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Abstract. The classic view of metabolism as a collection of metabolic pathways
is being questioned with the currently available possibility of studying whole
networks. Novel ways of decomposing the network into modules and motifs that
could be considered as the building blocks of a network are being suggested. In
this work, we introduce a new definition of motif in the context of metabolic net-
works. Unlike in previous works on (other) biochemical networks, this definition
is not based only on topological features. We propose instead to use an alternative
definition based on the functional nature of the components that form the motif.
After introducing a formal framework motivated by biological considerations, we
present complexity results on the problem of searching for all occurrences of a
reaction motif in a network, and introduce an algorithm thatis fast in practice
in most situations. We then show an initial application to the study of pathway
evolution.

1 Introduction

Network biology is a general term for an emerging field that concerns the study of in-
teractions between biological elements [2]. The termmolecular interaction networks
may designate several types of networks depending on the kind of molecules involved.
Classically, one distinguishes between gene regulatory networks, signal transduction
networks and metabolic networks. Protein-protein interaction networks represent yet
another type of network, but this term is rather linked to thetechniques (such as Yeast-
2-hybrid) used to produce the data and covers possibly several biological processes (in-
cluding, for example, the formation of complexes and phosphorylation cascades) [16].

One of the declared objectives of network biology (or systems biology in general) is
whole cell simulation [9]. However, dynamic simulation requires knowledge on reaction
mechanisms such as the kinetic parameters describing a Michaelis-Menten equation.
Besides the fact that such knowledge is often unavailable orunreliable, the study of
the static set of reactions that constitute metabolism is equally important, both as a
first step towards introducing dynamics, and in itself. Indeed, such static set represents
not what is happening at a given time in a given cell but instead the capabilities of
the cell, including capabilities the cell does not use. A careful analysis of this set of
reactions for a given organism, alone or in comparison with the set of other organisms,
may also help to arrive at a better understanding on how metabolism evolves. It is this



set we propose to study in this paper. More precisely, in the following sections, the
term “metabolism” should be understood as the static set of reactions involved in the
synthesis and degradation of small molecules. Regulation information is not taken into
consideration for now. It may be added in a later step, as the “software” running on the
“hardware” of a metabolic network [15].

A major issue concerning the study of biochemical networks is the problem of their
organisation. Several attempts have been made to decomposecomplex networks into
parts. These “parts” have been called modules or motifs, butno definition of such terms
seems to be completely satisfying.

Modules have first been mentioned by Hartwellet al. [6] who outline the general
features a module should have but provide no clear definitionfor it. In the context of
metabolic networks, a natural definition of modules could bebased on the partition
of a metabolic network into the metabolic pathways one can find in databases: mod-
ules would thus be the pathways as those have been established. The advantage of
this partition, and thus of modules representing pathways,is that it reflects the way
metabolism has been discovered experimentally (starting from key metabolites and
studying the ability of an organism to synthesize or degradethem). The drawback is
that it is not based on objective criteria and therefore is not universal (indeed, the num-
ber of metabolic pathways and the frontiers between them vary from one database to
the other).

Several attempts to give systematic and practical definitions have been made using
graph formalisms [14, 10, 5] and constraint-based approaches [11]. Graph-based meth-
ods range from a simple study of the local connectivity of metabolites in the network
[14] to the maximisation of a criterion expressing modularity (number of links within
modules) [5]. The only information used in these methods is the topology of the net-
work. In the case of constraint-based approaches, the idea is quite different. First, a
decomposition of the network into functional sets of reactions is performed (by analy-
sis of the stoichiometric matrix [12]) and then modules are defined from the analysis of
these functional states. The result is not a partition in thesense that all reactions might
not be covered and a single reaction might belong to several modules.

Unlike the definition of module, the notion of motif has not been studied in the
context of metabolic networks. In general, depending on what definition is adopted
for modules and motifs, there is no clear limit between the two notions besides the
difference in size. In the context of regulatory networks, motifs have been defined as
small, repeated and perhaps evolutionary conserved subnetworks. In contrast with mod-
ules, motifs do not function in isolation. Furthermore, they may be nested and overlap-
ping [22]. This definition refers to general features that regulatory motifs are believed
to share but it provides no practical way to find them. A more practical definition has
been proposed, still in the context of gene regulatory networks (and other types of non-
biological networks such as the web or social networks). These are “network motifs”
and represent patterns of interconnections that recur in many different parts of a net-
work at frequencies much higher than those found in randomized networks [17]. This
definition is purely topological and disregards the nature of the components in a motif.
It assumes that the local topology of the network is sufficient to model function (which
is understood here as the dynamic behaviour of the motif). This assumption seems ac-



ceptable when studying the topology of the internet and may also hold when analysing
gene regulatory networks, but it appears not adapted to metabolic networks. In a static
context, a topological definition of motif seems indeed inappropriate as similar topolo-
gies can give rise to very different functions.

In the definition of motif we introduce, the components of thenetwork play the
central part and the topology can be added as a further constraint only. This is the main
biological contribution of this paper.

Its main algorithmical contribution comes from the fact that the definition of motif
we adopt leads to new questions. Indeed, if searching for “purely” topological motifs
may be formally modelled as a subgraph isomorphism problem,this no longer applies
when searching for motifs where the features describing thecomponents are the im-
portant elements and topology is initially indifferent (connectivity only is taken into
account). Observe that the problem we address is different from pathway alignment be-
cause we wish to go beyond the notion of pathway in order to study the network as a
whole. Moreover, in [19] and [13], the pathways are modelledas, respectively, chains
and trees to simplify the problem. This simplification may seem reasonable in the case
of a pathway alignment, it is no longer so in the case of general networks.

The paper addresses complexity issues related to this new definition of a graph
motif, providing hardness results on the problem, and then presents an exact algorithm
that is fast in practice for searching for such motifs in networks representing the whole
metabolism of an organism. The paper ends with an initial application of the algorithm
to the formulation of hypotheses on the evolution of pathways.

2 Preliminaries

2.1 Data

The metabolic network analysed in this work was obtained from the PATHWAY
database from KEGG [8]. Data describing reactions, compounds and enzymes were
downloaded and stored locally using a relational database management system (post-
greSQL). The KEGG database contains metabolic data concerning 209 sequenced or-
ganisms. The network we built from such data is therefore a consensus of our current
knowledge on the metabolisms of all those organisms. As a consequence, sequences
of reactions present in the network may have been observed inno organism. To avoid
this configuration, one can “filter” the consensus network byan organism of interest,
keeping only in the dataset reactions catalysed by enzymes the organism is considered
to be able to synthetize. We adopt a different strategy by choosing to perform our mo-
tif search on the consensus network and to possibly filter theresults in a second step,
allowing for easier comparative analysis between organisms.

Moreover, we use an additional information present in KEGG:the notion of pri-
mary/secondary metabolites. Indeed, in the KEGG referencepathway diagrams (maps),
only primary metabolites are represented and connect reactions together, whereas sec-
ondary metabolites are not drawn (even though they participate in the reaction). A typ-
ical example of a secondary metabolite is the ATP molecule inan ATP-consuming
reaction. (Observe that, unlike the notion of ubiquitous compound [14], the notion of



primary/secondary metabolite is relative to a reaction.) Keeping all metabolites in the
network leads to the creation of artefactual links between reactions and the bias intro-
duced can lead to inaccurate results such as considering metabolic networks as small-
world networks as shown in [3]. Withdrawing secondary metabolites may not be the
best strategy to adopt, but it represents a simple way of avoiding this bias.

2.2 Graph Models

Several formal models have been in use to study metabolic networks. The choice of a
formal model seems to depend mainly on the nature of the hypotheses one wishes to
test (qualitative or quantitative, static or dynamic) and on the size of the network under
study. Differential equations seem well adapted to study the dynamic aspects of very
small networks whereas graphs enable the static study of very large networks.

Between these two ends of the spectrum, semi-quantitative models have been pro-
posed. For example, Petri nets allow for the simulation and dynamical analysis of small
networks [21], while constraint-based models provide a mathematical framework en-
abling to decompose the network into functional states starting only from information
on stoichiometry and making the assumption that the networkis at steady-state [12].

As our goal is to deal with large networks and work with the least possiblea pri-
ori, graph models seem appropriate. In previous genome-scale studies [7], graphs have
been used mainly for topological analyses regardless of thenature of their components
(reactions, compounds and enzymes). We propose to enrich the graph models and take
into consideration some of the features of such components.

Formally, a graphG is defined as a pair(V;E), with V a set ofverticesandE �V � V a set ofedges. The edges represent the relations between the vertices andmay
be directed or undirected. The vertices and edges of the graph can be labelled.

The most intuitive graph representation of a metabolic network is provided by a
bipartite graph. A bipartite graph has two types of verticeswhich in the context of
metabolic networks represent, respectively, reactions and chemical compounds. The
compound graph is a compact version of the bipartite graph where only compound ver-
tices are kept and information on the reactions is stored as edge labels. The reaction
graph is the symmetric representation of a compound graph (i.e., reaction vertices are
kept and information on the compounds is stored as edge labels). Directed versions of
these graphs can be drawn expressing the irreversibility ofsome reactions. The infor-
mation concerning the reversibility of reactions is generally not well-known. Indeed,
contradictions may be found within a same database. We therefore consider this in-
formation as uncertain and, in an initial step, assume that all reactions are reversible.
This apparently strong hypothesis seems preferable than considering a reaction as irre-
versible when it actually is reversible (leading to a loss ofinformation).

In the following sections, we denote byC a finite set of labels, which we refer as
colours, that correspond to reaction labels. Also, we assume the graphG = (V;E) is
undirected and that we are given, for each vertex, a set of colours fromC. Reversibility
and edge labels will not be used. If needed, one can use them ina later step.



2.3 Motif Definition

We define a motif using the nature of the components it contains.

Definition 1. A motif is a multiset of elements from the setC of colours.

As mentioned earlier, we choose in this definition not to introduce any constraint
on the order of the reactions nor on topology. This choice is motivated by the wish to
explore the network with the least possiblea priori information on what we are search-
ing for. Topology and order of the reactions can be used lateras further constraints. The
advantage of this strategy is that the impact of each additional constraint can then be
measured.

2.4 Occurrence Definition

Intuitively, an occurrence is a connected set of vertices labelled by the colours of the
motif. For a precise definition, letR be a set of vertices ofG and letM be a motif of
the same size asR. Let H(R;M) denote the bipartite graph whose set of vertices isR [M and where there is an edge between a vertexv of R and a vertex
 of M if and
only if v has
 as one of its colours.

Definition 2. Definition of an exact occurrence of a motif
An exact occurrenceof a motifM is a setR of vertices ofG such thatH(R;M) has a
perfect matching andR induces a connected subgraph ofG.

If one is strict on the relation of similarity between colours (colours are considered
the same only if they are identical), the risk is to find a single occurrence, or none,
of any given motif in the network [3]. Moreover, since studying the evolution of what
the graphG represents is one of our main objectives, it seems relevant to allow for
flexibility in the search for occurrences of a motif.

With this in mind, we introduce a functionS (detailed later) that assigns, to each
pair 
i; 
j in C � C, a score which measures the similarity between
i and
j . Two
colours are considered similar if this score is superior to athresholds. We then adapt
our definition of exact occurrence by modifyingH(R;M) in the following way. There
will be an edge between a vertexv in R and a colour
 in M if and only if there exists a
colour
0 of v such that the value ofS(
0; 
) � s. Further, we generalise this to the case
where the thresholds is different for every element
 in M . The latter is motivated by
the idea that some elements in the motif we are searching for may be more crucial than
others. Observe that these considerations are independentof the definition ofS that is
discussed in the next section.

Another type of flexibility can then be added, that allows forgaps in the occurrences.
By this we mean, roughly, allowing the occurrence to have more vertices just to achieve
the connectivity requirement. These extra vertices are notmatched to the elements of
the motif. Two types of control on the number of gaps are considered: local and global.
Intuitively, a local gap control policy bounds the maximum number of consecutive gaps
allowed between a pair of matched vertices ofR. A global control policy bounds the
total number of gaps in an occurrence.

This leads to the following definition of an approximate occurrence of a motif,
where we denote byGR the subgraph ofG induced by a setR of vertices ofG.



Definition 3. Definition of an approximate occurrence of a motif
Let lb and gb be the local and global gap control bounds and letM be a motif. For
each
 in M , let s
 be a number. Anapproximateoccurrence ofM (with respect tolb,gb and the thresholdss
) is any minimal setR of vertices ofG that has a subsetR0 that
satisfies the following conditions:

1. the bipartite graphH(M [ R0; EH) withEH = ff
; vg 2M � R0j there exists a
colour
0 of v such thatS(
0; 
) � s
g contains a perfect matching;

2. for each subsetB ofR0 such thatB 6= ; andR0 n B 6= ;, the length of a shortest
path inGR betweenB andR0 nB is at mostlb;

3. jRj � jR0j � gb.

The minimality requirement on the setR avoids uninteresting approximate occur-
rences that are simple copies of other occurrences with extra vertices connected to them.

Observe that when no gaps are allowed thenR = R0 and condition 2 means simply
thatGR is connected. An example is given in Figure 1.

lb = 0 lb = 1lb = 1gb = 0 gb = 2gb = 3

Fig. 1.Subgraphs induced by occurrences for the motiffblack, black, dark grey, light greyg.

2.5 Reaction Similarity

We now discuss functionS for the problem of metabolic networks and reaction motifs
in such networks. Various functions of different nature maybe used. We present here
two possible ways to defineS.

The first one is based on alignment. Indeed, in order to compare reactions, which is
what functionS is used for, one can compare the enzymes that catalyse these reactions
by performing an alignment of their sequences (or structures). An element ofC would
then be a protein sequence (or structure). The functionS assigns a sequence (or struc-
ture) alignment score ands is a user-defined threshold that has to be met to consider the
sequences (structures) similar. In the case of whole networks, sequences are preferable
since many structures are not known.

The second example is the one we adopt in this paper. It is based on a hierarchical
classification of enzymes developed by the International Union of Biochemistry and



Molecular Biology (IUBMB) [1]. It consists in assigning to each enzyme a code with 4
numbers expressing the chemistry of the reaction it catalyses. This code is known as the
enzyme’s EC number (for Enzyme Commission Number). The firstnumber of the EC
number can take values in[1 : : 6℄, each number symbolizing the 6 broad classes of enzy-
matic activity. (1. Oxidoreductase, 2. Transferase, 3. Hydrolase, 4. Lyase, 5. Isomerase,
6. Ligase.) Then each of the three remaining numbers of the ECnumber provides ad-
ditional levels of detail. For example, the EC number 1.1.1.1 refers to an oxidoreduc-
tase (1) with CH-OH as donor group and NAD+ as acceptor group.

An element ofC is in this case an EC number. The functionS then assigns a simi-
larity score between two EC numbers that corresponds to the index of the deepest level
down to which they remain identical. For example,S(1:1:1:2; 1:1:1:3) = 3. Two EC
numbers are considered similar if their similarity score isabove a user-defined cut-off
values in [0 : : 4℄. The advantage of this definition of similarity between colours, i.e.,
reactions, is that it is more directly linked to the notion offunction. Reactions compared
with this measure are likely to be functionally related (andpossibly evolutionarily re-
lated also).

3 Algorithmics

3.1 Hardness Results

The formal problem we address is the following:

Search Problem.Given a motifM and a labelled undirected graphG, find all occur-
rences ofM in G.

As mentioned earlier, this problem is different from subgraph isomorphism because
the topology is not specified for the motif.

For this problem, we may assume the graph is connected and allvertices have
colours that appear in the motif. Otherwise, we preprocess the graph throwing away
all the vertices having no colour appearing in the motif and solve the problem in each
component of the resulting graph.

A natural variant of the Search Problem consists in, given a motif and a labelled
graph, deciding whether the motif occurs in the graph or not.As before, we may assume
the graph is connected, all vertices are labelled with colours and all colours appear in
the motif. It is easy to see this decision version of the Search Problem is in NP. We show
next that it is NP-complete even ifG is a tree, which implies that the Search Problem is
NP-complete for trees. For the following proof, we considerthe version where no gaps
are allowed.

NP-Complete for Trees. We have the following proposition.

Proposition 1. The Search Problem is NP-complete even ifG is a tree.

Proof. We present a reduction from EXACT COVER BY 3-SETS (X3C):

INSTANCE: SetX with jX j = 3q and a collectionC of 3-element subsets ofX .



QUESTION: DoesC contain an exact cover forX , i.e., a subcollectionC0 � C such
that every element ofX occurs in exactly one member ofC0 ?

Let X = f1; : : : ; 3qg and C = fC1; : : : ; Cng be an instance of X3C. The in-
stance for the decision version of the Search Problem consists of a motif M =fY;B; : : : ; B; 1; : : : ; 3qg, whereB appearsq times inM , and a treeT as follows. (See
Figure 2 for an example.) There are four vertices inT for eachi, 1 � i � n, three of
them are leaves inT , each one labelled by one of the elements ofCi. The fourth vertex,
namedri, is adjacent to the three leaves and has colourB. Besides these4n vertices,
there is only one more vertex inT , which is labelledY and is adjacent to eachri. This
completes the description of the instance. Clearly it has size polynomial in the size ofX andC.

YB B BBB B1
1 2 23 445566 67

7
8 899

Fig. 2. Tree T and its labels forX = f1; : : : ; 9g and C = ff1; 3; 4g; f2; 4; 6g; f2; 8; 9g;f7; 8; 9g; f1; 5; 6g; f5; 6; 7gg. The motifM in this case isfY; B;B;B; 1; : : : ; 9g.

To complete the reduction, we need to argue that the motifM occurs inT if and
only if there is a subcollectionC0 of C such that each element ofX occurs exacly in one
member ofC0.

Suppose there is such aC0. Clearly jC0j = q. Let R be the set of vertices ofT
consisting of the vertex labelledY and the four vertices of eachC in C0. The subgraph
of T induced byR is connected. Also, inR, there is a vertex labelledY , q vertices
labelledB (one for eachC in C0) and one labelled by each element inX (because of
the property ofC0). That is,R is an occurrence ofM in T .

Now, suppose there is an occurrence ofM in T , that is, there is a setR of 1 + 4q
vertices ofT that induces a connected subgraph ofT and has a vertex labelled by each
of the colours inM . Let C0 consist of the setsCi in C whose vertexri in T is inR. Let
us prove that each element ofX appears in exactly one of the sets inC0. First, note that
the vertex labelledY is necessarily inR, because it is the only one labelledY and there
is aY in M . Then, asR induces a connected graph, a leaf from a setCi is inR if and
only if ri is also inR. ButR must contain exactlyq vertices labelledB. Consequently,jC0j = q and, asR must contain1 + 4q vertices, all three leaves of eachC in C0 must
be inR, and these are all vertices inR. AsR must contain a vertex labelled after each
element inX , there must be exactly one set inC0 containing each element inX . ut



Fixed Parameter Tractability. This problem is fixed-parameter tractable with param-
eterk. Indeed, a naive fixed-parameter algorithm consists in generating all possible
topologies for the input motifM , and then searching for each topology by using a sub-
tree isomorphism algorithm. Since it is enough to generate all possible tree topologies
forM , the number of topologies to consider depends (exponentially) onk only, and sub-
tree isomorphism is polynomial in the size of both the motifM and the treeT whereM is sought. This reasoning is not valid anymore when the motifmust be searched in
a general graphG as subgraph isomorphism is NP-complete even when the motif is a
tree [4].

General Complexity Results.Table 1 summarizes the complexity of the Search Prob-
lem for various types of motifs and graphs. As mentioned, it is enough to consider that
our motifs are trees (or paths). This is because topology is indifferent (only connectivity
matters).

By fixedin the Table, we mean that the colours of the vertices in a path(respectively
tree) are fixed, otherwise (i.e. path/treenot fixed) we mean that we are searching for a
path (respectively tree) with the given vertex colours but do not care in what order they
appear, provided they all appear.

Motifs that are paths are already hard problems for general graphsG. This can be
shown by a reduction from the Hamiltonian path problem.

Table 1.Complexity results for the motif Search ProblemhhhhhhhhhhhhhhMOTIF
TYPE OF GRAPH

path tree graph

fixed polynomial polynomial NP-completepath
not fixed polynomial polynomial NP-complete

fixed — polynomial NP-completetree
not fixed — NP-complete, FPT ink NP-complete

Since the instances we have to consider in the case of metabolic networks are rel-
atively small (3184 vertices and 35284 edges for the networkbuilt from the KEGG
Pathway database), it is possible to solve the problem exactly, provided some efficient
pruning is applied. This is described in the next section.

3.2 Exact Algorithm

Version with no Gaps. We now present an exact algorithm which solves the Search
Problem. We first explain it for the simple case where the gap parameterslb andgb are
set to0 and then we show how it can be extended to the general case.

Let M be the motif we want to search for. A very naive algorithm would consist
in systematically testing all setsR of k vertices as candidates for being an occurrence,
wherek = jM j. ForR to be considered an occurrence ofM , the subgraph induced
by R must be connected and there must be a perfect matching in the bipartite graph



H(R;M) that has an edge betweenr 2 R and
 2 M if and only if 
 is similar to one
of the colours at vertexr. The search space of all combinations ofk vertices among then vertices inG is huge. We therefore show two major pruning ideas arising from the
two conditions thatR has to fulfill to be validated as an occurrence ofM .

The connectivity condition can be checked by using a standard method for graph
traversal, such as breadth first search (BFS). In our case, a BFS mixed with a back-
tracking strategy is performed starting from each vertex inthe graph. At each step of
the search, a subset of the vertices in the BFS queue is markedas part of the candidate
setR. The queue, at each step, contains only marked vertices and neighbours inG of
marked vertices. Also, there is a pointerp to the last marked vertex in the queue. At
each step, there are two cases to be analysed: either there arek vertices marked or not.
If there arek vertices marked, we have a candidate setR at hand. We submitR to the
test of the colouring condition, described below, and we backtrack to find the next can-
didate set. If there are less thank vertices marked, then there are two possible cases to
be analysed: eitherp is pointing to the last vertex in the queue or not. Ifp is not pointing
to the last vertex in the queue, we movep one position ahead in the queue, mark the
next vertex and queue its neighbours that are not in the queuealready (checking the
latter can be done in constant time by adding a flag to each vertex in the original graph).
Then we repeat, that is, start a new step. If, on the other hand, p is pointing to the last
vertex in the queue, then we backtrack. The backtracking consists of unmarking the
vertex pointed to byp, unqueueing its neighbours that were added when it was marked,
movingp to the previous marked vertex in the queue and starting a new step. (If no
such vertex exists, the search is finished.) Next we describethe test of the colouring
condition.

Given a candidate setR, one can verify the colouring condition by building the
graphH and checking whether it has a perfect matching or not. In fact, we can apply
a variation of this checking to a partial setR, that is, we can, while constructing a
candidate setR, be checking whether the corresponding graphH has or not a complete
matching. The latter is a matching that completely covers the partial candidate setR.
If there is no such matching, we can move the search ahead to the next candidate set.
This verification can be done in constant time using additional data structures that are a
constant time the size of the motif.

Extra optimisations can also be added. For instance, instead of using every vertex
as a seed for the BFS, we can use only a subset of the vertices: those coloured by one
of the colours from the motif, preferably the less frequent in the graph.

Allowing for Gaps. Allowing for local but not global gaps (i.e., settinglb > 0 andgb =1) can easily be done by performing thelb�transitive closure of the initial graphG and applying the same algorithm as before to the graph with augmented edge set. Thep�transitive closure of a graphG for p a positive integer is the graph obtained fromG
by adding an edge between any two verticesu andv such that the lengthl of a shortest
path fromu to v in the original graph satisfies1 < l � p. Thep�transitive closure
can be done at the beginning of the algorithm or on the fly. In the latter case, when a
next vertex is added to the queue, instead of queueing its neighbours only, all vertices
at distance at mostp from it are queued (if they are not already in the queue) whereby



distance between any two vertices we mean the number of vertices other than these two
in a shortest path between them.

Allowing for global gaps as well as local ones is more tricky.The reason is that an
unmarked vertex can be put in the queue because of many different marked vertices.
When backtracking in the queue at any step in the algorithm, unmarked vertices that
have been queued only because of the marked vertexv that is being dequeued can be
safely eliminated from the queue. Unmarked verticesfvig that were queued because of
the vertex being dequeuedandof at least one other marked vertex will remain (some-
where) in the queue. Therefore, in order to correctly account for the global number of
gaps introduced so far in the current occurrence, one must consider all the remaining
marked vertices that implied the queuing offvig. Extra information must be kept to
locate in constant time the unmarked verticesfvig and to update the global count of
gaps. This information can be kept in a balanced tree of size proportional tok = jM j
associated with each queued unmarked vertexu0. Each node in the tree corresponds to a
marked vertexu that could have led to the queuing ofu0 and is labelled by the distance
from u0 to u (this distance is at mostlb). Keeping, updating and using the extra infor-
mation adds a multiplicative term inO(k log k) to the time complexity of the algorithm,
which seems reasonable.

On average, searching for all occurrences of a motif of size 4with no gaps and
thresholds = 3 takes 8 microseconds of CPU time on a Pentium 4 (CPU 1.70 GHz)
with 512 Mb of memory.

4 Application

The approach we propose, and have described in the previous sections, should enable
both to generate some hypotheses on the evolution of metabolic pathways, and to anal-
yse global features of the whole network.

We start by presenting a case study motivated by trying to understand how metabolic
pathways evolve. We do not directly answer this question, which is complex and would
be out of the scope of this paper. Instead, we give a first example of the type of evolu-
tionary question people have been asking already and have addressed in different, often
semi-manual ways in the past [20], and that the algorithm we propose in this paper
might help treat in a more systematic fashion.

As in [20], one is often interested in a specific pathway, and,for instance, in find-
ing whether this pathway can be considered similar to other pathways in the whole
metabolic network thus suggesting a common evolutionary history. The metabolic path-
way we chose as example is valine biosynthesis. Focusing on the last five steps of the
pathway, we derived a motifM = f1:1:1:86; 1:1:1:86; 4:2:1:9; 2:6:1:42; 6:1:1:9g and
performed the search for this motif using initially a cut-off values of 4 for the similarity
score between two EC numbers (that is, between two reaction labels). With this cut-off
value, the motif was found to occur only once. (see Figure 3).

From this strictly defined motif, we then relaxed constraints by first lowering the
cut-off values from 4 to 3 and then setting the gap parameters to 1 (motif denoted byM 0). Additional occurrences were found. Three of them particularly drew our attention
(see Figure 3).



The first one corresponds to the five last steps of the isoleucine biosynthesis. The
second one corresponds to the five last steps of the leucine biosynthesis. Together, they
suggest a common evolutionary history for the biosynthesispathways of valine, leucine
and isoleucine.

An interesting point concerning the second occurrence is the fact that the order of
the reactions is not the same as in the other pathways. This occurrence would not have
been found if we had used a definition of motif where the order was specified.

Finally, the third occurrence that drew our attention was formed by reactions from
both the biosynthesis of valine and a distinct metabolic pathway, namely the biosynthe-
sis of Panthotenate and CoA. This latter case illustrates a limit of our current general
way of thinking about metabolism: frontiers between metabolic pathways as defined
in databases are not tight. If we had taken such frontiers into account, we would not
have found this occurrence that overlaps two different pathways. Yet such occurrence
can be given a biological meaning: it can be seen as a putativealternative path for the
biosynthesis of valine.

To complement this analysis, one should add that the resultspresented in this section
hold for 125 organisms in KEGG among whichS. cerevisiaeandE. coli.

L−Ile−tRNA(Ile)

L−Isoleucine

(R)−2−Oxo−3−methyl−pentanoate

(R)−2,3−Dihydroxy−3−methylpentanoate

(S)−2−Hydroxy−3−methyl−3−oxopentanoate

1.1.1.86

2.6.1.42

6.1.1.5

Isoleucine Biosynthesis

1.1.1.86

4.2.1.9

(S)−2−Aceto−2−hydroxybutanoate

Pantothenate
and CoA biosynthesis

L−Val−tRNA(Val)

L−Valine

2−Oxoisovalerate

(R)−2,3−Dihydroxy−3−methylbutanoate

(R)−3−Hydroxy−3−methyl−2−oxobutanoate1.1.1.86

1.1.1.86

4.2.1.9

2.6.1.42

Valine Biosynthesis

6.1.1.9

1.1.1.86

(S)−2−Acetolactate

4.2.1.9

2,3−Dihydroxy−3−methylbutanoate

2−Acetolactate

L−Leu−tRNA(Leu)

1.1.1.85

2.6.1.42

6.1.1.4

Leucine Biosynthesis

4.2.1.33

4−Methyl−2oxopentanoate

2−Isopropyl−maleate

3−Isopropylmalate

2−Oxo−4−methyl−3−carboxypentanoate

L−Leucine

Fig. 3. Bipartite representation of the results obtained when searching for the following motif :M 0 = f1:1:1; 4:2:1; 2:6:1:42; 6:1:1g with local and global gap bounds set to 1. The empty box
in the leucine biosynthesis represents a spontaneous reaction.

Intrigued by the potential importance of inter-pathway occurrences, we computed
their proportion in the general case of a randomly chosen motif. By systematically test-
ing all motifs of size 3 and 4 (with cut-off values set to 3), wefound that, on average,
a motif of size 3 (respectively 4) has 74% (respectively 92%)of its occurrences that
are inter-pathway occurrences. All inter-pathway occurrences may not represent bio-
logically meaningful chemical paths but the proportions above suggest that a lot of
information may be lost when studying pathways and not networks.



5 Conclusion

In this paper, we presented a novel definition of motif, called a “reaction motif”, in
the context of metabolic networks. Unlike previous works, the definition of motif is
focused on reaction labels while the topology is not specified. Such novel definition
raises original algorithmic issues of which we discuss the complexity in the case of the
problem of searching for such motifs in a network. To demonstrate the utility of our
definition, we show an example of application to the comparative analysis of different
amino-acid biosynthesis pathways. This work represents a first step in the process of
exploring the building blocks of metabolic networks. It seems promising in the sense
that, with a simple definition of motif, biologically meaningful results are found.

We are currently working on an enriched definition of motif that will take into ac-
count information on input and output compounds. The current definition already en-
ables to discover regularities in the network. Enriched definitions should enable to test
more precise hypotheses.

In this paper, we used a particular formalism for analysing ametabolic network
through the identification of motifs. Other formalisms havebeen employed or could be
considered. As J. Stelling indicated in his review of 2004 [18], each formalism gives a
different perspective and confronting them seems to be a promising way of getting at a
deeper understanding of such complex networks.
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