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WALKING THROUGH THE BLACK BOXES OF STATISTICAL BREEDING 

Abstract: Intelligent decision making relies on our ability to extract useful information from 
data to help us achieve our goals more efficiently. Many plant breeders and geneticists 
perform statistical analyses without understanding the underlying assumptions of the 
methods or their strengths and pitfalls. In other words, they treat these statistical methods 
(software and programs) like black boxes. Black boxes represent complex pieces of 
machinery with contents that are not fully understood by the user. The user sees the inputs 
and outputs without knowing how the outputs are generated. By providing a general 
background on statistical methodologies, this review aims (1) to introduce basic concepts of 
machine learning and its applications to plant breeding; (2) to link classical selection theory 
to current statistical approaches; (3) to show how to solve mixed models and extend their 
application to pedigree-based and genomic-based prediction; and (4) to clarify how the 
algorithms of genome-wide association studies work, including their assumptions and 
limitations. 

Keywords: Gaussian Process; Gibbs sampling; Machine Learning; Mixed Model; Kernel 
methods. 

Introduction 

Inferences and models can be either empirical or experimental in design. Empirical methods 
work best with well-characterized phenomena for which the solution can be found 
analytically, whereas making inferences from data and using algorithms to identify patterns 
in the data requires experimental methods. The science that studies these algorithms is 
known as machine learning. Machine learning also describes the area of artificial intelligence 
dedicated to building and studying algorithms that are capable of learning from data, 
endeavoring to find an optimal solution that minimizes a given loss. This makes these 
machine learning algorithms much more flexible than logical algorithms. 

Genetics takes great advantage of two particular branches of machine learning, so-called 
supervised and unsupervised learning (Libbrecht and Noble 2015). Supervised learning 
helps solve problems for which there are both explanatory and response variables. This 
commonly applies to prediction, selection, and classification in quantitative genetics. 
Unsupervised learning is used when no response variable exists, for problems like clustering 
genotypes and finding admixture in populations. 

Due to the quantitative nature of most traits of interest, the most-employed type of 
supervised learning algorithm in plant and animal breeding is Gaussian process (GP) 
(Rasmussen 2004, Lynch and Walsh 1998). Fisher's infinitesimal model, which forms the 
basis of the principles of breeding, states that an infinite number of stochastic processes 
(referring to genes) control the observed phenotype (Orr 2005, Farrall 2004), which 
converges to a Gaussian distribution according to the central limit theorem. GP represents 
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the basis of selection theory, breeding values, and association studies (Sorensen and Gianola 
2002). 

In supervised learning procedures, prediction is important to improve quantitative traits 
and classification is important for decision making and the genetic improvement of 
categorical traits. Breeding programs develop specific products to meet the needs of a 
variety of markets (Acquaah 2009, Cleveland and Soleri 2002) and classification models 
determine the boundaries of the qualities that define these market niches (Lim 1997). In 
soybeans, adaptation zones define which maturity group (MG) can be cultivated in each 
region based on the latitude, soil, and climate; in other words, they determine the target 
environment for breeders (Dardanelli et al. 2006). Zhang et al. (2007) suggest that soybean 
adaptation zones have misclassification issues because the growing zone for MG IV to MG VI 
is much larger than originally thought. 

The main goal of this paper is to reveal the inner workings of the black boxes of statistical 
analysis in plant breeding by explaining the theory and applications of statistical genetics, 
focusing on widely applied mixed linear models designed for breeding. 

Gaussian Process 

Quantitative traits all follow some sort of distribution pattern. For example, categorical traits 
with two classes follow a binomial distribution, as with the color of flowers in soybeans, 
which are either white or purple. Traits like grain yield and plant height are continuous and 
often follow a normal distribution. The heritability of traits can assume any value between 
zero and one, and thus a beta distribution best characterizes this process. Variance 
components have positive values on a continuous scale and, therefore, they can be described 
in terms of a chi-squared distribution. 

Since most quantitative genetic theory assumes normality, it is particularly important to 
know how to handle a normal distribution in plant and animal breeding. The normal 
distribution has a sigmoidal nature, the expectation of any normal random variable X is its 
mean (μ), and the deviation from the expectation is the variance (σ2). Once the parameters 
mean and variance are known, a probability density function (PDF, ϕ) can be used to infer 
the probability of observing any given event, such as the probability of finding a plant in a 
given population that yields x bu/ac. If this probability is computed for all individuals in the 
population, the product of these probabilities is the likelihood of the data for that particular 
mean and variance. 

Calculating the probability of finding plants with yield equal to or lower than x requires a 
cumulative density function (CDF, Φ), which is the integral of the PDF. Figure 1 shows an 
example of these calculations for Gaussian traits. 
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Fig. 1 Probabilistic description of the distribution of yield. 

In all datasets, every observation contains some information about unknown parameters. 
Consequently, more data provides more accurate and precise estimates of mean and 
variance. There are a variety of methods to estimate the parameters of a distribution. These 
include likelihood methods and Bayesian procedures. Likelihood methods search for the 
unknown parameters that maximize the likelihood (L) of the observed data, using the PDF 
to define the joint probability of the data and parameters p(𝐗, 𝛉), where 𝐗 represents the 
observed data and the theta (𝛉) represents the unknown parameters. For a simple normal 
distribution, 𝛉 = (μ, σ2). Bayesian procedures estimate parameters using probability 
distributions assigned to the unknown parameters, referred to as priors, in addition to the 
likelihood equation. 

Infinitesimal Model and Selection Theory 

For a normally distributed trait in a population, directional selection occurs when a breeder 
induces the mean to move in the desired direction over generations (Fig. 2). To achieve that, 
the breeder imposes a selection threshold. Individuals above this threshold are selected as 
the progenitors of the next generation under the assumption that those individuals provide 
better genetic properties (Recker et al. 2014). 

 

Fig. 2 Illustration of directional selection increasing the population mean over generations. 
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The genetic properties that affect the phenotype involve alleles with positive and negative 
effect. Alleles are versions of genes that represent the genetic effect on a given trait. Alleles 
can interact within the locus, across loci, and by external stimuli; these phenomena are 
known respectively as gene action, epistasis, and expression. The number of alleles carried 
by a locus depends on the ploidy level of the individual. Here we focus on diploid organisms, 
assuming two alleles at each locus. 

The selection intensity (i) represents the number of standard deviations from the mean used 
as the cutoff for the population; in other words, the truncation point above which selected 
individuals remain in the breeding population as progenitors. This population of selected 
individuals represents a one-sided, truncated normal distribution. Computing the 
expectation of the truncated distribution (μ∗) uses the mean (μ) and standard deviation (σ) 
of the original distribution and, of course, the truncation point (t = μ̂ + iσ̂) (Wricke and 
Weber 1986), then estimates the expected mean of the selected population as: 

E[μ∗|t] = μ + σ [
ϕ(i)

1 − Φ(i)
] 

where ϕ, Φ, and i respectively represent the normal PDF, CDF, and selection intensity as 
shown in Figure 3. 

 

Fig. 3 Scheme of directional selection: Histogram of yield with mean μ̂ = 40 and standard 
deviation σ̂ = 5, expected mean in the next generation μ̂∗ = 47.6 and truncation point t = 45 
for selection intensity i = 1. Shaded bars represent the progenitors of the following 
generation. 

 

The next generation will not have the expected mean μ∗, since the phenotype is not 
exclusively due to genetic factors (Nyquist and Baker 1991). Despite the fact that alleles 
interact in a very complex fashion, the observed phenotype is an expression of genetic 
factors interacting with environmental stimuli (also known as genotype-by-environment 
interaction). Hence the realized heritability (hr

2) is defined as the ratio between the observed 
mean of the new generation (μ(t+1)) and its expectation (μ∗) based on the selected 
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progenitors. Realized heritability is not constant across generations. Rather, the selection 
pressure applied over time in a finite population imposes a major trade-off between the 
response to selection and genetic gains (Fig. 4). 

 

Fig. 4 Illustration of the consequences of high and low selection intensity on genetic gains 
over generations of selection for a given quantitative trait. 

 

Fisher (1918) proposed that, for a given quantitative trait, there are an infinite number of 
genes with minor additive contributions that affect the phenotype, the so-called infinitesimal 
model. In selection theory, the general goal of breeders is to increase the frequency of 
desirable alleles in a population over time, under the assumption that the allele effect works 
in an additive fashion. Exceptions to this method include the gains associated with heterosis 
as exploited by programs that develop hybrids (like maize), or by clonally propagated 
species (such as potato). According to Fisher's model, the outcome of each gene is additive 
and is measured by the effect of an allelic substitution. This model is defined as a Gaussian 
process arising from normally distributed elements of an infinite-dimensional space (also 
known as Hilbert spaces), where each infinitely small fraction of the genome represents a 
parameter or dimension. 

When applied to finite breeding populations, Fisher's model encounters population genetic 
issues. For example, finite populations can maintain only a limited number of alleles (Kimura 
and Crow 1964). Furthermore, multiple evolutionary forces will be acting simultaneously, 
such as various types of selection and long-term random genetic drift, and this triggers 
continuous bottlenecks (Wright 1930). This extension of the infinitesimal model for finite 
populations is called the Wright-Fisher model. The breeding populations of most crops 
follow the definition of a stochastic Fisher-Wright process (Imhof and Nowak 2006): finite 
populations with non-overlapping generations, diploid behavior, and ongoing selection. 

Crow and Kimura (1970) pointed out that fluctuations that Fisher had defined as noise, 
Sewall Wright defined as (a slow) evolution. The stability of genetic gain over time relies on 
selection intensity, mutation rate, and both the total (𝑛) and effective (Ne) population size. 
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Effective population size is a major limiting factor for efficient selection in plant breeding 
programs, with serious implications for traditional and genomic-based selection techniques 
(MacLeod et al. 2014). According to Zeng and Hill (1986), the optimal selection intensity 
occurs when new haplotypes arise at the same frequency with which alleles undergo fixation, 
such that the population does not exhaust its diversity. 

Self-pollinated species are more likely to run out of genetic resources due to their 
reproductive nature. For example, the effective population size of soybeans in the United 
States is equivalent to 27 lines (St. Martin 1982) and, not surprisingly, soybean production 
has nearly reached a yield plateau (Egli 2008a) that is approximately half of the field 
potential (Specht et al. 1999) due to these limited genetic resources (Egli 2008b). Yet, new 
breeding tools in the "omics generation" may improve gains in this currently limited scenario 
(Rincker et al. 2014). 

Variance Decomposition and Parsimony 

The phenotype of a quantitative trait is in a non-deterministic state. It requires a stochastic 
model to approximate an infinite population; in other words, a model with random variables 
defining the variance components of interest. The first model to express variations in 
phenotype was Fisher’s infinitesimal model, in which the phenotypic variance (σy

2) is a 

function of genetic (σG
2 ) and environmental variances (σE

2), so that σP
2 = σG

2 + σE
2 . 

Variance component analysis (VCA) is very common in plant breeding and agronomic 
studies. Two of the most common methods of variance decomposition are the analysis of 
variance (ANOVA) and restricted maximum likelihood (REML) calculations. Studying the 
variance due to genotype and environment in soybeans, Carvalho et al. (2008) suggested 
that both methods would provide similar variance components under a balanced 
experimental design but, under unbalanced conditions, ANOVA methods become biased 
while REML still provides consistent variance components and the best linear unbiased 
predictions (BLUPs) (Henderson 1975). This makes REML procedures the most deployed 
method of VCA in breeding studies, with BLUPs used for variety selection (Piepho et al. 
2008). 

In the infinitesimal model, all variation not explained by genetics is due to environment. In 
plant breeding, replications allow us to measure the variation due to environment, enabling 
further decomposition of the variance of the phenotype. Thereby it is possible, for example, 
to estimate the interaction between genotype and environment (σG×E

2 ) and isolate the pure 
error (σε

2). Each term can undergo further decomposition. For example, environmental 
variance can include year (σY

2), location (σL
2), and management (σM

2 ), a component that 
reflects the controllable environment. Yan and Rajcan (2003) conducted a genotype-by-
environment analysis in soybeans, decomposing σE

2  into σY
2  and σL

2 with all possible 
interaction terms (ie. σG×Y×L

2 , σG×L
2 , σG×Y

2 ), in which they concluded that most variance 
associated with environment is due to year rather than location. 

If genotypic information is provided by genotyping with co-dominant molecular markers, 
such as single nucleotide polymorphism (SNP), then breeders and geneticists are able to 
subdivide genetic variance terms as well (Xu 2013). The first decomposition of genetic 
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variation yields the additive genetic variance (σA
2 ), the dominance genetic variance (σD

2 ), and 
epistasis (σI

2). Epistasis represents the interaction among loci, including: additive-by-
additive (σAA

2 ), additive-by-dominant (σAD
2 ), and dominant-by-dominant (σDD

2 ). 

At this point, it is very important to introduce two concepts: narrow- (h2) and broad-sense 
(H) heritability (Acquaah 2009). In statistics, heritability is known as the intra-class 
correlation coefficient, which refers to the amount of total variation due to one of its 
components. Broad-sense heritability is the amount of variation due to genetics (H =
σG

2 /σP
2), also known as repeatability (Nyquist and Baker 1991). It illustrates ‘nature-versus-

nurture,’ distinguishing between variation due to genetics and that due to environment. 
Narrow-sense heritability is the portion of phenotypic variance due to the additive genetic 
variance only (h2 = σA

2 /σP
2), which is associated with the variance transmitted over 

generations. The latter is important for breeding quantitative traits because it describes how 
accurately breeding values correspond to the phenotype. 

Estimation of the genetic variance component starts by defining the relationship among 
individuals using a kernel matrix (aka. Kinship matrix). This matrix is a symmetric, square 
matrix where each cell indicates the relationship between each pair of individuals. The 
matrix is then used to solve the Henderson's equation (Henderson 1984), a mixed model 
framework that accommodates terms with independent and non-independent treatments 
and observations, with the interdependence among observations expressed by the kernel 
matrix. 

Analysis uses multiple types of kernel matrices (K) to represent the relationship among 
random effects (ie. genotypes). The simplest scenario assumes that random effects are 
independent, in which case the kernel is then expressed by an identity matrix (𝐊 = 𝐈). With 
regard to non-independent effects, the best known kernels include the pedigree relationship 
matrix kernel (Wright's 1922), the genomic relationship matrix (VanRaden 2008), and 
spatial kernels (Piepho 2009). 

Kernels used for genomic analysis are built from the genotypic information matrix (M). This 
matrix has dimensions 𝑞 × 𝑚, where each row (q) represents a genotype and each column 
(𝑚) represents a molecular marker. Thus, each cell in this matrix represents the locus of a 
given individual, and each locus is numerically coded to represent {AA, Aa, aa}. Many 
genomic analysis require specific allele coding for correct interpretation of the results 
(Strandén and Christensen 2011). For example, the G2A model (Zheng et al. 2005) proposes 
the centralized allele coding {2q, 1-2p, -2p} to preserve the orthogonality between main and 
epistatic effects. Table 1 presents some classical set ups for allele coding. 

Table 1 Common genomic kernels computed from genomic data, where 𝐌 is the genotypic 
information matrix and 𝐄 is the Euclidean distance matrix. 

Nature of the kernel Coding {AA, Aa, aa} Normalization (α) Solution 

Additive (Linear) {-1, 0, 1} 𝑞 tr(𝐌𝐌′)−1 α𝐌𝐌′ 
Dominance (Linear) {0, 1, 0} 𝑞 tr(𝐌𝐌′)−1 α𝐌𝐌′ 
Add x Add (Linear) {-1, 0, 1} 𝑞 tr(𝐌𝐌′#𝐌𝐌′)−1 α(𝐌𝐌′#𝐌𝐌′) 

Gaussian (Non-linear) {-1, 0, 1} or {0, 1, 2} Median(𝐄2)−1  exp(−α𝐄2) 
Exponential (Non-linear) {-1, 0, 1} or {0, 1, 2} Median(𝐄)−1  exp(−α𝐄) 
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A same model can include multiple genetic terms in order to decompose the total genetic 
variance using multiple kernels (additivity, dominance, and epistasis). Although it is possible 
to add as much complexity to the variance decomposition model as desired (Akdemir and 
Jannink 2015), researchers must take into account two statistical principles: the hierarchical 
principle and the sparsity principle. The hierarchical principle states that lower-order terms 
are generally more important than higher-order ones. In other words, epistasis may 
contribute little to the total genetic variance and at a high computational cost. The sparsity 
principle involves statistical parsimony, in which few terms explain most variation. Sparsity 
plays an important role in genomic analysis because in practical terms not all of the genome 
contributes to all traits, but rather a reduced number of regions contribute most. These 
regions are known as quantitative trait loci (QTL). 

Lander and Botstein (1989) proposed that the phenotypic variance of quantitative traits was 
not a single normal distribution, but a Gaussian process consisting of a mixture of 
distributions associated with the combination of multiple QTL (Fig. 5). 

 

Fig. 5 Histogram of yield (left) illustrating the distribution of a quantitative trait as a single 
normal distribution (center) compared to a mixture of normal distributions (right) as 
proposed by Lander and Botstein (1989). 

 

Identifying and locating QTL is extremely important in quantitative genetics. QTL discovery 
works by comparing the likelihood of two models (Yan et al. 2014). The first is the null model 
(𝑙0), which contains only the polygenic term defined by an additive kernel (Xu 2013, de los 
Campos et al. 2010). The second is the full model (𝑙1), that includes the candidate genomic 
fraction (marker or region) in addition to the polygenic term. The statistical test for this 
analysis is the likelihood ratio test (LRT), simply calculated as the ratio 𝑙0: 𝑙1. The results can 
be expressed in terms of the LRT itself, as p-values (LRT~χν=1

2 ), or as a logarithm of odds 
(LOD score) by dividing LRT by 4.61 (Lynch and Walsh 1998). 

QTL mapping occurs in both experimental and random populations. There are two major 
methods to find QTL: linkage mapping and association mapping. Linkage mapping is a 
method of tracking QTL as a map function of known genetic distance between markers. It is 
commonly performed in experimental populations designed for this purpose, with no need 
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for the polygenic term in either the full or reduced models. Association mapping is a test of 
single markers across the whole genome for experimental or random populations that 
provides extra scrutiny for the existence of subpopulations. 

In both methods, undetected regions will bias the number of QTL downward, and the 
average effect of QTL upward due to a phenomenon known as the Beavis effect. This occurs 
because the precision and accuracy of finding real QTL relies extensively on the population 
size (Beavis 1998) and implicit assumptions associated with the population type (Xu 2003a, 
Nyquist and Baker 1991). 

Breeding Values and Variance Components 

Only a small fraction of lines developed in breeding programs are released as commercial 
lines, with selection based on the top-performing genotypes. However there is always more 
than one trait of interest, so selection can take several forms: one trait at a time (ie. tandem 
selection), multiple quantitative traits simultaneously (ie. independent culling), or on the 
combination of traits (ie. index selection). In addition, there are three metrics to evaluate a 
quantitative trait: phenotypic value, genetic value, and breeding value. While selection based 
on phenotypic values uses the phenotypes in a straightforward manner, estimation of 
genetic and breeding values requires the implementation of mixed models. 

Mixed model theory is the life’s work of the geneticist Charles Henderson, who was 
motivated to implement and apply Wright's pedigree kernel matrix to breeding and 
selection. This theory is the foundation of modern genomic prediction methods. A linear 
model represents a mixed effect when the response variable (𝐲) is a function of a fixed effect 
term (𝐗𝐛) and one or more random effects (𝐙𝐮) other than the residuals (𝐞). The common 
notation of a mixed model is given by: 

𝐲 = 𝐗𝐛 + 𝐙𝐮 + 𝐞 
𝐮~N(0, 𝐊σa

2) 
𝐞~N(0, 𝐑σe

2) 

where 𝐗 and 𝐙 are the design matrices of dimensions 𝑛 × 𝑝 and 𝑛 × 𝑞, for fixed and random 
effects respectively. For these matrices, 𝑛 represents the number observations, 𝑝 the number 
of fixed effect parameters (blocks, covariates, etc.), and 𝑞 the number of random effect 
parameters, in this case the number of genotypes. The regression coefficients of fixed and 
random effects 𝐛 and 𝐮 are vectors of length 𝑝 and 𝑞. Random term and residual variances 
are notated as σa

2 and σe
2. Matrices 𝐊 and 𝐑 are the kernels of random effects (𝑞 × 𝑞) and 

residuals (𝑛 × 𝑛) used to define the relationship among random effects (ie. genotypes) and 
observations, respectively. For this model, the covariance of y is expressed by the covariance 
matrix (𝐕), as a function of the random and residual terms (𝐕 = 𝐙𝐊𝐙′σa

2 + 𝐑σe
2). An example 

of the design matrix appears in the appendix. 

A common assumption of linear models is to consider residuals to be independent (𝐑 = 𝐈). 
Yet, the residual relationship matrix can provide a powerful way of dealing with correlated 
residuals (ie. heteroscedasticity). For example, it is possible to use the 𝐑 matrix to inform 
the model of the pairwise distance among field plots (ie. kriging). This allows us to 
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acknowledge that there might be certain spots in the field where field plots can perform 
better than others without necessarily knowing where these spots are. 

A remarkable property of random effects is the shrinkage that regularizes the regression 
coefficients based on their contribution to the model. The regularization parameter is 
notated by lambda (λ), which is analytically defined as the ratio between residual variance 
and random term variance (λ = σe

2/σa
2), such that the shrinkage of the genetic term is 

inversely proportional to the heritability of the trait. Thus ℎ2 = (1 + λ)−1. 

The simplest case of a mixed model with a non-independent random term is the so-called 
animal model. The animal model is Henderson’s implementation of Fisher's variance 
decomposition that attributes everything that is not due to the genetic term to error, since it 
is possible to include controllable environmental factors in the model as fixed effects. The 
animal model is the basis of most methods of genomic-based analysis, including genomic 
prediction and association studies. To facilitate the solution, the simplified mixed model 
equation (MME) of the animal model assumes that residuals are uncorrelated (𝐑 = 𝐈), 
reducing it to the 𝐂𝐠 = 𝐫 problem, as follows: 

[𝐗′𝐗 𝐙′𝐗
𝐗′𝐙 𝐙′𝐙 + λ𝐊−𝟏] [

𝐛
𝐮

] = [
𝐗′𝐲

𝐙′𝐲
] ∴ [

𝐂𝟏𝟏 𝐂𝟏𝟐

𝐂𝟐𝟏 𝐂𝟐𝟐
] [

𝐠𝟏

𝐠𝟐
] = [

𝐫𝟏

𝐫𝟐
] ∴ 𝐂𝐠 = 𝐫 

where 𝐂 is a square matrix comprising the cross-product of the design matrices and kernel 
matrix, 𝐠 is a vector of regression coefficients of fixed and random effects, and 𝐫 represents 
the cross-product of design matrices and response variable. 

In this setup, the kernel matrix 𝐊 will define what type of value the model yields for selection 
purposes. If 𝐊 is an identity matrix then 𝐮 is a vector of genetic values, for which it is 
particularly important to have replicated observations. If 𝐊 is a pedigree or genomic 
relationship matrix, then 𝐮 is a vector of breeding values where individuals that share the 
genetic basis defined in 𝐊 work as partial replications. If 𝐊 is a non-linear kernel (eg. 
Gaussian) then 𝐮 is a vector of non-linear genomic values, because the Gaussian kernel may 
account for some level of epistasis. In order to avoid conflicting terminology, from this point 
the term “breeding value” denotes the random effect coefficients 𝐮. 

If σe
2 and σa

2 were known beforehand, finding the coefficients 𝐛 and 𝐮 would not be a problem 
because the 𝐂𝐠 = 𝐫 can be solved via least square regression. However it is necessary to 
estimate coefficients and variance components from the data simultaneously. The 
parameters estimated by Henderson's method are described as “Empirical Bayes” because 
they estimate the prior information necessary to solve the model (ie. σe

2 and σa
2) based on 

the data (Zhou and Stephens 2014, Gianola et al. 1986). 

Sorensen and Gianola (2002) showed the Bayesian nature of the mixed model by expressing 
𝐗′𝐗 as an additional random effect (𝐗′𝐗 + λ𝐊−1) that does not undergo regularization (ie. 
shrinkage) due to the prior knowledge of σb

2 = ∞, which results in a null shrinkage (λ =
σe

2/σb
2 = σe

2/∞ = 0) with independent terms (λ𝐊−1 = 0 × 𝐊−1 = 0). Sorensen and Gianola 
(2002) make a clear distinction between the probabilistic natures of the frequentist and 
Bayesian mixed models: Under the frequentist framework, the probabilistic model is defined 
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as 𝐲~N(𝐗𝐛, 𝐙𝐊𝐙σa
2 + 𝐈σe

2), whereas under the Bayesian framework it becomes 𝐲~N(𝐗𝐛 +
𝐙𝐮, 𝐈σe

2). 

Unless variance components are known a priori, the remaining question is: how can one find 
a λ parameter that provides a robust estimation of breeding values? The main strategy of 
supervised machine learning is the use of cross-validation to find the value of λ that provides 
the best prediction. Cross validation works by dividing the dataset into 𝑘 subsets and testing 
the predictability for a wide range of values of λ. The predictability can be computed as the 
mean square prediction error (lower is better) or the correlation between the predicted and 
observed (higher is better). A three-fold cross validation to find λ would work as follows: 

1. Divide the observed data into three groups (A, B, C); 

2. Propose a value for λ; 

3. Use AB to predict C; AC to predict B; and BC to predict A; 

4. Compute the predictability for this given value of λ; 

5. Repeat the previous two steps for a wide range of values of λ; 

6. Use the value of λ that provides the highest predictability. 

The λ parameter controls the complexity of the model and, consequently, the known tradeoff 
between bias and variance. Increases in λ add bias that reduces the variance, which often 
creates a more consistent prediction. As an alternative to cross-validation, it is still possible 
to estimate the λ value from the variance components (λ = σe

2/σa
2) to provide the best linear 

unbiased prediction (BLUP). 

There are two popular methods for estimating variance components in kernel-based mixed 
models to obtain a robust value of λ as σe

2/σa
2 (Robinson 1991): restricted maximum 

likelihood (REML) (Patterson and Thompson 1971) and Bayesian Gibbs sampling (BGS) 
(Wang et al. 1993). We will also present an alternative involving re-parameterization using 
reproducing kernel Hilbert spaces (Gianola et al. 2006). After presenting kernel-based 
models, the next section will also present some methods that do not require explicit kernels 
to provide an equivalent BLUP solution. 

REML Algorithm 

REML is probably the most employed method for general-purpose estimation of variance 
components and regression coefficients. It is relatively unbiased when the number of 
observations is greater than the number of parameters (𝑛 > 𝑝) and much work has gone 
into making computationally feasible algorithms (Zhou and Stephens 2014, Kang et al. 2008, 
Lee and van der Werf 2016, Misztal et al. 2002). 

There are a variety of algorithms to compute the REML variance components. This is a 
numerical optimization problem in which the main goal is to find the variance components 
and regression coefficients that optimize the restricted maximum likelihood of the data. The 
restricted (log) likelihood function of the data as a function of the variance components can 
be expressed as: 

L(σa
2, σe

2) = −
1

2
|𝐕| −

1

2
|𝐗′𝐕−𝟏𝐗| −

1

2
(𝐲 − 𝐗𝐛)′𝐕−1(𝐲 − 𝐗𝐛) 
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where 𝐕 = 𝐙𝐊𝐙′σa
2 + 𝐑σe

2 (Searle 1979). Popular algorithms include the derivation-free 
algorithm (Meyer 1989); first-derivative methods, such as expectation-maximization (EM) 
(Dempster et al. 1977); and second-derivative methods, such as Average Information (AI) 
(Gilmour et al. 1995). First- and second-derivative methods have an iterative-analytical 
solution, but can also be solved numerically via Monte Carlo (Matilainen et al. 2013). 

The derivation-free approach implemented by Meyer (1989) finds the variance components 
that maximize the likelihood functions presented above through a heuristic method of 
optimization called the simplex method (Nelder and Mead 1965), which is similar to a ‘guess 
and check’ approach. The classical version is inefficient for complex models with large data, 
but Kang et al. (2008) reintroduced an alternative version that searches directly for the λ 
that minimizes the negative log likelihood, known as the efficient mixed model association 
(EMMA) algorithm. 

Henderson (1984) presented the expectation maximization (EM-REML) algorithm based on 
the EM-ML algorithm of Dempster et al. (1977), using the first derivative of the restricted 
log-likelihood as simplified by Searle (1979). The principle of EM is to iteratively update 
residuals, variances, and coefficients as follows: 

1. Propose some starting value for σe
2 and σa

2; 

2. Solve the mixed model to find the coefficients: 𝐠 = 𝐂−𝟏𝐫; 

3. Compute the residuals: 𝐞 = 𝐲 − 𝐖𝐠; 

4. Update the residual variance: σe
2 = n−1[𝐞′𝐞 + tr(𝐖𝐂−𝟏𝐖′)σe

2]; 

5. Update the random variance: σa
2 = 𝑞−1[𝐮′𝐀−𝟏𝐮 + tr(𝐀−𝟏𝐂𝟐𝟐)σe

2]; 

6. Repeat steps 2-5 until the variance components converge; 

where 𝐂𝟐𝟐 represents the 𝐂𝟐𝟐 term from 𝐂−𝟏, and 𝐖 = [𝐗, 𝐙]. EM is a very consistent 
algorithm, but it converges slowly and it requires the inversion of 𝐂 every round to find the 
regression coefficients. Some numerical strategies can help with solving the MME, such as 
Cholesky decomposition and Gauss-Seidel algorithm (Legarra and Misztal 2008). 

Newton-type methods work by using the gradient obtained by the second-derivatives to 
update both variance components at the same time. The gradient is generated by a Taylor 
series converging in the direction in which the parameters minimize the negative log-
likelihood (Hofer 1998). Among these methods, the average-information (AI-REML) 
proposed by Gilmour et al. (1995) is the most common because it creates the gradient based 
on the average of the expected and observed information. The iterative algorithm AI-REML 
used to find variance components in the animal model is: 

[
σa

2

σe
2]

t+1

= [
σa

2

σe
2]

t

+ 0.5 [
tr(𝐲′𝐏𝐙𝐙′𝐏𝐙𝐙′𝐏𝐲)σe

2 tr(𝐲′𝐏𝐙𝐙′𝐏𝐲)σe
4

tr(𝐲′𝐏𝐙𝐙′𝐏)σe
4 tr(𝐲′𝐏𝐲)σe

6 ]

−1

[
tr(𝐏𝐙𝐙′) − 𝐲′𝐏𝐙𝐙′𝐏𝐲

tr(𝐏) − 𝐲′𝐏𝐏𝐲
] 

where the parametrization matrix 𝐏 is defined as 𝐏 = 𝐕−𝟏 − 𝐕−𝟏𝐗(𝐗′𝐕−𝟏𝐗)−𝟏𝐗𝐕−𝟏. The AI-
REML is computationally demanding, but it converges within a few iterations to a consistent 
result. This algorithm has been widely implemented for breeding applications (Gilmour et 
al. 2009, Meyer 2007, Misztal et al. 2002). The most time-consuming part of this method is 
updating the 𝐏 matrix because it requires inversion of the covariance matrix. 
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It is possible to substantially reduce this computational burden through the 
Eigendecomposition of 𝐙𝐊𝐙 to speed up the inversion of 𝐕 (Kang et al. 2008, Lippert et al. 
2011). Any square matrix can be Eigendecomposed into eigenvectors (𝐔) and eigenvalues 
(𝐃), thus 𝐙𝐊𝐙 = 𝐔𝐃𝐔′. Thence, one can obtain 𝐕−1 = 𝐔[𝐃 × (σa

2/σe
2) + 1]−1𝐔′σe

−2 and the 
only inversion required is the elements of a diagonal matrix. 

BGS Algorithm 

Bayesian Gibbs sampling (BGS) is an algorithm proposed by Gelman and Gelman (1984) that 
works similarly to the EM algorithm, updating one parameter at a time. Parameters are 
stored in each cycle, and averaged out at the end. BGS algorithms commonly discard cycles 
prior to the stationary state (ie. entropy) to provide stability to final estimates (so-called 
“burn in”). The distribution of the parameters from several cycles are called posterior 
distribution, often notated as 𝑝(θ|X). In this context, the parameters we are looking for 
are θ = {𝐛, 𝐮, σa

2 , σa
2} (given the data we have), which refers to our matrices, thus X =

{𝐲, 𝐗, 𝐙, 𝐊}. 

The advantage of Bayesian methods is that they initially incorporate some of your 
expectations about the data, such as the probability distribution of parameters. Wang et al. 
(1993) proposed the first Gibbs sampler algorithm to solve mixed models in the breeding 
context, where coefficients follow a normal distribution (as they do in REML) and variance 
components follow a scaled inverse chi-squared distribution (χν,S

−2). This ensures positive 

estimates of variance components. The algorithm is as follows: 

1. Propose some starting value for 𝐠, σe
2 and σa

2; 

2. Update each coefficient as gi~N(mean = gi
∗, variance = σe

2𝐂𝐢𝐢
−𝟏); 

3. Compute the residuals: 𝐞 = 𝐲 − 𝐖𝐠; 

4. Update the residual variance as σe
2 = (𝐞′𝐞 + S∗ν∗)/χn+ν∗

2 ; 

5. Update the random variance as σa
2 = (𝐚′𝐀−𝟏𝐚 + S∗ν∗)/χq+ν∗

2 ; 

6. Update 𝐂 with the new value of 𝜆 = σe
2/σa

2; 

7. Repeat steps 2–6 for a reasonable number of iterations (eg. 1500); 

8. Discard the cycles prior to entropy (eg. 500); 

9. For each parameter (𝐠, σe
2, σa

2), average the values from iteration (eg. 501-1500); 

where gi
∗ = (ri − 𝐂𝐢,−𝐢g−i)𝐂𝐢𝐢

−𝟏, 𝐖 = [𝐗, 𝐙], and the priors’ shape and the degrees of freedom 

of the variance components are represented by S∗ and ν∗ respectively, and where S∗ = 0.5 ×
var(y) and ν∗ = 5 are reasonable priors (Morota et al. 2014). Some priors indicate a total 
unawareness about the expected response in accordance with Laplace's principle of uniform 
ignorance. These are called flat priors and they should provide results equivalent to REML. 
To employ a flat prior, set S∗ = 0 and ν∗ = −2 (Garcia-Cortes and Sorensen 1996). 

Parameterization using reproducing kernels Hilbert spaces (RKHS) is an alternative way to 
solve mixed models that use kernels. This process follows an algorithm proposed by de los 
Campos et al. (2010) that uses the Eigendecomposition of the kernel (ie. 𝐊 = 𝐔𝐃𝐔′) to 
obtain the matrix Eigenvectors (𝐔) and the diagonal matrix of Eigenvalues (𝐃). Hence the 
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random term 𝐙𝐮 with 𝐮~N(0, 𝐊σa
2) can be reparametrized as 𝐙∗𝛅 with 𝛅~N(0, 𝐃σa

2), 
where 𝐙∗ = 𝐙𝐔.  

When multiple kernels are involved in the same model (additive, dominance, and epistatic 
kernels), RKHS is often preferable to the traditional methods. RKHS is compatible with the 
BGS and REML frameworks, and it also allows the solution of mixed models as a ridge 
regression of Eigenvectors, with a special regularization (λ∗ = 𝐃−𝟏 𝜎𝑒

2/𝜎𝑎
2). 

Whole-genome regression (WGR) algorithms 

It is also possible to obtain BLUP estimates of breeding values and variance components 
without kinship matrices. This is especially useful when genotypic information is available 
(de los Campos et al. 2013; VanRaden 2008) allowing a more reliable inference of breeding 
values (Bernardo and Nyquist 1998). These are called whole-genome regression (WGR) 
methods. Methods used for WGR are flexible so that they can accommodate hyper-
dimensional problems, as when models have more parameters than observations (𝑝 ≫ 𝑛), 
without having to compute large matrices (eg. 𝐌’𝐌).  

Given the linear model 𝐲 = 𝐗𝐛 + 𝐌𝛂 + 𝐞, WGR computes the additive value (α𝑖) of each 
marker (𝑚𝑖) and obtains breeding values by taking the sum of all marker values. Thus, 
breeding values are estimated as 𝐮 = 𝐌𝛂. Loci are often coded as {-1, 0, 1} or {0, 1, 2} 
representing {AA, Aa, aa} but can also be centralized (Zheng et al. 2005, VanRaden 2008), 
and the vector of regression coefficients 𝛂 represents the additive value of each allele 
substitution (Xu 2013). 

The simplest WGR model is called ridge regression (RR) or Tikhonov regularization. This is 
a Gaussian process comprising 𝑝 stochastic processes, where 𝑝 is the number of markers in 
the model (𝑝 = 𝑚), which provides a result equivalent to the previous methods using the 
additive genomic relationship as kernel matrix (VanRaden 2008, Morota et al. 2014). Ridge 
regression assumes that regression coefficients are normally distributed and provides an 
interesting framework for working with multicollinearity (Hoerl and Kennard 1970). This is 
a highly desirable property for handling genomic data and when multiple markers located in 
a same region carry similar information.  

Most WGR methods attempt to minimize a loss function represented by argmin(𝐞′𝐞 + λ𝛂′𝛂). 
Notice that this loss function has two terms: the residual sum of squares (𝐞′𝐞) and the 
complexity term λ𝛂′𝛂. The squared penalization of coefficients (λ𝛂′𝛂) is called L2 
penalization, while L1 penalization denotes the use of the absolute sum (λ||𝛂||). L1 
penalization is also known as least absolute shrinkage and selector operator (LASSO) loss 
(Tibshirani 1996). 

Coordinate descent helps to minimize the ridge and LASSO loss functions presented above 
(Hastie et al. 2005), which means that regression coefficients are updated one at a time. Let 
us begin with the simplest univariate solution: the ordinary least squared (OLS). For a given 
univariate model 𝐲 = 𝐱b + 𝐞, the OLS solution for the regression coefficient is: 

b =
𝐱′𝐲

𝐱′𝐱
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whereas the ridge regression solution for the same problem is given by: 

bridge =
𝐱′𝐲

𝐱′𝐱 + λ
 

in which the regularization parameter λ imposes shrinkage.  

The LASSO univariate solution works slightly differently. For a positive OLS coefficient, the 
LASSO solution is: 

blasso =
𝐱′𝐲 − λ

𝐱′𝐱
 

If the LASSO solution is negative, then the regression coefficient is set as zero. Similarly, when 
the OLS is negative and the LASSO numerator is given by 𝐱′𝐲 + λ, the coefficient is set at zero 
when the LASSO solution is positive. Thus, LASSO performs variable selection in addition to 
shrinkage, whereas ridge is incapable of providing null regression coefficients. The 
intermediate model between ridge regression and LASSO is called elastic net (Zou and Hastie 
2005), in which regularization minimizes both L1 and L2 penalizations, and the univariate 
solution is: 

ben =
𝐱′𝐲 − λ1

𝐱′𝐱 + λ2
 

After determining the univariate solution, coordinate descent algorithms follow. For 
starters, assume we are solving a model where the only fixed effect is the intercept (μ) and 
the omic data from 𝑝 parameters is represented by the matrix 𝐗, following the model 𝐲 =
μ + 𝐗𝐛 + 𝐞. The algorithm is simple: reduce the linear model to a univariate version (�̃�i =
𝐱𝐢bi + 𝐞) and solve one coefficient at a time until convergence. To do so, it is necessary to fit 
all but the one variable that is being updated. Thus the ridge solution for the 𝑖𝑡ℎ parameter 
becomes: 

bi =
𝐱𝐢

′(𝐲 − 𝐗−𝐢𝐛−𝐢)

𝐱𝐢′𝐱𝐢 + λ
=

𝐱𝐢
′�̃�i

𝐱𝐢′𝐱𝐢 + λ
 

where �̃�i represents 𝐲 accounting for all parameters except one (𝐱i). Legarra and Misztal 
(2008) have provided an efficient framework to prevent the recalculation of 𝐗−i𝐛−i for every 
regression coefficient, the two-step Gauss-Seidel residual update (GSRU) algorithm, in which 
the vector of residuals helps in replacement to �̃�i. The first step involves updating the i𝑡ℎ 
regression coefficient (bi

t+1) using the current version of residuals: 

bi
t+1 =

𝐱𝐢
′𝐞t + 𝐱𝐢′𝐱𝐢bi

t

𝐱𝐢′𝐱𝐢 + λ
 

This is followed by a subsequent update of the residuals: 

𝐞t+1 = 𝐞t − 𝐱𝐢
′(bi

t+1 − bi
t) 

The regularization parameter is commonly estimated by cross-validation in the traditional 
machine learning framework (Hastie et al. 2005), whereas the intercept is the only 
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coefficient updated without regularization (λ = 0) due to its fixed-effect nature. If the 
variance components are estimated in each round, one can also update the regularization 
parameter as λ = 𝜎𝑒

2/𝜎𝑎
2. 

The Bayesian counterpart of ridge regression (BRR) is solved via a Gibbs sampler, providing 
a nearly identical solution (de los Campos et al. 2013). The main difference is the parameter 
updating based upon sampling. The BRR algorithm proceeds as follows: 

The regression coefficients are sampled from a normal distribution using the GSRU solution 
as the expected value with a subsequent residual update: 

bi
t+1~N (mean =

𝐱𝐢
′𝐞t + 𝐱𝐢′𝐱𝐢bi

t

𝐱𝐢′𝐱𝐢 + λ
, var =

σ𝑒
2

𝐱𝐢′𝐱𝐢 + λ
) 

𝐞t+1 = 𝐞t − 𝐱𝐢
′(bi

t+1 − bi
t) 

Then the variance components are updated from a scaled inverse chi-squared distribution:  

σa
2 =

b′b + S∗ν∗

χp+ν∗
2  and σe

2 =
e′e + S∗ν∗

χn+ν∗
2  

Two models derive from BRR by modifying the regularization setup into non-Gaussian 
processes: BayesA and Bayesian LASSO. BayesA (Meuwissen et al. 2001) is a special case of 
BRR where each marker has its own variance (σbi

2 = (bi
2 + S∗ν∗)/𝜒1+ν∗

2 ), implying that each 

marker will have a unique regularization parameter (λi = σe
2/σbi

2 ). Marker effects follow a t-

distribution (thick tails). Breeding values from BayesA are more accurate than BRR, but 
often biased and sensitive to the prior specification (Lehermeier et al. 2013, Gianola 2013). 
A common set of prior used for BRR and BayesA can intuitively defined as: 𝑆𝑒

∗ = 0.5 σy
2 and 

𝑆𝑏
∗ = 0.5 σy

2/ ∑ 𝜎𝑥𝑗

2
𝑗   with 𝜈∗ = 5 for both marker and residual variances. 

The Bayesian LASSO (BL) proposed by Park and Casella (2008) has a very particular 
parametrization that imposes strong shrinkage but, unlike its non-Bayesian counterpart, it 
is not capable of performing variable selection. In BL, the regularization parameter for each 
individual parameter (λi) is sampled from an inverse-Gaussian distribution with expectation 
σeϕ/bi and shape ϕ2, such that the distribution of marker effects follows a Laplace 
distribution. 

Non-Gaussian processes (eg. BayesA, BL, LASSO) are able to capture large-effect QTL better 
than ridge regression and BRR (Fig. 6), whereas kernel methods do not even assign values 
to each maker. Zhang et al. (2010a) proposed a two-step method to incorporate large-effect 
QTL into kernel methods, thus generating weighted kernels (also known as trait-associated 
kernels). The first step consists of fitting a WGR to obtain regression coefficients for each 
marker. The second step involves recoding alleles coded as {−|𝐛|, 0, |𝐛|} before designing the 
kernel, so that each allele is weighted according to its association with the trait.  
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Fig. 6 Density function of whole-genome regressions BRR, BayesA, and Bayesian LASSO, 
where marker effects follow normal, t, and Laplace distributions, respectively. 

 

The prediction accuracy provided by the various methods (kernel and regression) changes 
according to the genetic architecture of the trait (de los Campos et al. 2013) and the model 
with more realistic assumptions often provides the most accurate prediction. Although all 
models are likely to provide robust predictions, looking for the optimal method may require 
breeders to evaluate multiple models through cross-validation. 

One may believe that not all markers contribute to the trait of interest but shrinkage does 
not eliminate markers from the model. There are two ways to tackle this problem: either 
using L1 loss or adding a variable selection term into the L2 model. Indeed, each Bayesian 
model presented earlier has a variable selection counterpart: BayesA has BayesB 
(Meuwissen et al. 2001), BRR has BayesCπ (Habier et al. 2011), and BL has an expanded 
version proposed by Legarra et al. (2011b). 

Meuwissen et al. (2001) proposed variable selection using the Metropolis-Hasting 
algorithm, which suggests that markers be included into the model at random. The proposed 
changes are accepted when the new model provides a better likelihood. Meuwissen's 
approach is robust, but at a high computational cost. Alternatively, efficient variable 
selection can be incorporated in the Gibbs sampler (O'Hara and Sillanpää 2009) via the 
following three methods: 

1. Stochastic search variable selection (George and McCulloch 1993); 

2. Unconditional prior (Kuo and Mallick 1998); 

3. Gibbs variable selection (Dellaportas et al. 2002). 

Table 2 summarizes this section, showing the computation of breeding values to aid selection 
through kernel and WGR methods. The procedures of screening the whole-genome for large 
effect QTL by testing one marker at a time conditional to a kernel-based polygenic term are 
called genome-wide association studies (GWAS). 
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Table 2 Comparison of methods used to generate breeding values. 

Method Class Process Variable Selection Large-effect QTL Loss function 
Pedigree BLUP Kernel Gaussian   REML/L2 
Linear GBLUP Kernel Gaussian   REML/L2 
Spatial GBLUP Kernel Gaussian   REML/L2 

Weighted GBLUP Kernel Gaussian X X REML/L2 
Ridge Regression Gaussian   REML/L2 
LASSO Regression Laplace X X L1 

Elastic Net Regression Mixture X X L1/L2 
BRR Regression Gaussian   L2 

BayesA Regression t  X L2 
BL Regression Laplace  X L2 

BayesB Regression Mixture X X L2 
BayesCπ Regression Gaussian X  L2 

Because non-Gaussian WGR methods are capable of capturing major effect alleles, these 
methods can be used directly to perform GWAS. LASSO and BayesCπ have been widely used 
to detect QTLs (Colombiani et al. 2012, Fang et al. 2012, Li and Sillanpää 2012, Yi and Xu 
2008). Furthermore, a comparison study performed by Legarra et al. (2015) pointed out the 
superiority of these methods over the traditional framework, which is based on comparing 
the likelihood of null and full models. 

Data Quality Control and Association Analysis 

Understanding the underlying genetics of quantitative traits informs strategies for crop 
improvement (Sonah et al. 2014). The most basic procedure to associate genetics and 
phenotypes with molecular tools is to find the markers associated with phenotypes and 
consequently determine which genes are involved. Regardless of the genetic resources (ie. 
type of population), association studies have four fundamental steps: phenotyping, 
genotyping, mapping, and validation. Validation consists of performing the first three 
procedures of phenotyping, genotyping, and mapping on an experimental population 
specially designed for this purpose (eg. near isogenic lines). Therefore, we will emphasize 
only the three initial steps. 

Phenotyping 

When traits are governed by many loci, sensitivity to environmental variation increases. The 
external stimuli affect the genetic expression of the various loci at different levels. The 
genetic expression of complex traits, like yield and drought tolerance, is highly variable 
across the genome (Guimarães-Dias et al. 2012, Le et al. 2011). In the context of minimizing 
environmental noise in phenotypes, research on field phenomics aims to generate or 
improve high-throughput and high-precision phenotyping techniques, but the integration of 
various sources of omic data has been primarily used to improve abiotic stress (Deshmukh 
et al. 2014). 
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The use of replications is always highly desirable, because having multiple observations 
always improves the accuracy of estimates of the true genetic value. It is possible to further 
reduce noise due to field variation by using spatial statistics, such as kriging (Basso et al. 
2000), which allows adjustment for spatial correlation among field trials (Banerjee et al. 
2010, Zas 2006). For example, Lado et al. (2013) were able to improve accuracy of genomic 
prediction in wheat by controlling field variation through spatial adjustments using a simple 
mixed model with a moving-mean covariate structure. 

Kriging methods to control for field variation can complement experimental design and 
unreplicated trials (Banerjee et al. 2010, Lado et al. 2013). Phenotypic data contains genetic 
information, micro- and macro-environmental variation, and interactions among 
environmental and genetic factors. For this application of kriging, we can employ a mixed 
effect model with an additional term to define field correlation among field plots. Thus: 

𝐲 = 𝐗𝐛 + 𝐙𝐮 + 𝐈𝐯 + 𝐞 

where the observed phenotype (𝐲) is a function of some fixed effect (𝐗𝐛) such as block or 
environment. The genetic effect (𝐙𝐮) allows specification of the association among 
individuals given 𝐮~N(0, 𝐊σa

2), where 𝐊 represents the additive genetic relationship matrix. 
The field variation (𝐈𝐯) term represents a spatial relationship (ie. Euclidean distance 
between plots in the field) defined by a spatial kernel (eg. Gaussian) such that 𝐯~N(0, 𝐒σs

2). 
While the residual term (𝐞) incorporates random errors and higher-order interactions. 
There is also an alternative approach that assumes the residuals are correlated, so 
that 𝐞~𝐍(0, 𝐒σe

2), thus avoiding the additional term (𝐈𝐯) in the model. 

 

Accounting for spatial variation is particularly important in unreplicated trials (eg. progeny 
rows) when pedigree and genotypic information is scarce. Thus the distinction between 
genetics and environment is a complex problem and the use of a replicated check may be the 
only true indicator of field variation. With reduced environmental noise, genotypic values 
tend to have a more stable performance across environments, which can be measured using 
a Pearson or Spearman correlation. Another measure of improvement provided by 
accounting for field variation is the increase in broad- and narrow-sense heritabilities, for 
which increased variance is expected to be due to genetic factors. 

Genotyping 

High-throughput genotyping techniques have become very popular in plant breeding 
(Jarquín et al. 2014, Sohan et al. 2014), often with poor genotyping quality and a large 
amount of missing data (Halprin and Stephan 2009) that makes mapping and selection 
challenging (Jarquín et al. 2014, Poland and Rife 2012). In such scenarios, the accurate 
imputation of missing loci and good correction of SNP miscalls becomes essential for robust 
downstream analyses (Marchini and Howie 2010, Xavier et al. 2016). Two popular methods 
of genotypic imputation in plant breeding are hidden Markov models (HMM) and random 
forest (Swarts et al. 2014, Rutkoski et al. 2013). 
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HMM are commonly employed in genetics and genomics for stochastic modeling of Markov 
processes, such as the computation of haplotypes. In genetic terms, the three possible states 
of a diploid organism with two alleles for a given locus m are: M1M1, M1M2, and M2M2, 
disregarding linkage phase. Assuming ordered markers, the HMM estimates the most likely 
path of states (ie. genotype) based on the transition probability of marker mt to change state 
given the previous marker mt−1. HMM is the most common method for imputation of missing 
genotypes. In addition, Marchini and Howie (2010) showed that HMM can boost the power 
and resolution of genome-wide association studies. 

Random forest is a non-parametric method for predicting, classifying, and imputing mixed 
data types. It establishes a combination of decision-tree predictors, in which decision trees 
are bootstrapped to generate random independent vectors that constitute training forests. 
This is particularly useful for imputing unordered markers. Rutkoski et al. (2013) reported 
random forest as a promising imputation method for genotyping-by-sequencing (GBS) data 
in wheat, and Xavier et al. (2016) showed that random forest is as efficient as HMM in 
soybeans. 

Other quality parameters that have a major impact on analysis are the minor allele frequency 
(MAF) of molecular markers (Tabangin et al. 2009) and the marker’s ability to carry a gene. 
This latter is estimated from the marker heritability (Forneris et al. 2015) when markers are 
seen as molecular phenotypes. It is used to identify markers that do not follow Mendelian 
segregation due to biased inheritance of alleles (Glémin 2010). 

Minor alleles are very important for population stratification. Wen et al. (2008) found as 
many as nine subpopulations when evaluating the structure of 393 landraces and 196 native 
populations of soybeans in China. However, low MAF has two major drawbacks in 
association analysis: (1) it may increase the rate of false discoveries if one disregards the 
existence of a subpopulation; and (2) if an allele has a major effect but is only present in a 
low frequency, this particular gene will become undetectable due to the lack of power 
associated with its low signal-to-noise ratio (Tabangin et al. 2009). Jarquín et al. (2014) 
found that an MAF threshold as high as 0.30 improved prediction accuracy of genomic 
selection models in soybeans.  

Gene Mapping 

The improvement seen in gene mapping is one of the rare occasions in which machine 
learning is concerned with enhancing inference accuracy. The principles of mapping were 
discussed previously, where we showed that associations between marker and trait can be 
estimated by the improvement in (restricted) likelihood provided by the marker, conditional 
to a polygenic term (ie. additive kernel) that accounts for the existence of subpopulations. 

Early mapping studies from random populations ignored population structure, which may 
have led to a great number of false discoveries (Xu and Shete 2005). Yu et al. (2006) 
proposed a mixed model framework that accounts for background genetics called the unified 
mixed model (UMM), also known as the K + Q method. In this method, a fixed-effect 
population structure term (𝐐) is complementary to the polygenic term derived from a kernel 
(𝐊) of pedigree, genomic data or both. The population structure is often defined by clusters 
from the software STRUCURE (Pritchard et al. 2000) or Eigenvectors computed using the 
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software EIGENSTRAT (Price et al. 2006). UMM has some undesirable properties, including 
redundancy (once the information of 𝐐 is extracted from 𝐊) and the computational burden 
from the estimation of variance components for every marker. 

In order to avoid computing the mixed model every round, Aulchenko et al. (2007) proposed 
an approximated method known as the genome-wide rapid association using mixed model 
and regression (GRAMMAR) algorithm. The authors proposed fitting the animal model and 
analyzing the residual term as un-structured phenotypes without needing to include a 
polygenic term, so that the mixed model only needs to be solved once. Although conveniently 
fast, the original GRAMMAR approach provides biased estimates of SNP effects. Some have 
proposed variations from the original algorithm to overcome this limitation, including the 
GRAMMAR-gamma (Svishcheva et al. 2012) and BOLT-LMM (Loh et al. 2015). Due to its 
computational feasibility, GRAMMAR is often the model of choice for analyzing a large 
number of markers. 

In the previous section we mentioned the use of Eigendecomposition for the efficient 
computation of mixed models. Kang et al. (2008) proposed the EMMA algorithm to provide 
a computational solution for the K + Q model by using numerical optimization methods to 
search for a λ that maximizes REML. And in this algorithm, Eigendecomposition plays a major 
role in simplifying the computation of the likelihood function. The EMMA algorithm became 
a popular solution for single-kernel mixed models, implemented in popular R packages such 
as rrBLUP, EMMREML, and NAM (Endelman 2011, Akdemir and Jannink 2015, Xavier et al. 
2015). However, EMMA is impractical for association analysis in large datasets. 

To overcome the computational limitations seen in EMMA, some have proposed 
approximation methods known as compressed mixed models. These include the EMMA 
eXpedited (EMMAX) algorithm (Kang et al. 2010) and the population parameters previously 
determined (P3D) algorithm (Zhang et al. 2010b). EMMAX and P3D generate the polygenic 
term for clusters of individuals in order to compress the information of 𝐊. These methods 
also assume the variance components in the full modes to be equivalent to the null model 
and thus estimate variance components only once. The compression of the polygenic term 
entails substantial information loss, but the 𝐐 term helps to preserve part of this information. 

Others have presented more efficient solutions for the mixed model without compression, 
also known as exact methods. Lippert et al. (2011) proposed the factored spectrally 
transformed (FaST) algorithm, while Zhou and Stephens (2012) introduced the genome-
wide efficient mixed model association (GEMMA) algorithm. GEMMA utilizes the full-rank 
kernel, genomic relationship matrix (ie. uses all Eigenvectors) and this provides stability to 
the algorithm and very robust control over admixture. FaST, on the other hand, was designed 
to accommodate larger numbers of individuals with reduced-rank kernel, which also 
prevents the double-fitting of markers discussed below.  

In general, mixed models can increase power and prevent false positives at a reasonable cost, 
but this approach also presents some pitfalls (Yang et al. 2014), such as the loss of power in 
case-control studies and (often) double-fitting markers into the model, where the marker 
under evaluation in the full model is also used to build the kernel (genomic relationship 
matrix). The use of WGR as a GWAS method could easily satisfy the limitation of double-
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fitting once each marker effect is inferred, conditional to all other parameters. Table 3 
summarizes the properties of the main association algorithms. 

Table 3 Comparison of association methods based on mixed models. 

Algorithm Class Double-fitting Computation Full-rank GRM 
EMMA Exact X Slow X 

GRAMMAR-gamma Approximate X Fast X 
BOLT-LMM Approximate  Fast  

EMMAX / P3D Approximate X Intermediate  
GEMMA Exact X Intermediate X 

FaST-LMM Exact  Intermediate  
WGR Exact  Fast X 

Emp. Bayes Exact  Intermediate X 

 

Recently, some have proposed more flexible models to relax assumptions made by the GWAS 
algorithm and to deal with complex structured populations, including next-generation 
panels, such as the multi-parent advanced generation inter-cross (MAGIC) and nested 
association mapping (NAM) populations. The empirical Bayes algorithm (Xavier et al. 2015, 
Wei and Xy 2015) endeavors to further increase power and resolution of GWAS by treating 
markers as a random effect to shrink the background noise to zero, also implementing a 
sliding window to overcome double-fitting markers by removing the local markers from the 
polygenic term. In addition, if any stratification factor is known a priori, the algorithm 
reparameterizes the markers to haplotypes, thus accounting for some level of epistasis and 
thereby relaxing assumptions about the linkage phase between marker and QTL in different 
subpopulations. Figure 7 compares the GWAS algorithms. 

 

Fig. 7 Manhattan plots using four different algorithms of association analysis for a simulated 
nested association panel dataset with one QTL in the center of each chromosome. 
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Conclusions 

The various models and algorithms all make important assumptions. Knowing how the 
computations work may help improve statistical analysis and decision making. Most 
statistical procedures in breeding theory are based on Gaussian process and can be 
computed through mixed models using kernels and regression models. We have illustrated 
some of the flexibility possible when using principles of machine learning and mixed models 
for selection, prediction, and mapping, as well as when inferring variance components. 
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APPENDIX: Numerical example of design matrices 

Suppose that a breeding program is conducting a test with a three-way hybrid (𝐴 × 𝐵 × 𝐶) 
to find out the narrow-sense heritability of the trait of interest. The only genetic information 
available is a short pedigree that describes the three-way cross, as follows: 

 

This evaluation was conducted in a single environment, growing two replicates of each 
parent (𝐴, 𝐵, 𝐶) and the final hybrid (𝐸). Considering that a plot with genotype C was lost 
during the growing season, the design matrices are given by: 

 

The example above was run using the Gibbs sampling algorithm shown in the manuscript, 
with the prior suggested here (𝜈∗ = 5 and 𝑆∗ = 0.5 × 𝑣𝑎𝑟(𝐲) = 5.17). The outcome was: 

 

which yields a narrow-sense heritability of 0.364, and breeding values (u) computed for all 
genotypes, including the parental line D not grown in the field. 

Yield Intercept A B C D E

 25   1   1 0 0 0 0  A B C D E

 27   1   1 0 0 0 0  A  1 0 0 0.5 0.25  

 27   1   0 1 0 0 0  B  0 1 0 0.5 0.25  

y =  21  X =  1  Z =  0 1 0 0 0  C  0 0 1 0 0.5  

 20   1   0 0 1 0 0  D  0.5 0.5 0 1 0.5  

 21   1   0 0 0 0 1  E  0.25 0.25 0.5 0.5 1  

 27   1   0 0 0 0 1  

K =

 1.191  

 0.172  

b =  23.812   -1.291  σ2
a = 4.004 σ2

e = 6.987

 0.799  

 -0.060  

u =


