mmax
i is the number of inferred interactions for complete expression profiles (no missing values), Mtotal is the total number of nodes and

f is the fraction of unobserved nodes.

(Left) Statistics for the whole network (the inference is supposed to be performed from 30 random expression profiles). We estimate d = 0.14, meaning that

on average, one loses one interaction sign for about 7 missing values.

(Middle) Statistics for the core network (the inference is supposed to be performed from 30 random expression profiles). We estimate d = 0.21 ; the core of

the network however is more sensitive to missing data.

(Right) Statistics for the core network (the inference is supposed to be performed from 200 random expression profiles). We estimate d = 0.35. Hence,

increasing the number of expression profiles increases sensitivity to missing data.

Figure 3. Core of E. Coli network. It consists of all oriented loops and

of all oriented chains leading to loops. The core contains the dynamical

information of the network, hence sign edges are more difficult to infer.

different perturbations experiments have strongly variable impact on

sign inference. For instance, the experimental maximum percentage

of inference (27 signs over 58) can be obtained already from about

400 expression profiles. But most of datasets with 400 profiles infer

only 22 signs.

This suggests that not only the core of the network is more dif-

ficult to infer, but also that a brute force approach (multiplying the

number of experiments) may fail as well. This situation encourage

us to apply experiment design and planning, that is, computational

methods to minimize the number of perturbation experiments while

inferring a maximal number of regulatory roles.

This also illustrates why our approach is complementary to dy-

namical modelling. In the case of large scale networks, when an

interaction stands outside the core of the graph, then an inference

approach is suitable to infer the sign of the interaction. However,

when an interaction belongs to the core of the network, then more

complex behaviors occur: for instance, the result of a perturbation

on the variation of the products might depend on activation thresh-

olds. Then, a precise modelling of the dynamical behavior of this

part of the network should be performed [32].

3.3 Influence of missing data

In the previous paragraph, we made the assumption that all proteins

in the network are observed. That is, for each experiment each node

is assigned a value in {+, 0, –}. However, in real measurement de-

vices, such as expression profiles, a part of the values is discarded

due to technical reasons. A practical method for network inference

should cope with missing data.

We studied the impact of missing values on the percentage of in-

ference. For this, we have considered a fixed number of expression

profiles (N = 30 for the whole E. Coli network, N = 30 and

N = 200 for its core). Then, we have randomly discarded a growing

percentage of proteins in the profiles, and computed the percentage

of inferred regulations. The resulting statistics are shown in Fig. 4.

In both cases (whole network and core), the dependency between

the average percentage of inference and the percentage of missing

values is qualitatively linear. Simple arguments allow us to find an

analytic dependency. If not observing a node implies losing infor-

mation on d interaction signs, we are able to obtain the following

linear dependency Mi = Mmax
i − d ∗ f ∗Mtotal, where Mmax

i is

the number of inferred interactions for complete expression profiles

(no missing values), Mtotal is the total number of nodes, and f is

the fraction of unobserved nodes. In order to keep Mtotal non neg-

ative, d must decrease with f . Our numerical results imply that the

constancy of d and the linearity of the above dependency extend to

rather large values of f . This indicates that our qualitative inference

method is robust enough for practical use. For the full network we

8

Inferring the role of transcription factors

estimate d = 0.14, meaning that on average one loses one interac-

tion sign for about 7 missing values. However, for the same number

of expression profiles, the core of the network is more sensitive to

missing data (the value of d is larger, it corresponds to lose one sign

for about 4.8 missing values). For the core, increasing the number of

expression profiles increases d and hence the sensitivity to missing

data.

3.4 Application to E. Coli network with a compendium

of expression profiles

We first validate our method on the E. Coli network. We use the

compendium of expression profiles publicly available in [9].

For each experimental assay several profiles were available (in-

cluding a profile for the reference initial state). We processed time

series profiles, considering only the last time expression data. For

each measured gene, we calculated its average variation in all the

profiles of the same experiment. Then, we sorted the measured

genes/regulators in four classes: 2-fold induced, 2-fold repressed,

non-observed and zero variation, this last class corresponds to

genes whose expression did not vary more than 2-fold under an

experimental condition. Only the first two classes were used in

the algorithm. Obviously this leads us to missing data: there will

be edges for which neither the input, nor the output are known.

Altogether, we have processed 226 sets of expression profiles cor-

responding to 68 different experimental assays (over-expression,

gene-deletion, stress perturbation).

It appears that the signed network is consistent with only 40 com-

plete profiles of the 68 selected. After discarding the incompatible

motifs from the profiles (deleting observations that cause conflicts),

67 profiles remained that were compatible with the signed network.

In these 67 expression profiles, 14,47% of the nodes of the network

were observed on average as varying. When summing all the obser-

vations, we obtained that 9,8% of the edges (input and output) are

observed in at least one expression profile. In order to test our al-

gorithm we wipe out the information on edge signs and then try to

recover it.

Since the profiles and network were compatible, our algorithm

found no ambiguity and predicted 51 signs, i.e. 1,8% of the edges.

The naive inference algorithm inferred 43 signs. Hence our algo-

rithm inferred 8 signs, that is 15% of the total of prediction, that

were not predicted by the naive algorithm.

Then we applied our algorithm, filtering our inference with dif-

ferent parameters, on the full set of 68 expression profiles including

incompatibilities. This time 16% of the network products were ob-

served on average. Several values of the filtering parameter k were

used from k = 1 to k = 15. Without filtering we predicted 183

signs of the network (6,3%), among which 131 were inferred by the

naive algorithm. We compared the predictions to the known interac-

tion signs: 77 signs were false predictions (42% of the predictions).

A source of the error in the prediction could lie on non-modelled

interactions (possibly effects of sigma-factors). Filtering greatly im-

proves our score, allowing us to retain only reliable predictions.

Thus, for k = 15, we inferred 36 signs, of them, only 3 were incor-

rect predictions (8% of false prediction). We conclude that filtering

is a good way to stronger our predictions even when the model is

not precise enough. We illustrate the effect of the filtering process

in Fig. 5.

We notice that the inference rate is much more lower in this case

than the theoretical inference rate predicted in Sec. 3.3. This shows

k.1 k.2 k.3 k.4 k.5 k.6 k.7 k.8 k.9 k.10 k.11 k.12 k.13 k.14 k.15

Number of expression profiles validating inference (k)

N
u
m

b
e
r

o
f
in

fe
rr

e
d
 r

o
le

s

0
5
0

1
0
0

1
5
0

77

106

32

54

29

52

28

49

24

50

21

49

21

48

21

47

20

47

19

44

19

43

16

44

14

42

9

41

3

33

Figure 5. Results of the inference algorithm on E. Coli network from a com-

pendium of 68 expression profiles. The profiles were not globally coherent.

With no filtering, there are 42% of false predictions. With filtering – keeping

only the sign predictions confirmed by k different sets of expression profiles

– the rate of false prediction decreases to 8%.

that when the percentage of observation is very low (as it is the

case here), the sign-inference process is very dependent from the

type of available expression profiles. To overcome this problem, we

should take into account more stress perturbation experiments and

less genetic perturbation experiments.

Our algorithm also detected ambiguous modules in the network.

There are 10 modules of typeI (i.e. single incoming interactions)

in the network. Among these interactions, 5 are also stated as am-

biguous by the naive algorithm. There are also 6 modules of typeII

and III, which are not detected by the naive inference algorithm.

All ambiguities are shown in Fig. 6. The list of experimental assays

that yields to ambiguities on each interaction is given in the Sup-

plementary Web site. Notice that in RegulonDB, only two of these

interactions are annotated with a double-sign, i.e. they are known to

have both repressor and inducer effect depending on external condi-

tion. On the other 18 interactions belonging to an ambigous module,

this analysis shows that there exist non-modelled interactions that

balance the effects on the targets.

3.5 A real case: inference of signs in S. Cerevisiae

transcriptional regulatory network

We applied our inference algorithm to the transcriptional regulatory

network of the budding yeast S. Cerevisiae. Let us here briefly re-

view the available sources that can be used to build the unsigned

regulatory network. The experimental dataset proposed by Lee et

al. [11] is widely used in the network reconstruction literature. It is

a study conducted under nutrient rich conditions, and it consists of

an extensive chIP-chip screening of 106 transcription factors. Esti-

mations regarding the number of yeast transcription factors that are

likely to regulate specific groups of genes by direct binding to the

DNA vary from 141 to 209, depending on the selection criteria. In

follow up papers of this work, the chIP-chip analysis was extended

to 203 yeast transcription factors in rich media conditions and 84

of these regulators in at least one environmental perturbation [12].

Analysis methods were refined in 2005 by MacIsaac et al.[13]. From

the same chIP-chip data and protein-protein interaction networks,

non-parametric causality tests proposed some previously undetected

transcriptional regulatory motifs [14]. Bayesian analysis also pro-

posed transcriptional networks [15, 16, 10]. Here we selected four

9

P. Veber a, C. Guziolowski a, M. Le Borgneb, O. Radulescua,c, A. Siegeld

Figure 6. Interactions in the regulatory network of E. Coli that are ambigu-

ous with a compendium data of expression profiles [9]. For each interaction,

there exist at least two expression profiles that do not predict the same sign

on the interaction. In this subnetwork, only 2 interactions (red edges) are

annotated with a double-sign in RegulonDB.

of these sources. All networks are provided in the Supplementary

Web site.

(A) The first network consists in the core of the transcriptional

chIP-chip regulatory network produced in [11]. Starting from

the full network with a p-value of 0.005, we reduced it to

the set of nodes that have at least one output edge. This net-

work was already studied in [31]. It contains 31 nodes and 52

interactions.

(B) The second network contains all the transcriptional interactions

between transcription factors shown by [11] with a p-value

below 0.001. It contains 70 nodes and 96 interactions.

(C) The third network is the set of interactions among transcription

factors as inferred in [13] from sequence comparisons. We have

considered the network corresponding to a p-value of 0.001
and 2 bindings (83 nodes, 131 interactions).

(D) The last network contains all the transcriptional interactions

among genes and regulators shown by [11] with a p-value

below 0.001. It contains 2419 nodes and 4344 interactions.

3.5.1 Inference process with gene-deletion expression profiles

We first applied our inference algorithm to the large-scale network

(D) extracted from [11] using a panel of expression profiles for 210

gene-deletion experiments [40]. The information given by this panel

is quite small, since 1, 6% of all the products in the network is on

average observed, and 12% of the edges (input and output) of the

network are observed in at least one expression profile. Using this

data, we obtain 162 regulatory roles.

We validated our prediction with a literature-curated network on

Yeast [41]. We found that among the 162 sign-predictions, 12 were

referenced with a known interaction in the database, and 9 with a

good sign.

Gene-deletion expression profiles were used so we could compare

our results to path analysis methods [23, 20] since the latter can only

be applied to knock-out data (http://chianti.ucsd.edu/idekerlab/).

Other sign-regulation inference methods need either other sources

of gene-regulatory information (promoter binding information,

protein-protein information), or time-series data to be performed

[15, 18, 10].

Before comparing our inference results to the work of Yeang et

al., we tested the compatibility between their inferred network with

the 210 gene-deletion experiments. We obtained that their network

was incompatible with 28 of the 210 experiments. The comparison

of both results showed us that the method of Yeang et al. infers

234 roles of widely connected paths, while our method infers 162

roles in the branches of the network. Both results intersect on 17

interactions, and no contradiction in the inferred role was reported.

An illustration of these results is given in the Supplementary Web

site.

This suggests that our approach is complementary to path analy-

sis methods. Our explanation is the following: In [23, 20], network

inference algorithms identify probable paths of physical interac-

tions connecting a gene knockout to genes that are differentially

expressed as a result of that knockout. This leads to search for the

smallest number of interactions that carry the largest information in

the network. Hence, inferred interactions are located near the core

Experiment

Identifier
Description Reference

E1 Diauxic Shift [30]

E2 Sporulation [33]

E3 Expression analysis of Snf2 mutant [34]

E4 Expression analysis of Swi1 mutant [34]

E5 Pho metabolism [35]

E6 Nitrogen Depletion [28]

E7 Stationary Phase [28]

E8 Heat Shock from 21◦C to 37◦C [28]

E9 Heat Shock from 17◦C to 37◦C [28]

Experiment

Identifier
Description Reference

E10 Wild type response to DNA-damaging agents [36]

E11 Mec1 mutant response to DNA-damaging agents [36]

E12 Glycosylation defects on gene expression [37]

E13 Cells grown to early log-phase in YPE [29]

(Rich medium with 2% of Ethanol)

E14 Cells grown to early log-phase in YPG [29]

(Rich medium with 2% of Glycerol)

E15 Titratable promoter alleles - Ero1 mutant [38]

Table 3. List of genome expression experiments of S. Cerevisiae used in the inference process. Experiments contain information on steady state shift and their

curated data is available in SGD (Saccharomyces Genome Database) [39].

10

Inferring the role of transcription factors

Interaction network Nodes Edges

Average

number of

observed

nodes

In/Out

observed

simulnat.

Inferred

signs

MBM Int.

TypeI

MBM Int.

Type

II,III,IV

Total Inf.

rate

Predictions

of the

naive

algorithm

(A) Core of

Lee transcriptional

network

[11, 31]

31 52 28% 46
11

(21.1%)

3

(5.7%)
0 26.8% 11%

(B) Extended

Lee transcriptional

network

[11]

70 96 26% 70
29

(30.2%)

7

(7.2%)
0 37.4% 15,6%

(C) Inferred network

[12, 13]

threshold = 0.001 ;

bindings=2

83 131 33% 91
21

(16%)

4

(3%)
0 19% 11%

(D) Global transcriptional

network [11]

p-value = 0.001

2419 4344 30% 2270
631

(14.5%)

198

(4.5%)

filter k=3

281

(6.5%)

no filter

463

(11%)
32% 13.9%

Table 4. Budding yeast transcriptional regulatory networks on which the sign inference algorithm was applied. For each network 14 or 15 different expression

profiles were used for calculating the inference. The set of observations provided by one expression profile, was composed by at least two expressed/repressed

(ratio over/under 2-fold) genes of the network. The Input/Output observed simultaneously column, is an indicator of the maximum possible number of sign-

inferred interactions. There are three different inference results: Inferred signs, signs fixed in a unique way by all experiments, MBM Interactions of TypeI,

the set of non-repeated interactions that belong to all the multiple behavior modules of TypeI detected, and MBM Interactions of TypeII,II,IV, the number of

non-repeated interactions belonging to MBM of Type II,III,IV. For all the inference results a percentage concerning the total number of edges of the network,

is calculated. The Total inference rate represents the percentage of the total number of edges that was inferred (inferred signs plus interactions in MBM). It is

compared to the results of the naive algorithm.

of the network (even though not exactly in the core). On the con-

trary, as we already detailed it, the combinatorics of interaction in

the core of the network is too intricate to be determined from a few

hundreds of parse expression profiles with our algorithm, and we

concentrate on interactions around the core.

3.5.2 Inference with stress perturbation expression profiles In

order to overcome the problem raised by the small amount of in-

formation contained in [40], we have selected stress perturbation

experiments. This data corresponds to curated information avail-

able in SGD (Saccharomyces Genome Database) [39]. When time

series profiles were available, we selected the last time expression

array. Therefore, we collected and treated 15 sets of arrays described

in Table 3. For each expression array, we sorted the measured

genes/regulators in four classes: 2-fold induced, 2-fold repressed,

non-observed and zero variation. We were only interested in the ex-

pression of genes that belong to any of the four networks we studied.

Full datasets are available in the Supplementary Web site.

As for E. Coli network, it appeared that all networks (A), (B), (C)

and (D) are not consistent with the whole set of expression arrays

and ambiguities appeared. We performed our inference algorithm.

We identified motifs that hold ambiguities, and we marked them as

Multiple Behavior Modules of type I, II and III, as described in Sec.

3.1. The algorithm also generates a set of inferred signs. Then we

applied the filtered algorithm (with filter k = 3) to the large-scale

network (D).

We obtain our total inference rate adding the number of inferred

signs fixed in a unique way to the number of non-repeated inter-

actions that belong to all the detected multiple behavior modules

and dividing it by the number of edges in the network. In Table

4 we show the inference rate for Networks (A), (B), (C) and (D).

Depending on the network, the rate of inference goes from 19% to

37%. Hence, the rates of inference are very similar to the theoreti-

cal rates obtained for E. Coli network, still with a small number of

perturbation experiments (14 or 15).

We validated the inferred interaction by comparing them to the

literature-curated network published in [41]. We first obtained that

among the 631 interactions predicted when no filtering is applied,

23 are annotated in the network, and seven annotations are con-

tradictory to our predictions. However, among the 198 interactions

predicted with a filter parameter k = 3, 19 are annotated in the net-

work, and only one annotation is contradictory to our predictions.

As in the case of E. Coli, we conclude that filtering is a good way to

make strong predictions even when the model is not precise enough.

We also compared the sign predictions to the predictions of the naive

inference algorithm. We found that the naive algorithm usually pre-

dicts half of the signs that we obtain. In Fig. 7 we illustrate the

inferred interactions for Network (B), that is, the Transcriptional

network among transcription factors produced in [11].

As mentioned already, the algorithm identified a large number of

ambiguities. The exhaustive list of MBM is given in the Supple-

mentary Web site. We notice that MBM of Type I are detected in

the four networks; we list the Type I modules of size 2 found for the

networks (A), (B) and (C) in Table 5. In contrast, MBM of Type II,

III and IV are only detected, in an important number, for Network

(D) following the distribution: 85.4% of Type II, 5.3% of Type III

and 9.3% of Type IV. In network (D), all the results were obtained

after 3 iterations of the inference algorithm. For each MBM, a pre-

cise biological study of the species should allow to understand the

origin of the ambiguity: error in expression data, missing interac-

tion in the model or changing in the sign of the interaction during

the experimentation.

11

P. Veber a, C. Guziolowski a, M. Le Borgneb, O. Radulescua,c, A. Siegeld

Figure 7. Transcriptional regulatory network among transcription factors (70 nodes, 96 edges) extracted from [11]. A total of 29 interactions were inferred:

arrows in green, respectively in red, correspond to positive, respectively negative, interactions inferred; blue arrows correspond to the detected multiple

behavior modules of TypeI. Diagram layout is performed automatically using the Cytoscape package [42].

3.6 Contribution of expression profiles to the inference

In order to evaluate the contribution of the 14 experiments used for

the inference in the global network provided in [11] (2419 nodes

and 4344 arcs), we addressed the following question: assuming that

all inferred roles are correct, which is the experiment that causes

the suppression of most of the inferred roles? For example, in Fig.

1 expression data related to YPD Broth to Stationary Phase [28],

caused the suppression of the inferred interactions of the module of

Type II.

We compared the 14 expression profiles according to the MBM

of TypeII, III and IV that are detected by using an element of the

dataset. MBM of TypeI are not included in this computation, since

they do not invalidate any interaction role, as no interaction role is

inferred before their detection. The results of this comparison are

shown in Fig. 8. The fourth chart illustrates that the real contribu-

tion of each expression profile does not depends on the amount of

observations.

4 DISCUSSION

In this work we show how a qualitative reasoning framework can

be used to infer the role of transcription factor based on expression

profiles. The regulatory effect of a transcription factor on its target

genes can either be an activation or a repression. Our framework

Interaction network Actor Target Experiment 1 Experiment 2

Core of Lee

network

YAP6

GRF10

PDH1

CIN5

MBP1

MSN4

Expression during Sporulation [33]

YPD Broth to Stationary Phase [28]

Nitrogen Depletion [28]

YPD Broth to Stationary Phase [28]

Mec1 mutant + Heat [36]

Heat shock 21 to 37 [28]

Extended Lee

network

YAP6

RAP1

SKN7

PHD1

RAP1

PHD1

HAP4

CIN5

SIP4

NRG1

SOK2

RCS1

MSN4

PUT3

Expression during Sporulation [33]

Expression during Sporulation [33]

YPD Broth to Stationary Phase [28]

Heat shock 21 to 37 [28]

Wild type + Heat [36]

Nitrogen Depletion [28]

Expression during the diauxic shift [30]

YPD Broth to Stationary Phase [28]

Expression during the diauxic shift [30]

Expression during the diauxic shift [30]

YPD Broth to Stationary Phase [28]

Transition from fermentative to glycerol-based respiratory growth [29]

Heat shock 21 to 37 [28]

Snf2 mutant, YPD [34]

MacIssac

inferred network

SWI5

SKN7

NRG1

NRG1

ASH1

NRG1

YAP7

GAT3

Expression regulated by the PHO pathway [35]

YPD Broth to Stationary Phase [28]

Expression regulated by the PHO pathway [35]

Glycosylation [37]

YPD Broth to Stationary Phase [28]

Nitrogen Depletion [28]

Transition from fermentative to glycerol-based respiratory growth [29]

Transition from fermentative to glycerol-based respiratory growth [29]

Table 5. Result of the diagnosis procedure for three networks related to budding yeast S. Cerevisiae (core, extended transcriptional networks of Lee, inferred

network of MacIsaac). We found ambiguities between single interactions and pairs of data (we call them Multiple Behavior Modules of Type I and size 2). For

each ambiguous interaction found, we list two experiments that deduce a different role of interaction among these genes.

12

Inferring the role of transcription factors

Figure 8. Comparison of 14 experiments used in the sign-inference process

for the global transcriptional network in [11] (2419 genes, 4344 interac-

tions). Each experiment has a twofold contribution: it spots inconsistent

modules (MBM, that are further excluded from inference) and it predicts

interaction roles. Some experiments have more predictive power, just be-

cause they include more genes. In order to normalize the predictive power,

we divide the percentage of predictions by the percentage of observed nodes.

For each experiment we have estimated, from top to down: (First) Number

of 2-fold expressed or 2-fold repressed genes. (Second) Percentage of edges

in the spotted MBMs of type II,III,IV divided by the percentage of observed

nodes. (Third) Percentage of inferred interactions divided by the percentage

of observed nodes. (Fourth) Real contribution of each experiment, calculated

by subtracting the third quantity (inference) from the second quantity (elimi-

nated inconsistency); negative values correspond to experiments whose main

role is to spot ambiguities.

models a single qualitative rule, which basically says that the varia-

tion of expression for a gene should be explained by at least one of

its regulators.

While intuitive and simple, this rule is sufficient to infer a sig-

nificant number of regulatory effects from a reasonable amount of

expression profiles.

On computational grounds, we designed algorithms that are able

to cope with systems consisting of several thousands of genes. Our

methods can thus readily be applied to networks and expression

data that are produced by current high-throughput measurement

techniques.

Inferring the role of transcription factor from expression profile

can be seen as a particular case of network reconstruction. Let us

now review some of the most relevant approaches in this domain.

Looking for high correlation or mutual information in expres-

sion profiles [16, 43] can be used to find interactions among genes.

Much progress has been done over the past few years to improve

the quality of statistical estimators or to detect indirect correlations,

and some promising results were obtained in higher eukaryotes [43].

There remains some open problems however. First, the relation be-

tween network structure and correlation is not one to one (inference

procedures rely on calculating pseudoinverses of singular matrices).

Consequently, many false positive or false negatives exist among

the inferred interactions. Moreover, the orientation of the inferred

interactions (A acts on B) is impossible to tell if both A and B are

transcription factors. Other non-parametric statistical methods are

designed to test hypothetical causality relations [14].

Bayesian networks have been widely applied to gene network

reconstruction [44]. Though it is limited to the class of acyclic

graphs (regulation loops are excluded), the framework of Bayesian

networks is attractive because it offers an intuitive, graphical rep-

resentation of regulatory networks, and a simple way to deal

with stochasticity in regulatory networks. This approach is how-

ever demanding, both in computational resources and experimental

measurements.

Segal and coworkers [15] proposed a probabilistic model to in-

fer transcriptional networks from promoter sequences and gene

expression data. They introduce a principled framework to inte-

grate heterogeneous sources of information. Computing the most

probable model in this setting requires to solve a hard non linear

optimization problem.

Network inference based on ordinary differential equation relates

changes in RNA concentration to each other and to an external

perturbation [45, 46]. AS ODE’s are deterministic, the inferred in-

teractions represent influences and not statistical dependencies as

the other methods. It yields signed directed graphs. The main re-

striction is that it requires knowledge on the perturbed gene in each

experiment.

More recently, some methods focused on paths of interactions

[19, 20]. Global expression profiles are used to validate models

of transcriptional regulation inferred from protein-protein interac-

tion, genome-wide location analysis and expression data. A network

inference algorithm identifies probable paths of physical interac-

tions connecting a gene knockout to genes that are differentially

expressed as a result of that knockout. These methods are really

dependent on the topology of the networks: complex networks in

which many competing or alternative paths connect a knockout to

differentially expressed genes may be difficult to infer. Then, dy-

namical Boolean analysis is efficient to infer competing behaviors

13

P. Veber a, C. Guziolowski a, M. Le Borgneb, O. Radulescua,c, A. Siegeld

on models containing tens of products [20, 31]. The main restric-

tion to this method is that expression profiles have to result from a

gene-deletion perturbation.

In this work, we rely on a discrete modeling framework, which

consists in calculating an over-approximation of the set of possi-

ble observations, by abstracting noisy quantitative values into more

robust properties. In contrast, statistical methods deal with experi-

mental noise by explicitly modeling the noise distribution, provided

enough measurements are available – which usually means hun-

dreds of independent experiments. Moreover while most methods

report the most likely model given the data, we describe the (pos-

sibly huge) set of consistent experimental behaviors with a system

of qualitative constraints. Then we look for invariants in this set. In

the worst case, not a single regulatory effect can be deduced from

the set of constraints, whereas computing the most likely model pro-

vides with signs for all regulations. However, we expect the inferred

regulations to be more robust. Another crucial difference is that the

system of constraints might have no solution at all. In combination

with a diagnosis procedure, we illustrated how this approach can be

a relevant tool for the curation of network databases.

We compared our inference approach to a naive inference algo-

rithm and path analysis methods introduced in [23, 20]. As detailed

above, all other inference methods need additional information to

infer the signs of regulations. We found that both our algorithm

and path analyses infer non-trivial interactions. Both approaches are

complementary: path analyses identify coupled with boolean analy-

sis allows to infer the signs of interactions located in paths that are

connected to a large number of targets; whereas our method yields

information on paths connected to a quite small number of targets.

Another difference is that paths analysis requires gene-deletion per-

turbation expression profiles, while our method give better results

with stress perturbation experiments (though it can be applied to

any type of experiment).

Using simulations we investigated the dependence between the

number of inferred signs and the number of available observations.

Not surprisingly we noticed that the topology of the regulatory graph

alone had a strong influence on the estimated relationship. This

was illustrated by computing statistics both on a complete regula-

tory network and on its core, as defined in the Methods section.

The complete network is characterized by an over-representation

of feedback-free regulatory cascades, which are controlled by a

small number of transcription factors. In this setting, the number

of inferred signs grows quasi continuously with the number of ob-

servations. In contrast, the core network does not obey the simple

law “the more you observe, the better”: some expression profiles

are clearly more informative than others. A challenging sequel to

this work deals with experimental planification: given some con-

trol parameters, how to find the most informative experiments while

keeping their number as low as possible ?

As a practical assessment of our method, we conducted sign in-

ference experiments on E. Coli and S. Cerevisiae, using curated

expression measurements, and regulatory networks either already

published or based on chIP-chip data. When expression profiles

mostly consisted in genetic perturbations, the inference rate was

quite low, even though comparable to the results of paths analysis

[20]. When expression profiles consisted in stress perturbation, our

inference results corresponded to the theoretical rate of inference.

For smaller networks, of about 100 interactions, we were able to in-

fer 20% of the regulatory roles. For bigger networks, of thousands

interactions, we were only able to infer the 14%, however, a huge

number of inconsistencies (that we called multiple behaviour mod-

ules) were detected. Even if we were able to state some corrections

over the model or data, all our inferences and corrections proposed

depend on the model we worked with. If the orientation sense of

some interaction was mistaken, our inferences will be mistaken as

well. In our opinion, what is even more relevant than correctly in-

ferring signed regulations among genes is the ability to detect and

isolate situations where different data sources are not consistent with

each other. Moreover, if we group some of the MBM found accord-

ing to the common genes they share, it is possible to assign a higher

relevance to the correction of some specific interaction or data; in

other words, it is possible to choose which of all the interactions is

the most inappropriate.

5 CONCLUSION

In this work, we showed that our approach is suitable to infer reg-

ulatory roles of transcription factor from a limited amount of data.

More precisely, we could infer 30-40% of the networks we stud-

ied from about 20-30 perturbation expression arrays. We believe

that our approach is complementary to previous statistical meth-

ods: while qualitative modeling is a less accurate description of

regulatory networks, it requires less data in order to make robust

predictions. Thus, it is more adapted to situations where diverse but

even limited expression profiles (some tens) are available, instead of

the large panel of expression profiles usually needed for statistical

methods.

We proposed a characterization of sub-networks that are more

difficult to infer, called the core of a network. We showed on sim-

ulated data that in these core networks an unfeasible number of

experiments is necessary to infer a small number of signs with high

probability. For these core networks, two different strategies may

be adopted. The first strategy is to build a more accurate model for

these restricted subnetworks, using dynamic modeling techniques

(see ([32] for a review), The alternative is to develop experiment

design in our qualitative framework: find suitable values for control

parameters to infer the maximum number of signs.

Finally, we illustrated another advantage of discrete modeling,

namely that models can be submitted to exhaustive verification and

diagnosis. As we show it in this paper it is possible to reason on sys-

tems with thousands of observations, constraints and variables, and

provide intuitive diagnosis representations automatically when ex-

pression profiles happen to be ambiguous with the regulation model.

As a follow-up to this work, we plan to deepen diagnosis represen-

tation, and eventually propose automatic hypothesis generation for

the existence of defects.

6 METHODS

Problem statement We consider the set of equations derived from a given

interaction graph G:

Xk
i ≈

X

j→i

SjiX
k
j for 1 ≤ i ≤ n, 1 ≤ k ≤ r (4)

where Xk
i stands for the sign of variation of species i in experiment k, and

Sji the sign of the influence of species j on species i. Recall that the graph G

itself comes from chIP-chip experiments or sequence analysis. Using expres-

sion arrays, we obtain an experimental value for some variables Xk
i , which

14

Inferring the role of transcription factors

will be denoted xk
i ; more generally uppercase (resp. lowercase) letters will

stand for variables of the systems (resp. constants +, – or 0).

A single equation in the system (4) can be viewed as a predicate

Pi,k(X, S) where i denotes a node in the graph and k one of the r

available experiments. If the value for some variables in the equation is

known, the predicate resulting from their instantiation will be denoted

Pi,k(X, S)[xk, s].
Our problem can now be stated as follows: given a set of expression

profiles x1, . . . , xr , decide if the predicate:

P (X, S) =
^

1≤i≤n, 1≤k≤r

Pi,k(X, S)[xk] (5)

can be satisfied. If so, find all variables that take the same value in all

admissible valuations (so called hard components of the system).

Decision diagram encoding In a previous work [26], we showed how the set

of solutions of a qualitative system can be computed as a decision diagram

[47]. A decision diagram is a data structure meant to represent functions on

finite domains ; it is widely used for the verification of circuits or network

protocols. Using such a compact representation of the set of solutions, we

proposed efficient algorithms for computing solutions of the systems, hard

components, and other properties of a qualitative system. Back to our prob-

lem, in order to predict the regulatory role of transcription factors on their

target genes, it is enough to compute the decision diagram representing the

predicate (5), and compute its hard components as proposed in [26]. This

approach is suitable for systems of at most a couple of hundred variables.

Above this limit, the decision diagram is too large in memory complexity.

In our case however, we consider systems of about 4000 variables at most,

which is far too large for the above mentioned algorithms.

In order to cope with the size of the problem, we propose to investigate a

particular case, when all species are observed, in all experiments. In this

case, i 6= j implies that Pi,k(X, S)[xk] and Pj,k(X, S)[xk] share no

variables. This means that P may be satisfied if and only if each predicate

Pi,·(S) =
^

1≤k≤r

∃X Pi,k(X, S)[xk] (6)

may be satisfied. As a consequence, a variable Sji is a hard component

of P if and only if it is a hard component of Pi,·. Pi,· correspond to the

constraints which relate species i to its predecessors in G for all experiments.

The number of variables in Pi,· is exactly the in-degree of species i in G,

which is at most 10-20 in biological networks.

As soon as some species are not observed in some experiment, the pred-

icates Pi,· share some variables and it is not guaranteed to find all hard

components by studying them separately. A brief investigation showed (data

not shown) that due to the topology of the graph, most of the equations

are not independent any more, even with few missing nodes. Note however,

that any hard component of Pi,· still is a hard component of P . The same

statement holds for

P·,k(X) =
^

1≤i≤n

∃S Pi,k(X, S)[xk] (7)

where P·,k corresponds to the constraints that relate all species in G for

a single experiment. Relying on this result, we implemented the following

algorithm

In practice, this algorithm is very effective in terms of computation time

and number of hard components found. However, as already stated, it is not

guaranteed to find all hard components of P . This is what motivates the

technique described in the next paragraph.

Solving with Answer Set Programming In order to solve large qualitative

systems, we also tried to encode the problem as a logic program, in the set-

ting of answer set programming (ASP). While decision diagrams represent

the set of all solutions, finding a model for a logic program provides one

solution. In order to find hard components, it is enough to check for each

variable V , if there exists a solution such that V = + and another solution

Input:

the predicates Pi,· and P·,k for all i and k

observed variations x

Output:

a set s of hard components of P

s← ∅
while True do

s′ ←
S

i
hard components(Pi,·[x

k, s])
if s′ = ∅ then return s

s← s ∪ s′

x′ ←
S

k
hard components(P·,k[xk, s])

if x′ = ∅ then return s

x← x ∪ x′

end

Algorithm 1: Heuristic for finding hard components in large

interaction networks with many expression profiles.

such that V = –. The ASP program we used in order to solve the quali-

tative system is given in supplementary materials. In the following we will

denote by asp solve(P) the call to the ASP solver on the predicate P . The

returned value is an admissible valuation if there is one, or⊥ otherwise. The

complete algorithm is reported below

Algorithm:Hard components using ASP

Input:

the predicates P

observed variations x

Output:

a set h of hard components of P

h← ∅
C ← {Sji|j → i}
s∗ ← asp solve(P)
if s∗ = ⊥ then return ⊥
while C 6= ∅ do

choose V in C

s← asp solve(P [V = −s∗V])
if s = ⊥ then

h← {(V, sV)} ∪ h

else
delete from C all W in C s.t. any s∗W 6= sW

end

end

Algorithm 2: Exact algorithm for finding the set of hard compo-

nents of P , based on logic programming.

We use clasp for solving ASP programs [48], which performs as-

tonishingly well on our data. The procedure described in Algorithm 2 is

particularly efficient to find non hard components: generating one solution

may be enough to prove non hardness of many variables at a time.

To sum up, in order to solve a system of qualitative equations (4) with

only partial observations, we use Algorithm 1 first and thus determine most

(if not all) hard components. Then, Algorithm 2 is used for the remaining

components, which are nearly all non hard.

Reduction technique As mentioned in the Result section, interaction graphs

may be reduced in a way that preserves the satisfiability of the associated

qualitative system. Consider a graph G with defined signs on its edges. If

15

P. Veber a, C. Guziolowski a, M. Le Borgneb, O. Radulescua,c, A. Siegeld

some node n has no successor, then delete it from G. Note then, that any so-

lution of the qualitative system associated to the new graph can be extended

in a solution to the system associated to G. The same statement holds if one

iteratively delete all nodes in the graph with no successor. The result of this

procedure is the subgraph of G such that any node is either on a cycle, or has

a cycle downstream. We refer to it as the core of the interaction graph.

The core of an interaction graph corresponds to the most difficult part to

solve, because extending a solution for the core to the entire graph can be

done in polynomial time, using a breadth-first traverse.

Diagnosis for noisy data When working with real-life data, it may happen

that the predicate P defined in Eq. (5) cannot be satisfied. This may be due

to three (non exclusive) reasons:

• a reported expression data is wrong

• an arrow (or more generally a subgraph) is missing

• the sign on an edge depends on the state of the system

In the third case, the conditions for deriving Eq. (1) are not fulfilled for one

node and its qualitative equation should be discarded. This, however, does

not affect the validity of the remaining equation.

In all cases, isolating the cause of the problem is a hard task. We propose

the following diagnosis approach: as P is a conjunction of smaller predi-

cates, it might happen that some subsets of the predicates are not satisfiable

yet. Our strategy is then to find a “small” subsets of predicates which can-

not be satisfied. A particularly interesting feature of this approach is that by

selecting subsets of Pi,· predicates, the result might directly be interpreted

and visualized as a subgraph of the original model.

How to determine if a sign can be inferred In section 2, we have seen

some examples showing that even when all feasible observations are avail-

able, it might not be possible to infer all signs in the interaction graph.

Whether or not a sign can be inferred depends on the topology of the graph,

but also on the actual signs on interactions. In practice, it is thus impossible

to tell from the unsigned graph only if a sign can be recovered. However,

it is still interesting to evaluate on fully signed interaction networks which

part can be inferred. A trivial algorithm for this consists in explicitly gener-

ating all feasible observations and use the algorithms described above. This

is unfeasible due to the number of observations.

With the notations introduced above, consider an observation X and sign

variables S for an interaction graph. Pi(X, S) denotes the constraint that

link the variation of a node i to that of its predecessors given the signs of the

interactions. Moreover, the real signs in the graph are denoted by s. For each

node i, we build the predicate giving the feasible observations on node i and

its predecessors, given the rest of the graph and the real signs s

Oi(X) = ∃Xjj∈{i}∪pred(i)

^

1≤i≤n

Pi(X, s)

Then, the constraint that we can derive on S variables is: for any ob-

servation X that is feasible Pi(X, S) should hold. This constraint is more

formally defined by

Ci(S) = ∀XOi(X) ⇒ Pi(X, S)

Finally, the hard components of Ci are exactly the signs that can be

inferred using all feasible observations. Let us sum up the procedure:

1. compute P (X, S) =
V

1≤i≤n Pi(X, s)

2. compute Oi from P and the actual signs s

3. compute Ci, the constraints of signs given all feasible observations

4. compute the hard components of Ci, which are exactly the signs that

can be inferred.

If it is not possible to compute P (X, S) (mainly because the interaction

graph is too large), we use a more sophisticated approach based on a modular

decomposition of the interaction graph. The resulting algorithm can be found

in the Supplementary materials.

SUPPLEMENTARY MATERIAL

Inference algorithms and all the results obtained for the S. cerevisiae

regulatory network can be found at:

www.irisa.fr/symbiose/interactionNetworks/supplementaryInference.html

ACKNOWLEDGMENT

The authors are particularly grateful to B. Kauffman, M. Gebser and

T. Schaub from the University of Potsdam for their help on CLASP

software. They also wish to thank the referee for their interesting

and constructive remarks.

REFERENCES

[1]Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M,

et al. (2002) MINT: a Molecular INTeraction database. FEBS Lett 513:135–40.

[2]Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, et al.

(2004) IntAct: an open source molecular interaction database. Nucleic Acids Res

32:D452–5.

[3]Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, et al. (2004)

Human protein reference database as a discovery resource for proteomics. Nucleic

Acids Res 32:D497–501.

[4]Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG

resource for deciphering the genome. Nucleic Acids Res 32:D277–80.

[5]Ingenuity-Systems (1998). Ingenuity pathways knowledge base. Avalaible: http://

www.ingenuity.com.

[6]Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, et al.

(2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory

network, operon organization, and growth conditions. Nucleic Acids Res 34:D394–

7.

[7]Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hon GC, et al. (2006) Com-

prehensive curation and analysis of global interaction networks in Saccharomyces

cerevisiae. J Biol 5:11.

[8]Joyce AR, Palsson BO (2006) The model organism as a system: integrating ’omics’

data sets. Nat Rev Mol Cell Biol 7:198–210.

[9]Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-

scale mapping and validation of escherichia coli transcriptional regulation from

a compendium of expression profiles. PLoS Biology 5.

[10]Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to infer

gene networks from expression profiles. Mol Syst Biol 3.

[11]Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, et al. (2002) Transcriptional

regulatory networks in Saccharomyces cerevisiae. Science 298:799–804.

[12]Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, et al. (2004)

Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104.

[13]MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, et al. (2006) An

improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC

Bioinformatics 7:113.

[14]Xing B, van der Laan MJ (2005) A causal inference approach for constructing

transcriptional regulatory networks. Bioinformatics 21:4007–13.

[15]Segal E, Shapira M, Regev A, Pe’er D, Botstein D, et al. (2003) Module networks:

identifying regulatory modules and their condition-specific regulators from gene

expression data. Nat Genet 34:166–76.

[16]Nariai N, Tamada Y, Imoto S, Miyano S (2005) Estimating gene regulatory net-

works and protein-protein interactions of Saccharomyces cerevisiae from multiple

genome-wide data. Bioinformatics 21 Suppl 2:ii206–ii212.

[17]Ferrazzi F, Magni P, Sacchi L, Nuzzo A, Petrovic U, et al. (2007) Inferring gene

regulatory networks by integrating static and dynamic data. Int J Med Inform Epub

2007 Sept 6.

[18]S B, Eils R (2005) Inferring genetic regulatory logic from expression data.

Bioinformatics 21:2706–13.

[19]Ideker T (2004) A systems approach to discovering signaling and regulatory

pathways–or, how to digest large interaction networks into relevant pieces. Adv

Exp Med Biol 547:21–30.

[20]Yeang CH, Mak HC, McCuine S, Workman C, Jaakkola T, et al. (2005) Validation

and refinement of gene-regulatory pathways on a network of physical interactions.

Genome Biol 6:R62.

[21]Gutierrez-Rios RM, Rosenblueth DA, Loza JA, Huerta AM, Glasner JD, et al.

(2003) Regulatory network of Escherichia coli: consistency between literature

knowledge and microarray profiles. Genome Res 13:2435–2443.

16

Inferring the role of transcription factors

[22]Bulyk ML (2006) DNA microarray technologies for measuring protein-DNA

interactions. Curr Opin Biotechnol 17:422–30.

[23]Yeang CH, Ideker T, Jaakkola T (2004) Physical network models. J Comput Biol

11:243–62.

[24]Radulescu O, Lagarrigue S, Siegel A, Veber P, Borgne ML (2006) Topology and

static response of interaction networks in molecular biology. J R Soc Interface

3:185–96.

[25]Siegel A, Radulescu O, Borgne ML, Veber P, Ouy J, et al. (2006) Qualitative

analysis of the relation between DNA microarray data and behavioral models of

regulation networks. Biosystems 84:153–74.

[26]Veber P, Borgne ML, Siegel A, Lagarrique S, Radulescu O (2004/2005) Complex

qualitative models in biology: A new approach. Complexus 2:140–151.

[27]Guziolowski C, Veber P, Borgne ML, Radulescu O, Siegel A (2007) Checking con-

sistency between expression data and large scale regulatory networks: A case study.

Journal of Biological Physics and Chemistry :In press.

[28]Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, et al. (2000) Ge-

nomic expression programs in the response of yeast cells to environmental changes.

Mol Biol Cell 11:4241–57.

[29]Roberts GG, Hudson AP (2006) Transcriptome profiling of Saccharomyces cere-

visiae during a transition from fermentative to glycerol-based respiratory growth

reveals extensive metabolic and structural remodeling. Mol Genet Genomics

276:170–86.

[30]DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control

of gene expression on a genomic scale. Science 278:680–6.

[31]Kauffman S, Peterson C, Samuelsson B, Troein C (2003) Random Boolean net-

work models and the yeast transcriptional network. Proc Natl Acad Sci U S A

100:14796–9.

[32]de Jong H (2002) Modeling and simulation of genetic regulatory systems: a

literature review. J Comput Biol 9:67–103.

[33]Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, et al. (1998) The transcrip-

tional program of sporulation in budding yeast. Science 282:699–705.

[34]Sudarsanam P, Iyer VR, Brown PO, Winston F (2000) Whole-genome expression

analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S

A 97:3364–9.

[35]Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate

accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed

by genomic expression analysis. Mol Biol Cell 11:4309–21.

[36]Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, et al. (2001) Genomic

expression responses to DNA-damaging agents and the regulatory role of the yeast

ATR homolog Mec1p. Mol Biol Cell 12:2987–3003.

[37]Cullen PJ, Sabbagh WJ, Graham E, Irick MM, van Olden EK, et al. (2004) A sig-

naling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth

pathway in yeast. Genes Dev 18:1695–708.

[38]Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, et al. (2004) Explo-

ration of essential gene functions via titratable promoter alleles. Cell 118:31–44.

[39]Hong E, Balakrishnan R, Christie K, Costanzo M, Dwight S, et al. (2001).

Saccharomyces genome database. Avalaible: http://www.yeastgenome.org/.

[40]Hughes T, Marton M, Jones A, Roberts C, Stoughton R, et al. (2000) Functional

discovery via a compendium of expression profiles. Cell 102:109–126.

[41]Nabil Guelzim N, Bottani S, Bourgine P, 2 Képès F (2002) Topological and causal

structure of the yeast transcriptional regulatory network. Nature Genetics 31:60–

63.

[42]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a

software environment for integrated models of biomolecular interaction networks.

Genome Research 13:2498–2504. Avaibility: http://www.cytoscape.org.

[43]Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006)

ARACNE: an algorithm for the reconstruction of gene regulatory networks in a

mammalian cellular context. BMC Bioinformatics 7 Suppl 1:S7.

[44]Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to

analyze expression data. J Comput Biol 7:601–20.

[45]Di Bernardo D, Thomson M, Gardner T, Chobot S, Eastwood E, et al. (2005)

Chemogenomic profiling on a genome-wide scale using reverse-engeneered gene

networks. Nat Biotechnol 23:377–383.

[46]Bansal M, Della Gatta G, di Bernardo D (2006) Inference of gene regulatory net-

works and compound mode of action from time course gene expression profiles.

Bioinformatics 22:815–822.

[47]Bryan R (1986) Graph-based algorithm for boolean function manipulation. IEEE

Transactions on Computers 8:677–691.

[48]Gebser M, Kaufmann B, Neumann A, Schaub T (2007) clasp: A conflict-driven

answer set solver. In: Ninth International Conference on Logic Programming and

Nonmonotonic Reasoning. Tempe, AZ, USA.

17

Annexe B

Liste de publications

Journaux internationaux

– P Veber, C Guziolowski, M Le Borgne, O Radulescu and Anne Siegel (2008).
Inferring the role of transcription factors in regulatory networks, à parâıtre dans
BMC Bioinformatics

– M Giraud, P Veber, D Lavenier, Path-Equivalent Developments in Acyclic Weigh-
ted Automata (2007). International Journal of Foundations of Computer Science
(à parâıtre)

– N Yanev, P Veber, R Andonov, and S Balev (2006). Lagrangian Approaches for a
class of Matching Problems in Computational Biology, Computers & Mathematics
with Applications, 55(5) :1054-1067

– A Siegel, O Radulescu, M Le Borgne, P Veber, J Ouy, S Laguarrigue (2006).
Qualitative analysis of the relation between DNA microarray data and behavioral
models of regulation network BioSystems 84 :153-174.

– O Radulescu, S Laguarrigue, A Siegel, M Le Borgne, P Veber (2006). Topology
and linear response of interaction networks in molecular biology Journal of The
Royal Society Interface 3(6) :185 - 196.

– P Veber, M Le Borgne, A Siegel, S Lagarrigue, O Radulescu (2004). Complex
Qualitative Models in Biology : A new approach Complexus 2(3-4) :140 – 151.

– P Durand, D Lavenier, M Le Borgne, A Siegel, P Veber, J Nicolas (2005). Ap-
plying Complex Models on Genomic Data ERCIM News (60 :47-78)

– R Andonov, D Lavenier, P Veber, N Yanev (2005). Dynamic programming for
LR-PCR segmentation of bacterium genomes Concurrency and Computations :
Practice and Experience 17(14) :1657-1668.

– N. Ben Zakour, M. Gautier, R. Andonov, D. Lavenier, M.-F. Cochet, P. Veber, A.
Sorokin, et Y. Le Loir (2004), GenoFrag : software to design primers optimized
for whole genome scanning by long-range PCR amplification, Nucleic Acids Res.,
January 2, 2004 ; 32(1) : 17 - 24.

137

138 Liste de publications

Conférences internationales

– M Giraud, P Veber, D Lavenier (2006). Path-Equivalent Removals of Epsilon-
Transitions in a Genomic Weighted Finite Automaton International Conference
on implementation and application of Automata, Taipei, Taiwan.

– P Veber, N Yanev, R Andonov, V Poirriez (2005). Optimal protein threading by
cost-splitting, 5th Workshop on Algorithms in Bioinformatics - WABI, Mallorca,
Espagne.

– P Veber, M Le Borgne, A Siegel, O Radulescu (2005). Complex Qualitative Mo-
dels in Biology : a new approach, European Conference on Complex Systems -
ECCS’05, Paris, France.

Conférences nationales

– P Veber, S Tempel, D Lavenier, R Andonov, J Nicolas (2007). Détection de
domaines dans des séquences génomiques : un problème de couverture optimale
ROADEF’07, Grenoble.

– C Guziolowski, P Veber, M Le Borgne, O Radulescu, A Siegel (2006). Checking
Consistency Between Expression Data and Large Scale Regulatory Networks : A
Case Study RIAMS’06, Lyon, France.

– Y Bastide, S Lagarrigue, M Le Borgne, A Siegel, P Veber, O Radulescu, A Le Be-
chec (2005). Une méthodologie pour l’analyse qualitative des réseaux biologiques :
De la base de données à la vérification formelle JOBIM 2005, poster session

Bibliographie

[1] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. In SPAA
’04 : Proceedings of the sixteenth annual ACM symposium on Parallelism in al-
gorithms and architectures, pages 120–124, New York, NY, USA, 2004. ACM.

[2] David Angeli and Eduardo D. Sontag. Monotone control systems. IEEE Tran-
sactions on Automatic Control, 48(10) :1684–1698, 2003.

[3] M Aviv, H Giladi, G Schreiber, A B Oppenheim, and G Glaser. Expression of
the genes coding for the Escherichia coli integration host factor are controlled by
growth phase, rpoS, ppGpp and by autoregulation. Mol Microbiol, 14(5) :1021–
1031, Dec 1994.

[4] V L Balke and J D Gralla. Changes in the linking number of supercoiled DNA
accompany growth transitions in Escherichia coli. J Bacteriol, 169(10) :4499–
4506, Oct 1987.

[5] Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, and Diego
di Bernardo. How to infer gene networks from expression profiles. Mol Syst
Biol, 3 :78, 2007. Comparative Study.

[6] Mukesh Bansal, Giusy Della Gatta, and Diego di Bernardo. Inference of gene
regulatory networks and compound mode of action from time course gene expres-
sion profiles. Bioinformatics, 22 :815–822, 2006.

[7] Ziv Bar-Joseph, Shlomit Farkash, David K Gifford, Itamar Simon, and Roni Ro-
senfeld. Deconvolving cell cycle expression data with complementary information.
Bioinformatics, 20 Suppl 1 :23–30, Aug 2004.

[8] Tanya Barrett, Dennis B Troup, Stephen E Wilhite, Pierre Ledoux, Dmitry Rud-
nev, Carlos Evangelista, Irene F Kim, Alexandra Soboleva, Maxim Tomashevsky,
and Ron Edgar. NCBI GEO : mining tens of millions of expression profiles–
database and tools update. Nucleic Acids Res, 35(Database issue) :760–765, Jan
2007.

[9] Alain Barrier, Antoinette Lemoine, Pierre-Yves Boelle, Chantal Tse, Didier
Brault, Franck Chiappini, Julia Breittschneider, Francois Lacaine, Sidney Houry,
Michel Huguier, Mark J Van der Laan, Terry Speed, Brigitte Debuire, Antoine
Flahault, and Sandrine Dudoit. Colon cancer prognosis prediction by gene ex-
pression profiling. Oncogene, 24(40) :6155–6164, Sep 2005.

139

140 Bibliographie

[10] Gregory Batt, Delphine Ropers, Hidde de Jong, Johannes Geiselmann, Radu Ma-
teescu, Page Michel, and Dominique Schneider. Validation of qualitative models
of genetic regulatory networks by model checking : Analysis of the nutritional
stress response in escherichia coli. Bioinformatics, 21(Suppl 1) :i19–i28, 2005.

[11] Richard Bonneau, David J Reiss, Paul Shannon, Marc Facciotti, Leroy Hood,
Nitin S Baliga, and Vesteinn Thorsson. The Inferelator : an algorithm for lear-
ning parsimonious regulatory networks from systems-biology data sets de novo.
Genome Biol, 7(5) :R36, 2006. Evaluation Studies.

[12] François Boulier, Lilianne Denis-Vidal, Thibaut Henin, and François Lemaire.
Lépisme. In Proceedings of International Conference on Polynomial System Sol-
ving, 2004.

[13] Paul Brazhnik. Inferring gene networks from steady-state response to single-gene
perturbations. J Theor Biol, 237(4) :427–440, Dec 2005.

[14] R.E Bryan. Graph-based algorithm for boolean function manipulation. IEEE
Transactions on Computers, 8 :677–691, 1986.

[15] Svetlana Bulashevska and Roland Eils. Inferring genetic regulatory logic from
expression data. Bioinformatics, 21(11) :2706–2713, Jun 2005. Evaluation Stu-
dies.

[16] Laurence Calzone, Francois Fages, and Sylvain Soliman. BIOCHAM : an envi-
ronment for modeling biological systems and formalizing experimental knowledge.
Bioinformatics, 22(14) :1805–1807, Jul 2006.

[17] Madalena Chaves, Reka Albert, and Eduardo D Sontag. Robustness and fragility
of Boolean models for genetic regulatory networks. J Theor Biol, 235(3) :431–449,
Aug 2005.

[18] Madalena Chaves, Thomas Eissing, and Frank Allgöwer. Identifying mecha-
nisms for bistability in an apoptosis network. In Réseaux d’interaction : analyse,
modélisation et simulation. RIAMS’06, Lyon, France, 2006.

[19] Vijay Chickarmane, Carl Troein, Ulrike A Nuber, Herbert M Sauro, and Carsten
Peterson. Transcriptional dynamics of the embryonic stem cell switch. PLoS
Comput Biol, 2(9) :e123, Sep 2006.

[20] Gene Ontology Consortium. The Gene Ontology (GO) project in 2006. Nucleic
Acids Res, 34(Database issue) :322–326, Jan 2006.

[21] Bhaskar DasGupta, German A. Enciso, Eduardo D. Sontag, and Yi Zhang. Al-
gorithmic and complexity results for decompositions of biological networks into
monotone subsystems. In Carme Àlvarez and Maria J. Serna, editors, WEA, vo-
lume 4007 of Lecture Notes in Computer Science, pages 253–264. Springer, 2006.

[22] Hidde de Jong, Johannes Geiselmann, Gregory Batt, Céline Hernandez, and Mi-
chel Page. Qualitative simulation of the initiation of sporulation in bacillus sub-
tilis. Bulletin of Mathematical Biology,, 66(2) :261–300, 2004.

[23] Hidde De Jong, Jean-Luc Gouze, Celine Hernandez, Michel Page, Tewfik Sari,
and Johannes Geiselmann. Qualitative simulation of genetic regulatory networks
using piecewise-linear models. Bull Math Biol, 66(2) :301–340, Mar 2004.

Bibliographie 141

[24] Hidde de Jong, Jean-Luc Gouzé, Céline Hernandez, Michel Page, Tewfik Sari,
and Johannes Geiselmann. Qualitative simulation of genetic regulatory networks
using piecewise-linear models. Bulletin of Mathematical Biology, 66 :301–340,
2004.

[25] Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, Jose Meseguer,
and Kemal Sonmez. Pathway logic : symbolic analysis of biological signaling. Pac
Symp Biocomput, pages 400–412, 2002.

[26] François Fages. Consistency of clark’s completion and existence of stable models,
1992.

[27] Jeremiah J. Faith, Boris Hayete, Joshua T. Thaden, Ilaria Mogno, Jamey Wierz-
bowski, Guillaume Cottarel, Simon Kasif, James J. Collins, and Timothy S. Gard-
ner. Large-scale mapping and validation of escherichia coli transcriptional regu-
lation from a compendium of expression profiles. PLoS Biology, 5(1), 2007.

[28] David Fell. Understanding the Control of Metabolism. Portland Press, London,
1997.

[29] N Friedman, M Linial, I Nachman, and D Pe’er. Using Bayesian networks to
analyze expression data. J Comput Biol, 7(3-4) :601–20, 2000.

[30] Christine Froidevaux, Marie-Claude Gaudel, and Michèle Soria. Types de données
et algorithmes. Ediscience, 1993.

[31] Timothy S Gardner, Diego di Bernardo, David Lorenz, and James J Collins. In-
ferring genetic networks and identifying compound mode of action via expression
profiling. Science, 301(5629) :102–105, Jul 2003.

[32] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
clasp : A conflict-driven answer set solver. In LPNMR, pages 260–265, 2007.

[33] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth Bowen, editors, Proceedings
of the Fifth International Conference on Logic Programming, pages 1070–1080,
Cambridge, Massachusetts, 1988. The MIT Press.

[34] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Comput., 9(3/4) :365–386, 1991.

[35] Nabil Guelzim, Samuele Bottani, Paul Bourgine, and François Képès. Topological
and causal structure of the yeast transcriptional regulatory network. Nature
Genetics, 31 :60–63, 2002.

[36] Rosa Maria Gutierrez-Rios, David A Rosenblueth, Jose Antonio Loza, Araceli M
Huerta, Jeremy D Glasner, Fred R Blattner, and Julio Collado-Vides. Regulatory
network of Escherichia coli : consistency between literature knowledge and mi-
croarray profiles. Genome Res, 13(11) :2435–2443, Nov 2003. Evaluation Studies.

[37] Salgado H, Santos-Zavaleta A, Gama-Castro S, Peralta-Gil M, Penaloza-Spinola
MI, Martinez-Antonio A, Karp PD, and Collado-Vides J. The comprehensive up-
dated regulatory network of Escherichia coli K-12. BMC Bioinformatics, 7(1) :5,
Jan 2006. EDITORIAL.

142 Bibliographie

[38] K R Heidtke and S Schulze-Kremer. Design and implementation of a qualitative
simulation model of lambda phage infection. Bioinformatics, 14(1) :81–91, 1998.

[39] R. Heinrich and S. Schuster. The Regulation of Cellular Systems. Chapman and
Hall, New York, 1996.

[40] Henning Hermjakob, Luisa Montecchi-Palazzi, Chris Lewington, Sugath Mudali,
Samuel Kerrien, Sandra Orchard, Martin Vingron, Bernd Roechert, Peter Roeps-
torff, Alfonso Valencia, Hanah Margalit, John Armstrong, Amos Bairoch, Gianni
Cesareni, David Sherman, and Rolf Apweiler. IntAct : an open source molecular
interaction database. Nucleic Acids Res, 32(Database issue) :D452–5, 2004.

[41] Aimo Hinkkanen, Karl R. Lang, and Andrew B. Whinston. A set-theoretical foun-
dation of qualitative reasoning and its application to the modeling of economics
and business management problems. Information Systems Frontiers, 5(4) :379–
399, 2003.

[42] B Holst, L Sogaard-Andersen, H Pedersen, and P Valentin-Hansen. The cAMP-
CRP/CytR nucleoprotein complex in Escherichia coli : two pairs of closely linked
binding sites for the cAMP-CRP activator complex are involved in combinatorial
regulation of the cdd promoter. EMBO J, 11(10) :3635–3643, Oct 1992.

[43] C Y Huang and J E Jr Ferrell. Ultrasensitivity in the mitogen-activated protein
kinase cascade. Proc Natl Acad Sci U S A, 93(19) :10078–10083, Sep 1996.

[44] John P Huelsenbeck, Bret Larget, and Michael E Alfaro. Bayesian phylogenetic
model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol,
21(6) :1123–1133, Jun 2004.

[45] T. Hughes, M. Marton, A. Jones, C. Roberts, R. Stoughton, C. Armour, H. Ben-
nett, E. Coffey, H. Dai, and Y. He. Functional discovery via a compendium of
expression profiles. Cell, 102(1) :109–126, 2000.

[46] Ingenuity-Systems. Ingenuity pathways knowledge base. Avalaible : http ://
www.ingenuity.com, 1998.

[47] A Ishihama. Functional modulation of Escherichia coli RNA polymerase. Annu
Rev Microbiol, 54 :499–518, 2000.

[48] Andrew R Joyce and Bernhard O Palsson. The model organism as a system :
integrating ’omics’ data sets. Nat Rev Mol Cell Biol, 7(3) :198–210, 2006.

[49] Naftali Kaminski and Nir Friedman. Practical approaches to analyzing results of
microarray experiments. Am J Respir Cell Mol Biol, 27(2) :125–132, Aug 2002.

[50] Minoru Kanehisa, Susumu Goto, Shuichi Kawashima, Yasushi Okuno, and Ma-
sahiro Hattori. The KEGG resource for deciphering the genome. Nucleic Acids
Res, 32(Database issue) :D277–80, 2004.

[51] Marcelline Kaufman, Christophe Soule, and René Thomas. A new necessary
condition on interaction graphs for multistationarity. J Theor Biol, 248(4) :675–
685, Oct 2007.

[52] Boris N Kholodenko. Cell-signalling dynamics in time and space. Nat Rev Mol
Cell Biol, 7(3) :165–176, Mar 2006.

Bibliographie 143

[53] Boris N Kholodenko, Anatoly Kiyatkin, Frank J Bruggeman, Eduardo D. Sontag,
Hans V Westerhoff, and Jan B Hoek. Untangling the wires : a strategy to trace
functional interactions in signaling and gene networks. Proc Natl Acad Sci U S
A, 99(20) :12841–12846, Oct 2002.

[54] K W Kohn. Molecular interaction map of the mammalian cell cycle control and
DNA repair systems. Mol Biol Cell, 10(8) :2703–2734, Aug 1999.

[55] B.J. Kuipers. Qualitative reasoning. Mdeling and simulation with incomplete
knowledge. MIT Press, 1994.

[56] Anshul Kundaje, Manuel Middendorf, Mihir Shah, Chris H Wiggins, Yoav
Freund, and Christina Leslie. A classification-based framework for predicting
and analyzing gene regulatory response. BMC Bioinformatics, 7 Suppl 1 :S5,
2006.

[57] Tong Ihn Lee, Nicola J Rinaldi, Francois Robert, Duncan T Odom, Ziv Bar-
Joseph, Georg K Gerber, Nancy M Hannett, Christopher T Harbison, Craig M
Thompson, Itamar Simon, Julia Zeitlinger, Ezra G Jennings, Heather L Murray,
D Benjamin Gordon, Bing Ren, John J Wyrick, Jean-Bosco Tagne, Thomas L
Volkert, Ernest Fraenkel, David K Gifford, and Richard A Young. Transcriptional
regulatory networks in Saccharomyces cerevisiae. Science, 298(5594) :799–804,
Oct 2002.

[58] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The dlv system for knowledge representation
and reasoning. ACM Trans. Comput. Log., 7(3) :499–562, 2006.

[59] James C Liao, Riccardo Boscolo, Young-Lyeol Yang, Linh My Tran, Chiara Sa-
batti, and Vwani P Roychowdhury. Network component analysis : reconstruc-
tion of regulatory signals in biological systems. Proc Natl Acad Sci U S A,
100(26) :15522–15527, Dec 2003.

[60] Yuliya Lierler. cmodels - sat-based disjunctive answer set solver. In Chitta Baral,
Gianluigi Greco, Nicola Leone, and Giorgio Terracina, editors, LPNMR, volume
3662 of Lecture Notes in Computer Science, pages 447–451. Springer, 2005.

[61] Konstantinos Liolios, Nektarios Tavernarakis, Philip Hugenholtz, and Nikos C
Kyrpides. The Genomes On Line Database (GOLD) v.2 : a monitor of genome
projects worldwide. Nucleic Acids Res, 34(Database issue) :332–334, Jan 2006.

[62] Kenzie D MacIsaac, Ting Wang, D Benjamin Gordon, David K Gifford, Gary D
Stormo, and Ernest Fraenkel. An improved map of conserved regulatory sites for
Saccharomyces cerevisiae. BMC Bioinformatics, 7(NIL) :113, 2006.

[63] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of discrete-
event controllers based on the signal environment. Discrete Event Dynamic Sys-
tem : Theory and Applications, 10(4) :325–346, October 2000.

[64] Adam A Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolo-
vitzky, Riccardo Dalla Favera, and Andrea Califano. ARACNE : an algorithm for
the reconstruction of gene regulatory networks in a mammalian cellular context.
BMC Bioinformatics, 7 Suppl 1(NIL) :S7, 2006.

144 Bibliographie

[65] V Matys, O V Kel-Margoulis, E Fricke, I Liebich, S Land, A Barre-Dirrie, I Reu-
ter, D Chekmenev, M Krull, K Hornischer, N Voss, P Stegmaier, B Lewicki-
Potapov, H Saxel, A E Kel, and E Wingender. TRANSFAC and its module
TRANSCompel : transcriptional gene regulation in eukaryotes. Nucleic Acids
Res, 34(Database issue) :108–110, Jan 2006.

[66] Lisa M Maurer, Elizabeth Yohannes, Sandra S Bondurant, Michael Radmacher,
and Joan L Slonczewski. pH regulates genes for flagellar motility, catabolism,
and oxidative stress in Escherichia coli K-12. J Bacteriol, 187(1) :304–319, Jan
2005.

[67] I Nachman, A Regev, and N Friedman. Inferring quantitative models of regulatory
networks from expression data. Bioinformatics, 20 Suppl 1 :248–256, Aug 2004.

[68] Chris J Needham, James R Bradford, Andrew J Bulpitt, and David R Westhead.
A primer on learning in Bayesian networks for computational biology. PLoS
Comput Biol, 3(8) :e129, Aug 2007.

[69] Bela Novak and John J Tyson. A model for restriction point control of the
mammalian cell cycle. J Theor Biol, 230(4) :563–579, Oct 2004.

[70] M L Opel, S M Arfin, and G W Hatfield. The effects of DNA supercoiling on the
expression of operons of the ilv regulon of Escherichia coli suggest a physiological
rationale for divergently transcribed operons. Mol Microbiol, 39(5) :1109–1115,
Mar 2001.

[71] Jason A Papin and Bernhard O Palsson. Topological analysis of mass-balanced
signaling networks : a framework to obtain network properties including crosstalk.
J Theor Biol, 227(2) :283–297, Mar 2004.

[72] Barriot R, Sherman DJ, and Dutour I. How to decide which are the most per-
tinent overly-represented features during gene set enrichment analysis. BMC
Bioinformatics, 8(1) :332, Sep 2007.

[73] Ovidiu Radulescu, Sandrine Lagarrigue, Anne Siegel, Philippe Veber, and Michel
Le Borgne. Topology and static response of interaction networks in molecular
biology. J R Soc Interface, 3(6) :185–196, Feb 2006.

[74] Ovidiu Radulescu, Anne Siegel, Sandrine Lagarrigue, and Elisabeth Pécou. A
model for regulated fatty acid metabolism in liver ; equilibria and their changes.
Arxiv q-bio.CB/0603021.

[75] Élisabeth Remy, Paul Ruet, and Denis Thieffry. Graphic requirements for mul-
tistability and attractive cycles in a boolean dynamical framework. Technical
report, Institut de Mathématiques de Luminy, 2005.

[76] K Y Rhee, M Opel, E Ito, S p Hung, S M Arfin, and G W Hatfield. Trans-
criptional coupling between the divergent promoters of a prototypic LysR-type
regulatory system, the ilvYC operon of Escherichia coli. Proc Natl Acad Sci U S
A, 96(25) :14294–14299, Dec 1999.

[77] Adrien Richard and Jean-Paul Comet. Necessary conditions for multistationarity
in discrete dynamical systems. Discrete Applied Mathematics, 2007.

Bibliographie 145

[78] Adrien Richard, Jean-Paul Comet, and Gilles Bernot. R. thomas’ modeling of
biological regulatory networks : introduction of singular states in the qualitative
dynamics. Fundamenta Informaticae, 65(4) :373–392, 2005.

[79] Delphine Ropers, Hidde de Jong, Michel Page, Dominique Schneider, and Jo-
hannes Geiselmann. Qualitative simulation of the carbon starvation response in
Escherichia coli. Biosystems, 84(2) :124–152, May 2006.

[80] Jean-Francois Rual, Kavitha Venkatesan, Tong Hao, Tomoko Hirozane-
Kishikawa, Amelie Dricot, Ning Li, Gabriel F Berriz, Francis D Gibbons, Ma-
tija Dreze, Nono Ayivi-Guedehoussou, Niels Klitgord, Christophe Simon, Mike
Boxem, Stuart Milstein, Jennifer Rosenberg, Debra S Goldberg, Lan V Zhang,
Sharyl L Wong, Giovanni Franklin, Siming Li, Joanna S Albala, Janghoo Lim,
Carlene Fraughton, Estelle Llamosas, Sebiha Cevik, Camille Bex, Philippe La-
mesch, Robert S Sikorski, Jean Vandenhaute, Huda Y Zoghbi, Alex Smolyar,
Stephanie Bosak, Reynaldo Sequerra, Lynn Doucette-Stamm, Michael E Cusick,
David E Hill, Frederick P Roth, and Marc Vidal. Towards a proteome-scale map
of the human protein-protein interaction network. Nature, 437(7062) :1173–1178,
Oct 2005.

[81] Klamt S and Stelling J. System Modeling in Cellular Biology : From Concepts
to Nuts and Bolts, chapter Stoichiometric and constraint-based modelling, pages
73–96. Cambridge, MIT Press, 2006.

[82] E Segal, M Shapira, A Regev, D Pe’er, D Botstein, D Koller, and N Friedman.
Module networks : identifying regulatory modules and their condition-specific
regulators from gene expression data. Nat Genet, 34(2) :166–176, Jun 2003.

[83] E Segal, R Yelensky, and D Koller. Genome-wide discovery of transcriptional
modules from DNA sequence and gene expression. Bioinformatics, 19 Suppl
1 :273–282, 2003. Comparative Study.

[84] Anne Siegel, Ovidiu Radulescu, Michel Le Borgne, Philippe Veber, Julien Ouy,
and Sandrine Lagarrigue. Qualitative analysis of the relation between DNA
microarray data and behavioral models of regulation networks. Biosystems,
84(2) :153–174, May 2006.

[85] Patrik Simons. Extending the stable model semantics with more expressive rules.
In Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors, LPNMR, volume
1730 of Lecture Notes in Computer Science, pages 305–316. Springer, 1999.

[86] Gordon K Smyth, Yee Hwa Yang, and Terry Speed. Statistical issues in cDNA
microarray data analysis. Methods Mol Biol, 224 :111–136, 2003.

[87] El Houssine Snoussi. Necessary conditions for multistationarity and stable per-
iodicity. J.Biol.Syst., 6(3-9), 1998.

[88] El Houssine Snoussi and René Thomas. Logical identification of all steady states :
The concept of feedback loop characteristic states. Bulletin of Mathematical
Biology, 55 :973–991, 1993.

[89] Christophe Soulé. Graphic requirements for multistationarity. Complexus,
1(3) :123–133, 2003.

146 Bibliographie

[90] Christophe Soulé. Mathematical approaches to differentiation and gene regula-
tion. Comptes rendus biologies, 329(1) :13–20, 2006.

[91] Ralf Steuer, Thilo Gross, Joachim Selbig, and Bernd Blasius. Structural kinetic
modeling of metabolic networks. Proc Natl Acad Sci U S A, 103(32) :11868–11873,
Aug 2006.

[92] Tommi Syrjänen and Ilkka Niemelä. The smodels system. In Thomas Eiter,
Wolfgang Faber, and Miroslaw Truszczynski, editors, LPNMR, volume 2173 of
Lecture Notes in Computer Science, pages 434–438. Springer, 2001.

[93] René Thomas and Marcelline Kaufman. Multistationarity, the basis of cell dif-
ferentiation and memory. I. structural conditions of multistationarity and other
nontrivial behavior. Chaos, 11(1) :170–179, 2001.

[94] L. Travé-Massuyès and P. Dague, editors. Modèles et raisonnements qualitatifs.
Hermes sciences, 2003.

[95] L. Travé-Massuyès, P. Dague, and Guerrin F. Le raisonnement qualitatif pour les
sciences de l’Ingénieur. Hermes sciences, 1997.

[96] John J Tyson, Katherine C Chen, and Bela Novak. Sniffers, buzzers, toggles and
blinkers : dynamics of regulatory and signaling pathways in the cell. Curr Opin
Cell Biol, 15(2) :221–231, Apr 2003.

[97] E P van Someren, B L T Vaes, W T Steegenga, A M Sijbers, K J Dechering,
and M J T Reinders. Least absolute regression network analysis of the murine
osteoblast differentiation network. Bioinformatics, 22(4) :477–484, Feb 2006.

[98] Philippe Veber, Michel Le Borgne, Anne Siegel, Sandrine Lagarrigue, and Ovidiu
Radulescu. Complex qualitative models in biology : A new approach. Complexus,
2(3-4) :140–151, 2004.

[99] Jean-Philippe Vert. Kernel methods in genomics and computational biology.
Technical report, Centre de Bio-informatique, Ecole Nationale Supérieure des
Mines de Paris, hal-00012124,arXiv :q-bio.QM/0510032, 2005.

[100] D Weichart, R Lange, N Henneberg, and R Hengge-Aronis. Identification and
characterization of stationary phase-inducible genes in Escherichia coli. Mol Mi-
crobiol, 10(2) :405–20, Oct 1993.

[101] Edgar Wingender, Jennifer Hogan, Frank Schacherer, Anatolij P Potapov, and
Olga Kel-Margoulis. Integrating pathway data for systems pathology. In Silico
Biol, 7(2 Suppl) :17–25, 2007.

[102] Y Yamanishi, Jean-Philippe Vert, and M Kanehisa. Protein network inference
from multiple genomic data : a supervised approach. Bioinformatics, 20 Suppl
1 :363–370, Aug 2004. Evaluation Studies.

[103] Chen-Hsiang Yeang, Trey Ideker, and Tommi Jaakkola. Physical network models.
J Comput Biol, 11(2-3) :243–262, 2004.

[104] Chen-Hsiang Yeang, H Craig Mak, Scott McCuine, Christopher Workman,
Tommi Jaakkola, and Trey Ideker. Validation and refinement of gene-regulatory
pathways on a network of physical interactions. Genome Biol, 6(7) :R62, 2005.

Bibliographie 147

[105] Necmettin Yildirim, Moises Santillan, Daisuke Horike, and Michael C Mackey.
Dynamics and bistability in a reduced model of the lac operon. Chaos, 14(2) :279–
292, Jun 2004. Comparative Study.

Résumé

Les techniques de biologie moléculaire dites haut-débit permettent de mesurer un
grand nombre de variables simultanément. Elles sont aujourd’hui couramment utilisées
et produisent des masses importantes de données. Leur exploitation est compliquée par
le bruit généralement observé dans les mesures, et ce d’autant plus que ces dernières
sont en général trop onéreuses pour être suffisamment reproduites. La question abordée
dans cette thèse porte sur l’intégration et l’exploitation des données haut-débit : chaque
source de données mesurant un aspect du fonctionnement cellulaire, comment les com-
biner dans un modèle et en tirer des conclusions pertinentes sur le plan biologique ?
Nous introduisons un critère de consistance entre un modèle graphique des régulations
cellulaires et des données de déplacement d’équilibre. Nous montrons ensuite com-
ment utiliser ce critère comme guide pour formuler des prédictions ou proposer des
corrections en cas d’incompatibilité. Ces différentes tâches impliquent la résolution
de contraintes à variables sur domaines finis, pour lesquelles nous proposons deux ap-
proches complémentaires. La première est basée sur la notion de diagramme de décision,
qui est une structure de données utilisée pour la vérification des circuits ; la deuxième
fait appel à des techniques récentes de programmation logique. L’utilisation de ces tech-
niques est illustrée avec des données réelles sur la bactérie E. coli et sur la levure. Les
réseaux étudiés comportent jusqu’à plusieurs milliers de gènes et de régulations. Nous
montrons enfin, sur ces données, comment notre critère de consistance nous permet
d’arriver à des prédictions robustes, ainsi que des corrections pertinentes du modèle
étudié.

Abstract

High-throughput techniques in molecular biology are able to measure a huge number
of variables simultaneously. They are currently used as a routine investigation method
and therefore produce large amounts of information. The analysis of high throughtput
data is particularly difficult, due to their usual high level of noise, and the lack of
independant samples for the same experiment. This thesis deals with the integration and
the analysis of high throughput data : each type of data can be thought of as measuring
a certain aspect of a biological process, so how to combine these heterogeneous data in
order to deduce relevant conclusions ? To this end, we introduce a compatibility criterion
between a graphical model of cellular regulations and equilibrium shift data. We then
show how this criterion can be used to derive predictions or to propose corrections
in case of an incompatibility. This tasks require the resolution of constraints on finite
domain variables, and we developped two approaches for these problems. The first one
is based on the notion of decision diagrams, which is classical data structure used for
circuit verification ; the second approach we propose relies on recent techniques from
logical programming. Finally, we applied our approach to real data on E. coli and yeast.
The networks we considered have up to several thousands of genes and regulations. We
show on these data that our consistency criterion can effectively be used to derive
robust predictions, as well as relevant corrections to the model under study.

