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Abstract. The classic view of metabolism as a collection of metabdithways

is being questioned with the currently available posdipitif studying whole

networks. Novel ways of decomposing the network into moslaled motifs that
could be considered as the building blocks of a network aimgtsuggested. In
this work, we introduce a new definition of motif in the corttekmetabolic net-

works. Unlike in previous works on (other) biochemical netks, this definition

is not based only on topological features. We propose idgtease an alternative
definition based on the functional nature of the compondrasform the motif.

After introducing a formal framework motivated by biologlconsiderations, we
present complexity results on the problem of searching favcurrences of a
reaction motif in a network, and introduce an algorithm tisafast in practice

in most situations. We then show an initial application te gtudy of pathway
evolution.

1 Introduction

Network biology is a general term for an emerging field thatans the study of in-
teractions between biological elements [2]. The tenwlecular interaction networks
may designate several types of networks depending on tldeokimolecules involved.
Classically, one distinguishes between gene regulataryarks, signal transduction
networks and metabolic networks. Protein-protein intéoacnetworks represent yet
another type of network, but this term is rather linked tot#ehniques (such as Yeast-
2-hybrid) used to produce the data and covers possibly aldvietogical processes (in-
cluding, for example, the formation of complexes and phosglation cascades) [16].
One of the declared objectives of network biology (or systéinlogy in general) is
whole cell simulation [9]. However, dynamic simulation uégs knowledge on reaction
mechanisms such as the kinetic parameters describing aak®lisiMenten equation.
Besides the fact that such knowledge is often unavailablenceliable, the study of
the static set of reactions that constitute metabolism isaly important, both as a
first step towards introducing dynamics, and in itself. diesuch static set represents
not what is happening at a given time in a given cell but ircstéee capabilities of
the cell, including capabilities the cell does not use. Aetaranalysis of this set of
reactions for a given organism, alone or in comparison wighget of other organisms,
may also help to arrive at a better understanding on how roksab evolves. It is this



set we propose to study in this paper. More precisely, in tleviing sections, the
term “metabolism” should be understood as the static setadtions involved in the
synthesis and degradation of small molecules. Regulatimmmation is not taken into
consideration for now. It may be added in a later step, asgb#ware” running on the
“hardware” of a metabolic network [15].

A major issue concerning the study of biochemical netwaskhé problem of their
organisation. Several attempts have been made to decoropogdex networks into
parts. These “parts” have been called modules or motifsyddiefinition of such terms
seems to be completely satisfying.

Modules have first been mentioned by Hartwedllal. [6] who outline the general
features a module should have but provide no clear definftoit. In the context of
metabolic networks, a natural definition of modules couldbbsed on the partition
of a metabolic network into the metabolic pathways one cadh ifindatabases: mod-
ules would thus be the pathways as those have been establishe advantage of
this partition, and thus of modules representing pathwaythat it reflects the way
metabolism has been discovered experimentally (startiogy fkey metabolites and
studying the ability of an organism to synthesize or degthéen). The drawback is
that it is not based on objective criteria and therefore tsumiversal (indeed, the num-
ber of metabolic pathways and the frontiers between them fram one database to
the other).

Several attempts to give systematic and practical defirstltave been made using
graph formalisms [14, 10, 5] and constraint-based appesdi]. Graph-based meth-
ods range from a simple study of the local connectivity ofabetites in the network
[14] to the maximisation of a criterion expressing modujahumber of links within
modules) [5]. The only information used in these method&éstopology of the net-
work. In the case of constraint-based approaches, the gdqaite different. First, a
decomposition of the network into functional sets of reatiis performed (by analy-
sis of the stoichiometric matrix [12]) and then modules afrid from the analysis of
these functional states. The result is not a partition irstirese that all reactions might
not be covered and a single reaction might belong to severdlies.

Unlike the definition of module, the notion of motif has notebestudied in the
context of metabolic networks. In general, depending ontvdedinition is adopted
for modules and motifs, there is no clear limit between the twtions besides the
difference in size. In the context of regulatory network®tifis have been defined as
small, repeated and perhaps evolutionary conserved subrkst In contrast with mod-
ules, motifs do not function in isolation. Furthermore \tineay be nested and overlap-
ping [22]. This definition refers to general features thattatory motifs are believed
to share but it provides no practical way to find them. A mogcpical definition has
been proposed, still in the context of gene regulatory néks/gand other types of non-
biological networks such as the web or social networks) s€rere “network motifs”
and represent patterns of interconnections that recur myrddferent parts of a net-
work at frequencies much higher than those found in randednietworks [17]. This
definition is purely topological and disregards the natdrée components in a motif.
It assumes that the local topology of the network is sufficiermodel function (which
is understood here as the dynamic behaviour of the motifs assumption seems ac-



ceptable when studying the topology of the internet and nteytzold when analysing
gene regulatory networks, but it appears not adapted tobokatanetworks. In a static
context, a topological definition of motif seems indeed praypriate as similar topolo-
gies can give rise to very different functions.

In the definition of motif we introduce, the components of trework play the
central part and the topology can be added as a further edmtsbinly. This is the main
biological contribution of this paper.

Its main algorithmical contribution comes from the facttttiee definition of motif
we adopt leads to new questions. Indeed, if searching faretputopological motifs
may be formally modelled as a subgraph isomorphism proltieisino longer applies
when searching for motifs where the features describing-tireponents are the im-
portant elements and topology is initially indifferent fe@ctivity only is taken into
account). Observe that the problem we address is differemt pathway alignment be-
cause we wish to go beyond the notion of pathway in order tdystiie network as a
whole. Moreover, in [19] and [13], the pathways are mode#isdrespectively, chains
and trees to simplify the problem. This simplification magreereasonable in the case
of a pathway alignment, it is no longer so in the case of gémettavorks.

The paper addresses complexity issues related to this némitide of a graph
motif, providing hardness results on the problem, and threegnts an exact algorithm
that is fast in practice for searching for such motifs in rerle representing the whole
metabolism of an organism. The paper ends with an initialiegion of the algorithm
to the formulation of hypotheses on the evolution of pathsvay

2 Preliminaries

2.1 Data

The metabolic network analysed in this work was obtainednfithe PATHWAY
database from KEGG [8]. Data describing reactions, comgswamd enzymes were
downloaded and stored locally using a relational databassagement system (post-
greSQL). The KEGG database contains metabolic data cange209 sequenced or-
ganisms. The network we built from such data is thereforerseosus of our current
knowledge on the metabolisms of all those organisms. As aemprence, sequences
of reactions present in the network may have been observed arganism. To avoid
this configuration, one can “filter” the consensus networlahyorganism of interest,
keeping only in the dataset reactions catalysed by enzyimeesrganism is considered
to be able to synthetize. We adopt a different strategy bysimg to perform our mo-
tif search on the consensus network and to possibly filterabelts in a second step,
allowing for easier comparative analysis between orgasism

Moreover, we use an additional information present in KE@&: notion of pri-
mary/secondary metabolites. Indeed, in the KEGG referpattevay diagrams (maps),
only primary metabolites are represented and connectioeadbgether, whereas sec-
ondary metabolites are not drawn (even though they paatieijm the reaction). A typ-
ical example of a secondary metabolite is the ATP moleculannATP-consuming
reaction. (Observe that, unlike the notion of ubiquitousipound [14], the notion of



primary/secondary metabolite is relative to a reactioreg¢ping all metabolites in the
network leads to the creation of artefactual links betwesattions and the bias intro-
duced can lead to inaccurate results such as consideriraboiiet networks as small-
world networks as shown in [3]. Withdrawing secondary meliéds may not be the
best strategy to adopt, but it represents a simple way oflawpihis bias.

2.2 Graph Models

Several formal models have been in use to study metaboleonks$. The choice of a
formal model seems to depend mainly on the nature of the hgges one wishes to
test (qualitative or quantitative, static or dynamic) amdtee size of the network under
study. Differential equations seem well adapted to stugydynamic aspects of very
small networks whereas graphs enable the static study plasre networks.

Between these two ends of the spectrum, semi-quantitatbdets have been pro-
posed. For example, Petri nets allow for the simulation amachical analysis of small
networks [21], while constraint-based models provide aheatical framework en-
abling to decompose the network into functional stategistponly from information
on stoichiometry and making the assumption that the netigask steady-state [12].

As our goal is to deal with large networks and work with thestqaossiblea pri-
ori, graph models seem appropriate. In previous genome-dcaies [7], graphs have
been used mainly for topological analyses regardless afdhare of their components
(reactions, compounds and enzymes). We propose to engajréiph models and take
into consideration some of the features of such components.

Formally, a graplG is defined as a pailV/, E), with V a set ofverticesand E C
V x V a set ofedges The edges represent the relations between the verticeamand
be directed or undirected. The vertices and edges of thédgiapbe labelled.

The most intuitive graph representation of a metabolic petws provided by a
bipartite graph. A bipartite graph has two types of vertiadgch in the context of
metabolic networks represent, respectively, reactiomsamemical compounds. The
compound graph is a compact version of the bipartite grapgrevbnly compound ver-
tices are kept and information on the reactions is storedige &abels. The reaction
graph is the symmetric representation of a compound grieg@hréaction vertices are
kept and information on the compounds is stored as edgeshalitected versions of
these graphs can be drawn expressing the irreversibilispofe reactions. The infor-
mation concerning the reversibility of reactions is geftgnaot well-known. Indeed,
contradictions may be found within a same database. Weftrereonsider this in-
formation as uncertain and, in an initial step, assume thatactions are reversible.
This apparently strong hypothesis seems preferable thesidering a reaction as irre-
versible when it actually is reversible (leading to a losgédrmation).

In the following sections, we denote Ity a finite set of labels, which we refer as
colours that correspond to reaction labels. Also, we assume thghgra= (V, E) is
undirected and that we are given, for each vertex, a set olicfromC'. Reversibility
and edge labels will not be used. If needed, one can use tharaiar step.



2.3 Motif Definition
We define a motif using the nature of the components it cositain
Definition 1. A motif is a multiset of elements from the gebf colours.

As mentioned earlier, we choose in this definition not toddtrce any constraint
on the order of the reactions nor on topology. This choiceasivated by the wish to
explore the network with the least possibleriori information on what we are search-
ing for. Topology and order of the reactions can be used &stdurther constraints. The
advantage of this strategy is that the impact of each additiconstraint can then be
measured.

2.4 Occurrence Definition

Intuitively, an occurrence is a connected set of verticbgllad by the colours of the
motif. For a precise definition, I&® be a set of vertices a¥ and letA/ be a motif of
the same size aB. Let H(R, M) denote the bipartite graph whose set of vertices is
R U M and where there is an edge between a vertekR and a vertex: of M if and
only if v hasc as one of its colours.

Definition 2. Definition of an exact occurrence of a motif
Anexact occurrencef a motif M is a setR of vertices of7 such thatH (R, M) has a
perfect matching and induces a connected subgraph(ef

If one is strict on the relation of similarity between colsifcolours are considered
the same only if they are identical), the risk is to find a sngtcurrence, or none,
of any given motif in the network [3]. Moreover, since stualyithe evolution of what
the graphG represents is one of our main objectives, it seems relewaalldw for
flexibility in the search for occurrences of a motif.

With this in mind, we introduce a functiof (detailed later) that assigns, to each
pair ¢;, c; in C' x C, a score which measures the similarity betwegandc;. Two
colours are considered similar if this score is superior torasholds. We then adapt
our definition of exact occurrence by modifyi#fy R, M) in the following way. There
will be an edge between a vertexn R and a colour in M if and only if there exists a
colourc’ of v such that the value & (¢’, ¢) > s. Further, we generalise this to the case
where the threshold is different for every elementin M. The latter is motivated by
the idea that some elements in the motif we are searchingdgrya more crucial than
others. Observe that these considerations are indepeof definition ofS that is
discussed in the next section.

Another type of flexibility can then be added, that allowsgaps in the occurrences.
By this we mean, roughly, allowing the occurrence to haveawertices just to achieve
the connectivity requirement. These extra vertices aremaithed to the elements of
the motif. Two types of control on the number of gaps are amrsid: local and global.
Intuitively, a local gap control policy bounds the maximuomnber of consecutive gaps
allowed between a pair of matched verticesibfA global control policy bounds the
total number of gaps in an occurrence.

This leads to the following definition of an approximate atence of a motif,
where we denote b§ i the subgraph off induced by a seR of vertices ofG.



Definition 3. Definition of an approximate occurrence of a moif

Let /b and gb be the local and global gap control bounds and Mt be a motif. For
eachc in M, let s, be a number. Ampproximateoccurrence of\/ (with respect tab,

gb and the thresholds.) is any minimal seR of vertices of7 that has a subsek’ that
satisfies the following conditions:

1. the bipartite graph (M U R’, Exr) with Exy = {{c,v} € M x R'| there exists a
colour¢’ of v such thatS(¢’, ¢) > s.} contains a perfect matching;

2. for each subseB of R’ such thatB # () andR' \ B # 0, the length of a shortest
path inG r betweenB and R’ \ B is at mostlb;

3. [R| - |R'| < gb.

The minimality requirement on the s&tavoids uninteresting approximate occur-
rences that are simple copies of other occurrences with egttices connected to them.

Observe that when no gaps are allowed tRes R’ and condition 2 means simply
thatG g is connected. An example is given in Figure 1.

Fig. 1. Subgraphs induced by occurrences for the midiiick, black, dark grey, light gréy

2.5 Reaction Similarity

We now discuss functiofs for the problem of metabolic networks and reaction motifs
in such networks. Various functions of different nature rbayused. We present here
two possible ways to defing.

The first one is based on alignment. Indeed, in order to coemgactions, which is
what functionS is used for, one can compare the enzymes that catalyse teeg®ns
by performing an alignment of their sequences (or strusjuren element o’ would
then be a protein sequence (or structure). The fundiassigns a sequence (or struc-
ture) alignment score ands a user-defined threshold that has to be met to consider the
sequences (structures) similar. In the case of whole n&syeequences are preferable
since many structures are not known.

The second example is the one we adopt in this paper. It islasa hierarchical
classification of enzymes developed by the InternationabkJf Biochemistry and



Molecular Biology (IUBMB) [1]. It consists in assigning t@eh enzyme a code with 4
numbers expressing the chemistry of the reaction it cagalybhis code is known as the
enzyme’s EC number (for Enzyme Commission Number). Therfustber of the EC
number can take valuesin. . 6], each number symbolizing the 6 broad classes of enzy-
matic activity. (1. Oxidoreductase, 2. Transferase, 3.rdiade, 4. Lyase, 5. Isomerase,
6. Ligase.) Then each of the three remaining numbers of thawaber provides ad-
ditional levels of detail. For example, the EC number 11 réfers to an oxidoreduc-
tase (1) with CH-OH as donor group and NAD+ as acceptor group.

An element ofC' is in this case an EC number. The functi§rthen assigns a simi-
larity score between two EC numbers that corresponds taottexiof the deepest level
down to which they remain identical. For examp$1.1.1.2,1.1.1.3) = 3. Two EC
numbers are considered similar if their similarity scorali®ve a user-defined cut-off
values in [0..4]. The advantage of this definition of similarity between cofi.e.,
reactions, is that it is more directly linked to the notiorfuriction. Reactions compared
with this measure are likely to be functionally related (gdsibly evolutionarily re-
lated also).

3 Algorithmics

3.1 Hardness Results
The formal problem we address is the following:

Search Problem.Given a motifM and a labelled undirected graph find all occur-
rences ofM in G.

As mentioned earlier, this problem is different from sulpirasomorphism because
the topology is not specified for the motif.

For this problem, we may assume the graph is connected ancrdites have
colours that appear in the motif. Otherwise, we preprodesgtaph throwing away
all the vertices having no colour appearing in the motif anlstesthe problem in each
component of the resulting graph.

A natural variant of the Search Problem consists in, givenoéifrand a labelled
graph, deciding whether the motif occurs in the graph orAsbefore, we may assume
the graph is connected, all vertices are labelled with asland all colours appear in
the motif. It is easy to see this decision version of the SeBroblem is in NP. We show
next that it is NP-complete evend is a tree, which implies that the Search Problem is
NP-complete for trees. For the following proof, we consittherversion where no gaps
are allowed.

NP-Complete for Trees. We have the following proposition.

Proposition 1. The Search Problem is NP-complete eved i a tree.
Proof. We present a reduction from EXACT COVER BY 3-SETS (X3C):

INSTANCE: SetX with |X| = 3¢ and a collectior® of 3-element subsets df .



QUESTION: Does(C contain an exact cover foX, i.e., a subcollectio?’ C C such
that every element aX occurs in exactly one member ©f ?

Let X = {1,...,3¢q} andC = {C,...,C,} be an instance of X3C. The in-
stance for the decision version of the Search Problem dsnefsa motif M =
{YV,B,...,B,1,...,3q}, whereB appearg times inM, and a tred" as follows. (See
Figure 2 for an example.) There are four verticefifor eachi, 1 < i < n, three of
them are leaves iir, each one labelled by one of the element€'pfThe fourth vertex,
namedr;, is adjacent to the three leaves and has col®uBesides thesén vertices,
there is only one more vertex i, which is labelledr” and is adjacent to eaeh. This
completes the description of the instance. Clearly it hzes golynomial in the size of

X and(C.
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Fig.2. Tree T and its labels forX = {1,...,9} andC = {{1,3,4},{2,4,6},{2,8,9},
{7,8,9},{1,5,6},{5,6,7}}. The motifM in this case i{Y, B, B, B, 1,...,9}.

To complete the reduction, we need to argue that the métibccurs inT if and
only if there is a subcollectiofi’ of C such that each element &F occurs exacly in one
member of’’.

Suppose there is such@. Clearly |C'| = q. Let R be the set of vertices df
consisting of the vertex labelléd and the four vertices of eacfiin C'. The subgraph
of T" induced byR is connected. Also, iR, there is a vertex labellel, ¢ vertices
labelled B (one for eachC' in C') and one labelled by each elementin(because of
the property of’’). That is,R is an occurrence of/ in T'.

Now, suppose there is an occurrenceldfin 7', that is, there is a se® of 1 + 4¢
vertices ofT" that induces a connected subgrapfi'aind has a vertex labelled by each
of the colours inM . LetC’ consist of the set§'; in C whose vertex; in T is in R. Let
us prove that each element &fappears in exactly one of the set<fn First, note that
the vertex labelled” is necessarily iR, because it is the only one labell&dand there
isaY in M. Then, ask induces a connected graph, a leaf from aéeis in R if and
only if r; is also inR. But R must contain exactly vertices labelled3. Consequently,
|C'| = g and, ask must containl + 4q vertices, all three leaves of eachin C' must
be in R, and these are all vertices & As R must contain a vertex labelled after each
element inX, there must be exactly one setdhcontaining each element i . O



Fixed Parameter Tractability. This problem is fixed-parameter tractable with param-
eterk. Indeed, a naive fixed-parameter algorithm consists in rg¢ing all possible
topologies for the input moti/, and then searching for each topology by using a sub-
tree isomorphism algorithm. Since it is enough to generhfmasible tree topologies
for M, the number of topologies to consider depends (exponBniiel & only, and sub-
tree isomorphism is polynomial in the size of both the mafifand the tred” where

M is sought. This reasoning is not valid anymore when the mati$t be searched in

a general grapli’ as subgraph isomorphism is NP-complete even when the rsdif i
tree [4].

General Complexity Results. Table 1 summarizes the complexity of the Search Prob-
lem for various types of motifs and graphs. As mentioned, @&iough to consider that
our motifs are trees (or paths). This is because topologyifferent (only connectivity
matters).

By fixedin the Table, we mean that the colours of the vertices in a(patipectively
tree) are fixed, otherwisé €. path/treenot fixed we mean that we are searching for a
path (respectively tree) with the given vertex colours luhdt care in what order they
appear, provided they all appear.

Motifs that are paths are already hard problems for geneaglsG. This can be
shown by a reduction from the Hamiltonian path problem.

Table 1. Complexity results for the motif Search Problem

TYPE OF GRAPH

MOTIE path tree graph

pat fixgd polynom?a polynom?al NP-complete
not fixed polynomial polynomial NP-complete

tree fixed — polynomial NP-complete
not fixed — NP-complete, FPT it[NP-complete

Since the instances we have to consider in the case of metatativorks are rel-
atively small (3184 vertices and 35284 edges for the netwaoik from the KEGG
Pathway database), it is possible to solve the problem lgxpctvided some efficient
pruning is applied. This is described in the next section.

3.2 Exact Algorithm

Version with no Gaps. We now present an exact algorithm which solves the Search
Problem. We first explain it for the simple case where the gappeterghb andgb are
set to0 and then we show how it can be extended to the general case.

Let M be the motif we want to search for. A very naive algorithm vebabnsist
in systematically testing all sef$ of k£ vertices as candidates for being an occurrence,
wherek = |M]|. For R to be considered an occurrenceMf, the subgraph induced
by R must be connected and there must be a perfect matching ingheite graph



H(R, M) that has an edge betweere R andc € M if and only if ¢ is similar to one
of the colours at vertex. The search space of all combinationg:ofertices among the
n vertices inG is huge. We therefore show two major pruning ideas arisiogfthe
two conditions thaf? has to fulfill to be validated as an occurrence\éf

The connectivity condition can be checked by using a stahdwethod for graph
traversal, such as breadth first search (BFS). In our cas&Sar@ixed with a back-
tracking strategy is performed starting from each vertethengraph. At each step of
the search, a subset of the vertices in the BFS queue is maskgatt of the candidate
setR. The queue, at each step, contains only marked verticeseigtours inG of
marked vertices. Also, there is a poingeto the last marked vertex in the queue. At
each step, there are two cases to be analysed: either tedrearices marked or not.
If there arek vertices marked, we have a candidateBeit hand. We submik to the
test of the colouring condition, described below, and wektrack to find the next can-
didate set. If there are less thawertices marked, then there are two possible cases to
be analysed: eitheris pointing to the last vertex in the queue or nop 1§ not pointing
to the last vertex in the queue, we mgv®ne position ahead in the queue, mark the
next vertex and queue its neighbours that are not in the qakeady (checking the
latter can be done in constant time by adding a flag to eacawirthe original graph).
Then we repeat, that is, start a new step. If, on the other,haiscdbointing to the last
vertex in the queue, then we backtrack. The backtrackingistof unmarking the
vertex pointed to by, unqueueing its neighbours that were added when it was marke
moving p to the previous marked vertex in the queue and starting a tegwv @f no
such vertex exists, the search is finished.) Next we desthnibeest of the colouring
condition.

Given a candidate sdt, one can verify the colouring condition by building the
graphH and checking whether it has a perfect matching or not. In faetcan apply
a variation of this checking to a partial s&t that is, we can, while constructing a
candidate seR, be checking whether the corresponding graphas or not a complete
matching. The latter is a matching that completely coveesgartial candidate set.
If there is no such matching, we can move the search aheae teettt candidate set.
This verification can be done in constant time using addiidata structures that are a
constant time the size of the motif.

Extra optimisations can also be added. For instance, isiEasing every vertex
as a seed for the BFS, we can use only a subset of the vertiose toloured by one
of the colours from the motif, preferably the less frequerthie graph.

Allowing for Gaps. Allowing for local but not global gapsi.é., settinglb > 0 and
gb = o) can easily be done by performing tlie-transitive closure of the initial graph
G and applying the same algorithm as before to the graph wigimanted edge set. The
p—transitive closure of a grapfl for p a positive integer is the graph obtained fréin
by adding an edge between any two vertigendwv such that the lengthof a shortest
path fromu to v in the original graph satisfieb < I < p. The p—transitive closure
can be done at the beginning of the algorithm or on the fly. énldtter case, when a
next vertex is added to the queue, instead of queueing ithheurs only, all vertices
at distance at mogtfrom it are queued (if they are not already in the queue) whgre



distance between any two vertices we mean the number ofeenither than these two
in a shortest path between them.

Allowing for global gaps as well as local ones is more trickige reason is that an
unmarked vertex can be put in the queue because of manyaetifferarked vertices.
When backtracking in the queue at any step in the algorithhmarked vertices that
have been queued only because of the marked verteat is being dequeued can be
safely eliminated from the queue. Unmarked vertiteg that were queued because of
the vertex being dequeuanhd of at least one other marked vertex will remain (some-
where) in the queue. Therefore, in order to correctly act@amhe global number of
gaps introduced so far in the current occurrence, one musider all the remaining
marked vertices that implied the queuing{af;}. Extra information must be kept to
locate in constant time the unmarked verties} and to update the global count of
gaps. This information can be kept in a balanced tree of siapgstional tok = | M|
associated with each queued unmarked verteEach node in the tree corresponds to a
marked vertex: that could have led to the queuing@fand is labelled by the distance
from v’ to u (this distance is at mogh). Keeping, updating and using the extra infor-
mation adds a multiplicative term ifi(k log k) to the time complexity of the algorithm,
which seems reasonable.

On average, searching for all occurrences of a motif of sixétd no gaps and
thresholds = 3 takes 8 microseconds of CPU time on a Pentium 4 (CPU 1.70 GHz)
with 512 Mb of memory.

4 Application

The approach we propose, and have described in the prewdotisrss, should enable
both to generate some hypotheses on the evolution of matatathways, and to anal-
yse global features of the whole network.

We start by presenting a case study motivated by trying terstdnd how metabolic
pathways evolve. We do not directly answer this questiongvis complex and would
be out of the scope of this paper. Instead, we give a first elaafphe type of evolu-
tionary question people have been asking already and havessi®d in different, often
semi-manual ways in the past [20], and that the algorithm vepgse in this paper
might help treat in a more systematic fashion.

As in [20], one is often interested in a specific pathway, dodinstance, in find-
ing whether this pathway can be considered similar to otla¢ghveays in the whole
metabolic network thus suggesting a common evolutionatphy. The metabolic path-
way we chose as example is valine biosynthesis. Focusinbeolast five steps of the
pathway, we derived a motif/ = {1.1.1.86,1.1.1.86,4.2.1.9,2.6.1.42,6.1.1.9} and
performed the search for this motif using initially a cufsdlues of 4 for the similarity
score between two EC numbers (that is, between two reaetieid). With this cut-off
value, the motif was found to occur only once. (see Figure 3).

From this strictly defined motif, we then relaxed constmiy first lowering the
cut-off values from 4 to 3 and then setting the gap parameters to 1 (motif teelnoy
M"). Additional occurrences were found. Three of them paldidy drew our attention
(see Figure 3).



The first one corresponds to the five last steps of the isaleugiosynthesis. The
second one corresponds to the five last steps of the leuasgriihesis. Together, they
suggest a common evolutionary history for the biosynthestlsways of valine, leucine
and isoleucine.

An interesting point concerning the second occurrencedddbt that the order of
the reactions is not the same as in the other pathways. Toisrence would not have
been found if we had used a definition of motif where the ordes apecified.

Finally, the third occurrence that drew our attention wasnied by reactions from
both the biosynthesis of valine and a distinct metabolibywat, namely the biosynthe-
sis of Panthotenate and CoA. This latter case illustratésiadof our current general
way of thinking about metabolism: frontiers between meliahmathways as defined
in databases are not tight. If we had taken such frontiecsaotount, we would not
have found this occurrence that overlaps two differentypafs. Yet such occurrence
can be given a biological meaning: it can be seen as a putdtamative path for the
biosynthesis of valine.

To complement this analysis, one should add that the rqa@$ented in this section
hold for 125 organisms in KEGG among whigh cerevisiaandE. coli.

Leucine Biosynthesis Valine Biosynthesis Isoleucine Biosynthesis

O 2-Isopropyl-maleate 2-Acetolactdd (S)-2-Acetolactate (S)-2-Aceto-2-hydroxybutanoate

Pantothenate !
and CoA biosynthesis |

Q L-isoleucine

O L-Leu-tRNA(Leu)

O L-val-tRNA(val) O L-ile-tRNA(le)

Fig. 3. Bipartite representation of the results obtained whencbéag for the following motif :
M' = {1.1.1,4.2.1,2.6.1.42, 6.1.1} with local and global gap bounds set to 1. The empty box
in the leucine biosynthesis represents a spontaneousoreact

Intrigued by the potential importance of inter-pathway weences, we computed
their proportion in the general case of a randomly choseiif nyt systematically test-
ing all motifs of size 3 and 4 (with cut-off values set to 3), feend that, on average,
a motif of size 3 (respectively 4) has 74% (respectively 92f#4}s occurrences that
are inter-pathway occurrences. All inter-pathway ocawes may not represent bio-
logically meaningful chemical paths but the proportions\absuggest that a lot of
information may be lost when studying pathways and not neksvo



5 Conclusion

In this paper, we presented a novel definition of motif, che“reaction motif”, in
the context of metabolic networks. Unlike previous workee tlefinition of motif is
focused on reaction labels while the topology is not spetifgich novel definition
raises original algorithmic issues of which we discuss thaglexity in the case of the
problem of searching for such motifs in a network. To demmtetthe utility of our
definition, we show an example of application to the compagatnalysis of different
amino-acid biosynthesis pathways. This work representstasfiep in the process of
exploring the building blocks of metabolic networks. It seepromising in the sense
that, with a simple definition of motif, biologically meamjful results are found.

We are currently working on an enriched definition of motéttwill take into ac-
count information on input and output compounds. The curefinition already en-
ables to discover regularities in the network. Enrichedmitidins should enable to test
more precise hypotheses.

In this paper, we used a particular formalism for analysingetabolic network
through the identification of motifs. Other formalisms h&aezn employed or could be
considered. As J. Stelling indicated in his review of 2008][£ach formalism gives a
different perspective and confronting them seems to be miging way of getting at a
deeper understanding of such complex networks.
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