
saemix

Version 3.0

December 2021

Maintainers: Emmanuelle Comets 1,2,†, Belhal Karimi 3,
Maud Delattre 4, Johannes Ranke 5

Contributors: Audrey Lavenu 2, Marc Lavielle 3, Marilou Chanel 1,2,
Mélanie Guhl 1,2, Lucie Fayette 1,2, Sofia Kaisaridi1,2

1 INSERM, IAME UMR 1137, Paris, France; Université Paris Diderot, Paris, France

2 University Rennes-I, Rennes, France; INSERM CIC 1414, Rennes, France

3 INRIA, Saclay, France

4 INRAE, Unit MaIAGE, Jouy-en-Josas, France

5 Scientific consultant, Grenzach-Wyhlen, Germany

† Email: emmanuelle.comets@inserm.fr

1

2

Contents

1 Introduction 5

1.1 The objectives . 5

1.2 Installation and legalese . 7

1.2.1 Installation . 7

1.2.2 Citing saemix . 7

1.3 The non-linear mixed effects model . 8

1.3.1 Model for the observations . 8

1.3.2 The statistical model for the individual parameters 11

1.3.3 General form of the non-linear mixed effect model (NLMEM) 13

2 Methodology and algorithms 15

2.1 Estimation of the parameters . 15

2.1.1 The SAEM algorithm . 15

2.1.2 The MCMC-SAEM algorithm . 18

2.1.3 The Simulated Annealing SAEM algorithm . 20

2.1.4 The MCMC-SAEM algorithm for non continuous data models 21

2.1.5 A fast variant of the MCMC-SAEM algorithm for general data models 21

2.2 Estimation of the Fisher Information matrix . 23

2.2.1 Linearization of the model . 23

2.2.2 A stochastic approximation of the Fisher Information Matrix 24

2.3 Estimation of the individual parameters . 24

2.4 Estimation of the likelihood . 26

2.4.1 Linearization of the model . 26

2.4.2 Estimation using importance sampling . 26

2.4.3 Estimation using Gaussian Quadrature . 27

2.5 Model predictions . 27

2.5.1 Population predictions . 27

2.5.2 Individual predictions . 28

2.6 Estimation of the weighted residuals . 28

3

CONTENTS CONTENTS

2.6.1 Population Weighted Residuals . 28

2.6.2 Individual Weighted Residuals . 29

2.6.3 Normalised Prediction Distribution Errors . 29

3 The saemix package 31

3.1 Inputs and outputs . 31

3.1.1 The inputs . 31

3.1.2 The outputs . 36

3.1.3 Plots . 41

3.2 Classes in the saemix package . 47

3.2.1 A very short introduction to S4 classes . 47

3.2.2 S4 classes used in saemix . 48

3.2.3 Methods for S4 objects in saemix . 50

3.2.4 Accessing S4 objects in saemix . 52

4 Examples 55

4.1 Theophylline pharmacokinetics . 55

4.1.1 One-compartment model . 55

4.1.2 One-compartment model at steady-state . 69

4.2 Simulated pharmacodynamic model . 70

4.3 Weight gain of cows . 77

4.4 Height of Oxford boys . 80

4.5 A yield model . 82

4.6 Discrete data . 88

4.6.1 Binary data . 88

4.6.2 Categorical data . 93

4.6.3 Count data . 96

4.7 Time-to-event data . 101

4.7.1 Single event . 101

4.7.2 Repeated time-to-event . 104

Bibliography 107

4

Chapter 1

Introduction

saemix is a package for the R software [36] to perform parameter estimation in non-linear
mixed effect models. It has been hosted on the CRAN since version 0.95 in June 2011.

1.1 The objectives

The objectives of saemix are to perform:

1. parameter estimation for non-linear mixed effects models

- computing the maximum likelihood estimator of the population parameters, without
any approximation of the model (linearization, quadrature approximation, . . .), using
the Stochastic Approximation Expectation Maximization (SAEM) algorithm,

- computing standard errors for the maximum likelihood estimator

- computing the conditional modes, the conditional means and the conditional standard
deviations of the individual parameters, using the Hastings-Metropolis algorithm

2. goodness of fit plots

3. model selection

- comparing several models using some information criteria (AIC, BIC)

- testing hypotheses using the Likelihood Ratio Test

- testing parameters using the Wald Test

5

The objectives 1. Introduction

The R package saemix is an implementation of the Stochastic Approximation Expectation Max-
imization (SAEM) algorithm in R [36], developed by Kühn and Lavielle [20], and implemented
in the Monolix software available in Matlab and as a standalone software for Windows and
Linux [21].

The current version of the R version of saemix handles only analytical functions. The fol-
lowing features have not yet been implemented in the R package saemix, but are available in the
Monolix software:

• categorical covariates with more than 2 categories

• models defined with differential equations

• multi-response model

• left censored data

• interoccasion variability

• prior distribution for the random effects

• complex variables, including discrete data or repeated time to events

• hidden Markov models

• mixture models

• autocorrelation of the residuals

Theoretical analysis of the algorithms used in this software can be found in [11, 13, 19, 20].
Several application of SAEM in agronomy [29], animal breeding [17] and PKPD analysis [5, 24,
40, 42, 2] have been published by several members of the Monolix group. Several applications
to PKPD analysis were also proposed during the last PAGE (Population Approach Group in
Europe) meetings ([32, 23, 22, 39, 41, 43] as well as a comparison of estimation algorithms [15],
(http://www.page-meeting.org).

The present document describes the non-linear mixed effects models (section 1.3) and the
algorithms used in this package (section 2). The library’s inputs and outputs are described in
section 3. Section 4 shows some examples made available in the library (section).

6

1. Introduction Installation and legalese

1.2 Installation and legalese

1.2.1 Installation

1.2.2 Citing saemix

If you use this program in a scientific publication, we would like you to cite the following
reference:

Comets E, Lavenu A, Lavielle M (2017). SAEMIX, an R version of the SAEM
algorithm. Journal of Statistical Software, 80:1-41.

A BibTeX entry for LATEX users is:

@Article{,

author ={Emmanuelle Comets and Audrey Lavenu and Marc Lavielle},

title ={Parameter estimation in nonlinear mixed effect models using saemix, an {R} implementation

volume ={80},

pages ={1--41},

journal ={Journal of Statistical Software},

year =2017 }

7

The non-linear mixed effects model 1. Introduction

1.3 The non-linear mixed effects model

1.3.1 Model for the observations

Longitudinal outcome

Detailed and complete presentations of the non-linear mixed effects model can be found in
[6, 7, 35]. See also the many references therein.

We consider the following general non-linear mixed effects model for continuous outputs:

yij = f(xij, ψi) + g(xij , ψi, ξ)εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni (1.1)

Here,

• yij ∈ R is the jth observation of subject i,

• N is the number of subjects,

• ni is the number of observations of subject i,

• the regression variables, or design variables, (xij) are assumed to be known, xij ∈ R
nx ,

• for subject i, the vector ψi = (ψi,ℓ ; 1 ≤ ℓ ≤ nψ) ∈ R
nψ is a vector of nψ individual

parameters:
ψi = H(µ, ci, ηi) (1.2)

where

– ci = (cim ; 1 ≤ m ≤M) is a known vector of M covariates,

– µ is an unknown vector of fixed effects of size nµ,

– ηi is an unknown vector of normally distributed random effects of size nη:

ηi ∼i.i.d. N (0,Ω)

• the residual errors (εij) are random variables with mean zero and variance 1,

• the residual error model is defined by the function g and some parameters ξ.

The residual error model

The within-group errors (εij) are supposed to be Gaussian random variables with mean zero
and variance 1. Furthermore, we suppose that the εij and the ηi are mutually independent.

Different error models can be used in saemix 3.0:

8

1. Introduction The non-linear mixed effects model

• the constant error model assumes that g = a and ξ = a,

• the proportional error model assumes that g = b f and ξ = b,

• a combined error model assumes that g = a+ b f and ξ = (a, b),

Furthermore, all these error models can be applied to some transformation of the data:

t(yij) = t(f(xij , ψi)) + g(xij , ψi, ξ)εij (1.3)

In the current version of saemix, the exponential error model is also available: it assumes
that y > 0 and that:

t(y) = log(y)

y = fegε

Discrete outcome

Categorical responses can take a finite number of possibly values, and we define the distri-
bution Dy as the set of probabilities for each value, summing up to 1, so that the jth observation
yij in subject i follows Dy (xij;ψi, ξ).

Binary data: An example is binary response, where we model the probability of the response
being 1, for exemple through the logistic model:

p(yij|ψi) =
ef(xij ,ψi)

1 + ef(xij ,ψi)

where f(xij, ψi) is a function of the individual parameters and the design variables. f is most
often a linear function, and the model is equivalently written through the logit of p, where
logit(p) = ln p

1−p , for example:

logit(p(yij |ψi)) = αi + βixij

Categorical data: Assume now that the observed data takes its values in a fixed and finite
set of nominal categories {c1, c2, . . . , cK}. Considering the observations (yij, 1 ≤ j ≤ ni) for any
individual i as a sequence of conditionally independent random variables, the model is completely
defined by the probability mass functions P(yij = ck|ψi) for k = 1, . . . ,K and 1 ≤ j ≤ ni. For a
given (i, j), the sum of the K probabilities is 1, so in fact only K−1 of them need to be defined.
In the most general way possible, any model can be considered so long as it defines a probability

9

The non-linear mixed effects model 1. Introduction

distribution, i.e., for each k, P(yij = ck|ψi) ∈ [0, 1], and
∑K

k=1 P(yij = ck|ψi) = 1. Ordinal data
further assume that the categories are ordered, i.e., there exists an order ≺ such that

c1 ≺ c2,≺ . . . ≺ cK

.

We can think, for instance, of levels of pain (low ≺ moderate ≺ severe) or scores on a
discrete scale, e.g., from 1 to 10. Instead of defining the probabilities of each category, it may
be convenient to define the cumulative probabilities P(yij � ck|ψi) for k = 1, . . . ,K − 1, or in
the other direction: P(yij � ck|ψi) for k = 2, . . . ,K. Any model is possible as long as it defines
a probability distribution, i.e., it satisfies

0 ≤ P(yij ≺ c1|ψi) ≤ P(yij ≺ c2|ψi) ≤ · · · ≤ P(yij ≺ cK |ψi) = 1

Note: It is possible to introduce dependence between observations from the same individual
by assuming that (yij , j = 1, 2, . . . , ni) forms a Markov chain. For instance, a Markov chain
with memory 1 assumes that all that is required from the past to determine the distribution of
yij is the value of the previous observation yi,j−1., i.e., for all k = 1, 2, . . . ,K,

P(yij = ck|yi,j−1, yi,j−2, yi,j−3, , ψi) = P(yij = ck|yi,j−1, ψi)

Such a model is currently not within the scope of saemix.

Count data: Count data can take a number of possible values, possibly infinite, and again
we model the probability of each count. A common model is the Poisson model with parameter
λ, where for subject i at time xij the probability of observing a count equal to k is given by:

p(yij = k|λi) =
e−λi(xij)

k!
λi(xij)

k

Time-to-event outcome

Although technically a continuous outcome, time-to-event data are modelled like discrete
outcomes by considering their likelihood. In a time-to-event data model, the observations are
the times at which events occur. An event may be one-off (e.g., death, hardware failure) or
repeated (e.g., epileptic seizures, mechanical incidents). To begin with, we consider a model for

10

1. Introduction The non-linear mixed effects model

a one-off event. The survival function S(t) gives the probability that the event happens after
time t:

S(t) , P(T > t) = exp

{
−
∫ t

0
h(u)du

}
, (1.4)

where h is called the hazard function. In a population approach, we consider a parametric and
individual hazard function h(·, ψi).

The random variable representing the time-to-event for individual i is typically written Ti
and may possibly be right-censored. Then, the observation yi for individual i is

yi =

{
Ti if Ti ≤ τc
”Ti > τc” otherwise ,

(1.5)

where τc is the censoring time and ”Ti > τc” is the information that the event occurred after
the censoring time.

For repeated event models, times when events occur for individual i are random times
(Tij , 1 ≤ j ≤ ni) for which conditional survival functions can be defined:

P(Tij > t|Ti(j−1) = ti(j−1)) = exp

{
−
∫ t

ti(j−1)

h(u, ψi)du

}
. (1.6)

Here, tij is the observed value of the random time Tij . If the last event is right censored, then
the last observation yi,ni for individual i is the information that the censoring time has been
reached ”Ti,ni > τc”. The conditional pdf of yi = (yij , 1 ≤ ni) reads (see [21] for more details)

p(yi|ψi) = exp

{
−
∫ τc

0
h(u, ψi)du

} ni−1∏

j=1

h(tij , ψi) . (1.7)

1.3.2 The statistical model for the individual parameters

We assume that ψi is a transformation of a Gaussian random vector φi:

ψi = h(φi) (1.8)

where, by rearranging the covariates (cim) into a matrix Ci, φi can be written as:

φi = Ciµ+ ηi (1.9)

Examples of transformations

Here, different transformations (hℓ) can be used for the different components of ψi = (ψi,ℓ)
where ψi,ℓ = hℓ(φi,ℓ) for ℓ = 1, 2, . . . , ℓ.

11

The non-linear mixed effects model 1. Introduction

• ψi,ℓ has a normal distribution if hℓ(u) = u

• ψi,ℓ has a log-normal distribution if hℓ(u) = eu

• assuming that ψi,ℓ takes its values in (0, 1), we can use a logit transformation hℓ(u) =
1/(1 + e−u), or a probit transformation hℓ(u) = P(N (0, 1) ≤ u).

In the following, we will use either the parameters ψi or the Gaussian transformed parameters
φi = h−1(ψi).

The model can address continuous and/or binary covariates.

Example of continuous covariate model

Consider a PK model that depends on volume and clearance and consider the following
covariate model for these two parameters:

CLi = CLpop

(
Wi

Wpop

)βCL,W (Ai
Apop

)βCL,A
eηi,1

Vi = Vpop

(
Wi

Wpop

)βV,W
eηi,2

WhereWi and Ai are the weight and the age of subjet i and whereWpop and Apop are some “typ-
ical” values of these two covariates in the population. Here, ψi will denote the PK parameters
(clearance and volume) of subject i and φi its log-clearance and log-volume. Let

W ⋆
i = log

(
Wi

Wpop

)
; A⋆i = log

(
Ai
Apop

)

Then,

φi =

(
log(CLi)
log(Vi)

)

=

(
1 0 W ⋆

i W ⋆
i 0

0 1 0 0 W ⋆
i

)

log(CLpop)
log(Vpop)
βCL,W
βCL,A
βV,W)

+

(
ηi,1
ηi,2

)

= Ciµ+ ηi

12

1. Introduction The non-linear mixed effects model

Example of categorical covariate model

Assume that some categorical covariate Gi takes the values 1, 2, . . . , K. Assume that if
patient i belongs to group k, i.e. Gi = k, then

log(CLi) = log(CLpop,k) + ηi

where CLpop,k is the population clearance in group k.

Let k⋆ be the reference group. Then, for any group k, we will decompose the population
clearance CLpop,k as

log(CLpop,k) = log(CLpop,k⋆) + βk

where βk⋆ = 0.

The variance of the random effects can also depend on this categorical covariate:

ηi ∼ N (0,Ωk) if Gi = k

Remark: It is assumed in saemix 3.0 that the categorical covariate has only 2 categories (binary
covariate). It is also assumed that the variance remains the same for both groups. Covariates
with more than 2 categories can always be recoded into (N-1) binary covariates using dummy
variables but this is for the moment up to the user.

1.3.3 General form of the non-linear mixed effect model (NLMEM)

A general form of the non-linear mixed effect model regrouping the different types of re-
sponses is to define the model fully in terms of the probabilities:

{
yij ∼ Dy (xij ;ψi, ξ)

ψi ∼ Dψ (ci;µ,Ω)

The parameters of the model are θ = (µ,Ω, ξ), with ξ denoting the additional parameters of
the residual error model for continuous response models.

We will denote ℓ(y; θ) the likelihood of the observations y = (yij ; 1 ≤ i ≤ n , 1 ≤ j ≤ ni) and
p(y, ψ; θ) the likelihood of the complete data (y, ψ) = (yij , ψi ; 1 ≤ i ≤ n , 1 ≤ j ≤ ni). Thus,

ℓ(y; θ) =

∫
p(y, ψ; θ) dψ.

13

The non-linear mixed effects model 1. Introduction

14

Chapter 2

Methodology and algorithms

2.1 Estimation of the parameters

2.1.1 The SAEM algorithm

We are in a classical framework of incomplete data: the observed data is y = (yij ; 1 ≤ i ≤
N , 1 ≤ j ≤ ni), whereas the random parameters (ψ = ψi ; 1 ≤ i ≤ N) are the non observed
data. Then, the complete data of the model is (y, ψ). Our purpose is to compute the maximum
likelihood estimator of the unknown set of parameters θ = (µ,Ω, a, b, c), by maximizing the
likelihood of the observations ℓ(y; θ).

In the case of a linear model, the estimation of the unknown parameters can be treated
with the usual EM algorithm. At iteration k of EM, the E-step consists in computing the
conditional expectation of the complete log-likelihood Qk(θ) = E (log p(y, ψ; θ)|y, θk−1) and the
M-step consists in computing the value θk that maximises Qk(θ).

Following [12, 50], the EM sequence (θk) converges to a stationary point of the observed
likelihood (i.e a point where the derivative of ℓ is 0) under general regularity conditions. In
cases where the regression function f does not linearly depend on the random effects, the E-step
cannot be performed in a closed-form.

The stochastic approximation version of the standard EM algorithm, proposed by [11] con-
sists in replacing the usual E-step of EM by a stochastic procedure. At iteration k of SAEM:

• Simulation-step : draw ψ(k) from the conditional distribution p(·|y; θk).

15

Estimation of the parameters 2. Methodology and algorithms

• Stochastic approximation : update Qk(θ) according to

Qk(θ) = Qk−1(θ) + γk(log p(y, ψ
(k); θ)−Qk−1(θ)) (2.1)

where (γk) is a decreasing sequence of positive numbers with γ1 = 1.

• Maximization-step : update θk according to

θk+1 = Argmax
θ
Qk(θ).

It is shown in [11] that SAEM converges to a maximum (local or global) of the likelihood of
the observations under very general conditions.

Here, the complete log-likelihood can be written

log p(y, ψ; θ) = log p(y, h(φ); θ)

= −
∑

i,j

log(g(xij , ψi, ξ))−
1

2

∑

i,j

(
yij − f(xij , ψi)

g(xij , ψi, ξ)

)2

−N
2
log(|Ω|)− 1

2

N∑

i=1

(φi − Ciµ)
′Ω−1(φi − Ciµ)−

Ntot +Nd

2
log(2π)

where Ntot =
∑N

i=1 ni is the total number of observations.

First, consider a constant residual error model (g = a). The set of parameters to esti-
mate is θ = (µ,Ω, a). Then, the complete model belongs to the exponential family and the
approximation step reduces to only updating the sufficient statistics of the complete model:

s1,i,k = s1,i,k−1 + γk (φi,k − s1,i,k−1) , i = 1, . . . , N

s2,k = s2,k−1 + γk

(
N∑

i=1

φi,k φ
′

i,k − s2,k−1

)

s3,k = s3,k−1 + γk

∑

i,j

(
yij − f(xij, ψ

(k)
i)
)2

− s3,k−1

 .

Then, θk+1 is obtained in the maximization step as follows:

µk+1 =

(
N∑

i=1

Ci
′Ωk

−1Ci

)−1 N∑

i=1

Ci
′Ωk

−1s1,i,k (2.2)

Ωk+1 =
1

N

(
s2,k −

N∑

i=1

(Ciµk+1)s
′

1,i,k −
N∑

i=1

s1,i,k(Ciµk+1)
′ +

N∑

i=1

(Ciµk+1)(Ciµk+1)
′

)
(2.3)

ak+1 =

√
s3,k
Ntot

(2.4)

16

2. Methodology and algorithms Estimation of the parameters

Remark 1: The sequence of step sizes used in saemix decreases as k−a. More precisely, for
any sequence of integers K1,K2, . . . ,KJ and any sequence a1, a2, . . . , aJ of real numbers such
that 0 ≤ a1 < a2 < . . . < aJ ≤ 1, we define the sequence of step sizes (γk) as follows:

γk =
1

ka1
for any 1 ≤ k ≤ K1 (2.5)

and for 2 ≤ j ≤ J ,

γk =
1(

k −Kj−1 + γ
−1/aj
Kj−1

)aj for any

j−1∑

i=1

Ki + 1 ≤ k ≤
j∑

i=1

Ki (2.6)

Here, K =
∑J

j=1Kj is the total number of iterations.

We recommend to use a1 = 0 (that is γk = 1) during the first iterations, and aJ = 1 during
the last iterations. Indeed, the initial guess θ0 may be far from the maximum likelihood value we
are looking for and the first iterations with γk = 1 allow to converge quickly to a neighborhood of
the maximum likelihood estimator. Then, smaller step sizes ensure the almost sure convergence
of the algorithm to the maximum likelihood estimator.

In the case where J = 2 with a1 = 0 and a2 = 1, the sequence of step sizes is

γk = 1 for 1 ≤ k ≤ K1

=
1

k −K1 + 1
for K1 + 1 ≤ k ≤ K1 +K2

Remark 2: The estimated covariance matrix Ωk+1 defined in (2.3) is a full covariance matrix.
However, the covariance matrix Ω of the random effects can have any covariance structure. If
we assume, for example, that there is no correlation between the random effects, we will set to
0 the non diagonal elements of Ωk+1 defined in (2.3).

We can also assume that a random effect has no variance. If the ℓth random effect has a
variance equal to 0, then the ℓth individual parameter is no longer random and the simulation
step of SAEM needs some modification. During the first K0 iterations, we use SAEM as it
was described above, considering that all the effects are random and assuming that there is no
correlation between the ℓth random effect and the other ones (ω2

ℓℓ′ = 0 for any ℓ 6= ℓ′). Then,
during the next iterations, we use again SAEM, but the variance of this random effect is no
longer estimated: it is forced to decrease at each iteration by setting

ω2
ℓℓ,k+1 = α ω2

ℓℓ,k , K0 ≤ k ≤ K (2.7)

where α is chosen between 0 and 1 such that ω2
ℓℓ,K = 10−6ω2

ℓℓ,K0
.

Remark 3: - For a residual variance model of the form g = b f c, where c is fixed, the complete
model also belongs to the exponential family and the estimation of b is straightforward: the

17

Estimation of the parameters 2. Methodology and algorithms

sufficient statistics sequence (s3,k) is defined by

s3,k = s3,k−1 + γk

∑

i,j

(
yij − f(xij, ψ

(k)
i)

f c(xij , ψ
(k)
i)

)2

− s3,k−1

and bk+1 =
√
s3,k/Ntot.

- For a general residual variance model g = a+ b f c, the complete model does not belong to
the exponential family and the estimates of the residual variance parameters (a, b, c) cannot be
expressed as a function of some sufficient statistics. Then, let (Ak, Bk, Ck) that minimise the
complete log-likelihood:

(Ak, Bk, Ck) = Arg min
(a,b,c)

∑

i,j

log(a+ bf c(xij , ψ
(k)
i)) +

1

2

∑

i,j

(
yij − f(xij, ψ

(k)
i)

a+ bf c(xij, ψ
(k)
i)

)2

We update the residual variance parameters as follows:

ak+1 = ak + γk (Ak − ak) (2.8)

bk+1 = bk + γk (Bk − bk) (2.9)

ck+1 = ck + γk (Ck − ck) (2.10)

The estimation of µ and Ω remains unchanged.

2.1.2 The MCMC-SAEM algorithm

For model (1.1), the simulation step cannot be directly performed. Kuhn and Lavielle [19]
propose to combine the SAEM algorithm with a MCMC (Markov Chain Monte Carlo) procedure.
This procedure consists in replacing the Simulation-step at iteration k by m iterations of the
Hastings-Metropolis algorithm.

Here, we will consider the Gaussian parameters (φi). For i = 1, 2, . . . , N

• let φi,0 = φ
(k−1)
i

• for p = 1, 2, . . . ,m,

1. draw φ̃i,p using the proposal kernel qθk(φi,p−1, ·)
2. set φi,p = φ̃i,p with probability

α(φi,p−1, φ̃i,p) = min

(
1,

p(φ̃i,p|yi; θk)qθk(φ̃i,p, φi,p−1)

p(φi,p−1|yi; θk)qθk(φi,p−1, φ̃i,p)

)

and φi,p = φi,p−1 with probability 1− α(φi,p−1, φ̃i,p).

18

2. Methodology and algorithms Estimation of the parameters

• let φ
(k)
i = φi,m.

Several transition kernels, associated to different proposals can be successively used. We use
the following three proposal kernels:

1. q
(1)
θk

is the prior distribution of φi at iteration k, that is the Gaussian distribution
N (Ciµk,Ωk) and then

α(φi,p−1, φ̃i,p) = min

(
1,

p(yi|φ̃i,p; θk)
p(yi|φi,p−1; θk)

)

2. q
(2)
θk

is a succession of d unidimensional Gaussian random walks N (φli,p−1, κΩ
l
k) where

κ = 1: each component of φi, φ
l
i, is successively updated.

3. q
(3)
θk

is the multidimensional random walk N (φi,p−1, κΩk). This kernel is symmetric and
then

α(φi,p−1, φ̃i,p) = min

(
1,

p(yi, φ̃i,p; θk)

p(yi, φi,p−1; θk)

)

Then, the simulation-step at iteration k consists in running m1 iterations of the Hasting-

Metropolis with proposal q
(1)
θk

, m2 iterations with proposal q
(2)
θk

, m3 iterations with proposal

q
(3)
θk

and m4 iterations with proposal q
(4)
θk

.

An additional kernel was proposed for the early versions of the SAEM algorithm but has

been deprecated since: q
(′)
θk

is a random permutation of the φi: generate a random permutation

σ of {1, 2, . . . , N} and set φ̃i,p = φσ(i),p−1.

Remark 1 : During the first Kb iterations (”burning” iterations) of SAEM, we only run the
MCMC algorithm but the parameters are not updated.

Remark 2 : When the number N of subjects is small, convergence of the algorithm can be
improved by running L Markov Chain instead of only one. The simulation step requires to draw
L sequences φ(k,1), . . . , φ(k,L) at iteration k and to combine stochastic approximation and Monte
Carlo in the approximation step:

Qk(θ) = Qk−1(θ) + γk

(
1

L

L∑

ℓ=1

log p(y, φ(k,ℓ); θ)−Qk−1(θ)

)
(2.11)

19

Estimation of the parameters 2. Methodology and algorithms

2.1.3 The Simulated Annealing SAEM algorithm

Convergence of SAEM can strongly depend on the initial guess if the likelihood ℓ possesses
several local maxima. The Simulated Annealing version of SAEM improves the convergence of
the algorithm toward the global maximum of ℓ.

For the sake of simplicity, we will consider here a constant residual error model g = a. Let

U(y, φ; θ) =
1

2a2

∑

i,j

(yij − f(xij , h(φi)))
2 +

1

2

N∑

i=1

(φi − Ciµ)
′Ω−1(φi − Ciµ)

Then, we can write the complete likelihood:

p(y, φ; θ) = C(θ) e−U(y,φ;θ)

where C(θ) is a normalizing constant that only depends on θ.

For any temperature T ≥ 0, we consider the complete model

pT (y, φ; θ) = CT (θ) e
−

1
T
U(y,φ;θ)

where CT (θ) is a normalizing constant. This model consists in replacing the variance matrix Ω
by TΩ and the residual variance a2 by Ta2. In other words, a model “with a large temperature”
is a model with large variances.

We introduce a decreasing temperature sequence (Tk, 1 ≤ k ≤ K) and use the MCMC-
SAEM algorithm considering the complete model pTk(y, φ; θ) at iteration k (while the usual
version of MCMC-SAEM uses Tk = 1 at each iteration). The sequence (Tk) is large during the
first iterations and decreases to 1 with exponential rate. This is done by choosing large initial
variances Ω0 and a20 and setting

Ω̃k+1 =
1

N

(
s2,k −

N∑

i=1

(Ciµk+1)s
′

1,i,k −
N∑

i=1

s1,i,k(Ciµk+1)
′ +

N∑

i=1

(Ciµk+1)(Ciµk+1)
′

)
(2.12)

ak+1 =

√
s3,k
Ntot

(2.13)

Ωk+1 = max
(
τΩk , Ω̃k+1

)
(2.14)

a2k+1 = max
(
τa2k ,

s3,k
N

)
(2.15)

during the first iterations of the algorithm and where 0 ≤ τ ≤ 1.

These large values of the variances make the conditional distribution p(φ|y; θ) less concen-
trated around its mode. This procedure allows the sequence (θk) to escape from the local maxima

20

2. Methodology and algorithms Estimation of the parameters

of the likelihood and to converge to a neighborhood of the global maximum of ℓ. After that, the
usual MCMC-SAEM algorithm is used, estimating the variances at each iteration.

Remark 1: The Simulated Annealing version of SAEM is performed during the first Ksa

iterations. Of course, SAEM without any simulated annealing can be run by setting τ = 0. On
the other hand, simulated annealing is obtained with τ close to 1.

Remark 2: We can use two different coefficients τ1 and τ2 for Ω and a2 in saemix. It is possible,
for example, to choose τ1 < 1 and τ2 > 1, with a small initial residual variance and large initial
inter-subject variances. In this case, SAEM tries to obtain the best possible fit during the first
iterations, allowing a large inter-subject variability. During the next iterations, this variability
is reduced and the residual variance increases until reaching the best possible trade-off between
these two criteria.

2.1.4 The MCMC-SAEM algorithm for non continuous data models

As presented Section 1.3.1, the model between some measured observations noted yij, the
individual parameters ψi and the design variables xij can either be defined by a structural
model, for continuous data models, i.e. when yij are continuous, noted f(xij , ψi), or defined
by a conditional probability P(yij = ck|ψi) for non continuous data models, i.e. when yij takes
discrete values {c1, c2, . . . , cK}. Such models are presented Section 1.3.1 and include for instance
count or categorical models.

For both cases, the MCMC-SAEM algorithm described in the previous sections remain un-
changed, the only difference lies on the way the model is defined: using a structural and continu-
ous function for the former and a conditional probability for the latter. From an implementation
perspective while using saemix, this plays an important role as the user needs to define the model
itself.

2.1.5 A fast variant of the MCMC-SAEM algorithm for general data models

We propose in this section a variant of the MCMC-SAEM algorithm, called f-SAEM, see [18],
and derived for both continuous and non continuous data models. According to the definition
of the model, the algorithm presents a slight variation. The whole purpose of the f-SAEM is to
accelerate the convergence of the MLE estimation leveraging a simple and efficient new MCMC
proposal. This proposal is obtained via two different techniques depending on the nature of the
model.

For continuous data models, we linearize the structural model f(xi, ψi) around a par-
ticular point, ψ̂i, which is the MAP (Maximum A Posteriori) of the conditional distributions
of the individual parameters ψi given the observations noted p(ψi|yi). This particular point is

21

Estimation of the parameters 2. Methodology and algorithms

tractable since we have the following identity, by Bayes rule:

arg max
ψi∈Rp

p(ψi|yi) = arg max
ψi∈Rp

p(yi|ψi)p(ψi) . (2.16)

The Taylor expansion of f(xi, ·) around the MAP yields:

f(xi, ψi) ≈ f(xi, ψ̂i) + Jf(xi,ψ̂i)(ψi − ψ̂i) , (2.17)

where Jf(xi,ψ̂i) ∈ R
ni×p is the Jacobian of f evaluated at ψ̂i.

Remark that the conditional distribution of the individual parameters given the observations
under this linearized model is tractable and is a Gaussian distribution of covariance:

Γi =

JT
f(xi,ψ̂i)

Jf(xi,ψ̂i)

σ2
+Ω−1

−1

, (2.18)

where σ is the residual error of the continuous data model and Ω is the covariance of the prior
distribution p(ψi).

Hence, the f-SAEM algorithm uses the Gaussian proposal of covariance

(
JT
f(xi,ψ̂i)

J
f(xi,ψ̂i)

σ2 +Ω−1

)−1

and mean ψ̂i, as an approximation of the true conditional distribution, in the MCMC sampler
for continuous data models.

For non continuous data models, we use a Laplace approximation of the conditional
distribution obtained via a Taylor expansion of the complete log-likelihood log p(yi, ψi) of the
observations yi and individual parameters ψi. A few derivation of this expansion leads to the
following approximation:

−2 log p(yi, ψi) ≈ −p log 2π − 2 log p(yi, ψ̂i) + log
(∣∣∣−∇2 log p(yi, ψ̂i)

∣∣∣
)
.

and finally:

log p(ψ̂i|yi) ≈ −p
2
log 2π − 1

2
log
(∣∣∣−∇2 log p(yi, ψ̂i)

∣∣∣
)
,

which is precisely the log-pdf of a multivariate Gaussian distribution with mean ψ̂i and variance-
covariance −∇2 log p(yi, ψ̂i)

−1 where:

22

2. Methodology and algorithms Estimation of the Fisher Information matrix

∇2 log p(yi, ψ̂i) = ∇2 log p(yi|ψ̂i) +∇2 log p(ψ̂i) (2.19)

= ∇2 log p(yi|ψ̂i) + Ω−1 .

Hence, the f-SAEM algorithm uses the Gaussian proposal of covariance
(
∇2 log p(yi|ψ̂i) + Ω−1

)
−1

and mean ψ̂i, as an approximation of the true conditional distribution, in the MCMC sampler
for non continuous data models.

2.2 Estimation of the Fisher Information matrix

Let θ⋆ be the true unknown value of θ, and let θ̂ be the maximum likelihood estimate of
θ. If the observed likelihood function ℓ is sufficiently smooth, asymptotic theory for maximum-
likelihood estimation holds and

√
N(θ̂ − θ⋆) −→

N→∞

N (0, I(θ⋆)−1) (2.20)

where I(θ⋆) = −∂2θ log ℓ(y; θ⋆) is the true Fisher information matrix. Thus, an estimate of the

asymptotic covariance of θ̂ is the inverse of the Fisher information matrix I(θ̂) = −∂2θ log ℓ(y; θ̂).

2.2.1 Linearization of the model

The Fisher information matrix of the non-linear mixed effects model defined in (1) cannot
be computed in a closed-form.

An alternative is to approximate this information matrix by the Fisher information ma-
trix of the Gaussian model deduced from the non-linear mixed effects model after linearization
of the function f around the conditional expectation of the individual Gaussian parameters

(E
(
φi|y; θ̂

)
, 1 ≤ i ≤ N). The Fisher information matrix of this Gaussian model is a block

matrix (no correlations between the estimated fixed effects and the estimated variances). The
gradient of f is numerically computed.

Remark 1: We do not recommend the linearization of the model to estimate the parameters of
the model, as it is done with the FO and FOCE algorithms. On the other hand, many numerical
experiments have shown that this approach can be used to estimate the Fisher information
matrix.

Remark 2: Obviously, this approach cannot be used with discrete data models. . .

23

Estimation of the individual parameters 2. Methodology and algorithms

2.2.2 A stochastic approximation of the Fisher Information Matrix

It is possible to obtain an estimation of the Fisher information matrix using the Louis’s
missing information principle [28]:

∂2θ log ℓ(y; θ) = E
(
∂2θ log p(y, φ; θ)|y; θ

)
+Cov

(
∂θ log p(y, φ; θ)|y; θ

)
(2.21)

where

Cov
(
∂θ log p(y, φ; θ)|y; θ

)
= E

(
∂θ log p(y, φ; θ)∂θ log p(y, φ; θ)

′|y; θ
)

− E
(
∂θ log p(y, φ; θ)|y; θ

)
E
(
∂θ log p(y, φ; θ)|y; θ

)
′

and

∂θ log g(y; θ) = E
(
∂θ log p(y, φ; θ)|y; θ

)

Here, ∂θu is the gradient of u (i.e. the vector of first derivatives of u with respect to θ) and ∂2θu
is the hessian of u (i.e. the matrix of second derivatives of u with respect to θ).

Then, using SAEM, the matrix ∂2θ log ℓ(y; θ̂) can be approximated by the sequence (Hk)
defined as follows:

∆k = ∆k−1 + γk (∂θ log f(y, φk; θk)−∆k−1)

Dk = Dk−1 + γk
(
∂2θ log f(y, φk; θk)−Dk−1

)

Gk = Gk−1 + γk
(
∂θ log f(y, φk; θk)∂θ log f(y, φk; θk)

t −Gk−1

)

Hk = Dk +Gk −∆k∆
t
k

In the current version of saemix, only the linearisation approach has been implemented.

2.3 Estimation of the individual parameters

When the parameters of the model have been estimated, we can estimate the individual
parameters (ψi). To do that, we will estimate the individual normally distributed parameters
(φi) and derive the estimates of (ψi) using the transformation ψi = h(ψi).

Let θ̂ be the estimated value of θ computed with the SAEM algorithm and let p(φi|yi; θ̂) be
the conditional distribution of φi for 1 ≤ i ≤ N .

We use the MCMC procedure used in the SAEM algorithm to estimate these conditional
distributions. More precisely, for 1 ≤ i ≤ N , we empirically estimate:

24

2. Methodology and algorithms Estimation of the individual parameters

• the conditional mode (or Maximum A Posteriori) m(φi|yi; θ̂) = Argmaxφi p(φi|yi; θ̂),

• the conditional mean E(φi|yi; θ̂),

• the conditional standard deviation sd(φi|yi; θ̂).

Remarks:

1. The prior distribution of φi is a normal distribution, but not the conditional distribution
p(φi|yi; θ̂) (remember that the structural model is not a linear function of φi. . .). Then, the
conditional mode m(φi|yi; θ̂) and the conditional expectation E(φi|yi; θ̂) are two different
predictors of φi.

2. If the transformation h is not linear,

E

(
ψi|yi; θ̂

)
= E

(
h(φi|yi; θ̂

)

6= h
(
E

(
φi|yi; θ̂

))

In saemix, we estimate E

(
φi|yi; θ̂

)
and E

(
ψi|yi; θ̂

)
.

The number of iterations of the MCMC algorithm used to estimate the conditional mean
and standard deviation is adaptively chosen as follows:

1. the (φi) are initialised with the last value obtained in SAEM

2. we run the Hastings-Metropolis with kernel q(1), q(3) and q(4) and compute at each iteration
the empirical conditional mean and s.d. of φi:

ei,K =
1

K

K∑

k=1

φi,k (2.22)

sdi,K =

√√√√ 1

K

K∑

k=1

φ2i,k − e2i,K (2.23)

where φi,k is the value of φi at iteration k of the MCMC algorithm.

3. we stop the algorithm at iteration K and use ei,K and sdi,K to estimate the conditional
mean and s.d. of φi if, for any K − Lmcmc + 1 ≤ k ≤ K,

(1− ρmcmc)ēK ≤ ēk ≤ (1 + ρmcmc)ēK (2.24)

(1− ρmcmc)s̄dK ≤ s̄dk ≤ (1 + ρmcmc)s̄dK

where 0 < ρmcmc < 1. That means that the sequence of empirical means and s.d. must
stay in a ρmcmc-confidence interval during Lmcmc iterations.

25

Estimation of the likelihood 2. Methodology and algorithms

2.4 Estimation of the likelihood

2.4.1 Linearization of the model

The likelihood of the non-linear mixed effects model defined in (1) cannot be computed in a
closed-form.

An alternative is to approximate this likelihood by the likelihood of the Gaussian model
deduced from the non-linear mixed effects model after linearization of the function f around the
predictions of the individual parameters (φi, 1 ≤ i ≤ N).

2.4.2 Estimation using importance sampling

The likelihood of the observations can be estimated without any approximation using a
Monte-Carlo approach. The likelihood ℓ of the observations can be decomposed as follows:

ℓ(y; θ) =

∫
p(y, φ; θ) dφ

=

∫
h(y|φ; θ)π(φ; θ) dφ

where π is the so-called prior distribution of φ. According to (1.2), π is a Gaussian distribution.

For any distribution π̃ absolutely continuous with respect to the prior distribution π, we can
write

ℓ(y; θ) =

∫
h(y|φ; θ)π(φ; θ)

π̃(φ; θ)
π̃(φ; θ) dφ

Then, ℓ(y; θ) can be approximated via an Importance Sampling integration method:

1. draw φ(1), φ(2), . . . , φ(M) with the distribution π̃(·; θ),

2. let

ℓM (y; θ) =
1

M

M∑

j=1

h(y|φ(j); θ)π(φ
(j); θ)

π̃(φ(j); θ)
(2.25)

The statistical properties of the estimator ℓM (y; θ) of the likelihood ℓ(y; θ) strongly depend
on the sampling distribution π̃. First, note that

E (ℓM (y; θ)) = ℓ(y; θ),

Var (ℓM (y; θ)) = O(1/M).

26

2. Methodology and algorithms Model predictions

Furthermore, if π̃ is the conditional distribution p(φ|y; θ), the variance of the estimator is null
and ℓ̂M(y; θ) = ℓ(y; θ) for any value of M . That means that an accurate estimation of ℓ(y; θ)
can be obtained with a small value of M if the sampling distribution is close to the conditional
distribution p(φ|y; θ).

In saemix, for i = 1, 2, . . . , N , we empirically estimate the conditional mean E

(
φi|yi; θ̂

)
and

the conditional variance Var
(
φi|yi; θ̂

)
of φi as described above. Then, the φi

(j) are drawn with

the sampling distribution π̃ as follows:

φi
(j) = E

(
φi|yi; θ̂

)
+Var

(
φi|yi; θ̂

) 1
2 × Tij

where (Tij) is a sequence of i.i.d. random variables distributed with a t−distribution with ν
degrees of freedom. In the current version of saemix, the default value is ν = 5.

The quality of the approximation depends on the estimates of the conditional mean and
variances of the individual distributions.

2.4.3 Estimation using Gaussian Quadrature

Gauss-Hermite quadrature methods use a fixed set of KGQ ordinates (called nodes) and
weights (xk, wk)k=1,...,KGQ to approximate the likelihood function.

As for importance sampling, the quality of the approximation depends on the estimates of

E

(
φi|yi; θ̂

)
and Var

(
φi|yi; θ̂

)
.

2.5 Model predictions

2.5.1 Population predictions

Population predictions represent the predictions from the model in the absence of data, and
they only take into account individual design variables (eg dose regimen) and covariates.

Two types of population predictions are available in saemix:

1. the predictions using the population parameters: f
(
xij;h

(
Eθ̂(φi)

))
= f(xij ;h(Ciµ̂)).

These are provided in the output under the name ppred

2. the population mean predictions: Eθ̂(f(xij ;ψi))) = Eθ̂(f(xij;h(φi))). These are provided
in the output under the name ypred

27

Estimation of the weighted residuals 2. Methodology and algorithms

2.5.2 Individual predictions

Individual predictions take into account not only covariates and individual design variables
such as dose regimen, but also use the observations in that individual to obtain the parameters
providing the best fit for that particular subject, given the population parameters.

In section 2.3, we described how the conditional distribution of the parameters for each
individual is obtained in saemix. Two types of individual parameters are reported in the output:

1. the conditional mode (or Maximum A Posteriori): m(φi|yi; θ̂) = Argmaxφi p(φi|yi; θ̂).
These are reported in the output as map.psi

2. the conditional mean: E(φi|yi; θ̂). These are reported in the output as cond.mean.psi

Correspondingly, two types of individual predictions can be obtained in saemix:

1. the predictions obtained using the conditional mode are reported in the output as ipred

2. the predictions obtained using the conditional mean are reported in the output as icpred

2.6 Estimation of the weighted residuals

2.6.1 Population Weighted Residuals

The vector of Population Weighted Residuals are evaluated as:

PWRESi = V arθ̂(yi)
−1/2 (yi − ŷpopi)

where ŷpopij is the population prediction of yij and V arθ̂(yij) is the variance-covariance matrix of
yi.

In saemix, weighted residuals are computed using the population mean predictions ypred

Eθ̂(f(xij;ψi))) = Eθ̂(f(xij;h(φi))) for ŷ
pop
ij . Eθ̂(f(xij;h(φi)) and V arθ̂(yij) are estimated with a

Monte-Carlo procedure.

Remark: This computation is performed during the computation of pd/npde, so that a basic
saemix object does not include these elements.

28

2. Methodology and algorithms Estimation of the weighted residuals

2.6.2 Individual Weighted Residuals

The Individual Weighted Residuals are evaluated as

IWRESij =
yij − ŷindij

σ̂indij

where ŷindij = f(xij; ψ̂i) is the individual prediction of yij and (σ̂indij)2 = g(xij ; φ̂i, ξ̂)
2 is the

residual variance of yij.

The two types of individual parameters described in section 2.5 yield two types of individual
weighted residuals in the saemix output:

1. the individual weighted residuals obtained using the conditional mode are reported in the
output as iwres

2. the individual weighted residuals obtained using the conditional mean are reported in the
output as icwres

Remark: When a transformed residual error model is used (an exponential error model for
instance), the weighted residuals are computed using t(y) instead of y.

2.6.3 Normalised Prediction Distribution Errors

The Normalised Prediction Distribution Errors are defined as follow

npdeij = Φ−1(p̂ij)

where Φ is the N (0, 1) cumulative distribution function and where p̂ij is an empirical estimator
of

pij = P(Yij < yij)

obtained by Monte-Carlo.

In more details, prediction discrepancies (pd) are first obtained, as the percentile of the
observation in the cumulative distribution function Fij of the predictive distribution of Yij
under the model being evaluated. Fij is obtained by simulating K datasets under the model,
and the corresponding prediction discrepancies is given by:

pdij = Fij(yij) ≈
1

K

K∑

k=1

δijk (2.26)

29

Estimation of the weighted residuals 2. Methodology and algorithms

where δijk = 1 if y
sim(k)
ij < yij and 0 otherwise, y

sim(k)
ij denoting the value of yij simulated in the

kth replication.

To handle correlations within the observations obtained in the same individual, we first
compute the empirical mean Ê(yi) and empirical variance-covariance matrix Var (()yi) over the
K simulations. Decorrelation is performed simultaneously for simulated data:

y
sim(k)∗
i = V̂

−1/2
i (y

sim(k)
i − Ê(yi)) (2.27)

and for observed data:
y∗

i = V̂
−1/2
i (yi − Ê(yi)) (2.28)

Decorrelated pd are then obtained using the same formula as in (2.26) but with the decor-
related data, and we call the resulting variables prediction distribution errors (pde):

pdeij = F ∗

ij(y
∗

ij) ≈
1

K

K∑

k=1

δ∗ijk (2.29)

where δ∗ijk = 1 if y
sim(k)∗
ij < y∗ij and 0 otherwise.

Normalised prediction distribution errors (npde) are then obtained as:

npdeij = Φ−1(pdeij) (2.30)

Remark: the empirical mean and covariance-matrix computed here are also used for the decor-
relation step in the computation of the population weighted residuals, WRES. The
WRES in saemix are thus computed in conjunction with the more advanced metric npde.

30

Chapter 3

The saemix package

This chapter presents the input and output of the saemixpackage. You will find the details
of the settings and options in here for reference, but readers who wish to apply the methods
quickly can directly skip to chapter 4 to find detailed examples of running the package.

Section 3.1 explains how to use the saemixlibrary and the many settings that can be tuned,
while section 3.2 contains some technical details on the structure of the package and the archi-
tecture of the main S4 classes and methods.

3.1 Inputs and outputs

3.1.1 The inputs

To summarise, saemix requires to define the model and to fix some parameters used for the
algorithms. First, it is necessary to define:

• the structural model, that is the regression function f defined in (1.1),

• the covariate model, that is the structure of the matrix µ defined in (1.2) and the covariates
(ci).

• the variance-covariance model for the random effects, that is the structure of the variance-
covariance matrix Ω defined in (1.2).

• the residual variance model, that is the regression function g.

The only mandatory elements for a saemix fit are:

31

Inputs and outputs 3. The saemix package

• a data object, defined by at least:

– the name of the data file

– we advise to also specify the names of the columns containing the grouping variable,
the predictor(s) and the response, although the program will attempt to recognise
suitable columns

• a model object, defined by at least:

– the name of a valid model function

– the nature modeltype of the model function. By default assigned to ’structural’ when
the model defines a regression function f (continuous observations) and ’likelihood’
if it defines a conditional probability (non continuous observations).

– the matrix of starting values psi0

∗ if no covariates are present in the model, a single line is sufficient, which will
contain the starting values for the fixed effects µ in the model

∗ if covariates are present in the model: if psi0 has more than 1 line, the next
lines are assumed to represent the starting values for the covariate models (only
parameters actually present in the model will be estimated, even if psi0 contains
non-null values; otherwise, values of 0 will be assumed.

Then, it is necessary to specify several parameters for running the algorithms:

• the SAEM algorithm requires to specify

– the initial values of the fixed effects µ0, the initial variance covariance matrix Ω0 of
the random effects and the initial residual variance coefficients a0, b0 and c0,

– the sequence of step sizes (γk), that is the numbers of iterations (K1,K2) and the
coefficients (a1, a2) defined in (2.5) and (2.6),

– the number of burning iterations Kb used with the same value θ0 before updating the
sequence (θk).

• the MCMC algorithm requires to set

– the number of Markov Chains L,

– the numbers m1, m2, m3 and m4 of iterations of the Hasting-Metropolis algorithm,

– the probability of acceptance ρ for kernel q(3) and q(4),

• the algorithm to estimate the conditional distribution of the (φi) requires to set

– the width of the confidence interval ρmcmc (see (2.24),

– the number of iterations Lmcmc.

32

3. The saemix package Inputs and outputs

• the Simulated Annealing algorithm requires to set

– the coefficient τ1 and τ2 defining the decrease of the temperature (see (2.14,2.15))

– the number of iterations Ksa.

• the Importance Sampling algorithm requires to set

– the Monte Carlo number M used to estimate the observed likelihood (see (2.25)).

• the Gaussian Quadrature algorithm requires to set

– the number of quadrature points NQG used to compute each integral (see (2.4.3))

– the width of each integral NQG

In the R implementation of saemix, most of these parameters, as well as other variables used
by the algorithm, are set through a list which is included in the object returned by an saemix fit.
Table 3.1 shows the correspondance between the parameters and the elements in this list.

Parameter Meaning Option name Default value

L number of Markov Chains nb.chains 1∗

K1,K2 Number of iterations during the two periods nbiter.saemix c(300,100)
Kb Number of burning iterations nbiter.burn 5

m1,m2,m3 Number of iterations of kernels q(2), q(3), q(4)

and q(5) at each iteration of SAEM
nbiter.mcmc c(2,2,2,0)

Number of iterations during which simulated an-
nealing is performed

nbiter.sa

Number of iterations during which kernel q(5) is
used

nbiter.map 0∗∗

ρ Probability of acceptance for kernels q(2) and
q(3)

proba.mcmc 0.4

Stepsize for kernels q(2) and q(3) stepsize.rw 0.4

Initial variance parameters for kernels q(2) and
q(3)

rw.init 0.5

τ Parameter controlling cooling in the Simulated
Annealing algorithm

alpha.sa 0.97

M Number of Monte-Carlo samples used to esti-
mate the likelihood by Importance Sampling

nmc.is 5000

ν Number of degrees of freedom of the Student
distribution used for the estimation of the log-
likelihood by Importance Sampling

nu.is 4

KGQ Number of nodes used for Gaussian Quadrature nnodes.gq 12

– To be continued

33

Inputs and outputs 3. The saemix package

Table 3.1 – cont.

Parameter Meaning Option name Default value

Width of the distribution used for Gaussian
Quadrature (in SD)

nsd.gq 4

Lmcmc Number of iterations required to assume conver-
gence for the conditional estimates

ipar.lmcmc 50

ρmcmc Confidence interval for the conditional mean and
variance

ipar.rmcmc 0.95

Other variables
Algorithms to be run in a call to saemix(): a vec-
tor of 3 values of 0/1, representing respectively
individual parameter estimates (MAP), estima-
tion of the Fisher information matrix and esti-
mation of the LL by importance sampling

algorithms c(1,1,1)

Plot graphs during the estimation of the LL by
IS

print.is FALSE

Maximum number of iterations for the estima-
tion of fixed effects

maxim.maxiter 100

Whether convergence plots should be drawn at
regular intervals during the estimation

displayProgress TRUE

Interval (in number of iterations) between two
convergence plots

nbdisplay

Seed to initialise the random number generator seed 123456

Table 3.1: Parameters set as options in the options list. To set an option, one would define it as
an element of this list (see examples), and any option not defined by the user is automatically
set to its default value.

∗ the default number of chains is 1, except when the number of subjects is smaller than 50,

where it defaults to nc where nc is the smallest integer such that nc N ≥ 50

∗∗ the kernel q(5) implementing the independent proposal of the f-SAEM algorithm, described in

Subsection 2.1.5 is optional and experimental. It has empirically be shown to be effective

during the first nbiter.map iterations.

Assuming the result of the saemix fit has been stored in an object saemix.fit, the list of
options can be accessed using the following instruction (see section 3.2.2 for more details on how
to access elements of objects in R):

saemix.fit["options"]

For example, to see the number of chains, one would type in R:

34

3. The saemix package Inputs and outputs

saemix.fit["options"]$nb.chains

The easiest way to set options is to pass them in a list when calling the main fitting function,
as can be seen in the example section (section 4.1).

35

Inputs and outputs 3. The saemix package

3.1.2 The outputs

In the R implementation of saemix, the object returned after a call to the main fitting function
saemix() contains the following elements:

• data: the data object, created by a call to the saemixData() function, and containing the
dataset to be used in the analysis

• model: the model object, created by a call to the saemixModel() function, and containing
the model characteristics

• options: a list containing the options for the estimation algorithm (see above)

• prefs: a list containing the graphical preferences for plots, which will be described in the
next section

• results: the results object

• rep.data: the replicated data (when available)

• sim.data: the simulated data (when available)

Assuming the result of a call to saemix() has been ascribed to the object yfit, these elements
can be accessed, for example for the results element, with the following command:

yfit["results"]

The results object is an object of class SaemixRes. Most users will not need to access the elements
since functions have been created to output the results. However, elements of the results object
can also be accessed individually; for example, the likelihood estimated by importance sampling
can be accessed as:

yfit["results"]["ll.is"]

More details on S4 structures (objects and methods), and on how to access the elements of S4
objects can be found in 3.2.

Table 3.2 shows the most important elements present in the results object (some of these
are only present after a call to a specific function, or when the proper option has been set; for
instance, estimates of individual parameters are only estimated when the first element of the
algorithm element in options is 1).

36

3. The saemix package Inputs and outputs

Element Meaning

npar.est Number of parameter estimates
fixed.effects Estimates of the fixed effects

se.fixed Standard errors of estimation of the fixed effects
respar Estimates of the parameters of the residual error model

se.repar Standard errors of estimation of the residual parameters
omega Estimates of the fixed effects

se.omega Standard errors of the estimation of the fixed effects
ll.is Log-likelihood estimated by importance sampling

aic.is AIC using the log-likelihood estimated by importance sampling
bic.is BIC using the log-likelihood estimated by importance sampling
ll.lin Log-likelihood estimated by linearisation

aic.lin AIC using the log-likelihood estimated by linearisation
bic.lin BIC using the log-likelihood estimated by linearisation
ll.gq Log-likelihood estimated by gaussian quadrature

aic.gq AIC using the log-likelihood estimated by gaussian quadrature
bic.gq BIC using the log-likelihood estimated by gaussian quadrature

map.psi Individual estimates of the parameters (ψ), obtained as the mode of the
conditional distribution (MAP)

map.phi Estimate of the corresponding individual φ
map.eta Estimate of the corresponding random effect

map.shrinkage Shrinkage for the MAP estimates
cond.mean.psi Individual estimates of the parameters, obtained as the mean of the

conditional distribution
cond.mean.phi Estimate of the corresponding individual φ
cond.mean.eta Estimate of the corresponding random effect

cond.var.phi Estimate of the variance of the individual φ
cond.shrinkage Shrinkage for the conditional estimates

phi.samp Samples from the individual conditional distribution of the φ
phi.samp.var Variance of the samples from the individual conditional distribution of

the φ
ypred Population predictions, computed for the mean population parameters

ypredij = f
(
xij;h

(
Eθ̂(φi)

))

ppred Population mean predictions, obtained as the expectation of the predic-
tions ppredij = Eθ̂(f(xij ;ψi)))

ipred Individual predictions, computed using the MAP estimates of the indi-
vidual parameters

icpred Individual predictions, computed using the conditional estimates of the
individual parameters

wres Weighted population residuals, computed using ppred (see section 2.6)
pd Prediction discrepancies

– To be continued

37

Inputs and outputs 3. The saemix package

Table 3.2 – cont.

Element Meaning

npde Normalised prediction distribution errors
iwres Individual weighted residuals, using the MAP estimates of the individual

parameters (using the same computations as ipred)
icwres Individual weighted residuals using the conditional estimates of the in-

dividual parameters (using the same computations as icpred)

Table 3.2: Elements contained in the results object.

A full list of all the elements in a results object can be obtained by the command:

getSlots("SaemixRes")

a) Estimation of the parameters:

The SAEM algorithm computes the maximum likelihood estimate θ̂ and estimates its co-
variance matrix I(θ̂)−1/N using the Fisher Information Matrix, as defined in Section 2.2.

Recall that d is the number of individual parameters, then for j = 1, 2 . . . d, we can

1. estimate the vector of fixed effects µ (intercept and coefficients of the covariates) by (µ̂),

2. estimate the standard errors of µ,

3. test if some components of µ are null by computing the significance level of the Wald test.

Let Ω = (ωjl, 1 ≤ j, l ≤ d). Then, for any j, l = 1, 2 . . . d, we can

1. estimate ωjl by ω̂jl, for all 1 ≤ j, l ≤ d,

2. estimate the standard error of ω̂jl, for all 1 ≤ j, l ≤ d,

b) Estimation of the conditional distributions:

The MCMC algorithm provides an estimation of the conditional means, conditional modes
and conditional standard deviations of the individual parameters and of the random effects.

38

3. The saemix package Inputs and outputs

The function can be called with an argument nsamp which runs several sampling chains
in parallel, providing several independent samples from the individual conditional distribution
for each subject. The number of iterations necessary to obtain convergence (that is, for the
successive empirical conditional mean and sd to remain within the requested precision for all
chains) is reported, and if the option displayProgress is TRUE, plots are produced during the
estimation process showing the evolution of the different sampling chains.

• the conditional mode can be found in saemix in the results component of the object, as
map.psi (there is also a map.phi component for the corresponding φ and a map.eta for the
random effects)

• the conditional expectation can be found in cond.mean.psi and the variance in cond.var.psi
(the corresponding φ and η are also available)

c) Estimation of the likelihood:

The saemix algorithm can provide three different approximations to the likelihoods, through
importance sampling, linearisation or gaussian quadrature.

d) Hypothesis testing and model selection:

We can test the covariate model, the covariance model and the residual error model.

The AIC and BIC criteria are defined by

AIC = −2 log ℓM (y; θ̂) + 2P (3.1)

BIC = −2 log ℓM (y; θ̂) + log(N)P (3.2)

where P is the total number of parameters to be estimated and N is the number of subjects.
Note that the BIC defined using this formula is in fact the corrected BIC (BICc) proposed by
Raftery to better account for the information in mixed-effect models [37]; it differs from the
traditional BIC which uses a factor log(Ntot) instead of log(N). The same formula is also used
in Monolix.

A specific version of BIC can be used for the comparison of covariate models with fixed
covariance structure of the random effects [9]:

BICh = −2 log ℓM (y; θ̂) + log(N)PR + log(Ntot)PF (3.3)

where PR (resp.PF) is the number of estimated parameters in µ that are related to the covariate
effects on the random (resp. non random) components of the individual parameters. It is
important to note that BICh is not appropriate if the compared models do not share the same
covariance model.

39

Inputs and outputs 3. The saemix package

Joint covariate and random effects selection often leads to the definition of many candidate
models whose exhaustive comparison by an information criterion such as AIC or BIC is not
possible in a reasonable time. An alternative approach is to use stepwise methods. The algorithm
proposed in [10] follows such idea by iteratively combining the classical BIC (3.2) and the hybrid
BIC (3.3) for covariance and covariate model selection respectively.

When comparing two nested models M0 and M1 with dimensions P0 and P1 (with P1 > P0),
the Likelihood Ratio Test uses the test statistic

LRT = 2(log ℓM,1(y; θ̂1)− log ℓM,0(y; θ̂0))

According to the hypotheses to test, the limiting distribution of LRT under the null hypothesis
is either a χ2 distribution, or a mixture of a χ2 distribution and a δ −Dirac distribution. For
example:

- to test whether some fixed effects are null, assuming the same covariance structure of the
random effects, one should use

LRT −→
N→∞

χ2(P1 − P0)

- to test whether some correlations of the covariance matrix Ω are null, assuming the same
covariate model, one should use

LRT −→
N→∞

χ2(P1 − P0)

- to test whether the variance of one of the random effects is zero, assuming the same
covariate model, one should use

LRT −→
N→∞

1

2
χ2(1) +

1

2
δ0

e) Estimation of the weighted residuals:

The Population Weighted Residuals (PWRESij), the Individual Weighted Residuals (IWRESij)
and the Normalised Prediction Distribution Errors (npdeij) are computed as described Sec-
tion 2.6.

40

3. The saemix package Inputs and outputs

3.1.3 Plots

The generic function plot.saemix can be used to obtain a number of plots used to assess and
diagnose the model. This function is called using the following arguments:

plot(saemix.fit,plot.type="plot.type")

where saemix.fit is the object returned after a successful call to saemix, and ”plot.type” is the
type of plot chosen. The following plot types are available:

• ”data”: spaghetti plot of the data

• ”convergence”: a plot of the convergence graphs; this is the default type when type is not
given

• ”likelihood”: estimate of the likelihood through importance sampling versus the number
of MCMC samples

• ”individual.fit”: plot of the individual fits overlayed on the data, for each subject in the
dataset

• ”population.fit”: plot of the fits obtained with the population parameters and the individ-
ual covariates and design, overlayed on the data, for each subject in the dataset

• ”both.fit”: plot of the individual and population fits, overlayed on the data

• ”observations.vs.predictions”: observations versus predictions(left: population predictions,
right: individual predictions)

• ”random.effects”: boxplot of the random effects. With the option ”m”, a horizontal line
is added representing the estimate of the population parameter

• ”parameters.versus.covariates”: plot of a parameter versus all covariates in the model (uses
the individual estimates); for continuous covariates, a scatterplot is produced, while for
categorical covariates a boxplot is shown. With the option ”m”, a horizontal line is added
representing the estimate of the population parameter. With the options ”l” or ”s”, a
curve representing a linear regression (”l”) or a spline regression (”s”) is added. Several
options can be combined (see below)

• ”randeff.versus.covariates”: plot of a random effect versus all covariates in the model (uses
the individual estimates)

• ”correlations”: matrix of scatterplot showing the correlations between pairs of random
effects (uses the individual estimates)

41

Inputs and outputs 3. The saemix package

• ”marginal.distribution”: distribution of the random effects

• ”residuals.distribution”: distribution of the standardised residuals, computed using the
population predictions (weighted residuals), the individual predictions (individual weighted
residuals) and optionally if available the npde. Both histograms and QQ-plots of the resid-
uals are given

• ”residuals.scatter”: scatterplot of standardised residuals versus the predictor (X) and ver-
sus the predictions. The residuals are computed using the population predictions (weighted
residuals), the individual predictions (individual weighted residuals) and optionally if avail-
able the npde. The corresponding predictions are the individual predictions for individual
residuals, and population predictions for npde and population residuals

• ”vpc”: Visual Predictive Check; prediction intervals can be added to the plots. To produce
prediction intervals, different methods are available for binning (grouping points), which
can be selected through the vpc.method argument:

equal: the quantile of the data are used to define the breaks, yielding a similar number of
points in each interval;

width: bins of equal width (if the option xlog is set to TRUE, the bins will be of equal width
on the logarithmic scale);

user: user-defined breaks (set as the vector in vpc.breaks argument; it is possible to give
only the inner breaks or to include the boundaries (min/max));

In the first three methods, there will be at most vpc.bin bins, and the boundaries of each
interval, as well as the value used to plot the corresponding point, will be shown.

• ”npde”: plots of the npde (distribution, histogram, and scatterplots versus the regression
variable and versus predictions), as displayed in the npde library [4]. Tests comparing the
empirical distribution of the npde to the theoretical N (0, 1) distribution by a combined
test are also displayed.

Several plots can be produced by setting plot.type to be a vector. Partial matching will be used
(so that plot.type=”individual” will produce individual fits, but plot.type=”residuals” will produce
an error message because it could correspond to two different types of plots). After a successful
fit, if the option save.graphs is TRUE, the following plots are produced by default and saved to a
file named diagnostic graphs.ps in the directory containing fit results: spaghetti plot of the data,
convergence plots, likelihood by importance sampling, plots of predictions versus observations
for population and individual estimates, boxplots of the random effects, correlation between the
random effects. Individual fits are also saved, in a separate file called individual fits.ps. Some
of these plots may be missing if the corresponding estimates have not been requested (eg if the
likelihood has not been computed by importance sampling, the plot won’t be available).

42

3. The saemix package Inputs and outputs

Each plot can also be obtained individually using a specific function, which allows total
flexibility over the layout, including options to change plotting symbols, colors, or which subjects
are to be used. Table 3.3 gives the names of the individual functions corresponding to the plots
listed above.

Plot function name Brief description

saemix.plot.data() Spaghetti plot of the data
saemix.plot.convergence() Convergence plots for all estimated parameters

saemix.plot.llis() Plot of the log-likelihood estimated by importance sampling
saemix.plot.obsvspred() Plot of the predictions versus the observations

saemix.plot.fits() Individual fit
saemix.plot.distpsi() Estimated distribution of the random effects
saemix.plot.randeff() Boxplot of a random effect
saemix.plot.parcov() Plot of parameters versus covariates

saemix.plot.randeffcov() Plot of random effects versus covariates
saemix.plot.scatterresiduals() Scatterplots of residuals versus predictor and predictions
saemix.plot.distribresiduals() Plot of the distribution of the residuals

saemix.plot.vpc() Visual Predictive Check
saemix.plot.npde() Plots of the npde

Table 3.3: Names of the individual functions used to obtain each type of plot. Please refer to
the inline help for the arguments to provide to each function.

A help page describing these plots is available in the inline help:

?saemix.plot.data

A common argument to all the functions is a list of options. This list can be set using the
function saemix.plot.setoptions(), and it is automatically set during the fit by saemix() and stored
in the Slot prefs of the object. The options can then be modified through this list, for instance
changing the new default color to red for all plots is done by setting the attribute col in the list:

saemix.fit["prefs"]$col<-"red"

Options can also be set on the fly for a given plot, by simply adding it to the call to plot() as
an argument (see examples in section 4.1):

plot(saemix.fit,plot.type="data",col="red",main="Raw data")

The list of options that can be changed are given in table 3.4, along with their default value.
Not all options apply to all graphs.

43

Inputs and outputs 3. The saemix package

Parameter Description Default value

General graphical options

ask Whether users should be prompted before each
new plot (if TRUE)

FALSE

new Whether a new plot should be produced TRUE
interactive Whether users should be prompted before pre-

dictions or simulations are performed (if TRUE)
FALSE

mfrow Page layout (NA: layout set by the plot function
or before)

NA

main Title empty
xlab Label for the X-axis empty
ylab Label for the Y-axis empty
type Type of the plot (as in the R plot function) b (lines and sym-

bols)
col Main symbol color black

xlog Scale for the X-axis (TRUE: logarithmic scale) FALSE
ylog Scale for the Y-axis (TRUE: logarithmic scale) FALSE
cex A numerical value giving the amount by which

plotting text and symbols should be magnified
relative to the default

1

cex.axis Magnification to be used for axis annotation rel-
ative to the current setting of ’cex’

1

cex.lab Magnification to be used for x and y labels rel-
ative to the current setting of ’cex’

1

cex.main Magnification to be used for main titles relative
to the current setting of ’cex’

1

pch Symbol type 20 (dot)
lty Line type 1 (straight line)
lwd Line width 1
xlim Range for the X-axis (NA: ranges set by the plot

function)
NA

ylim Range for the Y-axis (NA: ranges set by the plot
function)

NA

ablinecol Color of the horizontal/vertical lines added to
the plots

”DarkRed”

ablinelty Type of the lines added to the plots 2 (dashed)
ablinelwd Width of the lines added to the plots 2

Options controlling the type of plots

ilist List of subjects to include in the individual plots all

– To be continued

44

3. The saemix package Inputs and outputs

Table 3.4 – cont.

Parameter Description Default value

level Level of grouping to use (0=population, 1=in-
dividual)

0:1

smooth Whether a smooth should be added to certain
plots

FALSE

line.smooth Type of smoothing (l=line, s=spline) s
indiv.par Type of individual estimates (map= conditional

mode, eap=conditional mean)
map

which.par Which parameters to use for the plot all
which.cov Which covariates to use for the plot all
which.pres Which type of residuals to plot at the population

level (when level includes 0)
c(”wres”,”npde”)

which.resplot Type of residual plot (”res.vs.x”: scatterplot c(”res.vs.x”,”res.vs.pred”,
versus X, ”res.vs.pred”: scatterplot versus pre-
dictions, ”dist.hist”: histogram, ”dist.qqplot”:
QQ-plot)

”dist.qqplot”,”dist.hist”)

Specific graphical options

obs.col Symbol color to use for observations black
ipred.col Symbol color to use for individual predictions black
ppred.col Symbol color to use for population predictions black

obs.lty Line type to use for observations 1
ipred.lty Line type to use for individual predictions 2
ppred.lty Line type to use for population predictions 3
obs.lwd Line width to use for observations 1

ipred.lwd Line width to use for individual predictions 1
ppred.lwd Line width to use for population predictions 1
obs.pch Symbol type to use for observations 20

ipred.pch Symbol type to use for individual predictions 20
ppred.pch Symbol type to use for population predictions 20

Options for marginal distribution

indiv.histo When TRUE, an histogram of the estimates of
the individual parameters will be added to the
plots of the distribution of the parameters

FALSE

cov.value The value for each covariate to be used to con-
dition on for the marginal distribution (NA: me-
dian will be used)

NA

range Range (expressed in number of SD) over which
to plot the marginal distribution

3

– To be continued

45

Inputs and outputs 3. The saemix package

Table 3.4 – cont.

Parameter Description Default value

Graphical options for VPC and residual plots

vpc.method Method used to bin points (one of ”equal”,
”width”, ”user” or ”optimal”); at least the first
two letters of the method need to be specified
(the ”optimal” method is not implemented yet)

”equal”

vpc.bin number of binning intervals 10
vpc.interval size of interval 0.95
vpc.breaks vector of breaks used with user-defined breaks

(vpc.method=”user”)
NULL

vpc.lambda value of lambda used to select the optimal num-
ber of bins through a penalised criterion

0.3

vpc.pi whether prediction intervals should be plotted
for the median and the limits of the VPC inter-
val

TRUE

vpc.obs whether observations should be overlayed on the
plot

TRUE

fillcol Color used to fill histograms (individual param-
eter estimates) or to plot intervals in standard
VPC-type plots (VPC, pd, npde)

”lightblue1”

col.fillmed Color used to fill prediction intervals around the
median (for VPC, pd, npde)

”pink”

col.fillpi Color used to fill prediction intervals around the
limits of intervals (for VPC, pd, npde)

”slategray1”

col.lmed Color used to plot the median of simulated val-
ues (for VPC, pd, npde)

”indianred4”

col.lpi Color used to plot the simulated limit of predic-
tion intervals (for VPC, pd, npde)

”slategray4”

col.pobs Color used to plot the symbols for observations
(for VPC, pd, npde)

”steelblue4”

col.lobs Color used to plot the line corresponding to
given percentiles of observations (for VPC, pd,
npde)

”steelblue4”

lty.lmed Line type used to plot the median of simulated
values (for VPC, pd, npde)

2

lty.lpi Line type used to plot the simulated limit of
prediction intervals (for VPC, pd, npde)

2

lty.lobs Line type used to plot the line corresponding to
given percentiles of observations (for VPC, pd,
npde)

1

– To be continued

46

3. The saemix package Classes in the saemix package

Table 3.4 – cont.

Parameter Description Default value

lwd.lmed Line width used to plot the median of simulated
values (for VPC, pd, npde)

2

lwd.lpi Line width used to plot the simulated limit of
prediction intervals (for VPC, pd, npde)

1

lwd.lobs Line width used to plot the line corresponding
to given percentiles of observations (for VPC,
pd, npde)

2

Specific graphical options

pcol Main symbol color black
lcol Main line color black

Table 3.4: Default graphical parameters. Any option not defined by the user is automatically
set to its default value.

3.2 Classes in the saemix package

3.2.1 A very short introduction to S4 classes

This section is in progress. More information on S4 classes and Rpackages can be found in
tutorials on the Web. I used extensively the following manual [14].

saemix has been programmed using the S4 classes in R. S4 classes implement Object oriented
programming (OOP) in R, allowing to construct modular pieces of code which can be used as
black boxes for large systems. Most packages in the base library and many contributed packages
use the former class system, called S3. However, S4 classes are a more traditional and complete
object oriented system including type checking and multiple dispatching. S4 is implemented in
the methods package in base R.

Elements of an object are called ”Slots”. Slots can be accessed using the @ operator, instead
of the $ operator used for lists. However, the use of @ to access the class slots is heavily discour-
aged outside functions programmed directly by package developers. Instead, in saemix accessor
functions (”get” functions) and replacement functions (”set” functions) have been defined to
allow access to elements of an object in the same way as one would the elements of a list in R,

47

Classes in the saemix package 3. The saemix package

through the name of the slot. If obj is an object with a slot called ”slot”, we would display the
value of the slot using the command:

obj["slot"]

Assuming that slot is a character string, we can replace its value by ”my string” using the
command:

obj["slot"]<-"my string"

Since an S4 class has built-in check for types, a command such as:

obj["slot"]<-3

would in this case produce an error.

3.2.2 S4 classes used in saemix

Visible S4 objects

The following classes have been defined in saemix:

• SaemixData: this object contains the structure and data of the longitudinal dataset

• SaemixModel: this object contains the structure representing a non-linear mixed effect
model, used by the SAEM algorithm

• SaemixRes: this object contains the results obtained after a fit by saemix(); it is included
in the SaemixObject as the Slot results

• SaemixObject: this is the object returned by a call to saemix(); this object has the following
slots:

– data: a SaemixData object, containing the structure and data of the longitudinal
dataset

– model: a SaemixModel object, containing the characteristics of the non-linear mixed
effect model

– results: a SaemixRes object, containing the results obtained after a fit by saemix()

– options: a list of options

48

3. The saemix package Classes in the saemix package

– prefs: a list of graphical preferences, that will replace the default graphical preferences
if changed; the preferences set in this list can be superseded by setting an option in
the call to the plot functions (see section 3.1.3)

– rep.data: an object of class SaemixRepData produced during the fit of the SAEM
algorithm (for internal use only)

– sim.data: an object of class SaemixSimData containing data simulated according to
the design of the original dataset and the fitted model, with the results obtained
during the fit

The constructor functions for the first two objects are respectively saemixData() and saemix-
Model() (with a lowercase initial letter, to distinguish it from the object classes, which start with
a capital letter, since in Rlowercase and uppercase letters are different). These two functions are
the functions intended to be used directly to produce the objects given as input to the saemix()
function.

• saemixData(): the saemixData() function requires one mandatory argument, the name of
a dataframe in Ror of a file on disk containing the data. If the file has a header (or if the
dataframe has column names), the program will attempt to recognise suitable names for
the grouping, predictor and response variables. These may also be specified by the user,
either as names or column numbers (see help page for SaemixData).

• saemixModel(): the saemixModel() function requires two mandatory arguments: the name
of a Rfunction computing the model in the saemix format (see details and examples) and
a matrix giving the initial estimates of the fixed parameters in the model. This matrix
should contain at least one row, with the values of the initial estimates for the population
mean parameters; if covariates are present in the data and enter the model, a second row
should contain the values of the initial estimates for the covariate effects. An additional
argument noted modeltype, taking as values ’structural’ or ’likelihood’, allows the user to
consider either models for continuous or noncontinuous observations. This value is tied to
the definition of the Rfunction computing the model.

There is no constructor function for an SaemixObject object, since such an object should be
returned by the saemix() function.

Hidden S4 objects

In addition to the visible objects, saemix also has 2 other classes which are not intended to
be used directly by the user:

• SaemixRepData: this object is created during the fit by saemix()

49

Classes in the saemix package 3. The saemix package

• SaemixSimData: this object is created when simulating data

An SaemixObject contains instances of these two classes. The slot of class SaemixRepData is
produced and filled during the fit, while the slot of class SaemixSimData is produced when
simulations are performed (in particular, to compute weighted residuals and npde, and produce
VPC plots).

3.2.3 Methods for S4 objects in saemix

Two types of functions have been developed for the saemix package:

• methods

• classical functions

Methods are a special type of functions, which apply to objects and benefit from multiple
dispatch. Ruses multiple dispatch extensively: one generic function call, such as for instance
print, is capable of dispatching on the type of its argument and calls a printing function that is
specific to the data supplied. For instance, using the print() function on a matrix will output the
matrix, while using the same function on an object returned by the lm() function will produce a
summary of the linear regression fit. We used this feature to produce notably plot() and print()
functions (see next sections) which should apply to our saemix objects in a user-friendly way.

Generic methods

The following generic methods have been defined for SaemixData, SaemixModel and SaemixOb-
ject objects:

• print: the print function produces a summary of the object in a nice format

• show: this function is used invisibly by Rwhen the name of the object is typed, and
produces a short summary of the object

• summary: this function produces a summary of the object, and invisibly returns a list
with a number of elements, which provides an alternative way to access elements of the
class

– for SaemixData, the list contains ntot (total number of observations), nind (vector
containing the number of observations for each subject), id (vector of identifier), xind
(matrix of predictors), cov (matrix of individual covariates), y (observations);

50

3. The saemix package Classes in the saemix package

– for SaemixModel, the list contains the model function, the error model, the list of
parameters, the covariance structure, the covariate model;

– for SaemixObject, the list contains the estimated fixed effects, the estimated parame-
ters of the residual error model, the estimated variability of the random effects, the
correlation matrix, the log-likelihood by the different methods used, the Fisher infor-
mation matrix, the population and individual estimates of the parameters for each
subject, the fitted values, the residuals.

• plot: this produces plots of the different objects

– for SaemixData, a plot of the data is produced. The default plot is a spaghetti plot of
the response variable versus the predictor (if several predictors, this is the predictor
given by name.X) with a different line for each individual

– for SaemixModel, the model is used to predict the value of the response variable
according to the value of the predictor(s) over a given range of values for the main
predictor.

– for SaemixObject, the plot function produces a number of different plots. By default,
a series of plot are produced; when called with the plot.type argument, selected plots
can be chosen.

• [function: the get function, used to access the value of the slots in an object

• [<-: function: the set function, used to replace the value of the slots in an object

Examples of calls to these functions are given in the corresponding man pages and in the doc-
umentation (chapter 4). Additional generic methods for classes, such as initialize(), are not
user-level in the saemix package.

Specific methods

Specific methods have been developed for the objects in the saemix package. Specific methods
are methods which possibly apply to objects of several classes. For all purposes, they are used
like generic methods.

The following methods apply to SaemixObject objects:

• showall: this method produces an extensive summary of the object. This method is also
defined for SaemixData and SaemixModel objects.

• predict: this function uses the results from an SAEM fit to obtain model predictions for
the data in the data element of the SaemixObject object

51

Classes in the saemix package 3. The saemix package

• psi, phi, eta: these three methods are used to access the estimates of the individual
parameters and random effects. When the object passed to the function does not contain
these estimates, they are automatically computed. The object is then returned (invisibly)
with these estimates added to the results

• coef: this method extracts the coefficients from an SaemixObject fit, returning a list with
three components (some components may be empty (eg MAP estimates) if they have not
been computed during or after the fit)

– fixed: estimated fixed effects in the model

– population: population parameter estimates for each subject; the estimation of pop-
ulation parameters includes individual covariates if some enter ther model; this is a
list with two components, map and cond, which are respectively the MAP estimates
and the conditional mean estimates

– individual: individual parameter estimates: a list with two components map and
cond; this is a list with two components, map and cond, which are respectively the
MAP estimates and the conditional mean estimates of the individual parameters

Additional specific methods have been defined but are not user-level (read.saemixData() is
used by the constructor function).

3.2.4 Accessing S4 objects in saemix

Help for S4 objects and methods

Aliases for the SaemixData, SaemixModel and SaemixObject objects have been created, so
that the usual online help can be called:

help(SaemixData)

?SaemixData

Classic methods are accessed by the usual help function, for example:

?saemix

will produce the help file for the main saemix() function, fitting the non-linear mixed effect
model.

The help files for generic and methods on the other hand can be accessed by the following
(non-intuitive) commands:

52

3. The saemix package Classes in the saemix package

help("plot,SaemixData")

Typing:

help(plot)

will only give the help page for the generic Rplot function. In the same way, we access the help
page for the plot function applied to the object resulting from a call to saemix() (which contains
links to the page describing the specific plots):

help("plot,SaemixObject")

Elements for S4 objects defined in saemix

The elements, or slots, of the objects with class SaemixData, SaemixModel and SaemixObject
are described in the respective help pages. When an object is first created, some of its slots may
be empty or filled in with default values.

In the following, we create the object saemix.data by a call to the constructor function:

data(theo.saemix)

saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,

name.group=c("Id"),name.predictors=c("Dose","Time"),name.response=c("Concentration"),

name.covariates=c("Weight","Sex"),units=list(x="hr",y="mg/L",covariates=c("kg","-")),

name.X="Time")

We can then access the number of subjects in the dataset by the get function:

saemix.data["N"]

Warning: modifying the elements in the objects outside of dedicated functions or methods can
have unwanted side-effects. For instance, if one was to change the number of subjects in
the data slot of an object created by a call to saemix(), the consistency of the object would
not be guaranteed, and this could cause strange behaviour when trying to print or plot the
object, or use it in subsequent functions. For this reason it is strongly recommended to
only use the functions and methods defined in saemix to access and modify saemix objects.
For instance, to apply the SAEM algorithm only to a subset of the subjects, it is preferable
to apply the function saemixData() to a subset of the data instead of trying the change
directly the SaemixData object.

53

Classes in the saemix package 3. The saemix package

54

Chapter 4

Examples

4.1 Theophylline pharmacokinetics

4.1.1 One-compartment model

Boeckmann, Sheiner and Beal (1994) report data from a study by Dr. Robert Upton of the
kinetics of the anti-asthmatic drug theophylline [45]. Twelve subjects were given oral doses of
the anti-asthmatic drug theophylline, then serum concentrations (in mg/L) were measured at
11 time points over the next 25 hours. In the present package, we removed the data at time
0 to avoid some unexplained non-zero values in a supposedly single-dose study. In the original
dataset shipped with the NONMEM, doses are given as doses per kilo body weight. Here, we
therefore also transformed the doses to doses in mg instead of mg/kg.

These data are analyzed in Davidian and Giltinan [6] and Pinheiro and Bates [33] using a
two-compartment open pharmacokinetic model. These data are also available in R in the library
datasets under the name Theoph in a slightly modified format and including the data at time 0.

Subject i receives an initial dose Di at time 0 and serum concentrations yij are measured at
time tij. Serum concentration is modeled by a first-order one compartment model, according to
the following equation:

yij =
Dikaikei

CLi(kai − kei)

(
e−kaitij − e−keitij

)
+ ǫij (4.1)

where CLi is the clearance of subject i, kai is the absorption rate constant, kei is the elimination
rate constant and is expressed as a function of CLi and the volume of distribution Vi as kei =

CLi
Vi

.
For subject i:

55

Theophylline pharmacokinetics 4. Examples

• the vector of regression (or design) variables is xij = (Di, tij)

• the vector of individual parameters is θi = (ln(kai), ln(CLi), ln(Vi))

– kai, CLi and Vi are assumed to be independant log-normal random variables

– we assumed a relationship between the clearance and the subject’s body weight BWi

ln(kai) = µ1 + η1

ln(Vi) = µ2 + η2

ln(CLi) = µ3 + βBWi + η3

(4.2)

• we can use a simple homoscedastic error model where Var (ǫij) = a2

The data is shown in figure 4.1.

0 5 10 15 20 25

2
4

6
8

1
0

Theophylline data

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

Figure 4.1: Theophylline concentrations versus time for the 12 subjects included in the study.

The following code was used in R to read the data, using the saemixData to create the
structured object we will use in the analysis, and the plot function developed for SaemixData
objects to obtain the plot in figure 4.1:

56

4. Examples Theophylline pharmacokinetics

library(saemix)

data(theo.saemix)

saemix.data<-saemixData(name.data=theo.saemix,header=TRUE,sep=" ",na=NA,

name.group=c("Id"),name.predictors=c("Dose", "Time"),name.response=c("Concentration"),

name.covariates=c("Weight","Sex"),units=list(x="hr",y="mg/L",covariates=c("kg","-")),

name.X="Time")

plot(saemix.data)

The name.X is used to specify which of the predictors should be used on the X-axis, it is optional
when the first predictor in the list.

The following code is used to specify the model:

model1cpt<-function(psi,id,xidep) {

tim<-xidep[,2]

dose<-xidep[,1]

ka<-psi[id,1]

V<-psi[id,2]

CL<-psi[id,3]

k<-CL/V

ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)-exp(-ka*tim))

return(ypred)

}

saemix.model<-saemixModel(model=model1cpt,

description="One-compartment model with first-order absorption",

psi0=matrix(c(1.,20,0.5,0.1,0,-0.01),ncol=3, byrow=TRUE,dimnames=list(NULL,

c("ka","V","CL"))),transform.par=c(1,1,1),

covariate.model=matrix(c(0,0,1,0,0,0),ncol=3,byrow=TRUE),fixed.estim=c(1,1,1),

covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),

omega.init=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE), error.model="constant")

In this example, we specify the vector of starting values through psi0, which is defined as
the following matrix:

ka V CL

[1,] 1.0 20 0.50

[2,] 0.1 0 -0.01

The first line is renamed as Pop.CondInit when the model object is created (see output from
the commands given in the snippet of code above), and contains the initial estimates of the

57

Theophylline pharmacokinetics 4. Examples

population parameters ka, V and CL. The second line, renamed Cov.CondInit in this example,
contains the initial values for the parameter-covariate relationships in the model. In this example,
we have assumed an effect of the covariate Weight on the clearance CL, and the initial value of
the corresponding fixed effect is -0.01. In this model there is no relationship between either of
the two covariates in the model and ka, so that the 0.1 value given in psi0 will not be used. If we
also had relationships between the covariate Sex and the model parameters, the same starting
values would be used (using the vector recycling principle R), however we could add other lines
to psi0 to specify different starting values. For example, assuming we want to estimate an effect
of weight on V and CL, as well as a gender effect on CL, we could replace the covariate.model
argument with:

covariate.model=matrix(c(0,1,1,0,0,1),ncol=3,byrow=TRUE)

and give different starting values for each parameter-relationship in psi0, for example 0.1 for
both weight effects and -0.1 for the gender effect:

psi0=matrix(c(1.,20,0.5,0,0.1,0.1,0,0,-0.1),ncol=3, byrow=TRUE,

dimnames=list(NULL, c("ka","V","CL")))

Note that the model requires two predictors, dose and time. The user is responsible for
writing the model function and checking the consistency between the model function and the
data. Here, the first predictor (first column) is dose and the second predictor is time so that we
need both items in the dataset, and we need to give the names of the two predictors in the proper
order (the order corresponding to the way the model function is written here) when creating
the data object. This is a single-dose administration and therefore the dose column contains
the same dose repeated for each time-point. However, for graphs we want the observations to
be plotted versus time and not versus dose; by default, the program will use the first predictor
as the X axis, but we override this behaviour here by setting the option name.X=”Time” in the
creation of the data object, so that the graphs will use time on the X-axis.

Then we fit the model using the saemix() function:

saemix.fit<-saemix(saemix.model,saemix.data,list(seed=632545,nb.chains=5,

nbiter.saemix = c(300, 150)))

We use 5 chains here to stabilise the estimation because there are only 12 subjects in the dataset
(by default, the algorithm will increase the number of chains if there are less than 50 subjects in
the dataset, and set it to a higher value as describe in section 3.1), and we increase the number
of steps in the second stage to 150 (default: 100) to show how to set this option. Increasing the
number of iterations in the second stage helps to obtain a more stable conditional distribution
for the individual parameters.

58

4. Examples Theophylline pharmacokinetics

This produces the following output:

............

Nonlinear mixed-effects model fit by the SAEM algorithm

---- Data ----

Object of class SaemixData

longitudinal data for use with the SAEM algorithm

Dataset theo.saemix

Structured data: Concentration ~ Dose + Time | Id

X variable for graphs: Time (hr)

covariates: Weight (kg), Sex (-)

First 10 lines of data:

Id Dose Time Concentration Weight Sex

1 1 319.992 0.25 2.84 79.6 1

2 1 319.992 0.57 6.57 79.6 1

3 1 319.992 1.12 10.50 79.6 1

4 1 319.992 2.02 9.66 79.6 1

5 1 319.992 3.82 8.58 79.6 1

6 1 319.992 5.10 8.36 79.6 1

7 1 319.992 7.03 7.47 79.6 1

8 1 319.992 9.05 6.89 79.6 1

9 1 319.992 12.12 5.94 79.6 1

10 1 319.992 24.37 3.28 79.6 1

---- Model ----

Nonlinear mixed-effects model

Model function: One-compartment model with first-order absorption

function(psi,id,xidep) {

dose<-xidep[,1]

tim<-xidep[,2]

ka<-psi[id,1]

V<-psi[id,2]

CL<-psi[id,3]

k<-CL/V

ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)-exp(-ka*tim))

return(ypred)

}

Nb of parameters: 3

parameter names: ka V CL

59

Theophylline pharmacokinetics 4. Examples

distribution:

Parameter Distribution

[1,] ka log-normal

[2,] V log-normal

[3,] CL log-normal

Variance-covariance matrix:

ka V CL

ka 1 0 0

V 0 1 0

CL 0 0 1

Error model: constant , initial values: a=1

Covariate model:

ka V CL

Weight 0 0 1

Initial values

ka V CL

PopCI 1.0 20 0.50

CovCI 0.1 0 -0.01

---- Key algorithm options ----

Algorithms: MAP, FIM, LL by IS

Number of iterations: K1=300, K2=150

Number of chains: 5

Seed: 632545

Number of MCMC iterations for IS: 5000

Simulations:

nb of simulated datasets used for npde: 1000

nb of simulated datasets used for VPC: 100

Input/output

save the results to file pop_parameters.txt in directory: newdir

save graphs

---- Results ----

--

----------------- Fixed effects ------------------

--

Parameter Estimate SE CV(%) p-value

[1,] ka 1.567 0.2998 19.1 -

[2,] V 31.475 1.3838 4.4 -

[3,] CL 1.581 1.0155 64.2 -

[4,] beta_Weight(CL) 0.008 0.0092 113.5 0.19

60

4. Examples Theophylline pharmacokinetics

[5,] a 0.743 0.0569 7.7 -

--

----------- Variance of random effects -----------

--

Parameter Estimate SE CV(%)

ka omega.ka 0.388 0.175 45

V omega.V 0.015 0.009 59

CL omega.CL 0.070 0.034 49

--

------ Correlation matrix of random effects ------

--

omega.ka omega.V omega.CL

omega.ka 1 0 0

omega.V 0 1 0

omega.CL 0 0 1

--

--------------- Statistical criteria -------------

--

Likelihood computed by linearisation

-2LL= 343.4919

AIC = 359.4919

BIC = 363.3712

Likelihood computed by importance sampling

-2LL= 344.8896

AIC = 360.8896

BIC = 364.7689

--

By default, the results are saved in a file called pop parameters.txt in the newdir directory, and
graphs are produced.

Table 4.1 reports the parameters obtained on a Linux Ubuntu distribution running R version
2.11.1 for this example. In this example, the fixed effect representing the influence of weight on
CL is not significant (p=0.19, NS according to a Wald test).

A series of diagnostic plots can be produced simply by applying the function plot() to the
object returned by saemix():

plot(saemix.fit)

By using the plot.type=”” argument, specific graphs can be produced (see section 3.1.3). For
example, the convergence plot shown in figure 4.2 can be produced by:

61

Theophylline pharmacokinetics 4. Examples

Parameter Population estimate IIV Variance
(SE%) (SE%)

ka (hr−1) 1.57 (19%) 0.39 (45%)
CL (L.hr−1) 1.58 (64%) 0.07 (49%)
βBW,CL (-) 0.008 (110%) -

V (L) 31.5 (4%) 0.02 (59%)
a (mg.L−1) 0.74 (6%) -

Table 4.1: Pharmacokinetic parameters estimated by saemix for the theophylline data.

plot(saemix.fit,plot.type="convergence")

In this figure we can see all the parameters converging quickly to their estimated value.

0 100 200 300 400

1
.0

1
.4

1
.8

ka

Iteration

0 100 200 300 400

2
0

2
5

3
0

3
5

V

Iteration

0 100 200 300 400

0
.5

1
.5

2
.5

3
.5

CL

Iteration

0 100 200 300 400

−
0

.0
1

0
0

.0
0

0
0

.0
1

0

beta_Weight(CL)

Iteration

0 100 200 300 400

0
.3

0
.5

0
.7

0
.9

omega.ka

Iteration

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

omega.V

Iteration

0 100 200 300 400

0
.2

0
.4

0
.6

0
.8

1
.0

omega.CL

Iteration

0 100 200 300 400

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

a

Iteration

Figure 4.2: Convergence plots for the estimated pharmacokinetic parameters and the variabili-
ties.

Figure 4.3 shows the evolution of the log-likelihood during the importance sampling step. Fig-
ure 4.4 shows the predicted values compared to the observed concentrations, for the population
predictions (left) and the individual predictions (right). Figure 4.5 shows the individual data for the
12 subjects, with the individual predictions overlayed (smoothed predictions were obtained). Both

62

4. Examples Theophylline pharmacokinetics

plots indicate good model adequacy.

1000 2000 3000 4000 5000

3
4
4
.6

0
3
4
4
.6

5
3
4
4
.7

0
3
4
4
.7

5

−2xLL by Importance Sampling

Iteration

−
2
 x

 L
L

Figure 4.3: Estimating the log-likelihood by Importance Sampling.

63

Theophylline pharmacokinetics 4. Examples

2 4 6 8

2
4

6
8

1
0

Population predictions

Predictions

O
b

s
e

rv
a

ti
o

n
s

2 4 6 8 10

2
4

6
8

1
0

Individual predictions, MAP

Predictions

O
b

s
e

rv
a

ti
o

n
s

Figure 4.4: Observations versus predictions (left: population predictions, right: individual pre-
dictions).

64

4. Examples Theophylline pharmacokinetics

0 5 10 20

4
6

8
1

0

Subject 1

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 15 20 25

2
4

6
8

Subject 2

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 15 20 25

2
4

6
8

Subject 3

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 20

2
4

6
8

Subject 4

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 15 20 25

2
4

6
8

1
0

Subject 5

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 15 20

1
2

3
4

5
6

Subject 6

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 15 20 25

1
2

3
4

5
6

7

Subject 7

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 15 20 25

1
2

3
4

5
6

7

Subject 8

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 20

2
4

6
8

Subject 9

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 15 20

4
6

8
1

0

Subject 10

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 15 20 25

1
2

3
4

5
6

7
8

Subject 11

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 5 10 15 20 25

2
4

6
8

1
0

Subject 12

Time (hr)

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

Figure 4.5: Individual plots for the 12 subjects in the study. Dots represent observations and
the line shows the smoothed profile predicted using the individual estimated parameters.

65

Theophylline pharmacokinetics 4. Examples

The following example shows how to use the functions defined in section 3.1.3 to plot the
individual fits for the first 4 subjects in the theophylline example, including a smoothed prediction
line, and changing the color of the line and the plotting symbol. A logarithmic scale is used for the
Y-axis. The resulting plot is shown in figure 4.6

0 5 10 15 20 25

4
6

8
1
0

Subject 1

Time (hr)

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
g
/L

)

0 5 10 15 20 25
1

2
5

Subject 2

Time (hr)

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
g
/L

)

0 5 10 15 20 25

2
4

6
8

Subject 3

Time (hr)

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
g
/L

)

0 5 10 15 20 25

2
4

6
8

Subject 4

Time (hr)

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
g
/L

)

Figure 4.6: Individual plots for the first 4 subjects in the study, with different options.

To obtain these plots, we can use the generic function plot(), by setting the plot.type argument
to ”individual.fit”, to produce these plots:

Plotting individual fits with selected options

par(mfrow=c(2,2))

plot(saemix.fit,plot.type="individual.fit",new=FALSE,ilist=1:4,smooth=TRUE,ylog=T,

pch=1, col="Blue",xlab="Time in hr",ylab="Theophylline concentrations (mg/L)")

We can also use directly the saemix.plot.fits() function with the same graphical options, which gives
the exact same graph:

66

4. Examples Theophylline pharmacokinetics

Plotting individual fits with selected options

par(mfrow=c(2,2))

saemix.plot.fits(saemix.fit,new=FALSE,ilist=1:4,smooth=TRUE,ylog=T,pch=1,

col="Blue",xlab="Time in hr",ylab="Theophylline concentrations (mg/L)")

Other diagnostic plots include Visual Predictive Checks, shown in figure 4.7, and residual plots.

0 5 10 15 20 25

0
2

4
6

8
1
0

1
2

Visual Predictive Check

Time (hr)

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
g
/L

)

Figure 4.7: VPC for the theophylline data.

The following code can be used to first simulate from the model in order to compute simulation-
based metrics (residuals and VPC), and then produce VPC and scatterplots of residuals versus time
and predictions (figure 4.8).

Scatterplots of residuals

plot(saemix.fit, plot.type="residuals.scatter")

VPC

67

Theophylline pharmacokinetics 4. Examples

plot(saemix.fit, plot.type="vpc")

0 5 10 15 20 25

−
2

−
1

0
1

2
3

4

Time (hr)

P
o

p
u

la
ti
o

n
 s

ta
n

d
a

rd
is

e
d

 r
e

s
id

u
a

ls
 (

W
R

E
S

)

0 5 10 15 20 25

−
4

−
3

−
2

−
1

0
1

2
3

Time (hr)

In
d

iv
id

u
a

l
s
ta

n
d

a
rd

is
e

d
 r

e
s
id

u
a

ls
 (

IW
R

E
S

)

0 5 10 15 20 25

−
2

−
1

0
1

2
3

4
5

Time (hr)

N
o

rm
a

lis
e

d
 p

re
d

ic
ti
o

n
 d

is
tr

ib
u

ti
o

n
 e

rr
o

rs
 (

N
P

D
E

)

2 4 6 8

−
2

−
1

0
1

2
3

4

Population predictions (hr)

P
o

p
u

la
ti
o

n
 s

ta
n

d
a

rd
is

e
d

 r
e

s
id

u
a

ls
 (

W
R

E
S

)

2 4 6 8 10

−
4

−
3

−
2

−
1

0
1

2
3

Individual predictions (hr)

In
d

iv
id

u
a

l
s
ta

n
d

a
rd

is
e

d
 r

e
s
id

u
a

ls
 (

IW
R

E
S

)

2 4 6 8

−
2

−
1

0
1

2
3

4
5

Population predictions (hr)

N
o

rm
a

lis
e

d
 p

re
d

ic
ti
o

n
 d

is
tr

ib
u

ti
o

n
 e

rr
o

rs
 (

N
P

D
E

)

Figure 4.8: Scatterplots of the residuals (left: weighted population residuals; middle: individual
weighted residuals; right: npde) versus time (top) and predictions (bottom).

Finally, note that the SAEM algorithm is relatively robust to the initial choice of parameter
estimates, but different initial choices may lead to different population estimates. Here, if we had
set all the initial parameters to 1 as in the following code, the model converges to very different
values and a flip-flop occurrs (ka becomes smaller than the elimination rate constant k = CL/V).
The resulting fit however has a lower likelihood and the VPC graphs indicate poor estimates of the
variability (not shown), which can give an indication of problems with the model.

saemix.model<-saemixModel(model=model1cpt,

description="One-compartment model with first-order absorption",

psi0=matrix(c(1.,1.,1.,0.1,0,-0.01),ncol=3, byrow=TRUE,dimnames=list(NULL,

c("ka","V","CL"))),transform.par=c(1,1,1),

covariate.model=matrix(c(0,0,1,0,0,0),ncol=3,byrow=TRUE), fixed.estim=c(1,1,1),

covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),

68

4. Examples Theophylline pharmacokinetics

omega.init=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE), error.model="constant")

Thus, it is always good policy during data analysis to check the stability of the final model estimates
by changing the initial estimates and running the algorithm again, and to compare the magnitude of
the parameter estimates with a reference, such as prior information or litterature values.

4.1.2 One-compartment model at steady-state

In the theophylline example, we described the pharmacokinetics using the single-dose, first-order
absorption and elimination model. The following code shows how to fit the same data with the same
model at steady-state, assuming a 24 hours dosing interval:

data(theo.saemix)

Include a column for the inter-dose interval (tau)

theo.saemix2<-cbind(theo.saemix,tau=24)

saemix.data2<-saemixData(name.data=theo.saemix2,header=TRUE,sep=" ",na=NA,

name.group=c("Id"),name.predictors=c("Dose","Time","tau"),

name.response=c("Concentration"),name.covariates=c("Weight","Sex"),

units=list(x="hr",y="mg/L",covariates=c("kg","-")), name.X="Time")

Define the model for steady-state

modelSS<-function(psi,id,xidep) {

dose<-xidep[,1]

tim<-xidep[,2]

tau<-xidep[,3]

ka<-psi[id,1]

V<-psi[id,2]

CL<-psi[id,3]

k<-CL/V

ypred<-dose*ka/(V*(ka-k))*(exp(-k*tim)/(1-exp(-k*tau))-

exp(-ka*tim)/(1-exp(-ka*tau)))

return(ypred)

}

saemix.model2<-saemixModel(model=modelSS,

description="One-compartment model with first-order absorption, Steady-state",

psi0=matrix(c(1.,20,0.5,0.1,0,-0.01),ncol=3,byrow=TRUE,

dimnames=list(NULL, c("ka","V","CL"))),transform.par=c(1,1,1))

Run SAEMIX again

saemix.options<-list(seed=632545)

saemix.fit2<-saemix(saemix.model2,saemix.data2,saemix.options)

69

Simulated pharmacodynamic model 4. Examples

4.2 Simulated pharmacodynamic model

A symposium dedicated to Comparison of Algorithms Using Simulated Data Sets and Blind
Analysis, took place in Lyon, France, September 2004, organised by P. Girard and F. Mentré. During
this symposium, a blind comparison of several PK/PD modelling software was performed, using
simulated datasets. This example uses two datasets simulated for this comparison.

The two datasets contain 100 individuals, each receiving 3 different doses:(0, 10, 90), (5, 25,
65) or (0, 20, 30). It is assumed that doses were given in a cross-over study with sufficient wash-
out period to avoid a carry-over effect. Responses yij have been simulated with an Emax model, a
standard pharmacodynamic model:

yij = E0,i
DijEmax,i

Dij + ED50,i
+ ǫij (4.3)

For subject i:

• the regression variable is the dose received xij = (Di)

• the vector of individual parameters is θi = (ln(E0,i), ln(Emax,i), ln(ED50,i))

• the only available covariate is the gender wi of the individual (0 for male and 1 for female)

The individual parameters were simulated assuming a log-normal distribution for all parameters, and
a gender effect on ED50,i:

ln(E0,i) = ln(E0) + ηi1

ln(Emax,i) = ln(Emax) + ηi2

ln(ED50,i) = ln(ED50) + βwi + ηi3

(4.4)

In the simulations, the fixed effects were set to (ln(EO), ln(Emax), ln(ED50)) = (24, 100, 12). The
covariance matrix of the random effects was a diagonal matrix. The variances of the random effects
were (0.12 , 0.26 , 0.05). The residual variance was a constant variance, with a2 = 20. The two
data sets were simulated with different values of β:

• the first dataset was simulated with a gender effect, β = 0.3, and is available in the package
under the name PD1.saem

• the second dataset was simulated under the null hypothesis, β = 0, and is available in the
package under the name PD2.saem

The data is shown in figure 4.9.

70

4. Examples Simulated pharmacodynamic model

0 20 40 60 80

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Dataset 1 (beta=0.3)

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Dataset 2 (beta=0)

dose (mg)

re
s
p

o
n

s
e

 (
−

)

Figure 4.9: Effect versus dose for the data simulated with an Emax model, with a gender effect
on ED50 (left) and without a gender effect (right).

library(saemix)

data(PD1.saemix)

data(PD2.saemix)

saemix.data1<-saemixData(name.data=PD1.saemix,header=TRUE,name.group=c("subject"),

name.predictors=c("dose"),name.response=c("response"),name.covariates=c("gender"),

units=list(x="mg",y="-",covariates="-"))

saemix.data2<-saemixData(name.data=PD2.saemix,header=TRUE,name.group=c("subject"),

name.predictors=c("dose"),name.response=c("response"),name.covariates=c("gender"),

units=list(x="mg",y="-",covariates="-"))

modelemax<-function(psi,id,xidep) {

input:

psi : matrix of parameters (3 columns, E0, Emax, EC50)

id : vector of indices

71

Simulated pharmacodynamic model 4. Examples

xidep : dependent variables (same nb of rows as length of id)

returns:

a vector of predictions of length equal to length of id

dose<-xidep[,1]

e0<-psi[id,1]

emax<-psi[id,2]

e50<-psi[id,3]

f<-e0+emax*dose/(e50+dose)

return(f)

}

saemix.model<-saemixModel(model=modelemax,description="Emax model",

psi0=matrix(c(20,300,20,0,0,0),ncol=3,byrow=TRUE,

dimnames=list(NULL,c("E0","Emax","EC50"))),transform.par=c(1,1,1),

covariate.model=matrix(c(0,0,1),ncol=3,byrow=TRUE),

fixed.estim=c(1,1,1), error.model="constant",

covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE))

We can check the predictions for the model using the plot function with the model and data objects
as arguments (predictions will be obtained for the parameters in the psi0 argument of the model),
as well as change the parameters on the fly using the psi=c(XXX) argument. If additional predictors
are needed by the model, we would add them using predictors=c(XXX). The ilist argument is used
to specify which subjects to plot (by default, the first 20 subjects are used):

Predictions for psi0

plot(saemix.model, saemix.data)

Predictions for psi=c(0, 200, 50)

plot(saemix.model, saemix.data, psi=c(0, 200, 50), ilist=1:12)

Note: when applied directly, the plot function requires the first predictor (here, the only one, dose)
in the model to be the one on the X-axis, if there are several predictors in the model (see the online
help example for how to permute the two predictors in the theophylline example to use this function).
The plot function can also be applied after a model fit to the two elements (model and data) in an
SaemixObject object, in which case the mapping of the predictors will be automatic and predictions
can be obtained for the population or individual parameters.

The following code was used in R to run this example on the two datasets:

saemix.options<-list(directory=directory,algorithms=c(1,1,1),nb.chains=1,

save=FALSE,save.graphs=FALSE)

72

4. Examples Simulated pharmacodynamic model

Fitting the model on the two PD datasets

saemix.fit1<-saemix(saemix.model,saemix.data1,saemix.options)

saemix.fit2<-saemix(saemix.model,saemix.data2,saemix.options)

Table 4.2 shows the parameter estimates for the two datasets. The estimates for the three fixed
effects are similar for both datasets, while the estimate of β is close to the values simulated for both.
For PD2.saemix, the SE on β is very large, as is the SE on the estimate of the variability of EC50.

PD1.saemix PD2.saemix
Parameter Estimate (SE%) IIV (SE%) Estimate (SE%) IIV (SE%)

E0 (-) 22.71 (5%) 0.13 (22%) 23.18 (5%) 0.16 (20%)
Emax (-) 106.46 (6%) 0.31 (15%) 96.14 (5%) 0.22 (15%)

EC50 (mg) 11.25 (8%) 0.03 (55%) 12.38 (6%) 0.01 (151%)
βgender,EC50 (-) 0.35 (26%) - -0.06 (116%) -

a (mg.L−1) 4.94 (8%) - 4.67 (8%) -

Table 4.2: Pharmacokinetic parameters estimated by saemix for the simulated PD data.

The convergence plots are shown in figures 4.10 and 4.11, where we can see β converging to a
non-zero value for the first dataset, while the estimate fluctuates around 0 for the second dataset.
The Wald test performed for the fixed effect representing the effect of gender on EC50 shows that
this parameter is significantly different from 0 in the first dataset (p=6.10−5).

73

Simulated pharmacodynamic model 4. Examples

0 100 200 300 400

2
0

2
1

2
2

2
3

2
4

E0

Iteration

0 100 200 300 400

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

Emax

Iteration

0 100 200 300 400

1
0

1
2

1
4

1
6

1
8

2
0

EC50

Iteration

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

beta_gender(EC50)

Iteration

0 100 200 300 400

0
.2

0
.4

0
.6

0
.8

1
.0

omega.E0

Iteration

0 100 200 300 400

0
.4

0
.6

0
.8

1
.0

omega.Emax

Iteration

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

omega.EC50

Iteration

0 100 200 300 400

1
2

3
4

5
6

7

a

Iteration

Figure 4.10: Convergence plots for the estimated pharmacokinetic parameters and the variabil-
ities, for the first dataset.

74

4. Examples Simulated pharmacodynamic model

0 100 200 300 400

2
0

2
2

2
4

E0

Iteration

0 100 200 300 400

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

Emax

Iteration

0 100 200 300 400

1
2

1
4

1
6

1
8

2
0

2
2

EC50

Iteration

0 100 200 300 400

−
0

.3
−

0
.1

0
.0

0
.1

beta_gender(EC50)

Iteration

0 100 200 300 400

0
.2

0
.4

0
.6

0
.8

1
.0

omega.E0

Iteration

0 100 200 300 400

0
.2

0
.4

0
.6

0
.8

1
.0

omega.Emax

Iteration

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

omega.EC50

Iteration

0 100 200 300 400

1
2

3
4

5
6

7

a

Iteration

Figure 4.11: Convergence plots for the estimated pharmacokinetic parameters and the variabil-
ities, for the second dataset.

Finally, figure 4.12 shows the individual data for the first 12 subjects in the first dataset, with
the individual predictions overlayed. A smoothed prediction was obtained. The model fits the data
extremely well, which is unsurprising given that this is simulated data, with a rather small residual
variability.

75

Simulated pharmacodynamic model 4. Examples

0 20 40 60 80

2
0

4
0

6
0

8
0

1
0

0
1

2
0

Subject 1

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

2
0

3
0

4
0

5
0

6
0

Subject 2

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

3
0

4
0

5
0

6
0

7
0

8
0

Subject 3

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

2
0

3
0

4
0

5
0

6
0

7
0

Subject 4

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0

Subject 5

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

2
0

4
0

6
0

8
0

1
0

0

Subject 6

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

4
0

6
0

8
0

1
0

0
1

2
0

Subject 7

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

2
0

4
0

6
0

8
0

1
0

0
1

2
0

Subject 8

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Subject 9

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

2
0

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0
1

6
0

Subject 10

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

5
0

1
0

0
1

5
0

Subject 11

dose (mg)

re
s
p

o
n

s
e

 (
−

)

0 20 40 60 80

5
0

1
0

0
1

5
0

Subject 12

dose (mg)

re
s
p

o
n

s
e

 (
−

)

Figure 4.12: Individual plots for the 12 subjects in the first dataset (PD1.saemix). Dots represent
observations and the line shows the profile predicted using the individual estimated parameters.

76

4. Examples Weight gain of cows

4.3 Weight gain of cows

The data used in this example is the evolution of the weight (in kg) of 560 cows. The weight
of each cow was recorded on 9 or 10 occasions. An exponential model was assumed to describe the
weight gain with time:

yij = Ai
(
1−Bie

−Kitij
)
+ ǫij (4.5)

For subject i:

• the regression variable is the time (in days) xij = (tij)

• the vector of individual parameters is θi = (Ai, Bi,Ki))

• there were 3 covariates in the file:

1. the year of birth (beetween 1988 and 1998)

2. existence of a twin (no=1, yes=2)

3. the rank of birth (beetween 3 and 7)

The data is shown in figure 4.13.

The following code was used in R to run this example:

library(saemix)

data(cow.saemix)

saemix.data<-saemixData(name.data=cow.saemix,header=TRUE,name.group=c("cow"),

name.predictors=c("time"),name.response=c("weight"),

name.covariates=c("birthyear","twin","birthrank"),

units=list(x="days",y="kg",covariates=c("yr","-","-")))

growthcow<-function(psi,id,xidep) {

input:

psi : matrix of parameters (3 columns, ka, V, CL)

id : vector of indices

xidep : dependent variables (same nb of rows as length of id)

returns:

a vector of predictions of length equal to length of id

x<-xidep[,1]

a<-psi[id,1]

b<-psi[id,2]

k<-psi[id,3]

77

Weight gain of cows 4. Examples

0 500 1000 1500 2000

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

time (days)

w
e
ig

h
t
(k

g
)

Figure 4.13: Weight gain of 560 cows recorded repeatedly over time.

f<-a*(1-b*exp(-k*x))

return(f)

}

saemix.model<-saemixModel(model=growthcow,description="Exponential model",

psi0=matrix(c(700,0.9,0.02,0,0,0),ncol=3,byrow=TRUE,

dimnames=list(NULL,c("A","B","k"))),transform.par=c(1,1,1),fixed.estim=c(1,1,1),

covariate.model=matrix(c(0,0,0,0,0,0,0,0,0),ncol=3,byrow=TRUE),

covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),

omega.init=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=TRUE),error.model="constant")

saemix.options<-list(algorithms=c(1,1,1),nbiter.saemix=c(200,100),nb.chains=1,

save=FALSE,save.graphs=FALSE)

Fitting the models

saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)

78

4. Examples Weight gain of cows

As an alternative, we can compute the estimate of the likelihood by Gaussian Quadrature:

saemix.fit<-llgq.saemix(saemix.fit)

The three estimates of the likelihood were found to be in good agreement in this example:

--

--------------- Statistical criteria -------------

--

Likelihood computed by linearisation

-2LL= 53723.42

AIC = 53737.42

BIC = 53767.71

Likelihood computed by importance sampling

-2LL= 53723.88

AIC = 53737.88

BIC = 53768.18

Likelihood computed by Gaussian quadrature

-2LL= 53723.04

AIC = 53737.04

BIC = 53767.34

--

The fits to the data from the first 4 animals can be plotted using the function saemix.plot.fits.
First, default plot options are set in a list called saemix.plot.options using the function saemix.plot.setoptions.
Second, the option controlling the list of subjects to be plotted is set (here, we choose to plot the
graphs for the first four animals), and the option smooth indicates that we want an smoothed version
of the plots (using interpolated weights):

plot(saemix.fit,plot.type="individual.fit",ilist=1:4,smooth=TRUE)

The result is shown in figure 4.14.

79

Height of Oxford boys 4. Examples

0 500 1000 1500 2000

2
0

0
4

0
0

6
0

0
8

0
0

Subject 1988005

time (days)

w
e

ig
h

t
(k

g
)

0 500 1000 1500 2000

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

Subject 1988007

time (days)

w
e

ig
h

t
(k

g
)

0 500 1000 1500 2000

2
0

0
4

0
0

6
0

0

Subject 1988008

time (days)

w
e

ig
h

t
(k

g
)

0 500 1000 1500 2000

2
0

0
4

0
0

6
0

0
8

0
0

Subject 1988009

time (days)

w
e

ig
h

t
(k

g
)

Figure 4.14: Fit for the first four subjects in the cow dataset.

4.4 Height of Oxford boys

saemix can be used even for linear models. The dataset oxboys.saemix was taken from the library
nlme [34]. It describes the evolution with age of the height of boys from Oxford, England. There
is no covariate in the model, and we use a simple linear model to account for the increase in height
over this age range:

yij = Basei + Slope ageij + ǫij (4.6)

where Basei is the baseline height at the entrance of subject i in the study and Slopei the slope for
the increase of height with age ageij. For subject i:

• the vector of regression (or design) variables is xij = (ageij)

• the vector of individual parameters is θi = (Basei,Slopei)

– the individual parameters are assumed to have a normal distribution

80

4. Examples Height of Oxford boys

• we can use a simple homoscedastic error model where Var (ǫij) = a2

The data is shown in figure 4.15.

−1.0 −0.5 0.0 0.5 1.0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

age (−)

h
e
ig

h
t
(c

m
)

Figure 4.15: Evolution with age of the height of boys from Oxford.

The following code was used in R to run this example:

library(saemix)

data(oxboys.saemix)

saemix.data<-saemixData(name.data=oxboys.saemix,header=T,name.group=c("Subject"),

name.predictors=c("age"),name.response=c("height"), units=list(x="-",y="yr"))

growth.linear<-function(psi,id,xidep) {

input:

psi : matrix of parameters (2 columns, base and slope)

id : vector of indices

xidep : dependent variables (same nb of rows as length of id)

returns:

a vector of predictions of length equal to length of id

81

A yield model 4. Examples

x<-xidep[,1]

base<-psi[id,1]

slope<-psi[id,2]

f<-base+slope*x

return(f)

}

saemix.model<-saemixModel(model=growth.linear,description="Linear model",

psi0=matrix(c(140,1),ncol=2,byrow=T,dimnames=list(NULL,c("base","slope"))),

transform.par=c(1,0), covariance.model=matrix(c(1,1,1,1),ncol=2,byrow=T),

error.model="constant")

saemix.options<-list(algorithms=c(1,1,1),nb.chains=1)

saemix.fit<-saemix(saemix.model,saemix.data,saemix.options)

4.5 A yield model

The data used in this study were from 37 winter wheat experiments carried out between 1990
and 1996 on commercial farms in the Paris Basin, France. Each experiment was from a different
site. Two soil types were represented, a loam soil and a chalky soil. Common winter wheat varieties
were used. Each experiment consisted of five to eight different nitrogen fertilizer rates, for a total
of 224 nitrogen treatments. Nitrogen fertilizer was applied in two applications during the growing
season. For each nitrogen treatment, grain yield (adjusted to 150 g.kg−1 grain moisture content)
was measured. In addition, end-of-winter mineral soil nitrogen (NO3- plus NH4+) in the 0- to 90-cm
layer was measured on each site-year during February when the crops were tillering. See [9] for a more
complete description of the plant sampling and nitrogen analysis. Yield and end-of-winter mineral
soil nitrogen measurements were in the ranges 3.44- 11.54 t.ha−1 , and 40-180 kg.ha−1 respectively.

The data is shown in figure 4.16.

Let yij denote the jth measurement of the yield response in the ith site-year when the nitrogen
fertilizer dose dij is applied. The only available covariate is the amount of soil mineral nitrogen at
the end of winter (wi).

A first model is a linear-plus-plateau function (LP) defined by:

yij =

{
Ymax,i +Bi(dij −Xmax,i) if dij ≤ Xmax,i

Ymax,i if dij ≥ Xmax,i
(4.7)

This model includes three individual random parameters, φi = (Ymax,i,Xmax,i, Bi). Ymax,i is the
maximal yield value in the ith site-year and Xmax,i is the fertilizer dose that maximizes yield. The
three parameters were assumed to follow a normal distribution.

82

4. Examples A yield model

0 50 100 150 200 250 300

4
6

8
1
0

dose (kg/ha)

y
ie

ld
 (

t/
h
a
)

Figure 4.16: Yield from 37 winter wheat experiments.

A second model is a square-root-plus-plateau function (QP) defined by:

yij =

{
Ymax,i +Bi(

√
dij −

√
Xmax,i) if dij ≤ Xmax,i

Ymax,i if dij ≥ Xmax,i
(4.8)

We use the following code to run these two models:

library(saemix)

data(yield.saemix)

saemix.data<-saemixData(name.data=yield.saemix,header=TRUE,name.group=c("site"),

name.predictors=c("dose"),name.response=c("yield"), name.covariates=c("soil.nitrogen"),

units=list(x="kg/ha",y="t/ha", covariates=c("kg/ha")))

yield.LP<-function(psi,id,xidep) {

x<-xidep[,1]

ymax<-psi[id,1]

83

A yield model 4. Examples

xmax<-psi[id,2]

slope<-psi[id,3]

f<-ymax+slope*(x-xmax)

cat(length(f)," ",length(ymax),"\n")

f[x>xmax]<-ymax[x>xmax]

return(f)

}

yield.QP<-function(psi,id,xidep) {

x<-xidep[,1]

ymax<-psi[id,1]

xmax<-psi[id,2]

slope<-psi[id,3]

f<-ymax+slope*(x**0.5-xmax**0.5)

f<-ymax+slope*sqrt(abs(x-xmax))

f[x>xmax]<-ymax[x>xmax]

return(f)

}

saemix.model1<-saemixModel(model=yield.LP,description="Linear + plateau model",

psi0=matrix(c(8,100,0.2,0,0,0),ncol=3,byrow=T, dimnames=list(NULL,c("Ymax","Xmax",

"slope"))), covariate.model=matrix(c(0,0,0),ncol=3,byrow=T),

transform.par=c(0,0,0),covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=T),

error.model="constant")

saemix.model2<-saemixModel(model=yield.QP,description="Quadratic + plateau model",

psi0=matrix(c(10,120,0.005,0,0,0),ncol=3,byrow=T, dimnames=list(NULL,c("Ymax","Xmax",

"slope"))), covariate.model=matrix(c(0,0,0),ncol=3,byrow=T), transform.par=c(0,0,0),

covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=T),error.model="constant")

saemix.options<-list(algorithms=c(1,1,1),nb.chains=1, nbiter.saemix=c(400,100),

nmc.is=25000, save=FALSE,save.graphs=FALSE)

Fitting the models

saemix.fit1<-saemix(saemix.model1,saemix.data,saemix.options)

saemix.fit2<-saemix(saemix.model2,saemix.data,saemix.options)

The two models perform very similarly in terms of log-likelihood, with a slight advantage to the LP
model: the statistical criterion (-2 times the log-likelihood) was equal to 406.86 for the LP model
and to 416.28 for the QP model. Figure 4.17 shows the plots of predictions versus observations for
the two models, again very similar.

84

4. Examples A yield model

6.0 6.5 7.0 7.5 8.0 8.5 9.0

4
6

8
1
0

Predictions

O
b
s
e
rv

a
ti
o
n
s

4 6 8 10

4
6

8
1
0

Predictions

O
b
s
e
rv

a
ti
o
n
s

6.0 6.5 7.0 7.5 8.0 8.5 9.0

4
6

8
1
0

Predictions

O
b
s
e
rv

a
ti
o
n
s

4 6 8 10

4
6

8
1
0

Predictions

O
b
s
e
rv

a
ti
o
n
s

Figure 4.17: Observations versus predictions for the LP model (upper panel) and QP model
(lower panel), with population predictions on the left and individual predictions on the right.

Figure 4.18 shows the fit of the two models for the first four subjects. The figure was obtained
using the following code:

par(mfrow=c(4,2))

for(i in 1:4) {

plot(saemix.fit1,plot.type="individual.fit",ilist=i,smooth=TRUE,new=F)

plot(saemix.fit2,plot.type="individual.fit",ilist=i,smooth=TRUE,new=F)

}

85

A yield model 4. Examples

0 50 100 150 200 250

7
8

9
1

0
1

1

Subject 1901

dose (kg/ha)

y
ie

ld
 (

t/
h

a
)

0 50 100 150 200 250

7
8

9
1

0
1

1

Subject 1901

dose (kg/ha)

y
ie

ld
 (

t/
h

a
)

0 50 100 150 200 250

7
8

9
1

0
1

1

Subject 1902

dose (kg/ha)

y
ie

ld
 (

t/
h

a
)

0 50 100 150 200 250

7
8

9
1

0
1

1

Subject 1902

dose (kg/ha)

y
ie

ld
 (

t/
h

a
)

0 50 100 150 200 250

5
6

7
8

9
1

0
1

1

Subject 1903

dose (kg/ha)

y
ie

ld
 (

t/
h

a
)

0 50 100 150 200 250

5
6

7
8

9
1

0
1

1

Subject 1903

dose (kg/ha)

y
ie

ld
 (

t/
h

a
)

0 50 100 150 200 250

5
6

7
8

9
1

0
1

1

Subject 1904

dose (kg/ha)

y
ie

ld
 (

t/
h

a
)

0 50 100 150 200 250

5
6

7
8

9
1

0
1

1

Subject 1904

dose (kg/ha)

y
ie

ld
 (

t/
h

a
)

Figure 4.18: Fits for the LP model (left) and QP model (right) for the first 4 subjects.

86

4. Examples A yield model

We can explore the covariates using diagnostic plots. For instance, the following code plots the
estimated individual parameters versus the covariates in the model (here, soil nitrogen), assuming
the fit is in the object saemix.fit:

plot(saemix.fit1, plot.type="parameters.vs.covariates")

Figure 4.19 shows the result, and indicates a decreasing trend in Xmax with increasing amounts of
soil nitrogen.

40 60 80 100 120 140 160 180

8
9

1
0

1
1

soil.nitrogen

Y
m

a
x

40 60 80 100 120 140 160 180

5
0

1
0

0
1

5
0

2
0

0

soil.nitrogen

X
m

a
x

40 60 80 100 120 140 160 180

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

soil.nitrogen

s
lo

p
e

Figure 4.19: Graphs of the estimated (individual) parameters versus covariate.

In this example, we can then show with saemix that the effect of the amount of soil mineral
nitrogen at the end of winter is statistically significant for explaining the fluctuations of the parameter
Xmax in both LP and QP models, with a drop of over 20 points in the statistical criterion. For
example, the following code shows how to fit the LP-model with and without covariate effect on
Xmax, and outputs the resulting log-likelihoods:

saemix.model3<-saemixModel(model=yield.LP,description="Linear + plateau model",

psi0=matrix(c(8,100,0.2,0,0,0),ncol=3,byrow=T, dimnames=list(NULL,c("Ymax","Xmax",

87

Discrete data 4. Examples

"slope"))), covariate.model=matrix(c(0,1,0),ncol=3,byrow=T),

transform.par=c(0,0,0),covariance.model=matrix(c(1,0,0,0,1,0,0,0,1),ncol=3,byrow=T),

error.model="constant")

saemix.fit3<-saemix(saemix.model3,saemix.data,saemix.options)

{

cat("LP model:\n")

cat(" without covariate, -2xLL=",(saemix.fit1["results"]["ll.is"])*(-2),"\n")

cat(" with covariate, -2xLL=",(saemix.fit3["results"]["ll.is"])*(-2),"\n")

}

The same can be done for the QP model

4.6 Discrete data

4.6.1 Binary data

saemix 3.0 can now be used to estimate the parameters of a model where the outcome is a
discrete response. The most simple of this, but also the least informative type, is a binary response
that can take the values 0 or 1. In this section, we illustrate the use of saemixto model binary data
from a randomised clinical trial comparing two treatments for fungal toenail infection. We use the
toenail dataset available in R in the packages prLogistic or HSAUR3.

Data are from [8], a multi-center randomised comparison of two oral treatments (A and B) for
toenail infection. 294 patients are measured at seven visits, i.e. at baseline (week 0), and at weeks
4, 8, 12, 24, 36, and 48 thereafter, comprising a total of 1908 measurements. The primary end point
was the absence of toenail infection and the outcome of interest is the binary variable ”onycholysis”
which indicates the degree of separation of the nail plate from the nail-bed (categorised as 0=none
or mild versus 1=moderate or severe). Figure 4.20 shows the evolution of the number of events
(left) and the proportion of events (right) in the two treatment groups over the 7 visits of the study.

Several analyses have been made in the literature [25, 26], and here we fit the logistic random
effect model developed by [16]. This model includes a random intercept (θ1, normally distributed
with a standard deviation ω1), a time effect (β2, normally distributed with a standard deviation ω2).
Treatment (A or B) (β) is included as a covariate on time. The treatments were randomised at
baseline so we don’t include a treatment effect on the intercept. The probability pij = P (Yij =
1|θ1,i, θ2,i) associated with an event Yij at time tij is given by the following equation for the logit:

logit(pij) = ln

(
pij

1− pij

)
= θ1,i + θ1,itij (4.9)

88

4. Examples Discrete data

0

20

40

2 4 6

Visit number

N
u

m
b

e
r

o
f

in
fe

c
te

d
 s

u
b

je
c
ts

treatment A B

0.00

0.25

0.50

0.75

1.00

2 4 6

Visit number

O
b

s
e

rv
e

d
 f

re
q

u
e

n
c
y
 o

f
in

fe
c
ti
o

n

treatment A B

Figure 4.20: Toenail data. Left: number of events at each visit; right: proportion of infected
subjects at each visit.

For non-gaussian models, the model function must be written to return the log-pdf, that is, the
logarithm of the probability of the observed response given a set of parameters. To do this we need
to pass the response as one of the predictors.

data(toenail.saemix)

saemix.data<-saemixData(name.data=toe,name.group=c("id"),name.predictors=c("time","y"),

name.response="y", name.covariates=c("treatment"),name.X=c("time"))

To tell saemix that we are now dealing with non-continuous responses, we add the argument
modelType=’likelihood’ to the definition of the model using the function saemixModel. We assume
only the intercept has interindividual variability, and follows a normal distribution. We set the
covariate model for a treatment effect on θ2.

binary.model<-function(psi,id,xidep) {

tim<-xidep[,1]

y<-xidep[,2]

inter<-psi[id,1]

slope<-psi[id,2]

logit<-inter+slope*tim

pevent<-exp(logit)/(1+exp(logit))

pobs = (y==0)*(1-pevent)+(y==1)*pevent

logpdf <- log(pobs)

return(logpdf)

}

saemix.model<-saemixModel(model=binary.model,description="Binary model",

89

Discrete data 4. Examples

modeltype="likelihood",

psi0=matrix(c(-5,-.1,0,0),ncol=2,byrow=TRUE,dimnames=list(NULL,

c("theta1","theta2"))),

transform.par=c(0,0), covariate.model=c(0,1),

covariance.model=matrix(c(1,0,0,1),ncol=2))

We then fit the model, setting the option fim=FALSE as the approximation used in the compu-
tation of the FIM by linearisation is not appropriate in discrete models. Since binary data contains
very limited information, it is advised to increase the number of chains to stabilise the estimation.
Here we set the number of chains to 10.

saemix.options<-list(seed=1234567,save=FALSE,save.graphs=FALSE,

displayProgress=FALSE, nb.chains=10, fim=FALSE)

binary.fit<-saemix(saemix.model,saemix.data,saemix.options)

Important note: The linear approximation of the FIM does not apply well to discrete response
models. Exact computation methods to estimate the FIM without linearisation have been proposed
by [38] using Hamiltonian Monte-Carlo and [48] using adaptive Gaussian quadrature. These methods
can be applied to estimate SE for the parameters but are not automatically available yet in saemix.

Diagnostics: automated visualisation or diagnostic plots have not yet been implemented for dis-
crete response models, but we can of course create our own in R by simulating from the model.
To to this we need to define a simulation function associated with the structural model, with the
same arguments as the model function, and returning simulated responses. For the binary model,
this function would be the following, where we replace the line defining the log-probability logp in
binary.model with a line simulating from a Binomial distribution with parameter pevent for each
value of time, and returning those simulated events.

simulBinary<-function(psi,id,xidep) {

tim<-xidep[,1]

y<-xidep[,2]

inter<-psi[id,1]

slope<-psi[id,2]

logit<-inter+slope*tim

pevent<-1/(1+exp(-logit))

ysim<-rbinom(length(tim),size=1, prob=pevent)

return(ysim)

}

nsim<-100

binary.fit <- simulateDiscreteSaemix(binary.fit, simulBinary, nsim=nsim)

90

4. Examples Discrete data

In figure 4.21 we use the simulated data in the datasim dataframe contained in the sim.data
element of the object after the call to the function to compute a 90% prediction interval on the
proportion of events at each visit. This VPC plot shows a reasonable model fit in the two treatment
groups.

A B

2 4 6 2 4 6

0.0

0.1

0.2

0.3

0.4

0.5

Visit number

F
re

q
u
e
n
c
y
 o

f
in

fe
c
ti
o
n

Figure 4.21: Proportion of expected events compared to the observed proportion across time,
for the model fit to the toenail data.

The following code was used to produce this plot:

simdat <-binary.fit@sim.data@datasim

simdat$visit<-rep(toenail.saemix$visit,nsim)

simdat$treatment<-rep(toenail.saemix$treatment,nsim)

requires

library(tidyverse)

library(ggplot2)

library(gridExtra)

ytab<-NULL

for(irep in 1:nsim) {

xtab<-simdat[simdat$irep==irep,]

xtab1 <- xtab %>%

group_by(visit, treatment) %>%

summarise(nev = sum(ysim), n=n()) %>%

mutate(freq = nev/n)

91

Discrete data 4. Examples

ytab<-rbind(ytab,xtab1[,c("visit","freq","treatment")])

}

gtab <- ytab %>%

group_by(visit, treatment) %>%

summarise(lower=quantile(freq, c(0.05)), median=quantile(freq, c(0.5)),

upper=quantile(freq, c(0.95))) %>%

mutate(treatment=ifelse(treatment==1,"B","A"))

gtab$freq<-1

summarising data

toe1 <- toenail.saemix %>%

group_by(visit, treatment) %>%

summarise(nev = sum(y), n=n()) %>%

mutate(freq = nev/n, sd=sqrt((1-nev/n)/nev)) %>%

mutate(treatment=ifelse(treatment==1,"B","A"))

plot2 <- ggplot(toe1, aes(x=visit, y=freq, group=treatment)) +

geom_line(aes(colour=treatment)) +

geom_point(aes(colour=treatment)) +

geom_line(data=gtab, aes(x=visit, y=median), linetype=2, colour=’lightblue’) +

geom_ribbon(data=gtab,aes(ymin=lower, ymax=upper), alpha=0.5, fill=’lightblue’) +

ylim(c(0,0.5)) + theme_bw() + theme(legend.position = "none") +

facet_wrap(.~treatment) +

xlab("Visit number") + ylab("Frequency of infection")

print(plot2)

92

4. Examples Discrete data

4.6.2 Categorical data

The knee.saemix data represents pain scores recorded in a clinical study in 127 patients with
sport related injuries treated with two different therapies. The pain occuring during knee movement
was observed after 3,7 and 10 days of treatment. It was taken from the catdata package in R [44]
(dataset knee) and reformatted as follows. A time column was added representing the day of the
measurement (with 0 being the baseline value) and each observation corresponds to a different line
in the dataset. Treatment was recoded as 0/1 (placebo/treatment), gender as 0/1 (male/female)
and Age2 represents the squared of centered Age. Figure 4.22 shows barplots of the different pain
scores as a function of time in study, illustrating a recovery as the proportion of lower pain scores
increases.

0

10

20

30

40

0 4 8

Time (d)

C
o
u
n
ts

Score 1 2 3 4 5

Figure 4.22: Barplot of the evolution of pain scores with time in the knee.saemix dataset.

data(knee.saemix)

The dataset is part of the datasets analysed in [47] with various methods (please refer to the
different vignettes in the documentation of knee), but mainly as logistic regression on the response
after 10 days, or as mixed binary regression after dichotomising the response. Here, we will fit
the following proportional odds model to the full data: The probability pij = P (Yij = 1|θ1,i, θ2,i)

93

Discrete data 4. Examples

associated with an event Yij at time tij is given by the following equation for the logit:

logit(P (Yij = 1|ψi)) = α1,i + βitij

logit(P (Yij = 2|ψi)) = α1,i + α2

logit(P (Yij = 3|ψi)) = α1,i + α2 + α3

logit(P (Yij = 4|ψi)) = α1,i + α2 + α3 + α4

P (Yij = 4|ψi) = 1−
∑

k

= 14P (Yij = k|ψi)

(4.10)

where α1 and β have interindividual variability, β is the effect of time, α1 is the probability of a
pain score of 1 and the other parameters represent an incremental risk to move into the higher pain
category.

When the response has more than one category, we define the probability for (K-1) categories
and combine them to obtain the likelihood for each observation.

ordinal.model<-function(psi,id,xidep) {

y<-xidep[,1]

time<-xidep[,2]

alp1<-psi[id,1]

alp2<-psi[id,2]

alp3<-psi[id,3]

alp4<-psi[id,4]

beta<-psi[id,5]

logit1<-alp1 + beta*time

logit2<-logit1+alp2

logit3<-logit2+alp3

logit4<-logit3+alp4

pge1<-exp(logit1)/(1+exp(logit1))

pge2<-exp(logit2)/(1+exp(logit2))

pge3<-exp(logit3)/(1+exp(logit3))

pge4<-exp(logit4)/(1+exp(logit4))

pobs<-(y==1)*pge1+(y==2)*(pge2-pge1)+(y==3)*(pge3-pge2)+(y==4)*(pge4-pge3)+(y==5)*(1-pge4)

logpdf <- log(pobs)

return(logpdf)

}

saemix.model<-saemixModel(model=ordinal.model,

description="Ordinal categorical model",modeltype="likelihood",

psi0=matrix(c(0,0.2, 0.6, 3, 0.2),ncol=5,byrow=TRUE,

dimnames=list(NULL,c("alp1","alp2","alp3","alp4","beta"))),

transform.par=c(0,1,1,1,1),

94

4. Examples Discrete data

covariance.model = diag(c(1,0,0,0,1)))

saemix.options<-list(seed=632545,save=FALSE,save.graphs=FALSE, nb.chains=10,

fim=FALSE)

ord.fit<-saemix(saemix.model,saemix.data,saemix.options)

Figure 4.23, representing a VPC of the mean value of pain score at each time point, stratified
over treatment, shows some model misfit especially for treatment 0. This figure was produced using
simulations from the fitted model as in the binary data examples using the simulation function below.

0 1

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

2.5

3.0

Time (d)

M
e
d
ia

n
 v

a
lu

e
 o

f
s
c
o
re

 o
ve

r
ti
m

e

Figure 4.23: VPC of the mean value of pain score in the model adjusted to the knee.saemix
dataset.

simulateOrdinal<-function(psi,id,xidep) {

y<-xidep[,1]

time<-xidep[,2]

alp1<-psi[id,1]

alp2<-psi[id,2]

alp3<-psi[id,3]

alp4<-psi[id,4]

beta<-psi[id,5]

95

Discrete data 4. Examples

logit1<-alp1 + beta*time

logit2<-logit1+alp2

logit3<-logit2+alp3

logit4<-logit3+alp4

pge1<-exp(logit1)/(1+exp(logit1))

pge2<-exp(logit2)/(1+exp(logit2))

pge3<-exp(logit3)/(1+exp(logit3))

pge4<-exp(logit4)/(1+exp(logit4))

x<-runif(length(time))

ysim<-1+as.integer(x>pge1)+as.integer(x>pge2)+as.integer(x>pge3)+as.integer(x>pge4)

return(ysim)

}

4.6.3 Count data

Epilepsy data

We first show a simple example using the epilepsy data from the MASS package. We can fit the
Poisson model to the data, which assumes that the probability to observe a count value equal to n
is given by:

P (Y = n) =
λn e−λ

n!
(4.11)

where λ > 0 is the parameter of the model. We asssume a log-normal distribution for λ.

epilepsy<-MASS::epil

saemix.data<-saemixData(name.data=epilepsy, name.group=c("subject"),

name.predictors=c("period","y"),name.response=c("y"),

name.covariates=c("trt","base", "age"),

units=list(x="2-week",y="", covariates=c("","","yr")))

Poisson model with one parameter

countPoi<-function(psi,id,xidep) {

y<-xidep[,2]

lambda<-psi[id,1]

logp <- -lambda + y*log(lambda) - log(factorial(y))

return(logp)

}

saemix.model<-saemixModel(model=countPoi,description="Count model Poisson",

modeltype="likelihood",

psi0=matrix(c(0.5),ncol=1,byrow=TRUE,dimnames=list(NULL, c("lambda"))),

96

4. Examples Discrete data

transform.par=c(1))

saemix.options<-list(seed=632545,save=FALSE,save.graphs=FALSE,

displayProgress=FALSE)

poisson.fit<-saemix(saemix.model,saemix.data,saemix.options)

Web-based brief alcohol interventions have the potential to reach a large number of individuals at
low cost; however, few controlled evaluations have been conducted to date. The present study was
designed to evaluate the efficacy of gender-specific versus gender-nonspecific personalized normative
feedback (PNF) with single versus biannual administration in a 2-year randomized controlled trial
targeting a large sample of heavy-drinking college students.

RAPI data

This dataset was kindly made available by David Atkins (University of Washington) in his tutorial
on modelling count data [1] and comes from a randomised controlled trial assessing the effectivness
of web-based personalised normative feedback intervention on alcohol consumption [30, 31]. The
RAPI dataset records alcohol-related problems, as measured by the Rutgers Alcohol Problem Index
(RAPI) [49], in freshmen at risk for heavy drinking behaviours. Students were asked to report every
six months the number of alcohol-related problems, and the dataset includes 3,616 repeated measures
of these counts in 818 subjects, 561 of whom had the full 5 measurements over a period of 2 years.
Interesting features of this dataset are first, the longitudinal aspect which allow to evaluate changes
over time, and second, the shape of the distribution of counts. Counts are often positively skewed,
bounded by zero, with a large stack of data points at zero, indicating individuals and/or occasions
without drinking, use, or related problems. This dataset was used in [1] to illustrate mixed effects
count regression using the glmer() function from the lme4.

The dataset is available in saemix under the name rapi.saemix so we read it and create our
saemixData object in the usual way. Because we need the value of the outcome to compute the
corresponding likelihood, the rapi column is used both as a predictor and as the response:

data(rapi.saemix)

saemix.data<-saemixData(name.data=rapi.saemix, name.group=c("id"),

name.predictors=c("time","rapi"),name.response=c("rapi"),

name.covariates=c("gender"),

units=list(x="months",y="",covariates=c("")))

hist(rapi.saemix$rapi, main="", xlab="RAPI score", breaks=30)

saemix currently does not have automated plots for discrete outcome data, but we can produce
our own histogram (here, across all measurements without taking time into account) to notice that
indeed, there seems to be many subjects reporting no alcohol related problems over some periods.

97

Discrete data 4. Examples

Poisson model: the first model we can fit to this data is, as previously, the Poisson model, but
this time we add a time effect. Here we will write the same model as in glmer() to compare our
results. In glmer() a logarithmic link function is used to transform the mean of the Poisson model
(λ) into a linear predictor of time and covariates. Random effects are then added to the parameters
of the linear model. To take into account the change with time in saemix, we need to rewrite the
previous model to use normal distributions for the parameters and explicitely write the linear model
in the function, as follows:

count.poisson<-function(psi,id,xidep) {

time<-xidep[,1]

y<-xidep[,2]

intercept<-psi[id,1]

slope<-psi[id,2]

lambda<- exp(intercept + slope*time)

logp <- -lambda + y*log(lambda) - log(factorial(y))

return(logp)

}

The expression of logp in the model function is unchanged, but now we define a log-normal dis-
tribution for λ within the model so that we can use two parameters and time as a predictor. The
statistical model also changes to reflect this, as our parameters intercept and slope are now on the
scale of the random effects, so they are given a normal distribution. Defining and fitting this model
in saemix, we have:

saemix.model.poi<-saemixModel(model=count.poisson,description="Count model Poisson",

modeltype="likelihood",

psi0=matrix(c(log(5),0.01),ncol=2,byrow=TRUE,dimnames=list(NULL, c("intercept","slope"))),

transform.par=c(0,0), omega.init=diag(c(0.5, 0.5)))

saemix.options<-list(seed=632545,save=FALSE,save.graphs=FALSE, displayProgress=FALSE)

poisson.fit<-saemix(saemix.model.poi,saemix.data,saemix.options)

Note that when parameters enter the model through a normal distribution, we may need to adjust
the initial values of the Ω matrix (argument omega.init) to avoid failure to find valid initial parameter
estimates.

We can also add the covariate gender to both parameters as well as a correlation between the
two random effects:

modsmx.poi.cov2<-saemixModel(model=count.poisson,

description="Count model Poisson",modeltype="likelihood",

psi0=matrix(c(log(5),0.01),ncol=2,byrow=TRUE,dimnames=list(NULL,

98

4. Examples Discrete data

c("intercept","slope"))), transform.par=c(0,0),

omega.init=diag(c(0.5, 0.5)),

covariance.model=matrix(data=1, ncol=2, nrow=2),

covariate.model=matrix(c(1,1), ncol=2, byrow=TRUE))

poisson.fit.cov2<-saemix(modsmx.poi.cov2,saemix.data,saemix.options)

Comparing the parameter estimates from this fit to the estimates obtained by glmer() using a Laplace
approximation in Table 2 of [1], we find very good agreement with the SAEM algorithm.

Note: saemix does not provide adequate standard errors of estimation for the parameters in version
3.0. The FO-approximation of the FIM implemented in the current version of the algorithm is known
to be very poor for discrete outcome models.

Some diagnostics for this model can be obtained by simulating from the model. To to this we
need to define a simulation function associated with the structural model, with the same arguments
as the model function, and returning simulated responses. For the Poisson model, this function would
be the following, where we replace the line defining the log-probability logp in count.poisson with a
line simulating from a Poisson distribution with parameter λ for each value of time, and returning
those simulated counts.

saemix.simulatePoisson<-function(psi, id, xidep) {

time<-xidep[,1]

y<-xidep[,2]

intercept<-psi[id,1]

slope<-psi[id,2]

lambda<- exp(intercept + slope*time)

y<-rpois(length(time), lambda=lambda)

return(y)

}

We then use the simulateDiscreteSaemix function to obtain simulations from the model, using
the estimated parameters. Here we set the number of simulations to 100 as the dataset is large and
we are interested in global diagnostics.

yfit1<-simulateDiscreteSaemix(poisson.fit.cov2, simulate.function=saemix.simulatePoisson,

nsim=100)

cat("Observed proportion of 0’s",

length(yfit1@data@data$rapi[yfit1@data@data$rapi==0])/yfit1@data@ntot.obs,"\n")

cat(" Poisson model, p=",

length(yfit1@sim.data@datasim$ysim[yfit1@sim.data@datasim$ysim==0])/

length(yfit1@sim.data@datasim$ysim),"\n")

99

Discrete data 4. Examples

Handling overdispersion: the model predicts a lower proportion of subjects without alcohol-
related problems than we observe in data, a sign of overdispersion (with a Poisson model, the mean
of the Poisson distribution, λ, is equal to the variance, an assumption which is violated here). Several
models can be used to take this feature into account. First, we can use the Zero-Inflated Poisson
model, where the number of counts equal to 0 is increased. This model can be built as a mixture
between a distribution of 0’s with probability p0 and a standard Poisson model. We modify our
model function above to:

count.poissonzip<-function(psi,id,xidep) {

time<-xidep[,1]

y<-xidep[,2]

intercept<-psi[id,1]

slope<-psi[id,2]

p0<-psi[id,3] # Probability of zero’s

lambda<- exp(intercept + slope*time)

logp <- log(1-p0) -lambda + y*log(lambda) - log(factorial(y)) # Poisson

logp0 <- log(p0+(1-p0)*exp(-lambda)) # Zeroes

logp[y==0]<-logp0[y==0]

return(logp)

}

and fit the model using:

modsmx.zip<-saemixModel(model=count.poissonzip,description="count model ZIP",

modeltype="likelihood",

psi0=matrix(c(1.5, 0.01, 0.2),ncol=3,byrow=TRUE,dimnames=list(NULL,

c("intercept", "slope","p0"))),

transform.par=c(0,0,3), covariance.model=diag(c(1,1,0)),

omega.init=diag(c(0.5,0.3,0)),

covariate.model = matrix(c(1,1,0),ncol=3, byrow=TRUE))

zippoisson.fit <- saemix(modsmx.zip,saemix.data,saemix.options)

where we assume a logit-normal distribution for the added parameter p0 through the transform.par
argument. We could also model logit(p0) on a normal scale if we needed to add a time effect. The
same approach as above can then be used to simulate from the model, this time using the simulation
function:

saemix.simulatePoissonZIP<-function(psi, id, xidep) {

time<-xidep[,1]

y<-xidep[,2]

100

4. Examples Time-to-event data

intercept<-psi[id,1]

slope<-psi[id,2]

p0<-psi[id,3] # Probability of zero’s

lambda<- exp(intercept + slope*time)

prob0<-rbinom(length(time), size=1, prob=p0)

y<-rpois(length(time), lambda=lambda)

y[prob0==1]<-0

return(y)

}

and we can check that the proportion of simulated 0’s is now closer to the observed value.

A second type of model used in [1] is the hurdle model, which combines a binary logistic model
for the probability of having counts greater than 0, with a truncated Poisson model for counts greater
than 0. To implement this, we fit separately the two models: the binary logistic model is fit to the
data where we use as a response the binary outcome with values 0 for counts of 0 and 1 for counts
strictly positive, then the Poisson model is fit to the data excluding zero counts.

Other possible models include the negative binomial model and generalised Poisson models with
additional parameters handling the overdispersion.

Diagnostics: the simulation functions can be used to produce diagnostic plots. As an example, we
can compare the expected proportion of 0’s, representing subjects without alcohol problems, versus
time and stratified by gender, to compare the different models (the code available as a notebook
on the github for saemix). The results, shown in Figure 4.24. We could also look at the counts for
different categories or the evolution of the median counts.

4.7 Time-to-event data

4.7.1 Single event

The example chosen to illustrate the analysis of time-to-event data is the NCCTG Lung Cancer
Data, describing the survival in patients with advanced lung cancer from the North Central Cancer
Treatment Group [27]. Covariates measured in the study include performance scores rating how well
the patient can perform usual daily activities. We reformatted the cancer dataset provided in the
survival package in R [46] in SAEM format: patients with missing age, sex, institution or physician
assessments were removed from the dataset. Status was recoded as 1 for death and 0 for a censored
event, and a censoring column was added to denote whether the patient was dead or alive at the
time of the last observation. A line at time=0 was added for all subjects. Finally, subjects were

101

Time-to-event data 4. Examples

Hurdle

Men

Hurdle

Women

ZIP

Men

ZIP

Women

Poisson

Men

Poisson

Women

0 5 10 15 20 25 0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Time

P
ro

p
o
rt

io
n
 o

f
s
u
b
je

c
ts

 w
it
h
o
u
t
d
ri
n
k
in

g
 e

p
is

o
d
e
s

Figure 4.24: Proportion of subjects without drinking problems versus time, for men and women,
observed and expected for the Poisson, ZIP and hurdle models, for the RAPI data.

numbered consecutively from 0 to 1.

We can use a Weibull model for the hazard, parameterised as λ and β. For individual i, the
hazard function of this model is:

h(t, ψi) =
βi
λi

(
t

λi

)βi−1

. (4.12)

Here, the vector of individual parameters is ψi = (λi, βi). These two parameters are assumed to be
independent and lognormally distributed:

log(λi) ∼ N (log(λpop), ω
2
λ) , (4.13)

log(βi) ∼ N (log(βpop), ω
2
β) . (4.14)

Then, the vector of population parameters is θ = (λpop, βpop, ωλ, ωβ).

The survival function for this model is:

S(t) = e−(
t
λ)

β

102

4. Examples Time-to-event data

The model function for saemix needs to define the log-pdf for each observation. At time 0, it is
0 (no event has occurred yet). For a censored event, the log-likelihood is equal to the logarithm of
the survival function since the beginning of the observation period, while for an observed event we
add the logarithm of the hazard at the time of the event. In the model below, we pass individual
censoring times as the third predictor, so that each individual may have his or her own follow-up
duration.

weibulltte.model<-function(psi,id,xidep) {

T<-xidep[,1]

y<-xidep[,2] # events (1=event, 0=no event)

cens<-which(xidep[,3]==1) # censoring times (subject specific)

init <- which(T==0)

lambda <- psi[id,1] # Parameters of the Weibull model

beta <- psi[id,2]

Nj <- length(T)

ind <- setdiff(1:Nj, append(init,cens)) # indices of events

hazard <- (beta/lambda)*(T/lambda)^(beta-1) # H’

H <- (T/lambda)^beta # H

logpdf <- rep(0,Nj) # ln(l(T=0))=0

logpdf[cens] <- -H[cens] + H[cens-1] # ln(l(T=censoring time))

logpdf[ind] <- -H[ind] + H[ind-1] + log(hazard[ind]) # ln(l(T=event time))

return(logpdf)

}

Important note: In TTE models with a single event, there is not enough information to
estimate interindividual variability, but saemix needs at least one parameter to run. In this case, we
include a random effect in the model but it cannot be estimated properly.

Diagnostics: Automated visualisation or diagnostic plots have not yet been implemented for
discrete response models, but we can of course create our own in R. In Figure 4.25 we used the linear
approximation of the FIM and the delta-method to compute a very rough estimate of the confidence
interval on the predicted survival curve, overlaying it to the non-parametric Kaplan-Meier estimate
provided by the survival package. Here despite its shortcomings the FIM approximation seems to be
adequate.

We can also use simulations to compute the normalised prediction discrepancies (npd) developed
by [3].

103

Time-to-event data 4. Examples

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Days

O
ve

ra
ll

s
u

rv
iv

a
l
p

ro
b

a
b

ili
ty

Figure 4.25: Survival function, as a Kaplan-Meier estimate (black) and fitted by a Weibull model
with saemix (red).

4.7.2 Repeated time-to-event

For repeated time-to-event data, we use the same model function as above, as the likelihood of
an event will be defined relative to the previous event until censoring occurs.

Repeated events were generated using simulx (mlxR package in R), for N = 100 individuals,
using the Weibull model (4.12) with λpop = 10, ωλ = 0.3, βpop = 3 and ωβ = 0.3 and assuming a
right censoring time τc = 20.

The following code was used in R to run this example:

data(tte.saemix)

104

4. Examples Time-to-event data

saemix.data<-saemixData(name.data=tte.saemix,header=TRUE,sep=" ",na=NA,

name.group=c("id"),name.response=c("y"),name.predictors=c("time","y"), name.X=c("time"))

timetoevent.model<-function(psi,id,xidep) {

T<-xidep[,1]

N <- nrow(psi)

Nj <- length(T)

censoringtime = 20

lambda <- psi[id,1]

beta <- psi[id,2]

init <- which(T==0)

cens <- which(T==censoringtime)

ind <- setdiff(1:Nj, append(init,cens))

hazard <- (beta/lambda)*(T/lambda)^(beta-1)

H <- (T/lambda)^beta

logpdf <- rep(0,Nj)

logpdf[cens] <- -H[cens] + H[cens-1]

logpdf[ind] <- -H[ind] + H[ind-1] + log(hazard[ind])

return(logpdf)

}

saemix.model<-saemixModel(model=timetoevent.model,description="time model",

type="likelihood",

psi0=matrix(c(2,1),ncol=2,byrow=TRUE,dimnames=list(NULL,c("lambda","beta"))),

transform.par=c(1,1),covariance.model=matrix(c(1,0,0,1),ncol=2,byrow=TRUE))

saemix.options<-list(map=F,fim=F,ll.is=F, nb.chains = 1, nbiter.saemix =c(200,100), displayProgress=TRUE,sav

saemix.fit<-saemix(model,saemix.data,saemix.options)

Figure 4.26 shows the convergence of the population parameters for this example. The results
are summarised in the following table:

--

---- Results ----

--

----------------- Fixed effects ------------------

--

Parameter Estimate

[1,] lambda 5.0

[2,] beta 2.8

105

Time-to-event data 4. Examples

--

----------- Variance of random effects -----------

--

Parameter Estimate

lambda omega2.lambda 0.039

beta omega2.beta 0.921

--

------ Correlation matrix of random effects ------

--

omega2.lambda omega2.beta

omega2.lambda 1 0

omega2.beta 0 1

Figure 4.26: Convergence plot obtained for the RTTE data

106

Bibliography

[1] Atkins, D., Baldwin, S., Zheng, C., Gallop, R., and Neighbors, C. A tutorial on
count regression and zero-altered count models for longitudinal substance use data. Psychology
of Addictive Behaviors 27, 1 (2013), 166–77.

[2] Bertrand, J., Comets, E., Laffont, C., Chenel, M., and Mentré, F. Pharmaco-
genetics and population pharmacokinetics: impact of the design on three tests using the SAEM
algorithm. Journal of Pharmacokinetics and Pharmacodynamics 36 (2009), 317–39.

[3] Cerou, M., Lavielle, M., Brendel, K., Chenel, M., and Comets, E. Development
and performance of npde for the evaluation of time-to-event models. Pharmaceutical Research
35 (2018), 30.

[4] Comets, E., Brendel, K., and Mentré, F. Computing normalised prediction distribution
errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Computer
Methods and Programs in Biomedicine 90 (2008), 154–66.

[5] Comets, E., Verstuyft, C., Lavielle, M., Jaillon, P., Becquemont, L., and

Mentre, F. Modelling the influence of MDR1 polymorphism on digoxin pharmacokinetic
parameters. European Journal of Clinical Pharmacology 63 (2007), 437–449.

[6] Davidian, M., and Giltinan, D. Nonlinear models for repeated measurement data. Chap-
man & Hall, London, 1995.

[7] Davidian, M., and Giltinan, D. Nonlinear models for repeated measurements: An overview
and update. JABES 8 (2003), 387–419.

[8] De Backer, M., De Vroey, C., Lesaffre, E., Scheys, I., and De Keyser, P.

Twelve weeks of continuous oral therapy for toenail onychomycosis caused by dermatophytes:
a double-blind comparative trial of terbinafine 250 mg/day versus itraconazole 200 mg/day.
Journal of the American Academy of Dermatology 38, 5 (1998), S57–S63.

[9] Delattre, M., Lavielle, M., and Poursat, M. A note on bic in mixed effects models.
Electronic Journal of Statistics 8, 1 (2014), 456–475.

107

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Delattre, M., and Poursat, M. An iterative algorithm for joint covariate and random
effect selection in mixed effects models. The International Journal of Biostatistics 16, 2 (2020).

[11] Delyon, B., Lavielle, M., and Moulines, E. Convergence of a stochastic approximation
version of the EM algorithm. Annals of Statistics 27 (1999), 94–128.

[12] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39, 1 (1977), 1–38. With discussion.

[13] Donnet, S., and Samson, A. Estimation of parameters in incomplete data models defined
by dynamical systems. Journ. of Stat. and Plan. Infer. 50 (2007), 2381–2398.

[14] Genolini, C. Construire un Package - Classic et S4. INSERM U669, Paris, France, 2010.

[15] Girard, P., and Mentré, F. A comparison of estimation methods in nonlinear mixed
effects models using a blind analysis (oral presentation). PAGE, Pamplona (2005).

[16] Hedeker, D., and Gibbons, R. D. A random-effects ordinal regression model for multilevel
analysis. Biometrics (1994), 933–944.

[17] Jaffrézic, F., Meza, C., Foulley, J., and Lavielle, M. The SAEM algorithm for the
analysis of nonlinear traits in genetic studies. Genetics Selection Evolution 38 (2006), 583–600.

[18] Karimi, B., Lavielle, M., and Moulines, E. F-saem: a fast stochastic approximation of
the em algorithm for nonlinear mixed effects models. Computational Statistics & Data Analysis
141 (2020), 123–38.

[19] Kuhn, E., and Lavielle, M. Coupling a stochastic approximation version of EM with a
MCMC procedure. ESAIM P&S 8 (2004), 115–131.

[20] Kuhn, E., and Lavielle, M. Maximum likelihood estimation in nonlinear mixed effects
models. Computational Statistics and Data Analysis 49 (2005), 1020–1038.

[21] Lavielle, M. Mixed effects models for the population approach: models, tasks, methods and
tools. Chapman & Hall CRC Biostatistics Series, Boca Raton, FL, 2014.

[22] Lavielle, M., and Kuhn, E. Maximum likelihood estimation in nonlinear mixed effects
models (oral communication). PAGE, Verona (2003).

[23] Lavielle, M., and Mentré, F. Estimation of population pharmacokinetic parameters of
saquinavir in HIV patients and covariate analysis with MONOLIX (poster). PAGE, Pamplona
(2005).

[24] Lavielle, M., and Mentré, F. Estimation of population pharmacokinetic parameters of
saquinavir in HIV patients with the MONOLIX software. Journal of Pharmacokinetics and
Pharmacodynamics 34, 2 (2007), 229–249.

108

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Lesaffre, E., and Spiessens, B. On the effect of the number of quadrature points in a
logistic random effects model: an example. Journal of the Royal Statistical Society: Series C
(Applied Statistics) 50, 3 (2001), 325–335.

[26] Lin, K.-C., and Chen, Y.-J. A goodness-of-fit test for logistic-normal models using non-
parametric smoothing method. Journal of statistical planning and inference 141, 2 (2011),
1069–1076.

[27] Loprinzi, C., Laurie, J., Wieand, H., Krook, J., Novotny, P., Kugler, J., and

et al. Prospective evaluation of prognostic variables from patient-completed questionnaires.
north central cancer treatment group. Journal of Clinical Oncology 12, 3 (1994), 601–7.

[28] Louis, T. A. Finding the observed information matrix when using the EM algorithm. J. Roy.
Statist. Soc. Ser. B 44, 2 (1982), 226–233.

[29] Makowski, D., and Lavielle, M. Using SAEM to estimate parameters of models of
response to applied fertilizer. Jour. of Agr., Bio, and Env. Stat. 11, 1 (2006), 45–60.

[30] Neighbors, C., Lewis, M., Atkins, D., Jensen, M., Walter, T., Fossos, N., Lee,

C., and Larimer, M. Efficacy of web-based personalized normative feedback: A two-year
randomized controlled trial. Journal of Consulting and Clinical Psychology 78, 6 (2010), 898–
911.

[31] Neighbors, C. J., Barnett, N. P., Rohsenow, D. J., Colby, S. M., and Monti,

P. M. Cost-effectiveness of a motivational lntervention for alcohol-involved youth in a hospital
emergency department. Journal of Studies on Alcohol and Drugs 71, 3 (2010), 384–394. PMID:
20409432.

[32] Panhard, X., and Samson, A. Extension of the SAEM algorithm for the estimation of
inter-occasion variability: application to the population pharmacokinetics of nelfinavir and its
metabolite m8 (poster). PAGE, Brugge (2006).

[33] Pinheiro, J., and Bates, D. Approximations to the log-likelihood function in the non-linear
mixed-effect models. Journal of Computational and Graphical Statistics 4 (1995), 12–35.

[34] Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and the R Core team. nlme:
Linear and Nonlinear Mixed Effects Models, 2009. R package version 3.1-96.

[35] Pinheiro, J. C., and Bates, D. M. Mixed-Effects Models in S and S-PLUS. Springer,
New York, 2000.

[36] R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2006. ISBN 3-900051-07-0.

[37] Raftery, A. Bayesian model selection in social research (with discussion). Sociol Methodol
(1995), 111–95.

109

BIBLIOGRAPHY BIBLIOGRAPHY

[38] Riviére, M., Ueckert, S., and Mentré, F. An MCMC method for the evaluation of the
Fisher information matrix for non-linear mixed effect models. Biostatistics 17 (2016), 737–50.

[39] Samson, A., Lavielle, M., and Mentré, F. Approximation EM algorithm in nonlinear
mixed effects models: an evaluation by simulation (oral communication). PAGE, Uppsala (2004).

[40] Samson, A., Lavielle, M., and Mentré, F. Extension of the SAEM algorithm to left-
censored data in nonlinear mixed-effects model: application to HIV dynamics model. Compu-
tational Statistics and Data Analysis 51 (2006), 1562–1574.

[41] Samson, A., Lavielle, M., and Mentré, F. The SAEM algorithm for non-linear mixed
models with left-censored data and differential systems: application to the joint modeling of hiv
viral load and cd4 dynamics under treatment (oral presentation). PAGE, Brugge (2006).

[42] Samson, A., Lavielle, M., and Mentré, F. The SAEM algorithm for group comparison
tests in longitudinal data analysis based on nonlinear mixed-effects model. Stat. in Med. 26
(2007), 4860–4875.

[43] Samson, A., Panhard, X., Lavielle, M., and Mentré, F. Generalisation of the SAEM
algorithm to nonlinear mixed effects model defined by differential equations: application to HIV
viral dynamic models (poster). PAGE, Pamplona (2005).

[44] Schauberger, G., and Tutz, G. catdata: Categorical Data, 2020. R package version
1.2.2.

[45] Sheiner, L., and Beal, S. NONMEM Version 5.1. University of California, NONMEM
Project Group, San Francisco, 1998.

[46] Therneau, T. M. A Package for Survival Analysis in R, 2021. R package version 3.2-13.

[47] Tutz, G. Regression for Categorical Data. Cambridge University Press, 2012.

[48] Ueckert, S., and Mentré, F. A new method for evaluation of the Fisher information
matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian
quadrature. Computational Statistics & Data Analysis 111 (2016), 203–19.

[49] White, H. R., and Labouvie, E. W. Towards the assessment of adolescent problem
drinking. Journal of Studies on Alcohol 50 (1989), 30–7.

[50] Wu, C.-F. J. On the convergence properties of the EM algorithm. Ann. Statist. 11, 1 (1983),
95–103.

110

	Introduction
	The objectives
	Installation and legalese
	Installation
	Citing saemix

	The non-linear mixed effects model
	Model for the observations
	The statistical model for the individual parameters
	General form of the non-linear mixed effect model (NLMEM)

	Methodology and algorithms
	Estimation of the parameters
	The SAEM algorithm
	The MCMC-SAEM algorithm
	The Simulated Annealing SAEM algorithm
	The MCMC-SAEM algorithm for non continuous data models
	A fast variant of the MCMC-SAEM algorithm for general data models

	Estimation of the Fisher Information matrix
	Linearization of the model
	A stochastic approximation of the Fisher Information Matrix

	Estimation of the individual parameters
	Estimation of the likelihood
	Linearization of the model
	Estimation using importance sampling
	Estimation using Gaussian Quadrature

	Model predictions
	Population predictions
	Individual predictions

	Estimation of the weighted residuals
	Population Weighted Residuals
	Individual Weighted Residuals
	Normalised Prediction Distribution Errors

	The saemix package
	Inputs and outputs
	The inputs
	The outputs
	Plots

	Classes in the saemix package
	A very short introduction to S4 classes
	S4 classes used in saemix
	Methods for S4 objects in saemix
	Accessing S4 objects in saemix

	Examples
	Theophylline pharmacokinetics
	One-compartment model
	One-compartment model at steady-state

	Simulated pharmacodynamic model
	Weight gain of cows
	Height of Oxford boys
	A yield model
	Discrete data
	Binary data
	Categorical data
	Count data

	Time-to-event data
	Single event
	Repeated time-to-event

	Bibliography

