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Abstract

This vignette outlines the methods and provides some examples for generalised survival
models as implemented in the R rstpm2 package.
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1. Background and theory

Generalised survival models provide a flexible and general approach to modelling survival or
time-to-event data. The survival function S(t|x) to time t for covariates x is defined in terms
of a inverse link function G and a linear prediction η(t, x), such that

S(t|x; θ) = G(η(t, x; θ))

where η is a function of both time t and covariates x, with regression parameters θ. We can
calculate the hazard from this function, where

h(t|x; θ) =
d

dt
(− log(S(t|x; θ)))

=
−G′(η(t, x; θ))

G(η(t, x; θ))

∂η(t, x; θ)

∂t

We model using a linear predictor η(t, x; θ) = X(t, x)θ for a design matrix X(t, x). The linear
predictor can be constructed in a flexible manner, with the main constraint being that the time
effects be smooth and twice differentiable. We calculate the derivative for the linear predictor
using finite differences, such that

∂η(t, x; θ)

∂t
=
∂X(t, x)θ

∂t
=
X(t+ ǫ, x) −X(t− ǫ, x)

2ǫ
θ = XD(t, x)θ

for a derivative design matrix XD(t, x). This formulation allows for considerable flexibility in
the construction of the linear predictor, with possible interactions between time and covariates.

The default smoother for time using natural splines for log(time), which is the flexible para-
metric survival model developed by Royston and Parmar (2003) and implemented by the Stata
command stpm2 1

The models are estimated using maximum likelihood estimation (MLE) for fully paramet-
ric models, penalised MLE for penalised smoothers, maximum marginal likelihood estimation

1As a technical aside, the Stata implementation uses natural splines using a truncated power basis with
orthogonalisation, while the ns() function in R uses a matrix projection of B-splines. Note that we have imple-
mented an extended nsx() function for natural splines that includes cure splines, centering, and a compatibility
argument to use Stata stpm2’s unusual specification of quantiles.
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Link description Inverse link function G(η(t, x; θ)) Interpretation link.type

log−log exp(− exp(η(t, x; θ))) Proportional hazards "PH"

logit expit(−η(t, x; θ)) Proportional odds "PO"

probit Φ(−η(t, x; θ)) Probit "probit"

log exp(−η(t, x; θ)) Additive hazards "AH"

Aranda-Ordaz exp(− log(ψ ∗ exp(η(t, x; θ)) + 1)/ψ) Aranda-Ordaz "AO"

Table 1: Implemented link functions

(MMLE) for parametric models with clustered data, or penalised MMLE for penalised mod-
els with clustered data. The likelihoods include left truncation, right censoring and interval
censoring. For clustered data, we include Gamma frailties and normal random effects. De-
tails on these models are available from https://doi.org/10.1177/0962280216664760 and
https://doi.org/10.1002/sim.7451.

2. Syntax

The main functions for fitting the models are stpm2 for parametric models, possibly with
clustered data, and pstpm2 for penalised models, possibly with clustered data. A subset of the
syntax for stpm2 is:

stpm2(formula, data, smooth.formula = NULL,

df = 3, tvc = NULL,

link.type=c("PH","PO","probit","AH","AO"), theta.AO=0,

bhazard = NULL,

robust = FALSE, cluster = NULL, frailty = !is.null(cluster) & !robust,

RandDist=c("Gamma","LogN"),

...)

The formula has a Surv object on the left-hand-side and a linear predictor on the right-hand-
side that does not include time (for pstpm2, it also does not include penalised functions). The
time effects can be specified in several ways: the most general is using smooth.formula, where
the right-hand-side of the formula specifies functions for time that are smooth with respect to
time. This specification can include interactions between time and covariates. As an example,
smooth.formula=~nsx(log(time),df=3)+x:nsx(log(time),df=2) specifies a baseline natu-
ral spline smoother of the log of the variable time used in the Surv object with three degrees of
freedom, with an interaction between a covariate x and a natural spline smoother of log(time)
with two degrees of freedom. Other specifications of time effects have equivalent formulations:
for example, df=3 is equivalent to smooth.formula=~nsx(log(time),df=3) for the variable
time. Similarly, tvc=list(x=2) is equivalent to smooth.formula=~x:nsx(log(time),df=2).
Moreover, for a log-linear interaction between a covariate and time, use smooth.formula=~x:log(time)

A current limitation of the implementation is that the dataset data needs to be specified.

Type of link is specified with the link.type argument; this defaults to a log−log link for
proportional hazards (see Table 1). For the Aranda-Ordaz link, the fixed value of the scale
term ψ is specified using the theta.AO argument. For relative survival, a vector for the baseline
hazard can be specified using the bhazard argument. A vector for the clusters can be specified
with the cluster argument. The calculation of robust standard errors can be specified with
the robust=TRUE argument; if robust is false, then the model assumes a frailty or random
effects model, with either a default Gamma frailty (RandDist="Gamma") or a normal random
effect (RandDist="LogN", using notation from the frailtypack package).

https://doi.org/10.1177/0962280216664760
https://doi.org/10.1002/sim.7451
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The default specification for the additive hazards (link.type=="AH") models follows that for
the ahaz package on CRAN: for a model specified as

stpm2(Surv(time,event)~x, data=data, link.type="AH")

we assume natural splines for the baseline time effect and a constant hazard for a unit change
in the covariate x; an equivalent specification is

stpm2(Surv(time,event)~1, data=data, link.type="AH", smooth.formula=~nsx(time,df=3)+x:time)

where there is default smoother for time and an interaction between linear x and linear time.
The regression coefficient for x:time can be interpreted as the additive rate for a unit change
in x.

The syntax for the fitting the penalised models with pstpm2 is very similar. A subset of the
arguments are:

pstpm2(formula, data, smooth.formula = NULL,

tvc = NULL,

bhazard = NULL,

sp=NULL,

criterion=c("GCV","BIC"),

link.type=c("PH","PO","probit","AH","AO"), theta.AO=0,

robust=FALSE,

frailty=!is.null(cluster) & !robust, cluster = NULL, RandDist=c("Gamma","LogN"),

...)

The penalised smoothers are specified using the s() function from the mgcv package within
the smooth.formula argument; by default, not specifying smooth.formula will lead to

smooth.formula=~s(log(time))

Interactions with time (both penalised and unpenalised) and penalised covariate effects should
be specified using smooth.formula. Note that the df argument is not included. By default,
the smoothing parameter(s) are using the criterion argument; the smoothing parameters can
also be fixed using the sp argument. The specifications for relative survival, link type, and
clustered data follow that for the stpm2 function.

2.1. Post-estimation

One of the strengths of these models is varied post-estimation. Most of the estimators are
described in Tables 2 and 3. These estimators are typically calculated from the predict

function or from plot function calls. All of these calls require that the newdata argument is
specified (in contrast to prediction in the survival package, which defaults to the average of
each covariate).

For contrasts (e.g. survival differences, hazard ratios), the newdata argument is the “unex-
posed” group, while the exposed group is defined by either: (i) a unit change in a variable in
newdata as defined by the var argument (e.g. var="x" for variable x); or (ii) an exposed func-
tion that takes a data-frame and returns the “exposed” group (e.g. exposed=function(data) transform(data,

The latter mechanism is quite general and allows for standardised survival, standardised haz-
ards, and attributable fractions under possibly counterfactual exposures.

Standard errors for the post-estimators are calculated on a possibly transformed scale using
the delta method. For the delta method, the partial derivatives of the post-estimators are
calculated either directly or using finite differences.
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Description Formulationa type

Conditional link η(t, x; θ̂) "link"

Conditional survival S(t|x; θ̂) = G(η(t, x; θ̂)) "surv"

Conditional odds Odds(t|x; θ̂) = S(t|x; θ̂)/(1 − S(t|x; θ̂)) "odds"

Conditional failure 1 − S(t|x; θ̂) "fail"

Conditional cumulative hazard H(t|x; θ̂) = − logG(η(t, x; θ̂)) "cumhaz"

Conditional density f(t|x; θ̂) = G′(η(t, x; θ̂))∂η(t,x;θ̂)
∂t

"density"

Conditional hazard h(t|x; θ̂) = G′(η(t,x;θ̂))

G(η(t,x;θ̂))

∂η(t,x;θ̂)
∂t

"hazard"

Conditional log hazard log h(t|x; θ̂) "loghazard"

Conditional survival differences S(t|x∗; θ̂) − S(t|x; θ̂) "survdiff"

Conditional hazard differences h(t|x∗; θ̂) − h(t|x; θ̂) "hazdiff"

Conditional hazard ratios h(t|x∗; θ̂)/h(t|x; θ̂) "hr"

Conditional odds ratios Odds(t|x∗; θ̂)/Odds(t|x; θ̂) "or"

Restricted mean survival time
∫ t

0 S(u|x; θ̂)du "rmst"

Standardised survival EX∗S(t|X∗; θ̂) "meansurv"

Standardised survival differences EX∗

1
S(t|X∗

1 ; θ̂) − EX∗

0
S(t|X∗

0 ; θ̂) "meansurvdiff"

Standardised hazard hX∗(t|X∗; θ̂) = EX∗ (S(t|X∗;θ̂)h(t|X∗;θ̂))

EX∗ (S(t|X∗;θ̂))
"meanhaz"

Standardised hazard ratio hX∗

1
(t|X∗

1 ; θ̂)/hX∗

0
(t|X∗

0 θ̂) "meanhr"

Attributable fraction EX∗ S(t|X∗;θ̂)−−EXS(t|X;θ̂)

1−EXS(t|X;θ̂)
"af"

aNotation: x∗ is a covariate pattern for the “exposed” group; X∗ is a set of possibly counterfactual covariates;
EX(g(X)) is the expectation or average of g(X) across the set X; X∗

0 and X∗

1 are sets of possibly counterfactual
covariates for the “unexposed” and “exposed” sets, respectively.

Table 2: Types of conditional post-estimators

Description Formulationa type

Marginal survival SM (t|x; θ̂) = EZG(η(t, x, Z; θ̂)) "margsurv"

Marginal hazard hM (t|x; θ̂) = EZ(h(t, x, Z; θ̂)) "marghaz"

Marginal survival differences SM (t|x∗; θ̂) − SM (t|x; θ̂) "margsurvdiff"

Marginal hazard ratios hM (t|x∗; θ̂)/hM (t|x; θ̂) "marghr"

Standardised marginal survival EZEX∗S(t|X∗, Z; θ̂) "meanmargsurv"

Standardised marginal survival differences EZEX∗S(t|X∗, Z; θ̂) − EZEXS(t|X,Z; θ̂) "meansurvdiff"

Attributable fraction EZEX∗ S(t|X∗,Z;θ̂)−EZEXS(t|X,Z;θ̂)

1−EZEXS(t|X,Z;θ̂)
"af"

aNotation: Z is a random effect or frailty; x∗ is a covariate pattern for the “exposed” group; X∗ is a set of
possibly counterfactual covariates; EX(g(X)) is the expectation or average of g(X) across the set X; X∗

0 and
X∗

1 are sets of possibly counterfactual covariates for the “unexposed” and “exposed” sets, respectively.

Table 3: Types of post-estimators for clustered data

3. Examples: Independent survival analysis

We begin with some simple proportional hazard models using the brcancer dataset. We can
fit the models using very similar syntax to coxph, except that we need to specify the degrees
of freedom for the baseline smoother. Typical values for df are 3-6. For this model the model
parameters include an intercept term, time-invariant log-hazard ratios, and parameters for the
baseline smoother. The default for the baseline smoother is to use the nsx function, which is
a limited extension to the splines::ns function, with log of the time effect.
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Functionality Uncorre-
lated
param.

Uncorre-
lated
penal.

Param.
gamma
frailty

Penal.
gamma
frailty

Param.
normal
random
effects

Penal.
normal
random
effects

Multiple links 4 4 4 4 4 4

Right censoring 4 4 4 4 4 4

Left truncation 4 4 4
a

4
a

4
a

4
a

Interval censoring 4 4 2 2 4 4

Time-varying effects 4 4 4 4 4 4

Excess hazards 4 4 4 4 4 4

Conditional estimatorsb
4 4 4 4 4 4

Conditional standardisationc
4 4 4 4 4 4

Frailty/random effects variance 4 4 4 4

Marginal estimatorsd
4 4 4 4

Marginal standardisatione
4 4 2 2

Random intercept 4 4 4 4

Random slope 4 4

Multiple random effects 2 2

aGradients not currently implemented.
bEstimators including survival, survival differences, hazards, hazard ratios, hazard differences, density, odds

and odds ratios.
cStandardised estimators include mean survival, mean survival differences, mean hazards and attributable

fractions.
dMarginal estimators include survival, survival differences, hazards, hazard ratios and hazard differences.
eMarginal standardised estimators include mean survival, mean survival differences and attributable fractions.

Table 4: Functionality for the different generalised survival models
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> brcancer <- transform(brcancer, recyear=rectime / 365.24)

> fit <- stpm2(Surv(recyear,censrec==1)~hormon, data=brcancer, df=4)

> summary(fit)

Maximum likelihood estimation

Call:

stpm2(formula = Surv(recyear, censrec == 1) ~ hormon, data = brcancer,

df = 4)

Coefficients:

Estimate Std. Error z value Pr(z)

(Intercept) -6.79773 0.72642 -9.3578 < 2.2e-16 ***

hormon -0.36406 0.12491 -2.9144 0.003563 **

nsx(log(recyear), df = 4)1 5.69995 0.71676 7.9523 1.830e-15 ***

nsx(log(recyear), df = 4)2 4.85614 0.48002 10.1166 < 2.2e-16 ***

nsx(log(recyear), df = 4)3 10.13327 1.41267 7.1731 7.331e-13 ***

nsx(log(recyear), df = 4)4 4.70626 0.33016 14.2545 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 1684.412

> ## utility

> eform.coxph <- function(object) exp(cbind(coef(object),confint(object)))

> fit.cox <- coxph(Surv(recyear,censrec==1)~hormon, data=brcancer)

> rbind(cox=eform(fit.cox),

+ eform(fit)[2,,drop=FALSE])

2.5 % 97.5 %

hormon 0.6948843 0.5438441 0.8878726

hormon 0.6948520 0.5636727 0.8449352

We see that the hazard ratios are very similar to the coxph model. The model fit can also be
used to estimate a variety of parameters. For example, we can easily estimate survival and
compare with the Kaplan-Meier curves:

> plot(fit, newdata=data.frame(hormon=0), xlab="Time since diagnosis (years)")

> lines(fit, newdata=data.frame(hormon=1), lty=2)

> lines(survfit(Surv(recyear,censrec==1)~hormon, data=brcancer), col="blue", lty=1:2)

> legend("topright", c("PH hormon=0","PH hormon=1","KM hormon=0","KM hormon=1"),

+ lty=1:2, col=c("black","black","blue","blue"))
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We can also calcu-
late the hazards.

> plot(fit,newdata=data.frame(hormon=1), type="hazard",

+ xlab="Time since diagnosis (years)", ylim=c(0,0.3))

> lines(fit, newdata=data.frame(hormon=0), col=2, lty=2, type="hazard")

> legend("topright", c("hormon=1","hormon=0"),lty=1:2,col=1:2,bty="n")
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Usefully, we can also
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estimate survival differences and hazard differences. We define the survival differences using a
reference covariate pattern using the newdata argument, and then define an exposed function
which takes the newdata and transforms for the ’exposed’ covariate pattern. As an example:

> plot(fit,newdata=data.frame(hormon=0), type="hdiff",

+ exposed=function(data) transform(data, hormon=1),

+ main="hormon=1 compared with hormon=0",

+ xlab="Time since diagnosis (years)")
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> plot(fit,newdata=data.frame(hormon=0), type="sdiff",

+ exposed=function(data) transform(data, hormon=1),

+ main="hormon=1 compared with hormon=0",

+ xlab="Time since diagnosis (years)")
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4. Additive hazards

The additive hazards models takes the general form H(t|x; θ) = η(t, x; θ). As a recent change,
the default model specification for formula=Surv(t,e)~x without specifying smooth.formula

is to use H(t|x; θ) = B(t)θB + t(xT θx), where B(t) is a natural spline design matrix with
parameters θB, and with θx as the parameters for x; the hazard is then h(t|x; θ) = B′(t)θB +
xT θx.

The additive hazards have the attractive property that the effects are collapsible: adjusting for
an uncorrelated covariate will not change the estimated conditional effect. These models have
received some uptake within the causal inference field. This implementation is flexible, where
the baseline (cumulative) hazard can be modelled using splines and we can model for both
constant hazards and smooth effects over time. One possible issue with their interpretation
is whether the rates will be approximately additive for different effects. One approach to
conceptualise these models is to consider the effects as being competing risks and where we are
adding competing risks together.

For our example using the breast cancer dataset with the randomised assignment to hormonal
therapy, we find that hazard for those on hormonal therapy was -0.047 per year (95% confidence
interval: -0.066, -0.024) compared with those not on hormonal therapy.

> brcancer <- transform(brcancer, recyear=rectime / 365.24)

> fit <- stpm2(Surv(recyear,censrec==1)~hormon, data=brcancer, link.type="AH")

> summary(fit)

Maximum likelihood estimation

Call:

stpm2(formula = Surv(recyear, censrec == 1) ~ hormon, data = brcancer,
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link.type = "AH")

Coefficients:

Estimate Std. Error z value Pr(z)

nsx(recyear, df = 3)1 0.597287 0.047944 12.4580 < 2.2e-16 ***

nsx(recyear, df = 3)2 0.953083 0.067957 14.0249 < 2.2e-16 ***

nsx(recyear, df = 3)3 0.984816 0.082322 11.9630 < 2.2e-16 ***

hormon:recyear -0.046648 0.015485 -3.0124 0.002592 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 1733.751

> confint(fit)

2.5 % 97.5 %

nsx(recyear, df = 3)1 0.5320769 0.65981275

nsx(recyear, df = 3)2 0.9248954 0.99226882

nsx(recyear, df = 3)3 0.9252557 1.03932670

hormon:recyear -0.0660835 -0.02365498

> plot(fit, newdata=data.frame(hormon=0), xlab="Time on study (years)")

> lines(fit, newdata=data.frame(hormon=1), lty=2)

> lines(survfit(Surv(recyear,censrec==1)~hormon, data=brcancer), col="blue", lty=1:2)

> legend("topright", c("AH hormon=0","AH hormon=1","KM hormon=0","KM hormon=1"),

+ lty=1:2, col=c("black","black","blue","blue"))
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This can be modelled more flexibly using the smooth.formula argument. For example, we
could model for sqrt(recyear) and include a natural spline smoother for the effect of hormon:
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> fit <- stpm2(Surv(recyear,censrec==1)~1, data=brcancer, link.type="AH",

+ smooth.formula=~ns(sqrt(recyear),df=3)+hormon:ns(recyear,df=3))

> summary(fit)

Maximum likelihood estimation

Call:

stpm2(formula = Surv(recyear, censrec == 1) ~ 1, data = brcancer,

link.type = "AH", smooth.formula = ~ns(sqrt(recyear), df = 3) +

hormon:ns(recyear, df = 3))

Coefficients:

Estimate Std. Error z value Pr(z)

ns(sqrt(recyear), df = 3)1 0.641539 0.053216 12.0554 < 2.2e-16 ***

ns(sqrt(recyear), df = 3)2 0.856835 0.061732 13.8798 < 2.2e-16 ***

ns(sqrt(recyear), df = 3)3 1.005078 0.086310 11.6450 < 2.2e-16 ***

hormon:ns(recyear, df = 3)1 -0.350244 0.086176 -4.0643 4.818e-05 ***

hormon:ns(recyear, df = 3)2 -0.312674 0.095885 -3.2609 0.00111 **

hormon:ns(recyear, df = 3)3 -0.244983 0.128370 -1.9084 0.05634 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 1705.101

> plot(fit, newdata=data.frame(hormon=0), xlab="Time on study (years)")

> suppressWarnings(lines(fit, newdata=data.frame(hormon=1), lty=2))

> lines(survfit(Surv(recyear,censrec==1)~hormon, data=brcancer), col="blue", lty=1:2)

> legend("topright", c("AH hormon=0","AH hormon=1","KM hormon=0","KM hormon=1"),

+ lty=1:2, col=c("black","black","blue","blue"))
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The square root trans-
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form seems to considerably improve the fit at earlier times.

5. Mean survival

This has a useful interpretation for causal inference.

EZ(S(t|Z,X = 1)) − EZ(S(t|Z,X = 0))

fit <- stpm2(...)

predict(fit,type="meansurv",newdata=data)

6. Cure models

For cure, we use the melanoma dataset used by Andersson and colleagues for cure models with
Stata’s stpm2 (see http://www.pauldickman.com/survival/).

Initially, we merge the patient data with the all cause mortality rates.

> popmort2 <- transform(rstpm2::popmort,exitage=age,exityear=year,age=NULL,year=NULL)

> colon2 <- within(rstpm2::colon, {

+ status <- ifelse(surv_mm>120.5,1,status)

+ tm <- pmin(surv_mm,120.5)/12

+ exit <- dx+tm*365.25

+ sex <- as.numeric(sex)

+ exitage <- pmin(floor(age+tm),99)

+ exityear <- floor(yydx+tm)

+ ##year8594 <- (year8594=="Diagnosed 85-94")

+ })

> colon2 <- merge(colon2,popmort2)

>

For comparisons, we fit the relative survival model without and with cure.

> fit0 <- stpm2(Surv(tm,status %in% 2:3)~I(year8594=="Diagnosed 85-94"),

+ data=colon2,

+ bhazard=colon2$rate, df=5)

>

> summary(fit <- stpm2(Surv(tm,status %in% 2:3)~I(year8594=="Diagnosed 85-94"),

+ data=colon2,

+ bhazard=colon2$rate,

+ df=5,cure=TRUE))

Maximum likelihood estimation

Call:

stpm2(formula = Surv(tm, status %in% 2:3) ~ I(year8594 == "Diagnosed 85-94"),

data = colon2, bhazard = colon2$rate, df = 5, cure = TRUE)

Coefficients:

Estimate Std. Error z value Pr(z)

http://www.pauldickman.com/survival/
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(Intercept) -3.977312 0.054778 -72.6077 < 2.2e-16

I(year8594 == "Diagnosed 85-94")TRUE -0.155610 0.025088 -6.2026 5.554e-10

nsx(log(tm), df = 5, cure = TRUE)1 3.323179 0.053166 62.5062 < 2.2e-16

nsx(log(tm), df = 5, cure = TRUE)2 3.628617 0.053160 68.2590 < 2.2e-16

nsx(log(tm), df = 5, cure = TRUE)3 1.634845 0.022465 72.7742 < 2.2e-16

nsx(log(tm), df = 5, cure = TRUE)4 6.591994 0.111504 59.1190 < 2.2e-16

nsx(log(tm), df = 5, cure = TRUE)5 3.371798 0.042788 78.8024 < 2.2e-16

(Intercept) ***

I(year8594 == "Diagnosed 85-94")TRUE ***

nsx(log(tm), df = 5, cure = TRUE)1 ***

nsx(log(tm), df = 5, cure = TRUE)2 ***

nsx(log(tm), df = 5, cure = TRUE)3 ***

nsx(log(tm), df = 5, cure = TRUE)4 ***

nsx(log(tm), df = 5, cure = TRUE)5 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 42190.77

> predict(fit,head(colon2),se.fit=TRUE)

Estimate lower upper

1 0.8610827 0.8544629 0.8677538

2 0.7934653 0.7851995 0.8018181

3 0.6967404 0.6865295 0.7071031

4 0.8610827 0.8544629 0.8677538

5 0.8221243 0.8145059 0.8298140

6 0.8610827 0.8544629 0.8677538

>

The estimate for the year parameter from the model without cure is within three significant
figures with that in Stata. For the predictions, the Stata model gives:

+---------------------------------+

| surv surv_lci surv_uci |

|---------------------------------|

1. | .86108264 .8542898 .8675839 |

2. | .79346526 .7850106 .8016309 |

3. | .69674037 .6863196 .7068927 |

4. | .86108264 .8542898 .8675839 |

5. | .82212425 .8143227 .8296332 |

|---------------------------------|

6. | .86108264 .8542898 .8675839 |

+---------------------------------+

We can estimate the proportion of failures prior to the last event time:

> newdata.eof <- data.frame(year8594 = unique(colon2$year8594),

+ tm=10)

> predict(fit0, newdata.eof, type="fail", se.fit=TRUE)
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Estimate lower upper

1 0.6060904 0.5910403 0.6205867

2 0.5512430 0.5364659 0.5655489

> predict(fit, newdata.eof, type="fail", se.fit=TRUE)

Estimate lower upper

1 0.5913310 0.5769385 0.6052340

2 0.5350825 0.5214886 0.5482902

> predict(fit, newdata.eof, type="haz", se.fit=TRUE)

Estimate lower upper

1 1.254143e-06 1.081724e-06 1.426561e-06

2 1.073411e-06 9.235370e-07 1.223286e-06

>

We can plot the predicted survival estimates:

> tms=seq(0,10,length=301)[-1]

> plot(fit0,newdata=data.frame(year8594 = "Diagnosed 85-94", tm=tms), ylim=0:1,

+ xlab="Time since diagnosis (years)", ylab="Relative survival")

> plot(fit0,newdata=data.frame(year8594 = "Diagnosed 75-84",tm=tms),

+ add=TRUE,line.col="red",rug=FALSE)

> ## warnings: Predicted hazards less than zero for cure

> plot(fit,newdata=data.frame(year8594 = "Diagnosed 85-94",tm=tms),

+ add=TRUE,ci=FALSE,lty=2,rug=FALSE)

> plot(fit,newdata=data.frame(year8594="Diagnosed 75-84",tm=tms),

+ add=TRUE,rug=FALSE,line.col="red",ci=FALSE,lty=2)

> legend("topright",c("85-94 without cure","75-84 without cure",

+ "85-94 with cure","75-84 with cure"),

+ col=c(1,2,1,2), lty=c(1,1,2,2), bty="n")

>
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And the hazard curves:

> plot(fit0,newdata=data.frame(year8594 = "Diagnosed 85-94", tm=tms),

+ ylim=c(0,0.5), type="hazard",

+ xlab="Time since diagnosis (years)",ylab="Excess hazard")

> plot(fit0,newdata=data.frame(year8594 = "Diagnosed 75-84", tm=tms),

+ type="hazard",

+ add=TRUE,line.col="red",rug=FALSE)

> plot(fit,newdata=data.frame(year8594 = "Diagnosed 85-94", tm=tms),

+ type="hazard",

+ add=TRUE,ci=FALSE,lty=2,rug=FALSE)

> plot(fit,newdata=data.frame(year8594="Diagnosed 75-84", tm=tms),

+ type="hazard",

+ add=TRUE,rug=FALSE,line.col="red",ci=FALSE,lty=2)

> legend("topright",c("85-94 without cure","75-84 without cure",

+ "85-94 with cure","75-84 with cure"),

+ col=c(1,2,1,2), lty=c(1,1,2,2), bty="n")

>



16 Introduction to the rstpm2 package

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Time since diagnosis (years)

E
x
c
e
s
s
 h

a
z
a
rd

85−94 without cure

75−84 without cure

85−94 with cure

75−84 with cure

The current implementation does not provide a test for differences in cure. We can code this
using the predictnl function:

> newdata.eof <- data.frame(year8594 = unique(colon2$year8594),

+ tm=10)

> test <- predictnl(fit, function(object,newdata=NULL) {

+ lp1 <- predict(object, newdata.eof[1,], type="link")

+ lp2 <- predict(object, newdata.eof[2,], type="link")

+ lp1-lp2

+ })

> with(test, c(fit=fit,

+ se.fit=se.fit,

+ statistic=fit/se.fit,

+ p=2*pnorm(abs(fit/se.fit), lower.tail=FALSE)))

fit se.fit statistic p

1.556104e-01 2.508800e-02 6.202583e+00 5.554387e-10

>

7. Potential limitations and next steps

• TODO: investigate whether we can calculateXD(t, x) more accurately using the numDeriv

package.

• TODO: Extend the generalised survival models to use multiple random effects.
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• TODO: Extend the generalised survival models to use automatic differentiation.
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