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ABSTRACT 

Schnute, J.T., Boers, N.M., Haigh, R., and Couture-Beil, A. 2017. PBSmapping 2.70.3: user’s 
guide revised from Canadian Technical Report of Fisheries and Aquatic Sciences 2549: 
vi + 43 p. Last updated Jun 22, 2017. 

 
This report describes a second version of software designed to facilitate the compilation 

and analysis of fishery data, particularly data referenced by spatial coordinates. Our research 
stems from experiences with information on Canada’s Pacific groundfish fisheries compiled at 
the Pacific Biological Station (PBS). Despite its origins in fishery data analysis, our software has 
broad applicability. The library PBSmapping extends the R-statistical language to include two-
dimensional plotting features similar to those commonly available in a Geographic Information 
System (GIS). Embedded C code speeds algorithms from computational geometry, such as 
finding polygons that contain specified point events or converting between longitude-latitude and 
Universal Transverse Mercator (UTM) coordinates. We also present a number of convenient 
utilities for Microsoft Windows operating systems that support computational geometry outside 
the framework of R. Our results, which depend significantly on the work of students, illustrate 
the convergence of goals between academic training and applied research. 

 

RESUME 

Schnute, J.T., Boers, N.M. Haigh, R., et Couture-Beil, A. 2017. PBSmapping 2.70.3: Guide de 
l’utilisateur révisé de Canadian Technical Report of Fisheries and Aquatic Sciences 
2549: vi + 43 p. Dernier mis à jour Jun 22, 2017. 

 
Le présent rapport décrit la seconde version du logiciel conçu pour faciliter la compilation 

et l’analyse de données halieutiques, en particulier les données référencées par des 
coordonnées spatiales. Nos travaux de recherche ont capitalisé sur des expériences menées à 
l’aide de données sur les pêches des poissons démersaux le long du littoral Pacifique du 
Canada, données compilées à la Station biologique du Pacifique (SBP). Bien que conçu 
initialement pour l’analyse de données halieutiques, notre logiciel peut s’appliquer à toute une 
variété de domaines. La bibliothèque PBSmapping (Cartographie de la SBP) étend le langage R 
pour inclure une capacité d’impression en deux dimensions semblable à celle habituellement 
disponible dans les systèmes d’information géographiques (SIG). Des modules en C permettent 
d’accélérer les algorithmes grâce à la géométrie numérique, en trouvant par exemple les 
polygones qui contiennent des événements ponctuels spécifiques ou en convertissant les 
longitudes et les latitudes en coordonnées de la projection transversale universelle (UTM). Nous 
présentons également un certain nombre d’applications intéressantes pour les systèmes 
d’exploitation Microsoft Windows, qui peuvent effectuer des opérations de géométrie numérique 
en dehors du cadre de travail R. Nos résultats, auxquels plusieurs étudiants ont grandement 
contribué, illustrent la convergence des objectifs de la formation académique et de la recherche 
appliquée. 
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PREFACE 

During the last decade, I’ve had the pleasure of directing work by computer science 
students from various local universities. My research as a mathematician in fish stock 
assessment requires an extensive software toolkit, including statistical languages, compilers, 
and operating system utilities. It helps greatly to have bright, adaptive students who can learn 
new languages quickly, investigate software possibilities, answer technical questions, and 
design programs that assist scientific analysis. I’m particularly grateful for contributions from the 
following students: 

• Robert Swan (University of Victoria), 1996; 
• Mike Jensen (Malaspina University-College and Simon Fraser University), 1997 and 1999; 
• Chris Grandin (Malaspina University-College), 2000 and 2001; 
• Nick Henderson (Malaspina University-College), 2002; 
• Nick Boers (Malaspina University-College), 2003-2006. 
• Alex Couture-Beil (Malaspina University-College), 2005-2007 

 
Starting in 1998, I began a formal connection with the Computing Science Department at 

Malaspina University-College (MUC). My discussions with faculty members, particularly Dr. 
Peter Walsh and Dr. Jim Uhl, highlighted the convergence of goals between academic training 
and scientific research. Projects designed for fish stock assessment give students an 
opportunity to further their computing science careers while producing useful software. Both 
MUC and the Pacific Biological Station (PBS), where I work, are located in Nanaimo, British 
Columbia, Canada. This happy juxtaposition makes it easy to engage students in the exchange 
of ideas between academia and applied research. For example, Jim Uhl participated directly in 
Nick Boers’ PBS work term during the summer of 2003. Nick had completed a course in 
computer graphics taught by Jim in the fall of 2002. Algorithms in the textbook (Foley et al. 
1996) proved invaluable for writing software to produce maps of the British Columbia coast with 
related fishery information. 

Quantitative fishery science requires a strong connection between theory and practice. In 
his book on computing theory, Michael Sipser (1997, p. xii) tells students that: 

 “. . . theory is good for you because studying it expands your mind. Computer 
technology changes quickly. Specific technical knowledge, though useful today, 
becomes outdated in just a few years. Consider instead the abilities to think, to express 
yourself clearly and precisely, to solve problems, and to know when you haven't solved 
a problem. These abilities have lasting value. Studying theory trains you in these 
areas.” 

 
While dealing with the issues addressed here, I found myself asking simple questions that have 
numerically interesting answers. How do you locate fishing events within management areas or 
other polygons? How should regional boundaries on maps be clipped to lie within a smaller 
rectangle? I soon realised that I had touched upon the emerging field of computational 
geometry, where people have devised clever and efficient algorithms for addressing such 
questions. 

Remarkably effective software can now be obtained freely from the Internet. I’m 
particularly fond of R, a version of the powerful statistical language S (and later S-PLUS) 
devised by Becker et al. (1988). Venables and Ripley (1999, 2000) give excellent guidance for 
using either language. Although written originally for Unix, R has also been implemented for 
Microsoft’s Windows operating systems. The web site https://cran.r-project.org/ describes R as 

https://cran.r-project.org/
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GNU S, “a freely available language and environment for statistical computing and graphics”. 
The GNU project, where the recursive acronym GNU means “GNU’s Not Unix”, offers a wealth 
of free software including compilers for C/C++, Fortran, and Pascal. Code can be written in 
these compiled languages to speed computations that would otherwise run more slowly in R. 
Nick Boers has used such linkages intelligently to bring fast computational geometry into our R-
package PBSmapping. 

To some extent, this report constitutes a second edition of an earlier report (Schnute et al. 
2003) that describes a suite of software utilities developed at PBS. In particular, the package 
PBSmapping has undergone extensive renovations and improvements, and this document 
provides a definitive manual for using version 2. To accommodate the new material presented 
here, my co-authors and I have decided to remove sections of the earlier report that discuss 
other PBS software utilities, free software available on the Internet, and related technical 
information. Readers of this current report may also wish to acquire the earlier version for 
additional material not included here. 

I want to mention two milestones achieved during the production of PBSmapping, 
Version 2. First, we have posted the current software as a contributed package on the 
Comprehensive R Archive Network (CRAN). Thanks to a remarkable collection of Perl scripts 
developed for the R project, source code in both C and R, along with suitable documentation 
files, can be tested and compiled automatically for distribution as both source and binary 
packages. Nick Boers ensured that our source materials met the necessary standards, and 
(after we made minor changes in the C code to avoid compiler warnings) the authors of the 
CRAN web site in Vienna, Austria accepted our contribution. Second, Nick applied to the 
Canadian Natural Sciences and Engineering Research Council (NSERC) for a grant to support 
graduate studies in computing science. His application cited his successful experience 
developing PBSmapping, Version 1, as documented in Schnute et al. (2003). To the delight of 
Nick’s supporters at PBS and MUC, he won a substantial award, in fact the only NSERC grant 
given to a student from MUC this year. Congratulations, Nick, from your colleagues at PBS and 
professors at MUC. We’ll follow your career at the University of Alberta in Edmonton with great 
interest. 

 
Jon T. Schnute (Sep 16, 2004) 
 
 
This User’s Guide is based on a version originally published in 2004 (Schnute et al. 2004). 
Since that time, the software has remained largely unchanged except for a few additional 
functions and features that are periodically reported herein. The original report appended 
complete technical documentation for every PBSmapping object (compiled from .Rd files written 
for the R documentation system) at the end of the final Appendix. This User’s Guide no longer 
reports these details as they are readily available using R’s help menu system. 
 
Rowan Haigh (Jun 22, 2017) 
 

http://www.gnu.org/
https://cran.r-project.org/
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1. INTRODUCTION 

This report describes software written to facilitate the compilation and analysis of fishery 
data, particularly data referenced by spatial coordinates. Our work developed from experiences 
constructing databases that capture information from Canada’s Pacific groundfish fisheries. 
Fishing events take place across a broad range of coastal waters and result in the capture of 
many species. Initially, we focused on issues related to database design and development, as 
described in previous reports by Schnute et al. (1996), Haigh and Schnute (1999), Rutherford 
(1999), Schnute et al. (2001, Section 2 and Appendix A), and Sinclair and Olsen (2002). 
Analyses of these databases shifted our attention to the problem of portraying and 
understanding such complex information. Maps with statistical information proved especially 
useful, and we found ourselves facing questions commonly addressed by Geographic 
Information Systems (GIS). 

Commercial GIS packages can be expensive, with an additional requirement for 
specialized training. Because analysts who deal with Pacific groundfish data often have 
experience using the statistical languages R (available for free) or S-PLUS (available 
commercially), we began by writing bilingual functions for these languages to produce the maps 
required. Schnute et al. (2003) describe the package PBSmapping, Version 1, which evolved 
from these early experiences. After another year of development, we extensively revised the 
software, and Schnute et al. (2004) presented a user’s manual for PBSmapping, Version 2. 
Subsequently, we have dropped the bilingual (R/S-PLUS) nature of PBSmapping, producing 
revisions solely for R, and now refer to the package as PBSmapping rather than ‘PBS Mapping’ 
used in earlier documents. Additionally, we maintain most of our PBS packages, including 
PBSmapping, on GitHub at PBS Software. 

Section 2 covers the mapping software itself, which contains functions that perform 
numerous calculations on polygons. These include standard set theoretic operations (union, 
intersection, difference, exclusive-or), clipping, thinning, thickening, testing convexity, forming 
the convex hull, and calculating various statistics (such as mean, centroid, and area). We 
discuss public data that represent shorelines and ocean bathymetry, and the package includes 
sample data sets drawn from these sources. We also discuss the Universal Transverse 
Mercator (UTM) projection that gives a particularly accurate flat projection of the earth’s surface. 
Our software can convert between longitude-latitude and UTM coordinates. 

Section 3 documents a number of convenient command-line utilities, compiled separately 
from C code written for the PBSmapping package. These make it possible to perform some of 
the polygon functions outside the framework of R. Appendices provide additional information 
about various topics related to PBSmapping, including 

A. a package (PBSdata) of supplementary information for PBSmapping; 
B. an Internet source for global bathymetry data; 
C. alternative Generic Mapping Tools (GMT); 
D. source code for the figures in this report; 
E. function dependencies in PBSmapping; 
F. documentation for PBSmapping functions and data. 

 
We anticipate that our software will continue to change for the better, due to bug fixes and 

other improvements. This report documents version 2.70.3, which currently appears as a 
contributed package on the R archive. We will post subsequent versions as they become 
available. All software required to develop and use PBSmapping is freely available from the 
Internet.  

https://cran.r-project.org/
https://en.wikipedia.org/wiki/S-PLUS
https://github.com/pbs-software
https://cran.r-project.org/
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1.1. Software Installation 

We provide two mapping packages: 
• PBSmapping – the mapping software discussed in Section 1; 
• PBSdata – additional data sets relevant to fisheries investigated at PBS (Appendix A). 

 
Installation of PBSmapping can be achieved in two ways – (1) navigate to the contributed 

package on CRAN, download the appropriate binary, and install from R using the menu 
<Packages><Install package(s) from local zip files...>, or (2) in R, use the menu 
<Packages><Install package(s)>, choose a CRAN mirror near you, highlight PBSmapping, and 
press OK. Note that the software is available in two forms: 

• PBSmapping_2.70.3.tar.gz – source code for the R distribution, which can be used to 
build a binary package; 

• PBSmapping_2.70.3.zip – binary package ready for installation into R; 
 

The package PBSdata can be found on the GitHub website pbs-software/pbs-data. 

To remove PBSmapping from R, open the library\ directory and delete the associated 
subdirectory PBSmapping\. Before loading a new version of a package, we recommend the 
removal of any previous version. Eventually, the installation files may have names that reflect a 
version number later than the current version. 

Additionally three other PBS packages are available from CRAN that facilitate fisheries 
analysis and research: 

• PBSmodelling ....... web package PBSmodelling; 
• PBSddesolve ......... web package PBSddesolve; 
• PBSadmb ................. web package PBSadmb. 

 
The PBSmodelling library includes a directory called PBStools that contains useful batch files 
for building R packages and generating an indexed manual based on the *.Rd files. This is not 
to be confused with another PBS package called PBStools at pbs-software/pbs-tools. 

 

2. FUNCTIONS AND DATA 

Niklaus Wirth, the author of Pascal and Modula-2, summarises the essence of software 
design in the title of his book Algorithms + Data Structures = Programs (Wirth 1975). Our 
software package PBSmapping begins with data structures that embody two essential concepts. 
First, polygons define boundaries, such as shorelines and fishery management areas. Second, 
fishing events occur at specific locations defined by two geographical coordinates, such as 
longitude and latitude. The R language conveniently supports such structures through the 
concept of a data frame, essentially a database table in which rows and columns define records 
and fields, respectively. Objects like data frames in R can also have attributes that store 
additional properties, such as the projection used in defining a geographic coordinate system. 

2.1. Data Structures for Maps 

PBSmapping introduces four data structures, each stored as a data frame. Field names, 
attributes, and other properties of these objects implicitly dictate their type. An object may also 
identify its type explicitly in the class attribute. Each type requires a particular structure, as 
outlined below. 

https://cran.r-project.org/web/packages/PBSmapping/index.html
https://github.com/pbs-software/pbs-data
https://cran.r-project.org/web/packages/PBSmodelling/index.html
https://cran.r-project.org/web/packages/PBSddesolve/index.html
https://cran.r-project.org/web/packages/PBSadmb/index.html
https://github.com/pbs-software/pbs-tools
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2.1.1. PolySet 

In our software, a PolySet data frame defines a collection of polygonal contours (i.e., line 
segments joined at vertices), based on four or five numerical fields: 

• PID   the primary identification number for a contour; 
• SID   (optional) the secondary identification number for a contour; 
• POS   the position number associated with a vertex; 
• X     the horizontal coordinate at a vertex; 
• Y     the vertical coordinate at a vertex. 

 
The simplest PolySet lacks an SID column, and each PID corresponds to a different contour. By 
analogy with a child’s “follow the dots” game, the POS field enumerates the vertices to be 
connected by straight lines. Coordinates (X, Y) specify the location of each vertex. Thus, in 
familiar mathematical notation, a contour consists of n points ),( ii yx  with ni ,,1= ,  

where i corresponds to the POS index. A PolySet has two potential interpretations. The first 
associates a line segment with each successive pair of points from 1 to n, giving a polyline (in 
GIS terminology) composed of the sequential segments. The second includes a final line 
segment joining points n and 1, thus giving a polygon. 

The secondary ID field allows us to define regions as composites of polygons. From this 
point of view, each primary ID identifies a collection of polygons distinguished by secondary IDs. 
For example, a single management area (PID) might consist of two fishing areas, each 
associated with a different SID. A secondary polygon can also correspond to an inner boundary, 
like the hole in a doughnut. We adopt the convention that POS goes from 1 to n along an outer 
boundary, but from n to 1 along an inner boundary, regardless of rotational direction. This 
contrasts with other GIS software, such as ArcView (ESRI 1996), in which outer and inner 
boundaries correspond to clockwise and counter-clockwise directions, respectively. 

The SID field in a PolySet with secondary IDs must have integer values that appear in 
ascending order for a given PID. Furthermore, inner boundaries must follow the outer boundary 
that encloses them. The POS field for each contour (PID, SID) must similarly appear as integers 
in strictly increasing or decreasing order, for outer and inner boundaries respectively. If the POS 
field erroneously contains floating-point numbers, fixPOS can renumber them as sequential 
integers, thus simplifying the insertion of a new point, such as point 3.5 between points 3 and 4. 

A PolySet can have a projection attribute, which may be missing, that specifies a map 
projection. In the current version of PBSmapping, projection can have character values "LL" 
or "UTM", referring to “Longitude-Latitude” and “Universal Transverse Mercator”. We explain 
these projections more completely below. If projection is numeric, it specifies the aspect 
ratio r, the number of x units per y unit. Thus, r units of x on the graph occupy the same distance 
as one unit of y. Another optional attribute zone specifies the UTM zone (if projection="UTM") 
or the preferred zone for conversion from Longitude-Latitude (if projection="LL"). 

A data frame’s class attribute by default contains the string "data.frame". Inserting the 
string "PolySet" as the class vector’s first element alters the behaviour of some functions. For 
example, the summary function will print details specific to a PolySet. Also, when PBSprint is 
TRUE, the print function will display a PolySet’s summary rather than the contents of the data 
frame. 
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2.1.2. PolyData 

We define PolyData as a data frame with a first column named PID and (optionally) a 
second column named SID. Unlike a PolySet, where each contour has many records 
corresponding to the vertices, a PolyData object must have only one record for each PID or 
each (PID, SID) combination. Conceptually, this object associates data with contours, where the 
data correspond to additional fields in the data frame. The R language conveniently allows data 
frames to contain fields of various atomic modes (“logical”, “numeric”, “complex”, “character”, 
and “null”). For example, PolyData with the fields (PID, PName) might assign character names to 
a set of primary polygons. Additionally, if fields X and Y exist (perhaps representing locations for 
placing labels), consider adding attributes zone and projection. Inserting the string 
"PolyData" as the class attribute’s first element alters the behaviour of some functions, 
including print (if PBSprint is TRUE) and summary. 

Our software particularly uses PolyData to set various plotting characteristics. Consistent 
with graphical parameters used by the R functions lines and polygon, column names can 
specify graphical properties: 

• lty       line type in drawing the border and/or shading lines; 
• col       line or fill colour;  
• border    border colour; 
• density   density of shading lines; 
• angle     angle of shading lines. 

 
When drawing polylines (as opposed to closed polygons), only lty and col have meaning. 
 
2.1.3. EventData 

We define EventData as a data frame with at least three fields named (EID, X, Y). 
Conceptually, an EventData object describes events (EID) that take place at specific points 
(X, Y) in two-dimensional space. Additional fields specify measurements associated with these 
events. For example, in a fishery context EventData could describe fishing events associated 
with trawl tows, based on the fields: 

• EID        fishing event (tow) identification number; 
• X, Y       fishing location; 
• Duration   length of time for the tow; 
• Depth      average depth of the tow; 
• Catch      biomass captured. 

 
Like PolyData, EventData can have attributes projection and zone, which may be absent. 
Inserting the string "EventData" as the class attribute’s first element alters the behaviour of 
some functions, including print (if PBSprint is TRUE) and summary. 

2.1.4. LocationSet 

A PolySet can define regional boundaries for drawing a map, and EventData can give 
event points on the map. Which events occur in which regions? Our function findPolys, 
discussed in Section 2.3 below, solves this problem. The output lies in a LocationSet, a data 
frame with three or four columns (EID, PID, SID, Bdry), where SID may be missing. One row in 
a LocationSet means that the event EID occurs in the polygon (PID, SID). The boundary (Bdry) 
field specifies whether (Bdry=T) or not (Bdry=F) the event lies on the polygon boundary. If SID 
refers to an inner polygon boundary, then EID occurs in (PID, SID) only if Bdry=T. An event may 
occur in multiple polygons. Thus, the same EID can occur in multiple records. If an EID does not 
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fall in any (PID, SID), or if it falls within a hole, it does not occur in the output LocationSet. 
Inserting the string "LocationSet" as the first element of a LocationSet’s class attribute alters 
the behaviour of some functions, including print (if PBSprint is TRUE) and summary. 

2.2. Map Projections 

The simplest projection associates each point on the earth’s surface with a longitude 
x ( °≤≤°− 360360 x ) and latitude y ( °≤≤°− 9090 y ), where °= 0x  on the Greenwich prime 
meridian. The chosen range of x depends on the region of interest, where negative longitudes 
refer to displacements west of the prime meridian. When plotted on a rectangular grid with equal 
distances for each degree of longitude and latitude, this projection exaggerates the size of 
objects near the earth’s poles, as illustrated in Figure 1. For points near the latitude y, a more 
realistic map uses the aspect ratio 

(2.1)  
y

r
cos

1= , 

 
where r degrees of longitude x should occupy the same distance as 1 degree of latitude y.  
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Figure 1. Map of the world projected in longitude-latitude coordinates. This image, based on our 
PolySet worldLL, uses the longitude range °≤≤°− 36020 x  to produce a convenient cut in 
the eastern Atlantic Ocean. Red vertical lines show boundaries for the 60 Universal 
Transverse Mercator (UTM) zones, with explicit labels for zones 1 to 9. A black line indicates 
the prime meridian )0( °=x . Our PolySet nepacLL lies within the clipping boundary shown 
as a blue rectangle. 

 
The Universal Transverse Mercator (UTM) projection gives a more realistic portrayal of 

the earth’s surface within 60 standardized longitude zones. Each zone spans °6 , and zone i 
includes points with longitude x in the range 

(2.2) °+−≤<°+− )6180()6186( ixi  [UTM zone i] 
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The mid-longitude in (2.2) 
 
(2.3) °+−= )6183( ixi  [Central meridian, zone i] 
 
defines the central meridian of zone i. In particular, zone 9 has central meridian °−129  and 
covers the range 
 
(2.3) °−≤<°− 126132 x . [UTM zone 9] 
 
Canada’s Pacific coast lies in zones 8 to 10 (Figure 2), and the projection to zone 9 gives a 
reasonably accurate map for fisheries in this region. 
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Figure 2. Shoreline data in longitude-latitude coordinates for the northeastern Pacific Ocean, as 
captured in our PolySet nepacLL. Vertical red lines display UTM boundaries for zones 
60, 1, 2, …, 11. A vertical dotted line indicates the central meridian of zone 6, near the centre 
of this figure. 

 
Visually, UTM zones look like sections of orange peel cut from top to bottom. Each 

relatively narrow section can be flattened without too much distortion to give coordinates ),( YX  
measured as actual distances, as illustrated by zone 6 in Figure 3. Complex formulas, compiled 
in detail by the UK Ordnance Survey (Ordnance Survey 1998, 2010), allow conversion between 
two projections: the UTM easting-northing coordinates ),( YX  and the usual longitude-latitude 

coordinates ),( yx . These take account of the earth’s ellipsoidal shape, with a wider diameter at 
the equator than the poles. The UTM projection scales distances exactly along two great circles: 
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the equator and the central meridian, which act as X and Y axes, respectively. Along the 
equator, 0=Y km by definition; elsewhere, Y indicates the distance north (positive Y) or south 

(negative Y) of the equator. The central meridian is assigned a standard easting 500=X km, 

rather than the usual 0=X km. This ensures that 0>X km throughout the zone. In effect, the 

difference 500−X km represents the distance east of the central meridian, where a negative 
distance corresponds to a westward displacement. These interpretations are exact along the 
equator and central meridian, but approximate elsewhere. 
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Figure 3. Shoreline data for the northeastern Pacific Ocean, projected in UTM coordinates 
(zone 6) from our PolySet nepacLL. Vertical red lines show UTM zone boundaries. The 
central axis of zone 6 (vertical dotted line at 500=x km) corresponds to the central meridian 
shown in Figure 2.  

 
2.3. PBSmapping Functions and Algorithms 

Our software produces maps from the data structures defined in Section 2.1. Following 
typical design concepts in R, it uses functions to generate plots, implement algorithms, and 
perform other tasks. Where possible, function arguments often have explicit default values. 
PBSmapping includes many functions not mentioned in this section. We encourage readers to 
examine Appendix F, which gives detailed technical descriptions of all our software’s functions 
and other components. 

2.3.1. Import Functions 

The following functions provide some support for importing GIS data from other users and 
other mapping platforms: 
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• importEvents import a text file and convert into EventData. 
• importLocs import a text file and convert into a LocationSet. 
• importPolys import a text file and convert into a PolySet with optional PolyData attribute. 
• importGSHHS import data from a GSHHS database and convert data into a PolySet with a 

PolyData attribute. GSHHG: A Global Self-consistent, Hierarchical, High-resolution 
Geography Database; see Section 2.4 below for more details. 

• importShapefile imports an ESRI shapefile (.shp) into either a PolySet or EventData. 
The function relies on C-code provided by Roger Bivand’s package maptools. 

 
2.3.2. Graphics Functions 

In the R language, high-level commands (like plot) create new graphs; lower-level 
commands (like points and lines) add features to an existing graph. Similarly, we provide 
functions (plotLines, plotMap, plotPoints, plotPolys) that create graphs and others 
(addLabels, addLines, addPoints, addPolys, addStipples) that add graphical features. 
Additional functions (e.g., addCompass) simply add features to an existing plot using a fixed 
(X,Y) coordinate. 

Some of these plotting functions draw objects defined by a PolySet, while others expect 
EventData, a LocationSet, or PolyData. Both plotLines and addLines treat their input PolySet 
as polylines, with no connection between the last and first vertices. By contrast, plotMap, 
plotPolys, and addPolys regard their input as polygons, where a final line segment connects 
the last vertex to the first. The functions plotMap and plotPolys behave similarly, except that 
plotMap’s default behaviour guarantees the correct aspect ratio, as defined by either the 
PolySet’s projection attribute or the function’s projection argument. If both are specified, 
the attribute supersedes the argument. When this attribute is missing, plotMap uses a 1:1 
projection. Table 1 summarises the default behaviour of our principal graphics commands. A 
user concerned with drawing maps, where the correct aspect ratio plays a key role, would likely 
initiate a graph with the plotMap function. However, plotPolys, plotLines, and plotPoints 
can also set the correct aspect ratio when passed a suitable projection argument. 

Table 1. Behaviour of the principal graphics functions in the PBSmapping software package. 

Function Creates a Graph Plots as Polygons Sets Aspect Ratio by Default
addLabels No - - 
addLines No No - 
addPoints No - - 
addPolys No Yes - 
addStipples No - - 
plotLines Yes No No 
plotMap Yes Yes Yes 
plotPoints Yes - No 
plotPolys Yes Yes No 

 
Our high-level graphics functions accept a common set of arguments, consistent with 

existing par parameters where possible. These include 

• xlim and ylim to specify horizontal and vertical coordinate ranges; 
• projection to specify the projection used in drawing the map or graph; 
• plt to define the plot region relative to the figure region; 
• polyProps to support plotting properties for individual contours (Section 2.1); 
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• lty, cex, col, border, density, pch, and angle to adjust properties of labels, lines, 
points, and polygons where applicable; 

• axes to disable plotting axes; 
• tck to control (major) tick mark lengths; 
• tckMinor, a counterpart of tck, to set a different length for minor tick marks; 
• tckLab, with Boolean values, to determine whether to include numeric tick labels. 

 
We introduce tckMinor and tckLab to give finer control over the appearance of tick marks. 
Each of tck, tckLab, and tckMinor can have length one or two. A single value pertains to both 
axes, and two values specify distinct parameters for the horizontal and vertical axes, 
respectively. 

Our low-level graphics functions (e.g., addLines) use many of the same arguments as 
their high-level counterparts (e.g., plotLines). However, they do not accept parameters that 
affect the overall plot, such as xlim, ylim, projection, plt, axes, or any of the tck 
arguments. 

The par parameter plt plays a special role in PBSmapping, because we use it to set the 
aspect ratio required for a particular projection. Recall that in R the plot region lies inside the 
figure region, which similarly lies inside the overall device region. The parameter plt specifies 
the plot region boundaries as fractions (left, right, bottom, top) of the current figure region. Our 
high-level plotting functions use the initial default value  plt=c(0.11,0.98,0.12,0.88), 
but then alter plt by shrinking the width or height to achieve the required aspect ratio. In the 
function call, the argument plt can set a different default value, but again this may be changed 
by the graphics function to set the aspect ratio. In effect, the argument plt sets minimum 
margins for the plot within the figure region, but the aspect ratio may force the plot to shrink in 
width or height, giving wider margins in one direction. 

Standard high-level commands in R (like plot) do not allow layout parameters (like plt) 
to be passed as arguments. Instead, users normally use par to set these parameters before 
invoking a graphics command. However, unlike normal graphics commands, those in 
PBSmapping actually alter the margins, so we adopt a different approach in which plt is reset 
with each high-level command. Advanced users wishing to set the plot region using the par 
parameters mai or mar can disable the default initial size with the argument plt=NULL. 

2.3.3. Computational Functions 

PBSmapping contains many functions that perform computations on PolySets and other 
data structures. Appendix F lists them all, but we give further details for some of them here, 
including formulas or algorithms for implementation and references for further reading. In 
alphabetic order, this list below highlights key features of selected functions in the package. 

• calcArea computes polygon areas by the formula (Rokne 1996) 
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for the area A of a polygon with vertices niyx ii ,,1),,( = , where vertices 1 and n 

correspond to the same point: ),(),( 11 nn yxyx = . This formula assumes identical units for 

x and y (an aspect ratio 1), as in UTM coordinates. The function automatically converts 
longitude-latitude coordinates to UTM before calculating the area. 



 –10– 

PBSmapping User’s Guide  Jun 22, 2017 

• calcCentroid computes polygon centroid coordinates ),( yx  by the formulae 
(Bourke 1988) 
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for a polygon with vertices niyx ii ,,1),,( = , where vertices 1 and n correspond to the 

same point: ),(),( 11 nn yxyx =  and A is computed by the formula shown above in the 

definition of calcArea. These formulas scale automatically to the units of x and y and 
consequently do not depend on the projection attribute. 

• calcConvexHull calculates the convex hull for a given set of points using the function 
chull() in R’s package grDevices. 

• calcGCdist calculates the great-circle distance between geographic (LL) coordinates 
along a spherical surface using the shortest distance and disregarding topography. This 
function uses two formulae (Haversine and Spherical Law of Cosines) to provide a quick 
distance calculation between two geographic coordinates. The function following 
(calcLength) performs the same task for polylines in a PolySet. 

Method 1: Haversine Formula 

 ( ) ( ) ( ) ( )2 2
2 1 1 2 2 1sin 2 cos cos sin 2a φ φ φ φ λ λ= − + −        

 ( )2atan2 , 1c a a= −  

 d Rc=  

where, φ  = latitude (in radians), λ  = longitude (in radians) 

 R  = radius (km) of the Earth, 
 a  = square of half the chord length between the points, 
 c  = angular distance in radians, 
 d  = great-circle distance (km) between two points. 

Method 2: Spherical Law of Cosines 

 ( ) ( ) ( ) ( ) ( )( )1 2 1 2 2 1acos sin sin cos cos cosd Rφ φ φ φ λ λ= + −  

The initial bearing (aka forward azimuth) for the start point can be calculated using: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 1 2 1 2 1 2 2 1atan2 sin cos ,cos sin sin cos cosθ λ λ φ φ φ φ φ λ λ= − − −  

where, φ  = latitude (in radians), λ  = longitude (in radians) 

 θ  = Initial bearing theta (degrees) for the start point. 

• calcLength calculates polyline lengths using Pythagoras’ Theorem when the projection is 
UTM or 1. Thus, the distance d between points ),( yx  and )','( yx  is 

 

 22 )'()'( yyxxd −+−= . 
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The function also supports longitude-latitude coordinates ),( yx  by calculating great circle 
distances between polygon vertices. In this case, the distance d between two points is 
(Chamberlain 2001) 
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where 6371.3=R  km denotes the earth’s mean radius (Wikipedia 2004). 

• calcMidRange calculates midpoints of the X and Y ranges for each given polygon. 
• calcSummary calculates summary statistics for a PolySet, given a user-defined function. 
• calcVoronoi calculates the Voronoi (Dirichlet) tesselation for a set of points (using the 

deldir function from the package deldir) and creates a PolySet. See Figure 8 of the 
PBSmodelling user’s guide (Schnute et al. 2006) for an example called CalcVor. 

• clipLines (and clipPolys) clips polylines (and polygons) within a specified rectangle, 
possibly smaller than the bounding rectangle, using the Sutherland-Hodgman clipping 
algorithm (Foley et al. 1996, p. 124-127). 

• closePolys adds corners from the bounding rectangle, if needed, to close polylines into 
polygons. 

• combinePolys combines several polygons into a single polygon by modifying the PID and 
SID indices. 

• convCP converts results from contourlines into a PolySet. 
• convDP converts EventData/PolyData into a PolySet. 
• convLP converts two polylines into a polygon.  
• convUL converts between UTM and longitude-latitude coordinates using the extensive 

formulas presented in Ordnance Survey (2010). 
• dividePolys divides a single polygon (with several outer-contour components) into 

several polygons, a polygon for each outer contour, by modifying the PID and SID indices. 
• findCells finds the cells in a grid PolySet that contain events specified in EventData, 

using the “crossings test” algorithm described later in this section. 
• findPolys finds the polygons in a PolySet that contain events specified in EventData, 

using the “crossings test” algorithm described later in this section. 
• isConvex determines which polygons in a PolySet are convex, using an algorithm 

described below. 
• isIntersecting finds polygons that self-intersect by comparing each edge pairwise with 

every other edge. 
• joinPolys performs set theoretic operations (union, intersection, difference, and 

exclusive-or) on polygons using the Clipper library developed by Angus Johnson. See 
Figure 13 of the PBSmodelling user’s guide (Schnute et al. 2006) for an example called 
FishTows (Fig.14 in most recent version). 

• thickenPolys adds vertices to polygons using an algorithm described below. 
• thinPolys thins the number of polygon vertices, based on the Douglas-Peuker line 

simplification algorithm (Douglas and Peucker 1973), as illustrated in Figure 4. 
 

Our function isConvex first calls isIntersecting to determine whether or not a polygon 
self-intersects. If it does, it cannot be convex and the result is FALSE. Otherwise, the function 
proceeds. Three sequential points in a non-self-intersecting polygon describe a left turn, a 
straight line, or a right turn. The function locates the first non-straight turn (left or right) in a 

http://www.angusj.com/delphi/clipper.php
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polygon and checks that all subsequent turns are either the same or straight. If so, the polygon 
is convex; otherwise it is not. 

Like calcLength, thickenPolys also supports the longitude-latitude projection. In this 
case, tol is measured in kilometres and distances are computed along great circles 
(Chamberlain 2001). 
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Figure 4. (A) Vancouver Island clipped from the PolySet nepacLL and (B) the result of applying 
thinPolys to this polygon with a tolerance of ten kilometres. 

 
When the projection is UTM or 1, our function thickenPolys accepts a tolerance 

specified in X or Y units (kilometres in the UTM case). It operates in two distinct modes. When 
keepOrig=TRUE, it retains all original vertices and adds vertices, as required, along each edge. 
Thus, if the distance between two sequential original vertices exceeds the specified tolerance 
tol, it adds enough vertices spaced evenly between them so that sequential vertices lie at most 
the distance tol apart. When keepOrig=FALSE, the algorithm guarantees only that the first 
vertex of each polygon appears in the result. Starting at that vertex, the algorithm walks through 
the polygon while summing distances between vertices. When the cumulative distance exceeds 
tol, it adds a vertex on the line segment under inspection. It then resets the distance sum and 
continues walking the polygon from this new vertex. 

2.3.4. Associating Points with Polygons 

As discussed in the definition of LocationSet (Section 2.1), our function findPolys solves 
the “points-in-polygons” problem. Given a set of points (EventData) and a collection of polygons 
(a PolySet), which points lie in which polygons? Several algorithms solve this problem, 
including: 

• The crossings test. Draw a ray from the trial point in a fixed direction (e.g., upward). If 
the ray crosses an even number of polygon edges, the point must be outside. For an 
inside point, the number of crossings must be odd. 

• The angle summation (or winding number) test. Sum the angles swept by a ray from 
the trial point to sequential vertices of the polygon. For a point outside the polygon, the 
angles sum to 0 because the ray sweeps back and forth, returning to the starting point. 
For an inside point, the ray traces a full circle, and the angles do not sum to zero. 

 
We use the crossings test because it performs faster than angle summation (Hains 1994, 
p. 26-27). The latter requires large numbers of trigonometric function calls. 
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After finding the polygons that contain various events, an analyst often wants to compute 
statistics associated with the events that occur inside each polygon. For example, in a fishery 
context, what is the total catch from all fishing events within each management region? Our 
function combineEvents supports such calculations. The function makeProps can then relate 
polygon properties, such as colour used for plotting, to these computed statistical values. 

2.3.5. Set Theoretic Operations 

We include the function joinPolys to apply set theoretic operations (difference, 
intersection, union, and exclusive-or) to one or two PolySets. Our joinPolys function interfaces 
with the Clipper library developed by Angus Johnson.  Previously, it interfaced with the General 
Polygon Clipper library by Alan Murta at the University of Manchester.  We keep this historic 
reference to GPC because joinPolys remains faithful to Murta’s definition of a generic 
polygon, which we describe below. 

Murta (2004) defines a generic polygon (or polygon set) as zero or more disjoint polygonal 
contours that define boundaries of the polygon region. Some contours can represent inner 
boundaries that define holes in the region. Each contour can be convex, concave, or self-
intersecting. 

In our PolySet, the polygons associated with each unique PID correspond to a generic 
polygon with some restrictions. Some of our functions do not support self-intersecting polygons. 
Furthermore, the SID contours cannot be arranged in arbitrary order because we require that 
hole contours follow the outer contours in which they lie. 

The function joinPolys can also accept two PolySet arguments P and Q. In this case, 
the function returns a PolySet with all possible pairwise applications of op between generic 
polygons in P and Q. For example, if P contains (A, B, C) and Q contains (D, E), then 
joinPolys returns a PolySet with six PIDs corresponding to the six generic polygons A op D, 
B op D, C op D, A op E, B op E, and C op E. More generally, if P and Q include m and n generic 
polygons, respectively, then the function returns a PolySet with nm ×  generic polygons. 
If 1=m  or 1=n , the output preserves PIDs from the PolySet with more than one generic 
polygon. Figure 5 illustrates the four supported set theoretic operations applied to crescent-
shaped polygons A and B. 

http://www.angusj.com/delphi/clipper.php
http://www.cs.man.ac.uk/%7Etoby/alan/software/
http://www.cs.man.ac.uk/%7Etoby/alan/software/
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Figure 5. Example of the joinPolys logic operations. Panels A and B display the first and 
second PolySets, respectively. Panels C to F illustrate the intersection, union, difference, and 
exclusive-or operations, respectively.  

 
Applied to one PolySet P, our function joinPolys applies the set theoretic operation op 

sequentially to the generic polygons in P. For example, suppose that P contains three generic 
polygons (A, B, C). Then the function returns a PolySet containing the generic polygon 
((A op B) op C), represented as one PID with possibly many SIDs. 

2.4. Shoreline Data 

To portray fishery data along Canada’s Pacific coast, we need a PolySet that defines the 
relevant shoreline. Originally, we began with a polyline of the British Columbia coast, digitized 
manually from a marine map. To convert this object to a meaningful closed polygon, we devised 
the functions fixBound and closePolys. Satellite imagery and other sources, however, make 
our initial coastline obsolete. For example, Wessel and Smith (1996) have used information 
from the public domain to assemble a Global Self-consistent, Hierarchical, High-resolution 
Geography (GSHHG) database for the entire planet. They make this available via the Internet 
as binary files in five different resolutions for shorelines: full (gshhs_f.b), high (gshhs_h.b), 
intermediate (gshhs_i.b), low (gshhs_l.b), and crude (gshhs_c.b). They also supply software 
as C source code for . 

• converting the data to an ASCII (plain text) format (gshhs.c); 
• thinning the data by reducing the number of points sensibly (gshhs_dp.c). 

 

http://www.soest.hawaii.edu/pwessel/gshhg/
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Their thinning software uses an algorithm devised by Douglas and Peucker (1973), whose 
initials dp appear in the file name. The dp is also an abbreviation of “decimate polygons”.  

We have created a function called importGSHHS that works directly on a specified binary 
data file from Wessel (resolution choice left to the user) to create a PBSmapping PolySet. The 
user can choose to further alter the resolution of the newly created PolySet using our function 
thinPolys. Alternatively, the user can thin Wessel’s full-resolution database (gshhs_f.b) 
directly using gshhs_dp.c (after compilation to an executable file) to a desired resolution, then 
use PBSmapping’s importGSHHS on the modified binary database. At the time of writing, 
importGSHHS supports Wessel’s format for data files version 2.2.0, created July 15, 2011. 
Wessel’s database gshhs+wdbii_2.2.0.zip contains geographical coordinates for shorelines 
(gshhs), rivers (wbd_rivers), and borders (wdb_borders). The latter two come from World 
DataBank II (WDBII) with the five resolutions mentioned above. 

PBSmapping includes four data sets derived from the GSHHS databases (Table 2). These 
all use longitude-latitude (LL) coordinates. The nepac data sets contain the northeastern Pacific 
Ocean shoreline in a region that extends roughly from California to Alaska (Figure 2), and the 
world data sets cover the planet (Figure 1). As discussed in section 2.2, longitude coordinates x 
take continuous values meaningful for the intended map, with °= 0x  on the Greenwich prime 
meridian.  

Table 2. PolySets derived from various resolution GSHHG databases.  

PolySet Wessel DB Thin Longitude Latitude Vertices Polygons
nepacLL* gshhs_h.b 0.2 km °−≤≤°− 110190 x °≤≤° 7234 y  75,305 495

nepacLLhigh gshhs_f.b 0.1 km °−≤≤°− 110190 x °≤≤° 7234 y  192,762 9,986

worldLL* gshhs_l.b 5.0 km °≤≤°− 36020 x  °≤≤°− 8490 y  30,129 190

worldLLhigh* gshhs_i.b 1.0 km °≤≤°− 36020 x  °≤≤°− 8490 y  187,101 1,367
 

*Excludes polygons with fewer than 15 vertices after thinning. 
 
Explicitly, the commands to create the above PolySets are: 

worldLL =  
importGSHHS("gshhs_l.b",xlim=c(-20,360),ylim=c(-90,90),level=1,n=15,xoff=0) 

worldLL = .fixGSHHSWorld(worldLL) 
 
worldLLhigh =  

importGSHHS("gshhs_i.b",xlim=c(-20,360),ylim=c(-90,90),level=1,n=15,xoff=0) 
worldLLhigh = .fixGSHHSWorld(worldLLhigh) 
 
nepacLL = 

importGSHHS("gshhs_h.b",xlim=c(-190,-110),ylim=c(34,72),level=1,n=15,xoff=-360) 
 
nepacLLhigh = 

importGSHHS("gshhs_f.b",xlim=c(-190,-110),ylim=c(34,72),level=1,n=0,xoff=-360) 
nepacLLhigh = thinPolys(nepacLLhigh, tol=0.1, filter=3) 

 
2.5. Bathymetry Data 

Smith and Sandwell (1997) have produced global seafloor topography from satellite 
altimetry and ship depth soundings. A web-based data acquisition form allows users to extract a 
region after entering longitude and latitude coordinate ranges. Appendix B documents how to 
import their data for use with PBSmapping. 

http://topex.ucsd.edu/cgi-bin/get_data.cgi
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R provides a contour function to plot contour lines. This function lacks a save argument 
and does not return contour coordinates. Instead, the contourLines function accomplishes this 
task, giving a list that captures continuous contours as single polylines (Figure 6). 

-131 -130 -129

50
.5

5
1

5
1

.5
5

2
5

2
.5

53

Longitude (°)

L
at

itu
d

e 
(°

)

 

Figure 6. The R contourLines function returns a single polyline for each continuous contour.  
Our function convCP converts the list output from contourLines into a list object that has 

two components: a PolySet with contour coordinates and PolyData with the depth of each 
contour. The package PBSdata includes a data set (isobaths) of bathymetric contours for 
Canada’s Pacific coast. In addition, several functions ease the manual procedure of converting 
polylines into polygons, including 

• convLP to convert two polylines into a single polygon; 
• closePolys to close the polygons in a PolySet; 
• fixBound to fix the boundary points of a PolySet. 

 
2.6. Examples and Applications 

Our library includes an illustrative PolySet towTracks containing the longitude-latitude 
coordinates of 45 tow tracks from a longspine thornyhead (Sebastolobus altivelis) survey in 
2001. Figure 7 portrays these data relative to the west coast of Vancouver Island, drawn with 
shoreline data clipped from the PolySet nepacLL. The PolyData object towData specifies the 
depth of each tow, represented in the figure by colours corresponding to depth intervals 
(black = 500-800 m, red = 800-1200 m, dark blue = 1200-1600 m). 
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Figure 7. Tracks for 45 tows performed during the 2001 Longspine Thornyhead (Sebastolobus 
altivelis) survey along the west coast of Vancouver Island (Starr et al. 2002). Each tow track 
is colour-coded by depth stratum. Data: PolySet towTracks and PolyData towData.  

 
Figure 8 illustrates the use of our software to calculate polygon areas using the function 

calcArea. We examine a region along the south-west British Columbia coast that includes a 
cluster of islands in the Strait of Georgia. Shoreline data come from the PolySet nepacLLhigh. 
Because area calculations do not make sense in the longitude-latitude projection, we convert 
the PolySet to UTM coordinates, with comparable X and Y coordinates (km), and then clip to the 
desired region. (The calcArea function will also automatically convert PolySets with 
projection=“LL” to UTM before calculation.) The figure shows areas for six selected islands, 
highlighted in yellow. Island centroids, derived using calcCentroid, give reference coordinates 
for printing island names and areas. 

 



 –18– 

PBSmapping User’s Guide  Jun 22, 2017 

900 910 920 930 940

53
80

53
90

54
00

54
10

54
20

54
30

54
40

UTM Easting (km)

U
T

M
 N

or
th

in
g 

(k
m

)

Saltspring
193

San Juan
149

Galiano
63

N Pender
30

Mayne
26

Saturna
35

Vancouver Island

Strait of Georgia

 

Figure 8. Areas (km2) of selected islands in the southern Strait of Georgia. Shoreline data have 
been clipped from nepacLLhigh after conversion to UTM coordinates.  

 
 

Figure 9 portrays data from Pacific Ocean Perch (POP, Sebastes alutus) surveys 
conducted along the central BC coast during the years 1966-1989. The EventData object 
surveyData contains information from each tow, including the longitude, latitude, depth, catch, 
and effort (tow duration). These data also imply the computed value of catch per unit effort 
(CPUE = catch/effort). Code for this figure includes the following key function calls: 

• plotMap to draw a coastal map of this region, clipped from nepacLL; 
• makeGrid to create a grid in the region of interest; 
• findCells to associate tows with the appropriate grid cells; 
• combineEvents to calculate the mean CPUE within each cell; 
• addPolys to draw cells with colours (in the polyProps argument) scaled to the CPUE; 
• points (the native R function) to plot events on the map. 
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Figure 9. Portrayal of surveyData from Pacific Ocean Perch (Sebastes alutus) surveys in the 
central coast region of British Columbia from 1966-89, with shoreline data clipped from 
nepacLL. Colours portray the mean catch per unit effort (CPUE) within each grid cell 
(0.1º by 0.1º). Circles show locations of individual tows.  

 
PBSmapping can also display non-geographical data, such as technical drawings, network 

diagrams, and transportation schematics. For example, we use a PolySet to construct the proof 
of Pythagoras’ Theorem in Figure 10, where the caption explains the logic leading to the famous 

result 222 cba =+ . Incidentally, Devlin (1998, chapter 6, p. 221) mentions an historical incident 
that nicely distinguishes maps from network diagrams. A now familiar drawing of the London 
Underground (see the PDF file marked “Standard Tube map” at Transit for London) fails to 
represent geography correctly, but contains exactly the information passengers need to 
navigate the system. It took two years for the designer, Henry C. Beck, to persuade his 
superiors that his drawing would prove useful to the public. 

https://tfl.gov.uk/maps/track/tube
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Pythagoras' Theorem: a² + b² = c²

Proof:
(a + b)² = 4 triangles + a² + b² = 4 triangles + c²

a

b

c

a²

b²

c²

 

Figure 10.  Proof of Pythagoras’ Theorem. A PolySet defines all geometric objects in this figure, 
and PolyData determine the colours for plotting. Four blue triangles plus the yellow 

square )( 2a  and the green square )( 2b  equal four blue triangles plus the red square )( 2c ; 

consequently, 222 cba =+ . 
 
 
2.7. Strengths, Limitations, and Alternatives 

PBSmapping works with data exported from database tables, where records may not have 
a definite order. The POS field in our PolySet definition imposes the required order for polylines 
and polygons. This field also provides a convenient means of distinguishing inner and outer 
boundaries. Our PolySets have a flat structure with at most two levels, corresponding to primary 
and secondary IDs. We have found these limitations acceptable in the context of our work. 
Sceptical readers might challenge our choices and prefer more complex hierarchical structures. 
For example, Becker and Wilks (1993, 1995) define polygons as composites of polylines, so 
that a common boundary between two regions need be defined only once and then referenced 
in each regional definition. In our approach, all vertices of a common boundary must be 
repeated in each regional definition. 

We designed our software explicitly to address a few key issues in the spatial 
representation of fishery data: 
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• easy importation from databases, Geographic Information Systems, and other sources, 
such as the shoreline data compiled by Wessel and Smith (1996); 

• precise control over the boundaries chosen for clipping from a larger map; 
• support for longitude-latitude and UTM easting-northing coordinates; 
• computational ability to associate events with polygons in which they lie; 
• flexible plotting tools that summarise events within grids and other polygons. 

 
Different purposes could well lead to other designs. 

In addition to their comprehensive shoreline database, Wessel and Smith have designed 
and released a free collection of Generic Mapping Tools (GMT) that provide a serious 
alternative to our software. These tools operate in the DOS/UNIX environment and support 
many more projections than PBSmapping. They also store polygons in a more efficient file 
format than our PolySet data frames. We designed PBSmapping for the R environment, with its 
rich support for statistical and mathematical analysis. We have also included numerous 
algorithms from computational geometry, such as findPolys and joinPolys. Readers may, 
however, find GMT more useful for map formats not supported in PBSmapping. Appendix C 
shows some comparative examples of code written in both environments. 

Because PBSmapping includes features often supported by a Geographic Information 
System (GIS), a free GIS package might also provide an alternative to the software described 
here. The FreeGIS web site summarizes the current status of free GIS programs and data. 
Their listings receive frequent updates and show a pattern of steady growth. 

 

http://gmt.soest.hawaii.edu/
http://www.freegis.org/
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3. COMMAND LINE UTILITIES 

The PBSmapping package for R includes several algorithms that we have also 
implemented as stand-alone command-line utilities1. These can handle very large data sets that 
may be too large for the R working environment. Furthermore, some users may wish to 
implement computational geometry calculations without reference to the R language. Our 
utilities make this possible by directly processing text files with the appropriate data format. 
They have been compiled with the same C code used for the dynamically linked library (DLL) in 
R. For each utility, a corresponding .c file provides a front end to shared code for the 
algorithms. Source code appears in the R library directory \PBSmapping\Utils\. 

3.1. clipPolys.exe (Clip Polygons) 

The application clipPolys.exe reads an ASCII file containing a PolySet (explained 
further below) and then clips it. The command 

clipPolys.exe /i IFILE [/o OFILE] [/x MIN_X] [/X MAX_X] [/y MIN_Y] [/Y MAX_Y] 
 
has five arguments as follows: 
 

• /i IFILE ASCII input file containing a PolySet (required); 
• /o OFILE ASCII output file (defaults to standard output); 
• /x MIN_X lower X limit (defaults to minimum X in the PolySet); 
• /X MAX_X upper X limit (defaults to maximum X in the PolySet); 
• /y MIN_Y lower Y limit (defaults to minimum Y in the PolySet); 
• /Y MAX_Y upper Y limit (defaults to maximum Y in the PolySet). 

 
The first line of the PolySet input file must contain the field names (PID, SID, POS, X, Y), where 
SID is optional. Subsequent lines must contain the data, with the same number of fields per row 
as in the header line. All fields must be delimited by white space. The program generates a 
properly formatted PolySet. By default (unless otherwise specified by /o), this result goes to 
standard output, which can be redirected to a text file (e.g., > file.txt). 

3.2. convUL.exe (Convert between UTM and LL) 

The application convUL.exe reads an ASCII file containing two fields named X and Y, as 
described further below. The command 

convUL.exe /i IFILE [/o OFILE] (/u | /l) [/m] /z ZONE 
 
has the arguments: 
 

• /i IFILE ASCII input file containing the X and Y data (required); 
• /o OFILE ASCII output file (defaults to standard output); 
• /u (or /l) convert to UTM (longitude-latitude) coordinates (required); 
• /m use metres instead of kilometres as UTM measurement; 
• /z ZONE source or destination zone for the UTM coordinates (required). 

 
The input file must have an initial header line with field names, including X and Y. Subsequent 
lines contain the data, with all fields separated by white space. The program converts each 
(X, Y) pair to a new pair (X2, Y2). The output file matches the input file, with the fields (X2, Y2) 
appended to the end of each line. The default standard output can be redirected to a text file. 

                                                 
1 These have not been tested for many years now. Please let authors know if their use causes problems. 
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3.3. findPolys.exe (Points-in-Polygons) 

The application findPolys.exe reads two ASCII files: one containing a PolySet and the 
other containing EventData. The program then determines which events fall inside the available 
polygons. The command 

findPolys.exe /p POLY_FILE /e EVENT_FILE [/o OFILE] 
 
has the arguments: 
 

• /p POLY_FILE ASCII input file containing the PolySet (required); 
• /e EVENT_FILE ASCII input file containing EventData (required); 
• /o OFILE ASCII output file (defaults to standard output). 

 
The header line in both input files must contain field names, and subsequent lines must contain 
the relevant fields of data delimited by white space. The PolySet must have field names 
(PID, SID, POS, X, Y), where SID is optional. The EventData must have fields (EID, X, Y). The 
program writes a properly formatted LocationSet with three or four columns 
(EID, PID, SID, Bdry), where SID may be missing (Section 2.1). The default standard output can 
be redirected to a text file. 
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APPENDIX A. PBSDATA PACKAGE 

This appendix documents the objects available in the R-package PBSdata, which is not 
distributed on CRAN but remains available on GitHub: pbs-software/pbs-data. Fisheries and 
Oceans personnel can also obtain the package from a PBS Intranet website. Look for a link on 
the left entitled “Most recent PBS R Packages”.  

Table A1. Data sets available in PBSdata.  

Object Description 
bctopo Topo: British Columbia Sea Floor Topography 
bgcp Topo: Biogeochemical Provinces 
claradat Data: Tow Catches of Species in Queen Charlotte Sound 
dbr.rem Data: Annual Catches of Rockfish by Sector 
eez.bc Topo: Exclusive Economic Zone for BC Coast 
fos.fid Code: Fishery Codes in GFFOS 
gear Code: Gear Codes for Various DFO Databases 
hsgrid Topo: Hecate Strait Assemblage Survey Grid 
hsisob Topo: Hecate Strait Isobaths 
hssa Topo: Hecate Strait Survey Area 
iphc.rbr Data: Longline Indices of Rockfish Catch from the IPHC SSA 
iphc.rer Data: Longline Indices of Rockfish Catch from the IPHC SSA 
iphc.yyr Data: Longline Indices of Rockfish Catch from the IPHC SSA 
isobath Topo: Isobaths (100 to 1800 m, at 100 m intervals) 
locality Topo: Localities in Pacific Marine Fisheries Commission Minor Areas 
ltea Topo: Longspine Thornyhead Exploratory Management Areas 
ltmose07 Topo: Longspine Thornyhead Fishing Grounds (WCVI) 
ltmose12 Topo: Longspine Thornyhead Fishing Grounds (WCVI) 
ltsa Topo: Longspine Thornyhead Survey Strata (WCVI) 
ltsa.bad Topo: No-Trawl Zones in Longspine Thornyhead Survey Area 
ltxa Topo: Longspine Thornyhead Experimental Management Areas 
major Topo: Pacific Marine Fisheries Commission Major Areas 
minor Topo: Pacific Marine Fisheries Commission Minor Areas 
nage394 Data: Age Frequency by Year for Rougheye Rockfish 
orfhistory Data: Historic Landings of Rockfish in BC 
parVec Data: Initial Parameter Vector for Model Fits 
pcoda Topo: Hecate Strait Pacific Cod Monitoring Survey Areas 
pjsa Code: Paul J Starr Locality Codes 
pl230 Topo: 230 Degree True Line from Lookout Island 
pmfc Code: Pacific Marine Fisheries Commission Areas 
pop.age Data: Pacific Ocean Perch Age Data (5AB, 5CD) 
pop.pmr.qcss Data: Pacific Ocean Perch (p, mu, rho) for QCS Synoptic Survey 
popa Topo: Pacific Ocean Perch Population Areas 
qcb Topo: Queen Charlotte Basin Surficial Geology 
qcssa Topo: Queen Charlotte Sound Survey Strata 
rca Topo: Rockfish Conservation Areas 
species Code: Species Codes and Names (primarily for marine fisheries) 
spn Code: Species Code Vector 
srfa Topo: Slope Rockfish Assessment Areas 
srfs Topo: Slope Rockfish Assessment Subareas 
testdatC Data: Fisheries Catch Data with Species by Column 

https://github.com/pbs-software/pbs-data
http://dfbcv9twvasp001/sql
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Object Description 
testdatR Data: Fisheries Catch Data with Species by Row 
trawlability Topo: Fisher Knowledge of Towable Bottom 
utilize Code: Utilization Codes for Various DFO Databases 
wchgsa Topo: West Coast Haida Gwaii Survey Area 
wcvisa Topo: West Coast of Vancouver Island Survey Strata 
ymr.rem Data: Annual Catches of Rockfish by Sector 
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APPENDIX B. BATHYMETRY DATA 

Smith and Sandwell (1997) have produced a global seafloor topography database from 
satellite altimetry and ship depth soundings. Using the web-based data acquisition form, users 
can extract a region from this database. The form returns an ASCII file containing X, Y, and Z 
coordinates. To use this data file with PBSmapping, first load it into R with the native function 
read.table, which creates a data frame with three fields. Our function makeTopography can 
convert this data frame to a list object with vectors x and y and an outer product matrix z, ready 
for use by the functions contour or contourLines. In particular, contourLines produces a list 
object that can be easily converted to a PolySet using convCP, which in turn produces a list 
object consisting of a PolySet (with contour coordinates) and PolyData (with the depth of each 
contour). 

Example  
Bathymetry for a small section of the Aleutian Islands, Alaska,  
where a user would specify coordinates xlim=c(-162,-158) and ylim=c(53,57) in the web-
based acquisition form referenced above, and save Topography to a file called aleutian.txt 
(also provided in the library directory PBSmapping\extra\). 

require(PBSmapping); 
isob <- c(100,500,1000,2500,5000); 
icol <- rgb(0,0,seq(255,100,len=length(isob)),max=255); 
 
afile <- paste(system.file(package="PBSmapping"), 
         "/extra/aleutian.txt",sep="") 
aleutian <- read.table(afile, header=F,col.names=c("x","y","z")) 
aleutian$x <- aleutian$x - 360 
aleutian$z <- -aleutian$z 
alBathy <- makeTopography(aleutian) 
alCL <- contourLines(alBathy,levels=isob) 
alCP <- convCP(alCL) 
alPoly <- alCP$PolySet 
attr(alPoly,"projection") <- "LL" 
 
plotMap(alPoly,type="n"); 
addLines(alPoly,col=icol); 
data(nepacLL); addPolys(nepacLL,col="gold"); 
legend(x="topleft",bty="n",col=icol,lwd=2,legend=as.character(isob)); 

http://topex.ucsd.edu/cgi-bin/get_data.cgi
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APPENDIX C. GENERIC MAPPING TOOLS (GMT) 

Generic Mapping Tools (GMT) and PBSmapping have many similar features, although 
they operate in different environments. We built PBSmapping for the R statistical platform, 
whereas Wessel and Smith developed GMT to run as commands for the UNIX operating 
system. Each environment imposes limitations on its respective tools. The following discussion 
focuses on image types, one of the fundamental areas where the programs differ. 

Images are commonly stored in two basic formats, raster and vector. The raster (or bit 
map) format uses a grid of squares, where each square is assigned characteristics like colour 
and transparency. The image’s resolution, often measured in “dots per inch”, determines the 
density of the grid. When this density is less than the resolution of the output device, the image 
may appear jagged because distinct squares are visible. Choosing a sufficiently high-resolution 
image for an output device may result in a large file size. The vector format stores coordinates 
for control points of lines, curves, and other shapes. Scaling algorithms use these coordinates to 
produce an image at any specified size with a consistently smooth appearance. In a mapping 
context, vector formats are usually preferred over raster formats. 

Unlike R, the UNIX environment does not have native support for generating images. 
Wessel and Smith decided that GMT programs would output (optionally encapsulated) 
postscript files. This vector-based format is more popular in UNIX than Windows and is poorly 
supported by some word processors, such as Microsoft Word. On the other hand, PBSmapping 
inherits support from the R environment for common raster (e.g., BMP, JPG) and vector 
(e.g., WMF) file formats. Users of Windows operating systems may find PBSmapping’s output 
somewhat more convenient than that from GMT. 

Converting GMT’s postscript output to a better-supported graphics format can be 
achieved through the Ghostscript graphical user interface GSview. Through an option in 
GSview’s “Edit” menu, the program converts PS files to the popular EMF and WMF vector formats. 
However, we obtained somewhat erratic results from this process and had greater success with 
raster images produced with the convert option in the “File” menu. 

Figure C1 and Figure C2 compare PBSmapping with GMT. We show the code used to 
produce these images in both environments. Although one R command can span multiple lines, 
one GMT command cannot. For clarity, however, we span GMT commands across multiple 
lines in the listing below. In familiar UNIX notation, we indicate spanning by escaping the new-
line character with a backslash (\). 

http://www.cs.wisc.edu/%7Eghost/gsview/
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Code for Figure C1 
 
R: (Panel A) 
data(nepacLL); # load the nepacLL data set 
plotMap(nepacLL, # plot the nepacLL data set 
      xlim=c(-129.3, -122.2), # limit the region horizontally 
      ylim=c(47.5, 51.5), # limit the region vertically 
      plt=c(0.16, 0.97, 0.16, 0.97), # specify the plot region size 
      col=rgb(255, 255, 195, # set the foreground colour 
         maxColorValue=255), 
      bg=rgb(224, 253, 254, # set the background colour 
         maxColorValue=255), 
      tck=c(-0.03), # set the tick mark length 
      cex = 1.8, # adjust the font size 
      mgp=c(1.9, 0.7, 0)); # adjust the axis label locations 
 
GMT: (Panel B) 
gmtset ANOT_FONT_SIZE = 26p # set the annotation font size 
pscoast  Dh \ # plot the high resolution data set 
      -A0/0/1 \ # skip inner polygons (holes) 
      -R-129.3/-122.2/47.5/51.5 \ # limit the region horizontally and vertically 
      -JM7i \ # use the Mercator projection, 7 inches wide 
      -G255/255/195 \ # set the foreground colour 
      -S224/253/254 \ # set the background colour 
      -Ba2/a1WSne \ # mark every 2 (X) and 1 (Y) degrees on W & S axes 
      -W0.5p \ # set the pen width to 0.5 points 
      -P \ # portrait mode 
      > GMT-VI.ps # output to the postscript file GMT-VI.ps 
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Figure C1. (A) Vancouver Island, as plotted in PBSmapping, compared with (B) the same region 
as output from GMT.  

 
 

Code for Figure C2 
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R: (Panel A) 
data(nepacLL); # load the nepacLL data set 
plotMap(nepacLL, # plot the nepacLL data set 
      xlim=c(-127.89, -125.68), # limit the region horizontally 
      ylim=c(47.85, 49.97), # limit the region vertically 
      plt=c(0.16, 0.97, 0.16, 0.97), # specify the plot region size 
      col=rgb(255, 255, 195, # set the foreground colour 
         maxColorValue=255), 
      bg=rgb(224, 253, 254, # set the background colour 
         maxColorValue=255), 
      tck=c(-0.03), # set the tick mark length 
      cex=1.8, # adjust the font size 
      mgp=c(1.9, 0.7, 0)); # adjust the axis label locations 
data(towTracks); # load the towTracks data set 
addLines(towTracks, # add the towTracks data set 
      col=rgb(255, 0, 0, # set the colour 
         maxColorValue=255), 
      lwd=0.5); # set the line width 
 
GMT: (Panel B) 
gmtset ANOT_FONT_SIZE = 20p # set the annotation font size 
pscoast -Dh \ # plot the high resolution data set 
      -R-127.89/-125.68/47.85/49.97 \ # limit the region horizontally and vertically 
      -JM5i \ # use the Mercator projection, 5 inches wide 
      -G255/255/195 \ # set the foreground colour 
      -S224/253/254 \ # set the background colour 
      -Ba0.5/a0.5WSne \ # mark every 0.5 (X) and 0.5 (Y) degr. on W&S axes 
      -W0.5p \ # set the pen width to 0.5 points 
      -P \ # portrait mode 
      -K \ # allow for appending more plot code 
      > GMT-Tow.ps # output to the postscript file GMT-Tow.ps 
psxy -R-127.89/-125.68/47.85/49.97 \ # limit the region 
      -JM5i \ # add using the Mercator projection, 5 inches wide 
      -W0.5p/255/0/0 \ # set the pen width to 0.5 points and set the colour 
      -M \ # ASCII file contains multiple polylines 
      -H0 \ # ASCII file does not contain a header 
      -O \ # overlay; lay plot on top of earlier one 
      < GMT-Tow.txt \ # input ASCII file GMT-Tow.txt 
      >> GMT-Tow.ps # append output to the postscript file GMT-Tow.ps 
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Figure C2. Tow tracks off the west coast of Vancouver Island drawn by (A) PBSmapping 
(B) GMT produced (B).  

 
 
Format of GMT-tow.txt: 
> # a ‘>’ signifies the start of each polyline 
-126.26545 48.523133 # vertices follow: X coordinate, white space, Y 
coordinate 
-126.265233 48.523716 
-126.265183 48.524283 
… 
> 
-126.385483 48.532567 
-126.3861 48.5327 
-126.3868 48.53285 
… 

B A 
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APPENDIX D. SOURCE CODE FOR FIGURES 

To help beginners use PBSmapping, we include source code for all figures in this report. A 
global function .PBSclr provides the colours for the examples, and default dots and dashes are 
provided by .PBSdot and .PBSdash, respectively. These objects are exported from the 
NAMESPACE and are globally available once PBSmapping is loaded. 

Global colours, dots, and dashes 

# Figures for PBSmapping examples (last modified: 2013-04-10) 
#------------------------------------------------------------ 
# Historical values for compatibilityy with S-Plus (defunct) 
.PBSdot <- 3; .PBSdash <- 2 
.PBSclr <- function(){ 
   PBSclr = list(             black=c(0,0,0), 
      sea=c(224,253,254),     land=c(255,255,195),      red=c(255,0,0), 
      green=c(0,255,0),       blue=c(0,0,255),          yellow=c(255,255,0), 
      cyan=c(0,255,255),      magenta=c(255,0,255),     purple=c(150,0,150), 
      lettuce=c(205,241,203), moss=c(132,221,124),      irish=c(54,182,48), 
      forest=c(29,98,27),     white=c(255,255,255),     fog=c(223,223,223) ) 
      PBSclr <- lapply(PBSclr,function(v) {rgb(v[1],v[2],v[3],maxColorValue=255) }) 
      return(PBSclr) } 
 
Figure 1 – World UTM Zones 

.PBSfig01 <- function() { #  World UTM Zones 
   clr <- .PBSclr() 
   data(worldLL,nepacLL,envir=sys.frame(sys.nframe())) 
   par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------ 
   plotMap(worldLL, ylim=c(-90, 90), bg=clr$sea, col=clr$land, tck=-0.023, 
           mgp=c(1.9, 0.7, 0), cex=1.2, plt=c(.08,.98,.08,.98)) 
   # add UTM zone boundaries 
   abline(v=seq(-18, 360, by=6), lty=1, col=clr$red) 
   # add prime meridian 
   abline(v=0, lty=1, lwd=2, col=clr$black) 
   # calculate the limits of the 'nepacLL' PolySet 
   xlim <- range(nepacLL$X) + 360 
   ylim <- range(nepacLL$Y) 
   # create and then add the 'nepacLL' rectangle 
   region <- data.frame(PID=rep(1,4), POS=1:4, X=c(xlim[1],xlim[2],xlim[2],xlim[1]), 
                        Y=c(ylim[1],ylim[1],ylim[2],ylim[2])) 
   region <- as.PolySet(region, projection="LL") 
   addPolys(region, lwd=2, border=clr$blue, density=0) 
   # add labels for some UTM zones 
   text(x=seq(183.2, by=6, length=9), y=rep(85,9), adj=0.5, cex=0.65, label=1:9) 
   box() } 
 
Figure 2 – nepacLL UTM Zones in LL Space 
.PBSfig02 <- function() {  # nepacLL UTM Zones in LL Space 
   clr <- .PBSclr(); dot <- .PBSdot 
   data(nepacLL,envir=sys.frame(sys.nframe())) 
   par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------ 
   plotMap(nepacLL, col=clr$land, bg=clr$sea, tck=-0.014, 
           mgp=c(1.9,0.7,0), cex=1.2, plt=c(.08,.98,.08,.98)) 
   # add lines separating UTM zones 
   utms <- seq(-186, -110, 6) 
   abline(v=utms, col=clr$red) 
   # add the central meridian of zone 6 
   abline(v=-147, lty=dot, col=clr$black) 
   # create and then add labels for the UTM zones 
   cutm <- diff(utms) / 2 
   nzon <- length(cutm) 
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   cutm <- cutm + utms[1:nzon] 
   text(cutm,rep(50.75,nzon),c(60,1:(nzon-1)),cex=1.3,col=clr$red) 
   box()  } 
 
Figure 3 – nepacLL UTM Zones in UTM Space 

.PBSfig03 <- function() {  # nepacLL UTM Zones in UTM Space 
   clr <- .PBSclr(); dot <- .PBSdot 
   data(nepacLL,envir=sys.frame(sys.nframe())) 
   zone  <- 6;  xlim  <- range(nepacLL$X);  ylim <- range(nepacLL$Y) 
   utms  <- seq(-186,-110,6)  #'utms' vector for creating PolySet and EventData below 
   # create UTM zones 
   lutms <- data.frame(PID=rep(1:length(utms), each=2), 
               POS=rep(c(1,2), times=length(utms)), X=rep(utms,each=2), 
               Y = rep(c(ylim[1], ylim[2]), times=length(utms))) 
   lutms <- as.PolySet(lutms, projection="LL", zone=zone) 
   lutms <- thickenPolys(lutms, tol=25, close=FALSE) 
   uutms <- convUL(lutms) 
   # create label locations (central meridians) 
   lcms  <- data.frame(EID=1:(length(diff(utms)/2)), 
               X=utms[1:(length(utms)-1)]+diff(utms)/2, 
               Y=rep(50.75, length(diff(utms)/2))) 
   lcms  <- as.EventData(lcms, projection="LL", zone=zone) 
   ucms  <- convUL(lcms) 
   nepacUTM <- nepacLL; attr(nepacUTM,"zone") <- zone  # convert to correct zone 
   nepacUTM <- convUL(nepacUTM) 
   par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------ 
   plotMap(nepacUTM, col=clr$land, bg=clr$sea, tck=-0.017, 
           mgp=c(1.9,0.7,0), cex=1.0, plt=c(0.07,0.97,0.07,0.98)) 
   addLines(uutms, col=clr$red) 
   lines(x=c(500, 500),y=c(4100,7940),lty=dot,col=clr$black) 
   text(ucms$X,ucms$Y,c(60,1:(length(utms)-2)),cex=1.3,col=clr$red) 
   box()  } 
 
Figure 4 – thinPolys on Vancouver Island 

.PBSfig04 <- function() {  # thinPolys on Vancouver Island 
   clr <- .PBSclr(); 
   data(nepacLL,envir=sys.frame(sys.nframe())) 
   par(mfrow=c(1,2),omi=c(0,0,0,0)) #------Plot-the-figure------ 
   vi     <- nepacLL[nepacLL$PID==33,] 
   xlim   <- range(vi$X) + c(-0.25, 0.25); ylim <- range(vi$Y) + c(-0.25, 0.25) 
   # plot left figure (normal Vancouver Island) 
   plotMap(vi, xlim, ylim, col=clr$land, bg=clr$sea, tck=-0.028, 
           mgp=c(1.9,0.7,0), cex=1.0, plt=c(0.14,1.00,0.07,0.97)) 
   text(x=xlim[2]-0.5, y=ylim[2]-0.3, "A", cex=1.6) 
   # plot right figure (thinned Vancouver Island) 
   plotMap(thinPolys(vi, tol=10), xlim, ylim, col=clr$land, bg=clr$sea, 
           tck=c(-0.028, 0), tckLab=c(TRUE, FALSE), 
           mgp=c(1.9, 0.7, 0), cex=1.0, plt=c(0.00, 0.86, 0.07, 0.97)) 
   text(x=xlim[2]-0.5, y=ylim[2]-0.3, "B", cex=1.6) 
   box() } 
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Figure 5 – joinPolys on Crescents 
.PBSfig05 <- function() {  # joinPolys on Crescents 
   clr <- .PBSclr(); dash <- .PBSdash 
   radius <- c(5, 4)                 # two radii of the circles 
   size   <- abs(diff(radius)) + 0.1 # size of crescent 
   shiftB <- 3.5                     # distance to shift second crescent 
   pts    <- 120                     # points in outer circle 
   cex    <- 1.0                     # character expansion for labels 
   off    <- 1.2                     # panel label offset 
   xlim   <- c(0, radius[1]*2 + shiftB) + c(-1,1) 
   ylim   <- c(0, radius[1]*2) + c(-2,1) 
   Mmin   <- .10 # minimum OMI 
   Rdin   <- par()$din[2]/par()$din[1] 
   Rfig   <- (3*diff(ylim))/(2*diff(xlim)) 
   if (Rdin > Rfig) { 
      width  <- par()$din[1] - 2 * Mmin 
      height <- width * (3*diff(ylim))/(2*diff(xlim)) 
      Mmax   <- (par()$din[2] - height) / 2 
      parOmi <- c(Mmax,Mmin,Mmax,Mmin) } 
   else { 
      height <- par()$din[2] - 2 * Mmin 
      width  <- height * (2*diff(xlim))/(3*diff(ylim)) 
      Mmax   <- (par()$din[1] - width) / 2 
      parOmi <- c(Mmin,Mmax,Mmin,Mmax) } 
   polyA  <- list() 
   for (i in 1:length(radius)) { 
      polyA[[i]] <- as.PolySet(data.frame(PID=rep(1,pts), POS = 1:pts, 
         X =radius[i]*cos(seq(0, 2*pi, len=pts)), 
         Y =radius[i]*sin(seq(0, 2*pi, len=pts))), projection = 1) 
      polyA[[i]][, c("X","Y")] <- polyA[[i]][, c("X","Y")] + radius[i] } 
   # centre B within A 
   polyA[[2]][,c("X","Y")] <- polyA[[2]][,c("X","Y")] + (radius[1]-radius[2]) 
   # shift B right 
   polyA[[2]]$X <- polyA[[2]]$X + size 
   # create 'polysA' and 'polysB' 
   polyA  <- as.PolySet(joinPolys(polyA[[1]], polyA[[2]], operation="DIFF"), projection=1) 
   polyB  <- polyA 
   polyB$X<- abs(polyB$X - (radius[1] * 2)) + shiftB 
   par(mfrow=c(3,2),mai=c(0,0,0,0),omi=parOmi) #------Plot-the-figure------ 
   lab    <- list() 
   lab$text <- c("Polygon A", "Polygon B", "A \"INT\" B","A \"UNION\" B", 
               "A \"DIFF\" B", "A \"XOR\" B") 
   lab$cex <- rep(cex, 6);  lab$x <- rep(mean(xlim), 6);  lab$y <- rep(-0.8, 6) 
   # panel A: polyA 
   plotMap(polyA,xlim=xlim,ylim=ylim,xlab="",ylab="",axes=FALSE,col=clr$red,plt=NULL) 
   text(lab$text[1], x=lab$x[1], y=lab$y[1], cex=lab$cex[1]) 
   text(xlim[1]+off, ylim[2]-off, "A", cex=1.6);  box() 
   # panel B: polyB 
   plotMap(polyB,xlim=xlim,ylim=ylim,xlab="",ylab="",axes=FALSE,col=clr$blue,plt=NULL) 
   text(lab$text[2], x=lab$x[2], y=lab$y[2], cex=lab$cex[2]) 
   text(xlim[1]+off, ylim[2]-off, "B", cex=1.6);  box() 
   # panels C to F 
   ops    <- c(NA, NA, "INT", "UNION", "DIFF", "XOR") 
   cols   <- c(NA, NA, clr$red, clr$purple, clr$red, clr$magenta) 
   panel  <- c(NA, NA, "C", "D", "E", "F") 
   for (i in 3:6) { 
      plotMap(NULL,xlim=xlim,ylim=ylim,projection=1,xlab="",ylab="",axes=FALSE,plt=NULL) 
      addPolys(polyA, border=clr$red, lty=dash) 
      addPolys(polyB, border=clr$blue, lty=dash) 
      addPolys(joinPolys(polyA, polyB, operation=ops[i]), col=cols[i]) 
      text(lab$text[i], x=lab$x[i], y=lab$y[i], cex=lab$cex[i]) 
      text(xlim[1]+off, ylim[2]-off, panel[i], cex=1.6);  box();  } } 
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Figure 6 – contourLines in Queen Charlotte Sound 

.PBSfig06 <- function() {  # contourLines in Queen Charlotte Sound 
   clr <- .PBSclr();  
   data(nepacLL,bcBathymetry,envir=sys.frame(sys.nframe())); 
   isob   <- contourLines(bcBathymetry, levels=c(250, 1000)) 
   p      <- convCP(isob) 
   attr(p$PolySet,"projection") <- "LL" 
   p$PolyData$col <- rep(c(clr$red, clr$green, clr$blue, clr$yellow, 
      clr$cyan, clr$magenta, clr$fog), length=nrow(p$PolyData)) 
   xlim   <- c(-131.8382, -128.2188) 
   ylim   <- c(50.42407, 53.232476) 
   region <- clipPolys(nepacLL, xlim=xlim, ylim=ylim) 
   par(mfrow=c(1,1),omi=c(0,0,0,0)) #-----Plot-the-figure------ 
   plotMap(region, xlim=xlim, ylim=ylim, col=clr$land, bg=clr$sea, tck=-0.02, 
        mgp=c(2,.75,0), cex=1.2, plt=c(.08,.98,.08,.98)) 
   addLines(p$PolySet, polyProps=p$PolyData, lwd=3) 
   box()  } 
 
Figure 7 – towTracks from Longspine Thornyhead Survey 

.PBSfig07 <- function() {  # towTracks from Longspine Thornyhead Survey 
   clr <- .PBSclr(); 
   data(nepacLL,towTracks,towData,envir=sys.frame(sys.nframe())); 
   # add a colour column 'col' to 'towData' 
   pdata  <- towData;  pdata$Z <- pdata$dep 
   pdata  <- makeProps(pdata, breaks=c(500,800,1200,1600), "col", 
                       c(clr$black, clr$red, clr$blue)) 
   par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------ 
   plotMap(nepacLL, col=clr$land, bg=clr$sea, xlim=c(-127.8,-125.5), ylim=c(48,49.8), 
      tck=-0.01, mgp=c(2,.5,0), cex=1.2, plt=c(.08,1,.08,.98)) 
   addLines(towTracks, polyProps=pdata, lwd=3) 
   # right-justify the legend labels 
   temp <- legend(x=-127.6, y=48.4, legend=c(" "," "," "), lwd=3, bty="n", 
      text.width=strwidth("1200-1600 m"), col=c(clr$black,clr$red,clr$blue)) 
   text(temp$rect$left+temp$rect$w, temp$text$y, 
      c("500-800 m", "800-1200 m", "1200-1600 m"), pos=2) 
   text(temp$rect$left+temp$rect$w/2,temp$rect$top,pos=3,"LTS Survey Tracks"); 
   text(-125.6,49.7,"Vancouver\nIsland",cex=1.2,adj=1) 
   box()  } 
 
Figure 8 – calcArea of the Southern Gulf Islands 

.PBSfig08 <- function() {  # calcArea of the Southern Gulf Islands 
   clr <- .PBSclr();  
   data (nepacLLhigh,envir=sys.frame(sys.nframe())) 
   xlim   <- c(-123.6, -122.95); ylim <- c(48.4, 49); zone <- 9 
   # assign 'nepacLLhigh' to 'nepacUTMhigh' (S62) and change to UTM coordinates 
   nepacUTMhigh <- nepacLLhigh;  attr(nepacUTMhigh,"zone" ) <- zone 
   nepacUTMhigh  <- convUL(nepacUTMhigh) 
   # convert limits to UTM 
   temp   <- data.frame(PID=1:4,POS=rep(1,4),X=c(xlim,xlim),Y=c(ylim,rev(ylim))) 
   temp   <- convUL(as.PolySet(temp, projection="LL", zone=zone)) 
   xlim   <- range(temp$X); ylim <- range(temp$Y) 
   # prepare areas 
   isles  <- clipPolys(nepacUTMhigh,xlim,ylim) 
   areas  <- calcArea(isles); 
   # PIDs and labels for Gulf Islands 
   bigPID <- areas[rev(order(areas$area)),][c(2:4,6:8),"PID"]; 
   labelData <- data.frame(PID = bigPID,  
      label=c("Saltspring","San Juan","Galiano","Saturna","N Pender","Mayne")) 
   labelData <- merge(labelData, areas, all.x=TRUE) 
   labelData$label <- paste(as.character(labelData$label), 
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      round(labelData$area), sep="\n") 
   par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------ 
   plotMap(isles, col=clr$land, bg=clr$sea, tck=-.010, 
      mgp=c(1.9,.7,0), cex=1, plt=c(.07,.98,.07,.98)) 
   # add the highlighted Gulf Islands 
   bigisles <- isles[is.element(isles$PID,labelData$PID),] 
   addPolys(bigisles,col=clr$yellow) 
   labXY  <- calcCentroid(isles) 
   labXY$Y<- labXY$Y + 2               # centre vertically 
   labelData <- merge(labelData, labXY, all.x = TRUE) 
   attr(labelData,"projection") <- "UTM" 
   addLabels(labelData, placement="DATA", cex=1.25) 
   text(898,5385,"Vancouver Island",adj=0, cex=1.25) 
   text(925,5435,"Strait of Georgia",adj=0, cex=1.25)  } 
 
Figure 9 – combineEvents in Queen Charlotte Sound 

.PBSfig09 <- function() {  # combineEvents in Queen Charlotte Sound 
   clr <- .PBSclr();  
   data(nepacLL,surveyData,envir=sys.frame(sys.nframe())); 
   events <- surveyData 
   xl     <- c(-131.8, -127.2);  yl <- c(50.5, 52.7) 
   # prepare EventData; clip it, omit NA entries, and calculate CPUE 
   events <- events[events$X >= xl[1] & events$X <= xl[2] & 
                    events$Y >= yl[1] & events$Y <= yl[2], ] 
   events <- na.omit(events) 
   events$cpue <- events$catch/(events$effort/60) 
   # make a grid for the Queen Charlotte Sound 
   grid   <- makeGrid(x=seq(-131.6,-127.6,.1), y=seq(50.6,52.6,.1), 
                    projection="LL", zone=9) 
   # locate EventData in grid 
   locData<- findCells(events, grid) 
   events$Z <- events$cpue 
   pdata  <- combineEvents(events, locData, FUN=mean) 
   brks   <- c(0,50,300,750,1500,25000); lbrks <- length(brks) 
   cols   <- c(clr$lettuce, clr$moss, clr$irish, clr$forest, clr$black) 
   pdata  <- makeProps(pdata, brks, "col", cols) 
   par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------ 
   plotMap(nepacLL, col=clr$land, bg=clr$sea, xlim=xl, ylim=yl, tck=-0.015, 
           mgp=c(2,.5,0), cex=1.2, plt=c(.08,.98,.08,.98)) 
   addPolys(grid, polyProps=pdata) 
   for (i in 1:nrow(events)) { 
      # plot one point at a time for clarity 
      points(events$X[i], events$Y[i], pch=16,cex=0.50,col=clr$white) 
      points(events$X[i], events$Y[i], pch=1, cex=0.55,col=clr$black) } 
   yrtxt  <- paste("(",min(events$year),"-", 
                substring(max(events$year),3),")",sep="") 
   text(xl[1]+.5,yl[2]-.1,paste("POP Surveys",yrtxt),cex=1.2,adj=0) 
   # add a legend; right-justify the legend labels 
   temp <- legend(x=xl[1]+.3, y=yl[1]+.7, legend = rep(" ", 5), 
              text.width=strwidth("1500 - 25000"), bty="n", fill=cols) 
   text(temp$rect$left + temp$rect$w, temp$text$y, pos=2, 
        paste(brks[1:(lbrks-1)],brks[2:lbrks], sep=" - ")) 
   text(temp$rect$left+temp$rect$w/2,temp$rect$top,pos=3,"CPUE (kg/h)",cex=1);  } 
 
 
Figure 10 – Pythagoras' Theorem Visualized 

.PBSfig10 <- function() {  # Pythagoras' Theorem Visualized 
   clr <- .PBSclr();  
   data(pythagoras,envir=sys.frame(sys.nframe())) 
   # create properties for colouring the polygons 
   pythProps <- data.frame(PID=c(1, 6:13, 4, 15, 3, 5, 2, 14), 
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                   Z=c(rep(1, 9), rep(2, 2), rep(3, 2), rep(4, 2))) 
   pythProps <- makeProps(pythProps, c(0, 1.1, 2.1, 3.1, 4.1), "col", 
                   c(clr$blue, clr$red, clr$yellow, clr$green)) 
   par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------ 
   plotMap(pythagoras, plt=c(.01,.99,.01,.95), lwd=2, 
      xlim=c(.09,1.91), ylim=c(0.19,2.86), polyProps=pythProps, 
      axes=FALSE, xlab="", ylab="", main="Pythagoras' Theorem: a\262 + b\262 = c\262") 
   text(x = 0.1, y = 1.19, adj=0, "Proof:") 
   text(x = 0.1, y = 1.10, adj=0, 
      "(a + b)\262 = 4 triangles + a\262 + b\262 = 4 triangles + c\262") 
   labels <- data.frame(X=c(1.02,1.66,0.65),Y=c(1.50,2.20,2.76),label=c("a","b","c")) 
   text(labels$X, labels$Y, as.character(labels$label), cex=1.2) 
   text(1.03, 1.81, "a\262", cex=1.2, col=clr$black) 
   text(1.43, 2.21, "b\262", cex=1.2, col=clr$black) 
   text(0.87, 2.46, "c\262", cex=1.2, col=clr$black)  } 
 
Run command file “PBSfigs.r” 

.PBSfigs <- function(nfigs=1:10) { # Draw all figures with numbers in nfigs 
   #while (!is.null(dev.list())) dev.off(dev.cur()) 
   for (i in nfigs) { 
      figStr <- paste(".PBSfig",ifelse(i<10,"0",""),i,sep="") 
      get(figStr)(); 
      cat(figStr); readline(); }  } 
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APPENDIX E. PBSMAPPING FUNCTION DEPENDENCIES 

This appendix documents function dependencies within PBSmapping. All functions appear 
as underlined entries in the alphabetic list. If a function depends on others, the list of 
dependencies appears below the underlined name. Following a standard in UNIX and R, 
functions whose name begins with a period (dot functions) are considered hidden from the user, 
who would normally use only the non-hidden functions that call them. The names here apply 
primarily to the R working environment, but functions designated ‘(C)’ are implemented in C 
source code and compiled in the DLL for the mapping package. R invokes these functions with 
the call .C(…). Functions designated ‘(S)’ exist as sub-functions only within the R function. 
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.addProps 
.checkProjection 
.clip 
.createFastIDdig 
.createIDs 
.preparePolyProps 
.rollupPolys 
.validatePolyProps 
.validatePolySet 
is.PolyData 
 
addStipples 
.addFeature 
.checkProjection 
.clip 
.validatePolySet 
findPolys 
is.PolyData 
thickenPolys 

as.EventData 
.validateEventData 
is.EventData 
 
as.LocationSet 
.validateLocationSet 
is.LocationSet 
 
as.PolyData 
.validatePolyData 
is.PolyData 
 
as.PolySet 
.validatePolySet 
is.PolySet 
 
calcArea 
.rollupPolys 
.validatePolySet 
calcArea (C) 
convUL 
is.PolyData 
 
calcCentroid 
.rollupPolys 
.validatePolySet 
calcCentroid (C) 
is.PolyData 
 
calcConvexHull 
.validateXYData 
grDevices::chull 
is.PolySet 
 
calcGCdist 
 
calcLength 
.validatePolySet 
.rollupPolys 
.calcDist 
.createIDs 
 
calcMidRange 
.validatePolySet 
calcSummary 
is.PolyData 
 
calcSummary 
.createIDs 
.rollupPolys 
.validatePolySet 
is.PolyData 
 
calcVoronoi 
.checkRDeps 
.validateXYData 
deldir::deldir 
.addCorners 
.expandEdges 

clipLines 
.clip 
.validatePolySet 
is.PolySet 
 
clipPolys 
.clip 
.validatePolySet 
is.PolySet 
 
closePolys 
.validatePolySet 
closePolys (C) 
is.PolySet 
 
combineEvents 
.validateEventData 
is.PolyData 
 
combinePolys 
.validatePolySet 
.createIDs 
 
convCP 
is.PolyData 
 
convDP 
.validatePolyData 
is.PolySet 
 
convLP 
.validatePolySet 
is.PolySet 
 
convUL 
.validateXYData 
convUL (C) 
 
dividePolys 
.validatePolySet 
.createIDs 
 
extractPolyData 
.createIDs 
.validatePolySet 
is.PolyData 
 
findCells 
.validateEventData 
.validatePolySet 
findCells (C) 
is.LocationSet 
 
findPolys 
.validateEventData 
.validatePolySet 
findPolys (C) 
is.LocationSet 
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fixBound 
.validatePolySet 
is.PolySet 
 
fixPOS 
.rollupPolys 
.validatePolySet 
is.PolySet 
 
importEvents 
as.EventData 
 
importGSHHS 
checkClipLimits 
importGSHHS (C) 
 
importLocs 
as.LocationSet 
 
importPolys 
as.PolySet 
as.PolyData 
 
importShapefile 
.checkRDeps 
.getBasename 
maptools:Rshapeget (C) 
.calcOrientation 
foreign:read.dbf 
 
is.EventData 
.validateEventData 
 
is.LocationSet 
.validateLocationSet 
 
is.PolyData 
.validatePolyData 
 
is.PolySet 
.validatePolySet 
 
isConvex 
.validatePolySet 
is.PolyData 
isConvex (C) 
 
isIntersecting 
.validatePolySet 
is.PolyData 
isIntersecting (C) 
 
joinPolys 
.validatePolySet 
is.PolySet 
joinPolys (C) 
 
locateEvents 
is.EventData 
 

locatePolys 
.validatePolyData 
is.PolySet 
 
makeGrid 
is.PolySet 
 
makeProps 
.validatePolyData 
is.PolyData 
 
makeTopography 
 
placeHoles 
.calcOrientation 
.checkRDeps 
 
plotLines 
.plotMaps 
is.PolyData 
 
plotMap 
.plotMaps 
is.PolyData 
 
plotPoints 
.plotMaps 
is.PolyData 
 
plotPolys 
.plotMaps 
is.PolyData 
 
print.EventData 
summary.EventData 
 
print.LocationSet 
summary.LocationSet 
 
print.PolyData 
summary.PolyData 
 
print.PolySet 
summary.PolySet 
 
print.summary.PBS 
 
refocusWorld 
.createIDs 
.shiftRegion (S) 
.validatePolySet 
 
summary.EventData 
 
summary.LocationSet 
.createIDs 
 
summary.PolyData 
.createIDs 
 

summary.PolySet 
.createIDs 
 
thickenPolys 
.calcDist 
.createIDs 
.validatePolySet 
is.PolySet 
thickenPolys (C) 
 
thinPolys 
.validatePolySet 
is.PolySet 
thinPolys (C)
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APPENDIX F. PBSMAPPING FUNCTIONS AND DATA 

This appendix documents the objects (functions and data) available in PBSmapping. 
Subsequent pages give indexed technical documentation for every object generated from *.Rd 
files written for the R documentation system. The package PBSmodelling includes a directory 
called PBStools\ that contains useful batch files for building R packages, including the creation 
of the indexed manual included after Table F1. 

Table F1. Functions and data sets in PBSmapping, arranged alphabetically within categories.  

Category Object Description 
User constant PBSprint Specify whether to print summaries 

Import importEvents Import a text file and convert into EventData 
  functions importLocs Import a text file and convert into a LocationSet 
 importPolys Import a text file and convert into a PolySet 
 importGSHHS Import data from a GSHHS database 
 importShapefile Import an ESRI shapefile 

Plotting addBubbles Add bubbles to maps 
  functions addCompass Add a compass rose to an existing map 
 addLabels Add labels to an existing plot 
 addLines Add a PolySet to an existing plot as polylines 
 addPoints Add EventData/PolyData to an existing plot as points 
 addPolys Add a PolySet to an existing plot as polygons 
 addStipples Add stipples to an existing plot 
 plotLines Plot a PolySet as polylines 
 plotMap Plot a PolySet as a map 
 plotPoints Plot EventData/PolyData as points 
 plotPolys Plot a PolySet as polygons 

Computational appendPolys Append a two-column matrix to a PolySet 
  functions calcArea Calculate the areas of polygons 
 calcCentroid Calculate the centroids of polygons 
 calcConvexHull Calculate the convex hull for a set of points 
 calcGCdist Calculate great-circle distance between LL coordinates. 
 calcLength Calculate the length of polylines 
 calcMidRange Calculate midpoints of the X and Y ranges for polygons 
 calcSummary Apply functions to polygons in a PolySet 
 calcVoronoi Calculate Voronoi tesselation for a set of points 
 clipLines Clip a PolySet as polylines 
 clipPolys Clip a PolySet as polygons 
 closePolys Close a PolySet 
 combineEvents Combine measurements of events in same polygon 
 combinePolys Combine several polygons into a single polygon 
 convCP Convert results from contourlines into PolySet 
 convDP Convert EventData/PolyData into a PolySet 
 convLP Convert polylines into a polygon 
 convUL Convert coordinates between UTM/LL projections 
 dividePolys Divide a single polygon into several polygons 
 extractPolyData Extract PolyData from a PolySet 
 findCells Find cells in a grid that contain events in EventData 
 findPolys Find polygons that contain events in EventData 
 fixBound Fix the boundary points of a PolySet 
 fixPOS Fix the POS column of a PolySet 
 isConvex Determine whether polygons are convex 
 isIntersecting Determine whether polygons are self-intersecting 



 – 43 – 

PBSmapping User’s Guide  Jun 22, 2017 

Category Object Description 
 joinPolys Join one or two PolySets using a set theoretic operation 
 locateEvents Locate events on the current plot 
 locatePolys Locate polygons on the current plot 
 makeGrid Make a grid of polygons 
 makeProps Make polygon properties 
 makeTopography Make topography data from freely available online data 
 placeHoles Place holes under correct solids 
 refocusWorld Refocus the worldLL / worldLLhigh data sets 
 thickenPolys Thicken a PolySet of polygons 
 thinPolys Thin a PolySet of polygons 

Object-related as. Coerce a data frame to an object with class: 
  functions    EventData    EventData 
    LocationSet    LocationSet 
    PolyData    PolyData 
    PolySet    PolySet 
 is. Determine whether an object is: 
    EventData    EventData 
    LocationSet    a LocationSet 
    PolyData    PolyData 
    PolySet    a PolySet 
 print. Print: 
    EventData    an EventData object 
    LocationSet    a LocationSet object 
    PolyData    a PolyData object 
    PolySet    a PolySet object 
    summary.PBS    the summary of a PBSmapping object 
 summary. Summarize: 
    EventData    EventData 
    LocationSet    a LocationSet 
    PolyData    PolyData 
    PolySet    a PolySet 

Data sets bcBathymetry Bathymetry data spanning British Columbia’s coast 
 nepacLL Northeast Pacific shoreline (normal resolution) 
 nepacLLhigh Northeast Pacific shoreline (high resolution) 
 pythagoras Pythagoras’ theorem diagram PolySet 
 surveyData Survey data 
 towData Tow data 
 towTracks Tow track polyline data 
 worldLL World ocean shoreline (normal resolution) 
 worldLLhigh World ocean shoreline (high resolution) 
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