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Preliminary remarks

The EloRating package is work in progress. If you have any criticism, suggestions or bugs to report, please let us know.

We describe here the main functionality of the EloRating package. For the sake of this tutorial, we first present an
example with the minimal amount of data required: a sequence of decided dominance interactions along with the
dates of these interactions.’ Even though the package is capable of dealing with undecided interactions (in fact the
example file contains this information), we decided to omit this aspect for the sake of clarity in the first part (section
Using EloRating). In addition, this first example is not linked to ‘presence’ data. In other words, here we assume that
all individuals that occur in the data set were present over the entire study period. For the same example utilizing
information about presence/absence of individuals and undecided interactions/draws see section on presence data and
undecided interactions.

In the section Further notes on the stability index, we present a detailed description of the updated stability index S.

The fictional data set presented here comprises 250 dominance interactions of 10 individuals.

Requirements and package installation
We recommend that you have a fairly recent version of R available (v > 3.2).

To install the package, just use (given you have a working internet connection):
install.packages("EloRating")

There are a number of additional packages that are required before EloRating will work. If you used the approach just
shown, this is nothing to worry about because all the required packages will be installed alongside EloRating.

If you want the latest development version of the package you can install it from GitHub. For this to work,
you need at least the following packages installed: zoo, sna, network, Rcpp, RcppArmadillo, knitr, Rdpack and
devtools. It might be necessary to install these first before you can install the GitHub version of EloRating, e.g. by
install.packages("zoo") etc. Furthermore you will need a set of tools:

o Windows: Rtools from https://cran.r-project.org/bin/windows/Rtools/

e Mac: Xcode from the App Store

library(devtools)
install_github("gobbios/EloRating")
install_github("gobbios/EloRating", build_vignettes = TRUE) # with pdf tutorial

Data preparation

We assume that you store your data on dominance interactions in some sort of spreadsheet software. While it is possible
to read data directly from Excel files (.xIs or xlsx) or SPSS files (.sav),” we suggest that you store your data in simple
(tab-separated) text files. For example, from Excel this is possible via File>Save as... and then choosing ‘tab-delimited
text file’ as file format.?

In the simplest case, you need three columns in your data set, one for the date and one each for winner and loser IDs.
Note that the interactions have to be in the correct sequence, i.e. sorted by date (and time if available): the functions
in this package will not sort the data according to dates.® The actual names of the columns are not fixed, so
you can use whatever you want as long as they conform to naming rules of column names in R (start with a letter, no
spaces, etc.).

Date winner  loser
2000-01-01 d w
2000-01-01 k w
2000-01-01 n Z
2000-01-07 k n

IDealing with calendar dates in ‘R¢ is prone to unexpected behaviour. We decided to stick to a specific format ("YYYY-MM-DD") and
the functions assume that dates appear in this format in the objects from which the functions work.

2see the R packages gdata, x1sx, readxl and foreign

3you may also save your file as comma delimited or something similar, but note that you then may need to modify the arguments to
read.table() or use read.csv()

4But the seqcheck() function will check whether interactions are sorted by date, see below.



Date winner  loser

2000-01-07 ¢ g
2000-01-07 n g

Optional columns that may be required for a more refined assessment of ratings are a column for draws and for
interaction type (intensity). The Draw column should contain only TRUE and FALSE to indicate whether an interaction
ended undecided/tied.

Date winner loser  Draw intensity
2000-01-01 d w FALSE fight
2000-01-01 k w TRUE threat
2000-01-01 n z TRUE threat
2000-01-07 k n FALSE fight
2000-01-07 ¢ g FALSE  threat
2000-01-07 n g FALSE fight

Using EloRating

Start by loading the package and reading the raw data.’
library(EloRating)

xdata <- read.table(system.file("ex-sequence.txt", package = "EloRating"), header = TRUE)

Keep in mind that as soon as you use your own data it might be necessary to include absolute paths with the file
name.® For example:

# on Windows

xdata <- read.table("c:\\temp\\ex-sequence.txt", header = TRUE, sep = "\t")

# on Mac

xdata <- read.table("~/Documents/ex-sequence.txt", header = TRUE, sep = "\t")

Data checks

We then go on and check whether the data meet the formatting requirements for the remaining functions of the package
to work. If there is something not quite right with your data, this function will tell you. ‘Warnings’ can sometimes be
ignored (see below), whereas ‘errors’ need to be fixed before the next step. More details on the possible warning and
error messages can be found in the help files (?seqcheck).

seqcheck(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date)

## No presence data supplied
## Everything seems to be fine with the interaction sequence...0K

Elo-rating calculations

This doesn’t give any error message, and so we can go on and calculate the actual Elo-ratings and store the results
of the calculations in an object we name res. Note that in order to ignore possible warnings from seqcheck() the
argument runcheck = FALSE has to be set.

res <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date, runcheck = TRUE)
summary (res)

## Elo ratings from 10 individuals

## total (mean/median) number of interactiomns: 250 (50/49)
## range of interactiomns: 19 - 75

## date range: 2000-01-01 - 2000-09-06

## startvalue: 1000

## uppon arrival treatment: average

## k: 100

## proportion of draws in the data set: 0O

5The example files are in the above described tab-delimited text format and can be found in the package directory. If you don’t know
where that is check .1ibPaths()
6see also 7setwd



Extract Elo-ratings

The most obvious task perhaps is to obtain Elo-ratings of all or a specific set of individuals on a specific date. This can
be achieved by running the function extract.elo() on the object res that we just created. In the output, individuals
are ordered by descending Elo-ratings.

extract_elo(res, extractdate = "2000-05-28")

## [¢ d a £ k s g n w z
## 1342 1214 1161 1133 1011 1000 958 844 799 538

extract_elo(res, extractdate = "2000-05-28", IDs = c("s", "a", "c", "k"))

## [ a k s
## 1342 1161 1011 1000

If you omit the arguments regarding dates and/or individuals, the function will return the ratings of all individuals on
the last day of the study period.

extract_elo(res)

## s a c d £ g k n w z
## 1381 1362 1205 1084 1077 1049 940 771 681 450

# the same as because 2000-09-06 is the last date in the sequence:
extract_elo(res, extractdate = "2000-09-06")

## s a c d f g k n w z
## 1381 1362 1205 1084 1077 1049 940 771 681 450

Finally, it is possible to extract ratings to matching combinations of IDs and dates. This comes handy if you have a
data set ready that contains measurements of some variable of interest on different dates and/or for different individuals.
Let’s look at an example:

parasites <- read.table(system.file("ex-parasites.txt", package = "EloRating"), header = TRUE)
parasites$Date <- as.Date(as.character(parasites$Date))

head(parasites)

## id Date parasites

## 1 c 2000-01-04 2

## 2 n 2000-01-04 3

## 3 n 2000-01-07 2

## 4 n 2000-01-09 2

## 5 w 2000-01-11 4

## 6 n 2000-01-13 1

In this fictional example, I counted ecto-parasites for certain individuals on different days’. You can see that among
the six lines of data I’ve shown, there is data for two individuals on the first day and individual n was observed on
multiple days. The entire data set contains 46 observations. In all, this is a fairly typical example of data set that I
encounter regularly. Now, the crucial thing to do here is to get for each individual its rating on the day of the respective
observation. To do so, we need to supply to extract_elo() a vector of dates and a vector of IDs. For this, we simply
take the columns in our data set parasites and write the values as a new column in that data frame:

parasites$elo <- extract_elo(res, extractdate = parasites$Date, IDs = parasites$id)

head(parasites)

## id Date parasites elo
## 1 c 2000-01-04 2 1043
## 2 n 2000-01-04 3 1000
## 3 n 2000-01-07 2 907
## 4 n 2000-01-09 2 907
## 5 w 2000-01-11 4 1034
## 6 n 2000-01-13 1 870

With this, we can then produce a figure and perhaps run some model (e.g. in figure 1). Again, this is a typical thing to
do in my work.

Plotting Elo-ratings

eloplot () produces quick plots that visualize the development of Elo-ratings over time. Note that the example data set
contains a rather modest number of interactions and individuals. With larger data sets (both in terms of interactions

“e.g. Duboscq et al. (2016)
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Figure 1: Parasite count as a function of day-specific Elo ratings. Each individual has its own colour. Code to produce the
figure is in the Appendix.

and individuals), such plots can become messy quickly. Even though it is possible to restrict plotting to date ranges
and subsets of individuals, we recommend to create custom plots by directly accessing the res object. Specifically,
res$mat contains raw Elo-ratings in a day-by-ID matrix, while the original dates can be found in res$truedates. You
can find more details on how to proceed with custom figures in the section on custom figures.

The following code produces figure 2.
eloplot(res)
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Figure 2: Elo-ratings of 10 individuals over the entire study period.

Restricting the date range and selecting only a subset of individuals results in figure 3.
eloplot(eloobject = res, ids = c("s", "a", "w", "k", "c"), from = "2000-06-05", to = "2000-07-04")

Please note, eloplot () will plot a maximum of 20 individuals. This is because we meant the plotting function to be
an exploratory tool, but you can also select ids="random.20" if you have more than 20 individuals. Please note also
that individuals for which you have observed interactions on only one day in the selected date range”, such individuals
will be omitted from the plot. If you wish to plot such individuals as single points in the graph, you will have to use
the approach mentioned above, i.e. use the res$mat and res$truedates objects. If you need help with that, please get
in touch with us or have a look at the section on customizing figures.

Incorporating presence data and undecided interactions

This section demonstrates how to incorporate presence data and undecided interactions. Please note that the presence
data needs to cover every day during your data collection, i.e. also those days on which no interactions were observed.
Also, the column that contains the dates must be labelled Date, otherwise you will receive an error message. We start

8If you look carefully at figure 2, you can see that there are multiple individuals which have long, very straight lines, for example
individual s from the beginning up to about June 2000. There could be two reasons for that. Either that individual was not present during
that time (and hence could not interact), or it was present and was simply not observed interacting. In this case, s was not actually present
in the group during this time, but the plotting function won’t know that unless you supply the relevant data (we will deal with this further
below).

9regardless of how many interactions such individuals may have had on such days!
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Figure 3: Elo-ratings of 5 individuals over a month.

by reading the additional ‘presence matrix’, followed by reformatting the date column in this object to a date format
that R is capable of dealing with. And then, just to get a feeling for how these data are supposed to look like, we look
at first few lines.

xpres <- read.table(system.file("ex-presence.txt", package = "EloRating"), header = TRUE)
xpres$Date <- as.Date(as.character(xpres$Date))

head(xpres)

## Date acd fgknswz
## 1 2000-01-01 1111111011
## 2 2000-01-02 1111111011
## 3 2000-01-03 1111111011
## 4 2000-01-04 1111111011
## 5 2000-01-051111111011
## 6 2000-01-06 1 1 11111011

Next, we rerun seqcheck() and elo.seq() with the additional presence= argument as well as incorporating the
information about undecided interactions draw= into the latter function.

seqcheck(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date, presence = xpres, draw = xdata$Draw)

## Presence data supplied, see below for details

## Everything seems to be fine with the interaction sequence...0K

##

Fa i S

##

## Presence data seems to be fine and matches interaction sequence...0K
##
##

res2 <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date, presence = xpres, draw = xdata$Draw)

Extracting Elo-ratings takes advantage of the presence data by either omitting absent IDs from the output or returning
them as NA. The differences in ratings stem from incorporating undecided interactions.
extract_elo(res2, extractdate = "2000-05-28")

## [¢ d f a k g n W z
## 1340 1211 1136 1092 962 960 873 860 566

# note that "s" is absent and omitted
extract_elo(res2, extractdate = "2000-05-28", IDs = c("s", "a", "c", "k"))

## c a k s
## 1340 1092 962 NA

# note that "s" is absent and returned as NA

Likewise, eloplot () omits absent IDs from the resulting plots (figure 4 and figure 5).
eloplot(res2)

eloplot(res2, ids = c("s", "a", "w", "k", "c"), from = "2000-06-05", to = "2000-07-04")
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Figure 4: Elo-ratings of 10 individuals over the entire study period. Note that several individuals were absent during parts of
the date range and therefore appear with gaps in the plot (e.g. ¢ and f). Compare to figure 2.
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Figure 5: Elo-ratings of 5 individuals over a month. Note that individual ¢ is not displayed in the plot, since it has not been
present during the date range supplied to eloplot(). Compare to figure 3.



Customizing Elo-rating with prior knowledge and optimization

In principle, there are two different tuning knobs with which the calculation of Elo-ratings is controlled. First there
is the k parameter and second there is the issue of which start values to assign the individuals at the beginning of
the rating process. So far, we simply assumed a single k parameter as well as using the same starting value for each
individual throughout. Now, this is probably not ideal because we make at least two implicit assumptions here. First,
using the same k implies that all interactions have equal consequences in the sense that we can’t distinguish for example
between mild and severe aggression. A physical fight is probably more relevant for the assessment of an individual’s
status than say a mild threat and leave interaction or a displacement without any overt physical aggression. This
should/could be reflected in different &k values that assign larger k to fights and lower k to mild interactions.!’ Likewise,
by assigning each individual the same starting value we assume that, at least potentially, all individuals could have the
same status. For example, assigning females and males the same initial score seems not very plausible in many animal
species and chances are that starting values that assign higher values to males than to females leads to a more realistic
ratings/rankings.

There are two ways to address this. We can either incorporate such reasoning based on prior knowledge of the study
system, or alternatively, we can try to find settings that optimize some objective fit criterion. In this section we will go
through both approaches. We start by incorporating prior knowledge to set different start and k values. And the then
we will look into ways of using maximum likelihood to set these parameters.

Prior knowledge
Starting values

In this section, we incorporate prior knowledge of individual status (Newton-Fisher 2017). This prior knowledge may
come in several forms. You may have information on prior ordinal ranks of your individuals or you may know rank
classes of individuals. Theoretically, you could also know prior Elo-ratings, but in that case it seems likely that you
could actually also obtain the actual interaction data from which these ratings are derived. In the latter case it seems
more convenient to actually include these data in your interaction sequence and simply proceed from there, rather than
incorporate ratings from a prior analysis as starting point.

The essential idea is that you calculate custom starting values (on the scale of Elo-ratings) in a first step, and then
supply this information to the elo.seq() function. Your prior information can be either ordinal ranks, or rank classes.
We start by using ordinal ranks. Here you need to create a numeric vector with names, where the numbers reflect the
ranks and the names the individual IDs. For example:

myranks <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
# wvector meeds to have mames!

names(myranks) <- C(Han, Hcll’ l|dll’ Ilfll’ llgn’ Hku’ Hnll, IISII’ ”W", "Z")
myranks

## a c d f g k n s w z

## 1 2 3 4 5 6 7 8 910

The createstartvalues() function then takes these ranks and translates them into Elo-ratings. The crucial point
here is the shape= parameter that determines how differentiated these ranks are in terms of magnitude of differences
between individuals (figure 6).

Now we can supply these start values to the elo.seq() function and then plot the results.

startvals <- createstartvalues(ranks = myranks, shape = 0.3)
res3 <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date, presence = xpres, startvalue = startvals$res)

eloplot(res3)

In the next example, we first calculate Elo-ratings without prior knowledge, i.e. like in the examples above. But then
we use the final ratings of this step to calculate ranks and based on these ranks, we calculate Elo-ratings again but now
with this ‘prior’ knowledge. Now, this is a somewhat circular approach, but it serves well to show how prior information
can flatten Elo-rating trajectories (figure 8). For this example, we use a smaller data set to have less cluttered figures.

data(adv2)

# no prior knowledge

resl <- elo.seq(winner = adv2$winner, loser = adv2$loser, Date = adv2$Date)
extract_elo(resl)

1076 use a sports metaphor: a tennis match in a Grand Slam tournament should be more impactful on the ranking than a training match
(even if it’s against the same opponent).
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Figure 7: Elo-ratings of 10 individuals over the entire study period with prior knowledge in the form of known ranks incorporated.
Compare to figure 4.

## b c d £ e g a
## 1203 1148 1116 1004 982 843 704

# use the above calculated ratings as known 'ranks'

myranks <- 1:length(extract_elo(resl))

names (myranks) <- names(extract_elo(resl))

mystart <- createstartvalues(myranks, startvalue = 1000, k = 100)

res2 <- elo.seq(winner = adv2$winner, loser = adv2$loser, Date = adv2$Date, startvalue = mystart$res)
extract_elo(res2)

## b c d f e g a
## 1321 1233 1111 956 939 795 645
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Figure 8: Elo-ratings from a group of seven individuals. On the left without prior knowledge and in the center with prior
knowledge (here: the ordinal ranking at the end of the sequence without prior knowledge). The right panel shows the correlation
between ratings on each date between the two runs. Code to produce the figure is in the Appendix.



When we look at figure 8 we can see several things. First, the actual order of individuals at the end of both runs is
identical and final ratings are highly correlated (r = 0.98). Further, several patterns among the final ratings are very
similar, e.g. gold and blue are close to each other, as are green and grey'!, while the two red individuals are relatively
further spaced apart. The only major difference is the black individual which is close to blue and gold in the left panel
but further away from them in the centre panel. Equally interesting are the correlation coefficients for each day between
the two approaches (figure 8, right panel). Not surprisingly, correlations become close over time (keep in mind that on
the first day, there was only one interaction observed and as such, in the left panel, only two individuals (blue and gold)
had ratings different from 1000).

You can also supply rank classes. These rank classes will then be transformed into intermediate ‘ranks’, which then are
transformed into custom start values according to the same principal as above with regards to the shape parameter.
The major caveat here is that currently you have to specify four rank classes. If you have less, two for example, you
still need to specify all four, but leave unused classes NULL. The class-rank conversion is done via the following formula:
class=1: 1; class=2: N/4; class=3: N/2; class=4: N — N/4, where N is the group size. Please note that rank classes
have to be given in descending order, i.e. the first class is the highest class (e.g. ‘high-ranking’), but the actual labels of
the rank classes are meaningless and are simply used for illustration.

# with four rank classes
myrankclasses <- list(alpha = "a", high = c("b", "c"), mid = c("d", "e"), low = c("f", "g"))
createstartvalues(rankclasses = myrankclasses)$res

## a b c d e f g
## 1202 1100 1100 952 952 846 846

# with two rank classes

myrankclasses2 <- list(classl = NULL, high = c("a", "b", "c"), class3 = NULL,
low = c("d", "e", "f", "g"))

createstartvalues(rankclasses = myrankclasses2)S$res

#i# a b c d e f g
## 1169 1169 1169 873 873 873 873

# with two rank classes
myrankclasses3 <- list(high = c("a", "b", "c"), mid = NULL,

low = c("d4", "e", "f", "g"), superlow = NULL)
createstartvalues(rankclasses = myrankclasses3)S$res

## a b c d e f g
## 1143 1143 1143 893 893 893 893

These start values can be saved as above and then be used in elo.seq(). Please note that currently all individuals
that are part of the sequence have to have an entry in the prior ranks, otherwise the elo.seq() function will fail. For
example, the following will result in an error, because only two out of ten individuals have prior ratings:

mypriors <- c(2000, 0); names(mypriors) <- c("a", "g")
elo.seq(winner = adv2$winner, loser = adv2$loser, Date = adv2$Date,
startvalue = mypriors)

In future package versions it hopefully will be allowed to include subsets of individuals in the context of prior ratings
(such that the above example would work).

In general, I (CN) am still unsure about the general validity of this approach. It adds information without much
apparent justification: from an ordinal ranking (or rank classes) with meaningless differences between the ranks (or
rank classes) to cardinal scores where the differences between any two pairs of individuals can be compared in terms of
magnitude. For example, in an ordinal ranking no distinction can be made between the difference of rank 1 versus rank
2 or rank 11 versus rank 12. In a cardinal system (like David’s score), such differences are meaningful, such that rank 1
and rank 2 can be relatively more close to each other than rank 11 and 12, or the other way around. That being said,
if there is some knowledge of the species in this respect, i.e. if we know how pronounced power differentials are between
individuals (compare also to steepness), the approach may be justified. Otherwise, for the moment I would advise
either to set the shape parameter to 0 (which implies that differences between all adjacent pairs of individuals are
identical, steepness = 1) or to refrain from incorporating ordinal ranks altogether. A better founded reasoning for the
approach is needed in my opinion, and also it would be really interesting to achieve the inclusion of cardinal scores into
the system, for example prior knowledge of David’s scores.

my apologies to colour blind people

10



Adjusting k

Here we describe how to set different k values to different types of interactions. Typically, setting & would allow
differentiating interactions of different intensity. Similarly, we can envision that k& could be set according to the value
of the resource that is contested in a given interaction. Larger ks would be set for interactions of higher intensity or
higher resource value.

In our small example of 33 interactions between 7 individuals, we have observed interactions of two different intensities:
displace (threat/leave) interactions and fights (fight/flee interactions). For the sake of this example, we consider that
displacing another individual is milder and should have less of an effect on dominance status, hence we assign such
interactions a relatively low k value, here k = 50. In contrast, ‘real’ fights should be much more consequential, hence
we chose k = 200. In the example here I chose the two k values arbitrarily. For an objective way for how to choose
varying k (or even if you have only a single k, i.e. you don’t distinguish between different aggression types), look at the
section on optimization.

In the current implementation, different £ have to be supplied as a named list, where the names have to correspond to
the intensity/interaction type specified. In our example we need a list with two items:

table(adv2$intensity) # remind ourselves how the intensity categories are named

##
## displace fight
## 26 7

myk <- list(displace = 50, fight = 200)
res3 <- elo.seq(winner = adv2$winner, loser = adv2$loser, Date = adv2$Date, intensity = adv2$intensity, k = myk)
extract_elo(res3)

## b f d c e g a
## 1149 1130 1126 1089 989 799 718

Finally, we compare the final ratings from the different approaches (figure 9).

plot(0, 0, "n", xlim = c(1, 7), ylim = c(600, 1400), xlab = "individual", ylab = "Elo-rating",
axes = FALSE)

axis(1, at = 1:7, labels = resi$allids, lwd = NA); axis(2, las = 1)

X <- extract_elo(resl); x <- x[sort(names(x))]
points(1:7, x, pch = 16, col = "red")

x <- extract_elo(res2); x <- x[sort(names(x))]
points(1:7, x, pch = 16, col = "blue")

x <- extract_elo(res3); x <- x[sort(names(x))]

points(1:7, x, pch = 16, col = "gold")

box ()

legend(4, 1400, legend = c("no prior knowledge", "prior ranks", "custom k"), lwd = 1,
col = c("red", "blue", "gold"), ncol = 3, xpd = TRUE, xjust = 0.5, yjust = O,
cex = 0.8, bg = "white")

—— no prior knowledge —— prior ranks custom k
1400 —

[ ]
1200 | . °
2 . ¢
£ 1000 o .
o ° °
m [ ]
800 — e
.
600 —
a b c d e f g

individual

Figure 9: Final ratings of 7 individuals when calculated without any prior knowledge (red), prior knowledge of ‘ranks’ (blue)
and accounting for different interaction intensities (gold).

And this is just a fun exercise, in which we repeat the same as above, i.e. calculate ratings (1) without prior information,
(2) with prior information but also (3) with a completely wrong prior rank order (we reverse the order). We use the
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bigger data set here. The code for the figure is in the appendix.
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Figure 10: Elo-ratings from a group of ten individuals. On the left without prior knowledge and in the center with prior
knowledge (here: the ordinal ranking at the end of the sequence without prior knowledge). The right panel shows the ratings as
they develop if we use some obviously wrong prior ranking. Code to produce the figure is in the Appendix.

Optimization
Optimizing k

Another approach of adjusting & is to optimize its value with a likelihood approach (see the very cool articles by Franz
et al. (2015) and Foerster et al. (2016)). The fundamental idea is that we can optimize an objective criterion, i.e. find
the k that leads to the best possible value for that criterion. The criterion we can look at is the maximum likelihood of
winning probabilities. For this, we set a specific k value, calculate the ratings from our observed interactions and then
extract the expected winning probabilities for the eventual winner in each interaction (see also figure 18). In the best
possible case, all the winning probabilities are 1,'? i.e. the expected winning probabilities are optimal with respect to
the eventual outcomes of all interactions, or in other words, the expected winning probabilities match perfectly the
eventual outcomes. In the worst case scenario, all the expected winning probabilities are 0, i.e. we would always predict
the wrong winner when looking at the winning probabilities. The objective criterion we can look at is the product of
these expected winning probabilities in a sequence, i.e. the likelihood. In the first example where all probabilities were
1, the product would be 1 too. In the second case, with all probabilities being 0, the likelihood would be 0. In practice,
it is often useful to use logged probabilities, i.e. the log likelihood and all the functions in the package by default return
log likelihoods rather than likelihoods.

To recap: the expected winning probability for an individual depends on the rating difference prior to an interaction
and k determines how much a rating can change after a single interaction. Hence, using different k will lead to different
winning probabilities. Just to be clear, we calculate the rating sequence multiple times and just change k for each
iteration. So, each iteration of the sequence and using different k£ will lead to different sets of expected winning
probabilities and hence to different (log) likelihoods. The k value that results in the largest (= maximal) log likelihood
is the & that leads to the largest expected winning probabilities. The function that achieves this in the package is
opimizek().

opimizek() does exactly what is described above: calculate ratings multiple times with different k (resolution=
determines how often) and extract the product of the expected winning probabilities. The other thing to specify is the
range of k you want to test (the krange= argument), and here limits of 10 until 500 seems a reasonable choice. Finally,
note that the optimizek() function requires as its main argument the result of a call to elo.seq().

So, here we calculate the ratings from a sequence with 250 interactions and just use the default k = 100 in this step (for
the purpose of finding the optimal £, its value in this step is of no relevance). Then we apply optimizek () with k limits
of 10 and 500 and with a resolution of 491.'3 The result of this is a list with two entries: $best contains the optimal &k
for that sequence, and $complete contains the entire set of tested k along with the log likelihood for each tested k.

12Winning probabilities will never be exactly 1, but realistically they might come very close to 1. Also, they will never be exactly 0, but
could very well be very close to 0.
131 chose this odd resolution to obtain steps 1 of the tested k: check out seq(from = 10, to = 500, length.out = 491).
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eres <- elo.seq(xdata$winner, xdata$loser, xdata$Date)
ores <- optimizek(eres, krange = c(10, 500), resolution = 491)
ores$best

## k loglik
## 84 93 -111.4457

So the k that leads to the largest likelihood is 93 (figure 11). You could also aim for more precision, i.e. increase
the resolution= argument: with an increment of 0.25 (i.e. resolution = 1961) we find the best k at 93.25, with a
marginally larger log likelihood. We can display the results of this procedure with the following code:

plot (ores$complete$k, ores$complete$loglik, type = "1", las = 1, xlab = bquote(italic(k)), ylab = "log likelihood")
abline(v = ores$best$k, col = "red")

log likelihood

o

100 200 300 400 500

k

Figure 11: Optimal k for an interaction sequence with 250 interactions among 10 individuals. The k that maximizes the
likelihood is 93.

Please note that this procedure can result in non-optimal results, i.e. there might be no local maximum along the range
of k values tested, i.e. the maximum lies at one of the edges of the k range. For example, if we test only the range
from, say, 200 to 400, we find that the maximum is at the edge of the range, i.e. 200 (figure 12). In a more realistic
scenario, you might find that the optimal k is 0 (assuming you start your range at 0). Whether this is sensible needs to
be decided on a case to case basis, I believe (see also the discussion in Foerster et al. (2016)).

oresl <- optimizek(eres, krange = c(200, 400), resolution = 501)
oresl$best

## k loglik
## 1 200 -118.4614

plot(oresi$complete$k, oresi$complete$loglik, type = "1", las = 1, xlab = bquote(italic(k)), ylab = "log likelihood")
abline(v = oresl$best$k, col = "red")
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Figure 12: Optimization procedure that did not result in a local maximum. The maximum likelihood estimate for k here is 200,
which lies at the boundary of the tested values.

More generally speaking, the shape of the likelihood function can vary substantially between data sets. Figure 13 shows
a few examples of data sets that come with this package.

The next step in this approach is to incorporate any knowledge you may have about interaction types. As stated above,
it seems plausible to assume that interactions of different intensities will have different consequences on individuals’
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Figure 13: Likelihood functions for six example data sets. The panel titles reflect the names of the data sets as stored in the
package.

rating trajectories, which may be reflected in different k values for different interaction types. But the same question
remains as above, i.e. what values to choose? One solution is to simply extend the optimization approach to multiple
dimensions (for example finding two k values if there are two interaction types). Implementing this is also done with
the optimizek() function. There are two things that need to be changed compared to the case with only finding one £:
we need to supply a list with the to-be-tested k values with one list item for each interaction type and we need to
specify the vector/column that contains the information about which interaction type belongs to each interaction.*

Two more things to note. (1) The names of the list need to match the entries in the interaction type vector/column.
(2) The resolution setting works combinatorially, i.e. if you set this to 5 with two interaction types the function
will run 5 % 5 = 25 times, and if you have three interaction types with a resolution of 100 the function will iterate
100 % 100 * 100 = 1000000 times. Just keep in mind that higher resolutions here lead to longer run times, so it might be
wise to start with small values to see whether everything works.

eres <- elo.seq(xdata$winner, xdata$loser, xdata$Date, intensity = xdata$intensity)

# two list items: 'fight' and 'threat', because these are the two interaction types specified in zdata$intensity
mykranges <- list(fight = c(10, 500), threat = c(10, 500))

ores2 <- optimizek(eres, krange = mykranges, resolution = 91)

ores2$best

## fight  threat loglik
## 1294 113.4444 86.22222 -111.1532

So what we find here is that the optimal setting of two different k is as follows: k = 113.4 for fights, and k& = 86.2 for
threats. Incidentally, this matches our general expectation that more intense interactions (fights) should lead to larger
changes.'?

We can also illustrate these results with a heatmap (figure 14):
heatmapplot(loglik ~ threat + fight, data = ores2$complete)

Finally, we can also investigate how taking into account interaction type compares to ignoring interaction type (figure
15)'6. The idea here is that a rating model that accounts for some variable (interaction type) should be better than a
model that doesn’t account for it. So here we visualize the likelihoods as a function of different k. The thick blue line
represents the results with one £, ignoring interaction types (the same as in figure 11). For the red lines we look at how
the likelihood changes according to kipreqr When the k for fights (kfigne) is fixed. The continuous line reflects this at
kfight = 113.4, i.e. at the optimal value for ks;4n¢, while the dashed line corresponds to kfign: = 10. The grey curves
represent the same thing, just that kf;gp; varies, while kipreqr is fixed (continuous line: kipreqr = 86.2 and dashed line
kthreat = 500). The arrows below the horizontal axis depict the maximum point of each curve. There are at least two
points to make here. First, the k values at the peaks of the continuous curves (indicated by the arrows) reflect the &
values we found in the optimization step above. This is logical because I chose the fixed values to depict in the figure

M Handing over the interaction type vector can be done either when running elo.seq() or it can be done in the optimizek() function call.
150f course, I made up these interactions with the goal of showing what one would expect, so this is hardly surprising.
16Code for this figure is in the appendix
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Figure 14: Optimal k values for an interaction sequence with two different interaction types (fights and threats). Large likelihoods
are red, small likelihoods are blue.

post-hoc, i.e. after I knew what the optimal values were. Second, in absolute terms, neither the continuous red and
grey curves lead to a maximum likelihood that is substantially larger than that at the maximum of the blue curve
(-111.15 versus -111.45). Hence, in this example it appears that the added complexity of incorporating two interaction
types doesn’t lead to a substantially better fit (in terms of winning probabilities on which the ML is based). You could
even formally test this with a likelihood ratio test, although I don’t see a practical reason to do so in real life.
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Figure 15: Incorporating versus ignoring interaction type leads to different shapes in likelihood functions. The arrows below the
horizontal axis indicate the optimal k for each curve. See text for more explanations.

Optimizing start values

It is also possible to use a maximum likelihood approach to try out multiple sets of starting values in order to find
one the maximizes the likelihood of winning probabilities. Actually though, this is more of an approximate approach
because we cannot go through all possible combinations of start ratings. So what we rather do is to generate a large
number of sets of starting values and then assess the likelihood of these sets. For example a set of a = 1100, b = 1000,
¢ = 900 may be better than the set of a = 1200, b = 1000, ¢ = 800. As it is implemented, this is a very inefficient
method, simply because it tries randomly selected sets of start values. As such, using the term optimizing is probably a
bit of a stretch here!

orires <- elo.seq(winner = adv$winner,
loser = adv$loser,
Date = ad