

PBSmapping 2.70.3: User’s Guide

Jon T. Schnute, Nicholas M. Boers, Rowan Haigh, and Alex Couture-Beil

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station
3190 Hammond Bay Road
Nanaimo, British Columbia
V9T 6N7

2017

User’s Guide Revised from
Canadian Technical Report of
Fisheries and Aquatic Sciences 2549

© Her Majesty the Queen in Right of Canada, 2017

Revisions to: Cat. No. Fs97-6/2549E ISSN 0706-6457

Last update: Jun 22, 2017

Correct citation for this publication:

Schnute, J.T., Boers, N.M., Haigh, R., and Couture-Beil, A. 2017. PBSmapping 2.70.3: user’s

guide revised from Canadian Technical Report of Fisheries and Aquatic Sciences 2549:
vi + 43 p. Last updated Jun 22, 2017.

 –i–

TABLE OF CONTENTS

Abstract .. iii
Résumé .. iii
Preface ... iv
1. Introduction ... 1

1.1. Software Installation ... 2
2. Functions and Data ... 2

2.1. Data Structures for Maps ... 2
2.1.1. PolySet .. 3
2.1.2. PolyData .. 4
2.1.3. EventData ... 4
2.1.4. LocationSet ... 4

2.2. Map Projections ... 5
2.3. PBSmapping Functions and Algorithms ... 7

2.3.1. Import Functions ... 7
2.3.2. Graphics Functions ... 8
2.3.3. Computational Functions .. 9
2.3.4. Associating Points with Polygons .. 12
2.3.5. Set Theoretic Operations .. 13

2.4. Shoreline Data ... 14
2.5. Bathymetry Data .. 15
2.6. Examples and Applications .. 16
2.7. Strengths, Limitations, and Alternatives ... 20

3. Command Line Utilities ... 22
3.1. clipPolys.exe (Clip Polygons) .. 22
3.2. convUL.exe (Convert between UTM and LL) ... 22
3.3. findPolys.exe (Points-in-Polygons) .. 23

Acknowledgements ... 23
References .. 24
Appendix A. PBSdata package ... 26
Appendix B. Bathymetry Data ... 28
Appendix C. Generic Mapping Tools (GMT) ... 29
Appendix D. Source Code for Figures .. 33
Appendix E. PBSmapping Function Dependencies .. 39
Appendix F. PBSmapping Functions and Data ... 42

 –ii–

LIST OF TABLES

Table 1. Principal graphics functions in the PBSmapping package ... 8
Table 2. PolySets derived from GSHHS databases .. 15
Table A1. Data sets available in PBSdata .. 26
Table F1. Functions and data sets defined in PBSmapping .. 42

LIST OF FIGURES

Figure 1. Map of the world ... 5
Figure 2. Map of the northeastern Pacific Ocean (longitude-latitude) .. 6
Figure 3. Map of the northeastern Pacific Ocean (UTM easting-northing)................................. 7
Figure 4. Illustration of the thinPolys function ... 12
Figure 5. Example of the joinPolys logic operations .. 14
Figure 6. Polylines created by contourLines and convCP .. 16
Figure 7. Tow tracks from a Longspine Thornyhead survey in 2001 17
Figure 8. Areas of islands in the southern Strait of Georgia .. 18
Figure 9. POP survey data (1966-89) .. 19
Figure 10. Proof of Pythagoras’ Theorem .. 20
Figure C1. PBSmapping compared with GMT – Vancouver Island .. 30
Figure C2. PBSmapping compared with GMT – tow tracks .. 32

 –iii–

ABSTRACT

Schnute, J.T., Boers, N.M., Haigh, R., and Couture-Beil, A. 2017. PBSmapping 2.70.3: user’s
guide revised from Canadian Technical Report of Fisheries and Aquatic Sciences 2549:
vi + 43 p. Last updated Jun 22, 2017.

This report describes a second version of software designed to facilitate the compilation

and analysis of fishery data, particularly data referenced by spatial coordinates. Our research
stems from experiences with information on Canada’s Pacific groundfish fisheries compiled at
the Pacific Biological Station (PBS). Despite its origins in fishery data analysis, our software has
broad applicability. The library PBSmapping extends the R-statistical language to include two-
dimensional plotting features similar to those commonly available in a Geographic Information
System (GIS). Embedded C code speeds algorithms from computational geometry, such as
finding polygons that contain specified point events or converting between longitude-latitude and
Universal Transverse Mercator (UTM) coordinates. We also present a number of convenient
utilities for Microsoft Windows operating systems that support computational geometry outside
the framework of R. Our results, which depend significantly on the work of students, illustrate
the convergence of goals between academic training and applied research.

RESUME

Schnute, J.T., Boers, N.M. Haigh, R., et Couture-Beil, A. 2017. PBSmapping 2.70.3: Guide de
l’utilisateur révisé de Canadian Technical Report of Fisheries and Aquatic Sciences
2549: vi + 43 p. Dernier mis à jour Jun 22, 2017.

Le présent rapport décrit la seconde version du logiciel conçu pour faciliter la compilation

et l’analyse de données halieutiques, en particulier les données référencées par des
coordonnées spatiales. Nos travaux de recherche ont capitalisé sur des expériences menées à
l’aide de données sur les pêches des poissons démersaux le long du littoral Pacifique du
Canada, données compilées à la Station biologique du Pacifique (SBP). Bien que conçu
initialement pour l’analyse de données halieutiques, notre logiciel peut s’appliquer à toute une
variété de domaines. La bibliothèque PBSmapping (Cartographie de la SBP) étend le langage R
pour inclure une capacité d’impression en deux dimensions semblable à celle habituellement
disponible dans les systèmes d’information géographiques (SIG). Des modules en C permettent
d’accélérer les algorithmes grâce à la géométrie numérique, en trouvant par exemple les
polygones qui contiennent des événements ponctuels spécifiques ou en convertissant les
longitudes et les latitudes en coordonnées de la projection transversale universelle (UTM). Nous
présentons également un certain nombre d’applications intéressantes pour les systèmes
d’exploitation Microsoft Windows, qui peuvent effectuer des opérations de géométrie numérique
en dehors du cadre de travail R. Nos résultats, auxquels plusieurs étudiants ont grandement
contribué, illustrent la convergence des objectifs de la formation académique et de la recherche
appliquée.

 –iv–

PREFACE

During the last decade, I’ve had the pleasure of directing work by computer science
students from various local universities. My research as a mathematician in fish stock
assessment requires an extensive software toolkit, including statistical languages, compilers,
and operating system utilities. It helps greatly to have bright, adaptive students who can learn
new languages quickly, investigate software possibilities, answer technical questions, and
design programs that assist scientific analysis. I’m particularly grateful for contributions from the
following students:

• Robert Swan (University of Victoria), 1996;
• Mike Jensen (Malaspina University-College and Simon Fraser University), 1997 and 1999;
• Chris Grandin (Malaspina University-College), 2000 and 2001;
• Nick Henderson (Malaspina University-College), 2002;
• Nick Boers (Malaspina University-College), 2003-2006.
• Alex Couture-Beil (Malaspina University-College), 2005-2007

Starting in 1998, I began a formal connection with the Computing Science Department at

Malaspina University-College (MUC). My discussions with faculty members, particularly Dr.
Peter Walsh and Dr. Jim Uhl, highlighted the convergence of goals between academic training
and scientific research. Projects designed for fish stock assessment give students an
opportunity to further their computing science careers while producing useful software. Both
MUC and the Pacific Biological Station (PBS), where I work, are located in Nanaimo, British
Columbia, Canada. This happy juxtaposition makes it easy to engage students in the exchange
of ideas between academia and applied research. For example, Jim Uhl participated directly in
Nick Boers’ PBS work term during the summer of 2003. Nick had completed a course in
computer graphics taught by Jim in the fall of 2002. Algorithms in the textbook (Foley et al.
1996) proved invaluable for writing software to produce maps of the British Columbia coast with
related fishery information.

Quantitative fishery science requires a strong connection between theory and practice. In
his book on computing theory, Michael Sipser (1997, p. xii) tells students that:

 “. . . theory is good for you because studying it expands your mind. Computer
technology changes quickly. Specific technical knowledge, though useful today,
becomes outdated in just a few years. Consider instead the abilities to think, to express
yourself clearly and precisely, to solve problems, and to know when you haven't solved
a problem. These abilities have lasting value. Studying theory trains you in these
areas.”

While dealing with the issues addressed here, I found myself asking simple questions that have
numerically interesting answers. How do you locate fishing events within management areas or
other polygons? How should regional boundaries on maps be clipped to lie within a smaller
rectangle? I soon realised that I had touched upon the emerging field of computational
geometry, where people have devised clever and efficient algorithms for addressing such
questions.

Remarkably effective software can now be obtained freely from the Internet. I’m
particularly fond of R, a version of the powerful statistical language S (and later S-PLUS)
devised by Becker et al. (1988). Venables and Ripley (1999, 2000) give excellent guidance for
using either language. Although written originally for Unix, R has also been implemented for
Microsoft’s Windows operating systems. The web site https://cran.r-project.org/ describes R as

https://cran.r-project.org/

 –v–

GNU S, “a freely available language and environment for statistical computing and graphics”.
The GNU project, where the recursive acronym GNU means “GNU’s Not Unix”, offers a wealth
of free software including compilers for C/C++, Fortran, and Pascal. Code can be written in
these compiled languages to speed computations that would otherwise run more slowly in R.
Nick Boers has used such linkages intelligently to bring fast computational geometry into our R-
package PBSmapping.

To some extent, this report constitutes a second edition of an earlier report (Schnute et al.
2003) that describes a suite of software utilities developed at PBS. In particular, the package
PBSmapping has undergone extensive renovations and improvements, and this document
provides a definitive manual for using version 2. To accommodate the new material presented
here, my co-authors and I have decided to remove sections of the earlier report that discuss
other PBS software utilities, free software available on the Internet, and related technical
information. Readers of this current report may also wish to acquire the earlier version for
additional material not included here.

I want to mention two milestones achieved during the production of PBSmapping,
Version 2. First, we have posted the current software as a contributed package on the
Comprehensive R Archive Network (CRAN). Thanks to a remarkable collection of Perl scripts
developed for the R project, source code in both C and R, along with suitable documentation
files, can be tested and compiled automatically for distribution as both source and binary
packages. Nick Boers ensured that our source materials met the necessary standards, and
(after we made minor changes in the C code to avoid compiler warnings) the authors of the
CRAN web site in Vienna, Austria accepted our contribution. Second, Nick applied to the
Canadian Natural Sciences and Engineering Research Council (NSERC) for a grant to support
graduate studies in computing science. His application cited his successful experience
developing PBSmapping, Version 1, as documented in Schnute et al. (2003). To the delight of
Nick’s supporters at PBS and MUC, he won a substantial award, in fact the only NSERC grant
given to a student from MUC this year. Congratulations, Nick, from your colleagues at PBS and
professors at MUC. We’ll follow your career at the University of Alberta in Edmonton with great
interest.

Jon T. Schnute (Sep 16, 2004)

This User’s Guide is based on a version originally published in 2004 (Schnute et al. 2004).
Since that time, the software has remained largely unchanged except for a few additional
functions and features that are periodically reported herein. The original report appended
complete technical documentation for every PBSmapping object (compiled from .Rd files written
for the R documentation system) at the end of the final Appendix. This User’s Guide no longer
reports these details as they are readily available using R’s help menu system.

Rowan Haigh (Jun 22, 2017)

http://www.gnu.org/
https://cran.r-project.org/

 –vi–

This page has been left intentionally blank for printing purposes.

 –1–

PBSmapping User’s Guide Jun 22, 2017

1. INTRODUCTION

This report describes software written to facilitate the compilation and analysis of fishery
data, particularly data referenced by spatial coordinates. Our work developed from experiences
constructing databases that capture information from Canada’s Pacific groundfish fisheries.
Fishing events take place across a broad range of coastal waters and result in the capture of
many species. Initially, we focused on issues related to database design and development, as
described in previous reports by Schnute et al. (1996), Haigh and Schnute (1999), Rutherford
(1999), Schnute et al. (2001, Section 2 and Appendix A), and Sinclair and Olsen (2002).
Analyses of these databases shifted our attention to the problem of portraying and
understanding such complex information. Maps with statistical information proved especially
useful, and we found ourselves facing questions commonly addressed by Geographic
Information Systems (GIS).

Commercial GIS packages can be expensive, with an additional requirement for
specialized training. Because analysts who deal with Pacific groundfish data often have
experience using the statistical languages R (available for free) or S-PLUS (available
commercially), we began by writing bilingual functions for these languages to produce the maps
required. Schnute et al. (2003) describe the package PBSmapping, Version 1, which evolved
from these early experiences. After another year of development, we extensively revised the
software, and Schnute et al. (2004) presented a user’s manual for PBSmapping, Version 2.
Subsequently, we have dropped the bilingual (R/S-PLUS) nature of PBSmapping, producing
revisions solely for R, and now refer to the package as PBSmapping rather than ‘PBS Mapping’
used in earlier documents. Additionally, we maintain most of our PBS packages, including
PBSmapping, on GitHub at PBS Software.

Section 2 covers the mapping software itself, which contains functions that perform
numerous calculations on polygons. These include standard set theoretic operations (union,
intersection, difference, exclusive-or), clipping, thinning, thickening, testing convexity, forming
the convex hull, and calculating various statistics (such as mean, centroid, and area). We
discuss public data that represent shorelines and ocean bathymetry, and the package includes
sample data sets drawn from these sources. We also discuss the Universal Transverse
Mercator (UTM) projection that gives a particularly accurate flat projection of the earth’s surface.
Our software can convert between longitude-latitude and UTM coordinates.

Section 3 documents a number of convenient command-line utilities, compiled separately
from C code written for the PBSmapping package. These make it possible to perform some of
the polygon functions outside the framework of R. Appendices provide additional information
about various topics related to PBSmapping, including

A. a package (PBSdata) of supplementary information for PBSmapping;
B. an Internet source for global bathymetry data;
C. alternative Generic Mapping Tools (GMT);
D. source code for the figures in this report;
E. function dependencies in PBSmapping;
F. documentation for PBSmapping functions and data.

We anticipate that our software will continue to change for the better, due to bug fixes and

other improvements. This report documents version 2.70.3, which currently appears as a
contributed package on the R archive. We will post subsequent versions as they become
available. All software required to develop and use PBSmapping is freely available from the
Internet.

https://cran.r-project.org/
https://en.wikipedia.org/wiki/S-PLUS
https://github.com/pbs-software
https://cran.r-project.org/

 –2–

PBSmapping User’s Guide Jun 22, 2017

1.1. Software Installation

We provide two mapping packages:
• PBSmapping – the mapping software discussed in Section 1;
• PBSdata – additional data sets relevant to fisheries investigated at PBS (Appendix A).

Installation of PBSmapping can be achieved in two ways – (1) navigate to the contributed

package on CRAN, download the appropriate binary, and install from R using the menu
<Packages><Install package(s) from local zip files...>, or (2) in R, use the menu
<Packages><Install package(s)>, choose a CRAN mirror near you, highlight PBSmapping, and
press OK. Note that the software is available in two forms:

• PBSmapping_2.70.3.tar.gz – source code for the R distribution, which can be used to
build a binary package;

• PBSmapping_2.70.3.zip – binary package ready for installation into R;

The package PBSdata can be found on the GitHub website pbs-software/pbs-data.

To remove PBSmapping from R, open the library\ directory and delete the associated
subdirectory PBSmapping\. Before loading a new version of a package, we recommend the
removal of any previous version. Eventually, the installation files may have names that reflect a
version number later than the current version.

Additionally three other PBS packages are available from CRAN that facilitate fisheries
analysis and research:

• PBSmodelling web package PBSmodelling;
• PBSddesolve web package PBSddesolve;
• PBSadmb web package PBSadmb.

The PBSmodelling library includes a directory called PBStools that contains useful batch files
for building R packages and generating an indexed manual based on the *.Rd files. This is not
to be confused with another PBS package called PBStools at pbs-software/pbs-tools.

2. FUNCTIONS AND DATA

Niklaus Wirth, the author of Pascal and Modula-2, summarises the essence of software
design in the title of his book Algorithms + Data Structures = Programs (Wirth 1975). Our
software package PBSmapping begins with data structures that embody two essential concepts.
First, polygons define boundaries, such as shorelines and fishery management areas. Second,
fishing events occur at specific locations defined by two geographical coordinates, such as
longitude and latitude. The R language conveniently supports such structures through the
concept of a data frame, essentially a database table in which rows and columns define records
and fields, respectively. Objects like data frames in R can also have attributes that store
additional properties, such as the projection used in defining a geographic coordinate system.

2.1. Data Structures for Maps

PBSmapping introduces four data structures, each stored as a data frame. Field names,
attributes, and other properties of these objects implicitly dictate their type. An object may also
identify its type explicitly in the class attribute. Each type requires a particular structure, as
outlined below.

https://cran.r-project.org/web/packages/PBSmapping/index.html
https://github.com/pbs-software/pbs-data
https://cran.r-project.org/web/packages/PBSmodelling/index.html
https://cran.r-project.org/web/packages/PBSddesolve/index.html
https://cran.r-project.org/web/packages/PBSadmb/index.html
https://github.com/pbs-software/pbs-tools

 –3–

PBSmapping User’s Guide Jun 22, 2017

2.1.1. PolySet

In our software, a PolySet data frame defines a collection of polygonal contours (i.e., line
segments joined at vertices), based on four or five numerical fields:

• PID the primary identification number for a contour;
• SID (optional) the secondary identification number for a contour;
• POS the position number associated with a vertex;
• X the horizontal coordinate at a vertex;
• Y the vertical coordinate at a vertex.

The simplest PolySet lacks an SID column, and each PID corresponds to a different contour. By
analogy with a child’s “follow the dots” game, the POS field enumerates the vertices to be
connected by straight lines. Coordinates (X, Y) specify the location of each vertex. Thus, in
familiar mathematical notation, a contour consists of n points),(ii yx with ni ,,1= ,

where i corresponds to the POS index. A PolySet has two potential interpretations. The first
associates a line segment with each successive pair of points from 1 to n, giving a polyline (in
GIS terminology) composed of the sequential segments. The second includes a final line
segment joining points n and 1, thus giving a polygon.

The secondary ID field allows us to define regions as composites of polygons. From this
point of view, each primary ID identifies a collection of polygons distinguished by secondary IDs.
For example, a single management area (PID) might consist of two fishing areas, each
associated with a different SID. A secondary polygon can also correspond to an inner boundary,
like the hole in a doughnut. We adopt the convention that POS goes from 1 to n along an outer
boundary, but from n to 1 along an inner boundary, regardless of rotational direction. This
contrasts with other GIS software, such as ArcView (ESRI 1996), in which outer and inner
boundaries correspond to clockwise and counter-clockwise directions, respectively.

The SID field in a PolySet with secondary IDs must have integer values that appear in
ascending order for a given PID. Furthermore, inner boundaries must follow the outer boundary
that encloses them. The POS field for each contour (PID, SID) must similarly appear as integers
in strictly increasing or decreasing order, for outer and inner boundaries respectively. If the POS
field erroneously contains floating-point numbers, fixPOS can renumber them as sequential
integers, thus simplifying the insertion of a new point, such as point 3.5 between points 3 and 4.

A PolySet can have a projection attribute, which may be missing, that specifies a map
projection. In the current version of PBSmapping, projection can have character values "LL"
or "UTM", referring to “Longitude-Latitude” and “Universal Transverse Mercator”. We explain
these projections more completely below. If projection is numeric, it specifies the aspect
ratio r, the number of x units per y unit. Thus, r units of x on the graph occupy the same distance
as one unit of y. Another optional attribute zone specifies the UTM zone (if projection="UTM")
or the preferred zone for conversion from Longitude-Latitude (if projection="LL").

A data frame’s class attribute by default contains the string "data.frame". Inserting the
string "PolySet" as the class vector’s first element alters the behaviour of some functions. For
example, the summary function will print details specific to a PolySet. Also, when PBSprint is
TRUE, the print function will display a PolySet’s summary rather than the contents of the data
frame.

 –4–

PBSmapping User’s Guide Jun 22, 2017

2.1.2. PolyData

We define PolyData as a data frame with a first column named PID and (optionally) a
second column named SID. Unlike a PolySet, where each contour has many records
corresponding to the vertices, a PolyData object must have only one record for each PID or
each (PID, SID) combination. Conceptually, this object associates data with contours, where the
data correspond to additional fields in the data frame. The R language conveniently allows data
frames to contain fields of various atomic modes (“logical”, “numeric”, “complex”, “character”,
and “null”). For example, PolyData with the fields (PID, PName) might assign character names to
a set of primary polygons. Additionally, if fields X and Y exist (perhaps representing locations for
placing labels), consider adding attributes zone and projection. Inserting the string
"PolyData" as the class attribute’s first element alters the behaviour of some functions,
including print (if PBSprint is TRUE) and summary.

Our software particularly uses PolyData to set various plotting characteristics. Consistent
with graphical parameters used by the R functions lines and polygon, column names can
specify graphical properties:

• lty line type in drawing the border and/or shading lines;
• col line or fill colour;
• border border colour;
• density density of shading lines;
• angle angle of shading lines.

When drawing polylines (as opposed to closed polygons), only lty and col have meaning.

2.1.3. EventData

We define EventData as a data frame with at least three fields named (EID, X, Y).
Conceptually, an EventData object describes events (EID) that take place at specific points
(X, Y) in two-dimensional space. Additional fields specify measurements associated with these
events. For example, in a fishery context EventData could describe fishing events associated
with trawl tows, based on the fields:

• EID fishing event (tow) identification number;
• X, Y fishing location;
• Duration length of time for the tow;
• Depth average depth of the tow;
• Catch biomass captured.

Like PolyData, EventData can have attributes projection and zone, which may be absent.
Inserting the string "EventData" as the class attribute’s first element alters the behaviour of
some functions, including print (if PBSprint is TRUE) and summary.

2.1.4. LocationSet

A PolySet can define regional boundaries for drawing a map, and EventData can give
event points on the map. Which events occur in which regions? Our function findPolys,
discussed in Section 2.3 below, solves this problem. The output lies in a LocationSet, a data
frame with three or four columns (EID, PID, SID, Bdry), where SID may be missing. One row in
a LocationSet means that the event EID occurs in the polygon (PID, SID). The boundary (Bdry)
field specifies whether (Bdry=T) or not (Bdry=F) the event lies on the polygon boundary. If SID
refers to an inner polygon boundary, then EID occurs in (PID, SID) only if Bdry=T. An event may
occur in multiple polygons. Thus, the same EID can occur in multiple records. If an EID does not

 –5–

PBSmapping User’s Guide Jun 22, 2017

fall in any (PID, SID), or if it falls within a hole, it does not occur in the output LocationSet.
Inserting the string "LocationSet" as the first element of a LocationSet’s class attribute alters
the behaviour of some functions, including print (if PBSprint is TRUE) and summary.

2.2. Map Projections

The simplest projection associates each point on the earth’s surface with a longitude
x (°≤≤°− 360360 x) and latitude y (°≤≤°− 9090 y), where °= 0x on the Greenwich prime
meridian. The chosen range of x depends on the region of interest, where negative longitudes
refer to displacements west of the prime meridian. When plotted on a rectangular grid with equal
distances for each degree of longitude and latitude, this projection exaggerates the size of
objects near the earth’s poles, as illustrated in Figure 1. For points near the latitude y, a more
realistic map uses the aspect ratio

(2.1)
y

r
cos

1= ,

where r degrees of longitude x should occupy the same distance as 1 degree of latitude y.

0 100 200 300

-5
0

0
50

Longitude (°)

La
tit

ud
e

(°
)

1 2 3 4 5 6 7 8 9

Figure 1. Map of the world projected in longitude-latitude coordinates. This image, based on our
PolySet worldLL, uses the longitude range °≤≤°− 36020 x to produce a convenient cut in
the eastern Atlantic Ocean. Red vertical lines show boundaries for the 60 Universal
Transverse Mercator (UTM) zones, with explicit labels for zones 1 to 9. A black line indicates
the prime meridian)0(°=x . Our PolySet nepacLL lies within the clipping boundary shown
as a blue rectangle.

The Universal Transverse Mercator (UTM) projection gives a more realistic portrayal of

the earth’s surface within 60 standardized longitude zones. Each zone spans °6 , and zone i
includes points with longitude x in the range

(2.2) °+−≤<°+−)6180()6186(ixi [UTM zone i]

 –6–

PBSmapping User’s Guide Jun 22, 2017

The mid-longitude in (2.2)

(2.3) °+−=)6183(ixi [Central meridian, zone i]

defines the central meridian of zone i. In particular, zone 9 has central meridian °−129 and
covers the range

(2.3) °−≤<°− 126132 x . [UTM zone 9]

Canada’s Pacific coast lies in zones 8 to 10 (Figure 2), and the projection to zone 9 gives a
reasonably accurate map for fisheries in this region.

-180 -160 -140 -120

40
50

60
70

Longitude (°)

La
tit

ud
e

(°
)

60 1 2 3 4 5 6 7 8 9 10 11

Figure 2. Shoreline data in longitude-latitude coordinates for the northeastern Pacific Ocean, as
captured in our PolySet nepacLL. Vertical red lines display UTM boundaries for zones
60, 1, 2, …, 11. A vertical dotted line indicates the central meridian of zone 6, near the centre
of this figure.

Visually, UTM zones look like sections of orange peel cut from top to bottom. Each

relatively narrow section can be flattened without too much distortion to give coordinates),(YX
measured as actual distances, as illustrated by zone 6 in Figure 3. Complex formulas, compiled
in detail by the UK Ordnance Survey (Ordnance Survey 1998, 2010), allow conversion between
two projections: the UTM easting-northing coordinates),(YX and the usual longitude-latitude

coordinates),(yx . These take account of the earth’s ellipsoidal shape, with a wider diameter at
the equator than the poles. The UTM projection scales distances exactly along two great circles:

 –7–

PBSmapping User’s Guide Jun 22, 2017

the equator and the central meridian, which act as X and Y axes, respectively. Along the
equator, 0=Y km by definition; elsewhere, Y indicates the distance north (positive Y) or south

(negative Y) of the equator. The central meridian is assigned a standard easting 500=X km,

rather than the usual 0=X km. This ensures that 0>X km throughout the zone. In effect, the

difference 500−X km represents the distance east of the central meridian, where a negative
distance corresponds to a westward displacement. These interpretations are exact along the
equator and central meridian, but approximate elsewhere.

-2000 -1000 0 1000 2000 3000

50
00

60
00

70
00

80
00

UTM Easting (km)

U
T

M
 N

or
th

in
g

(k
m

)

60
1

2 3 4 5 6 7 8 9 10
11

Figure 3. Shoreline data for the northeastern Pacific Ocean, projected in UTM coordinates
(zone 6) from our PolySet nepacLL. Vertical red lines show UTM zone boundaries. The
central axis of zone 6 (vertical dotted line at 500=x km) corresponds to the central meridian
shown in Figure 2.

2.3. PBSmapping Functions and Algorithms

Our software produces maps from the data structures defined in Section 2.1. Following
typical design concepts in R, it uses functions to generate plots, implement algorithms, and
perform other tasks. Where possible, function arguments often have explicit default values.
PBSmapping includes many functions not mentioned in this section. We encourage readers to
examine Appendix F, which gives detailed technical descriptions of all our software’s functions
and other components.

2.3.1. Import Functions

The following functions provide some support for importing GIS data from other users and
other mapping platforms:

 –8–

PBSmapping User’s Guide Jun 22, 2017

• importEvents import a text file and convert into EventData.
• importLocs import a text file and convert into a LocationSet.
• importPolys import a text file and convert into a PolySet with optional PolyData attribute.
• importGSHHS import data from a GSHHS database and convert data into a PolySet with a

PolyData attribute. GSHHG: A Global Self-consistent, Hierarchical, High-resolution
Geography Database; see Section 2.4 below for more details.

• importShapefile imports an ESRI shapefile (.shp) into either a PolySet or EventData.
The function relies on C-code provided by Roger Bivand’s package maptools.

2.3.2. Graphics Functions

In the R language, high-level commands (like plot) create new graphs; lower-level
commands (like points and lines) add features to an existing graph. Similarly, we provide
functions (plotLines, plotMap, plotPoints, plotPolys) that create graphs and others
(addLabels, addLines, addPoints, addPolys, addStipples) that add graphical features.
Additional functions (e.g., addCompass) simply add features to an existing plot using a fixed
(X,Y) coordinate.

Some of these plotting functions draw objects defined by a PolySet, while others expect
EventData, a LocationSet, or PolyData. Both plotLines and addLines treat their input PolySet
as polylines, with no connection between the last and first vertices. By contrast, plotMap,
plotPolys, and addPolys regard their input as polygons, where a final line segment connects
the last vertex to the first. The functions plotMap and plotPolys behave similarly, except that
plotMap’s default behaviour guarantees the correct aspect ratio, as defined by either the
PolySet’s projection attribute or the function’s projection argument. If both are specified,
the attribute supersedes the argument. When this attribute is missing, plotMap uses a 1:1
projection. Table 1 summarises the default behaviour of our principal graphics commands. A
user concerned with drawing maps, where the correct aspect ratio plays a key role, would likely
initiate a graph with the plotMap function. However, plotPolys, plotLines, and plotPoints
can also set the correct aspect ratio when passed a suitable projection argument.

Table 1. Behaviour of the principal graphics functions in the PBSmapping software package.

Function Creates a Graph Plots as Polygons Sets Aspect Ratio by Default
addLabels No - -
addLines No No -
addPoints No - -
addPolys No Yes -
addStipples No - -
plotLines Yes No No
plotMap Yes Yes Yes
plotPoints Yes - No
plotPolys Yes Yes No

Our high-level graphics functions accept a common set of arguments, consistent with

existing par parameters where possible. These include

• xlim and ylim to specify horizontal and vertical coordinate ranges;
• projection to specify the projection used in drawing the map or graph;
• plt to define the plot region relative to the figure region;
• polyProps to support plotting properties for individual contours (Section 2.1);

 –9–

PBSmapping User’s Guide Jun 22, 2017

• lty, cex, col, border, density, pch, and angle to adjust properties of labels, lines,
points, and polygons where applicable;

• axes to disable plotting axes;
• tck to control (major) tick mark lengths;
• tckMinor, a counterpart of tck, to set a different length for minor tick marks;
• tckLab, with Boolean values, to determine whether to include numeric tick labels.

We introduce tckMinor and tckLab to give finer control over the appearance of tick marks.
Each of tck, tckLab, and tckMinor can have length one or two. A single value pertains to both
axes, and two values specify distinct parameters for the horizontal and vertical axes,
respectively.

Our low-level graphics functions (e.g., addLines) use many of the same arguments as
their high-level counterparts (e.g., plotLines). However, they do not accept parameters that
affect the overall plot, such as xlim, ylim, projection, plt, axes, or any of the tck
arguments.

The par parameter plt plays a special role in PBSmapping, because we use it to set the
aspect ratio required for a particular projection. Recall that in R the plot region lies inside the
figure region, which similarly lies inside the overall device region. The parameter plt specifies
the plot region boundaries as fractions (left, right, bottom, top) of the current figure region. Our
high-level plotting functions use the initial default value plt=c(0.11,0.98,0.12,0.88),
but then alter plt by shrinking the width or height to achieve the required aspect ratio. In the
function call, the argument plt can set a different default value, but again this may be changed
by the graphics function to set the aspect ratio. In effect, the argument plt sets minimum
margins for the plot within the figure region, but the aspect ratio may force the plot to shrink in
width or height, giving wider margins in one direction.

Standard high-level commands in R (like plot) do not allow layout parameters (like plt)
to be passed as arguments. Instead, users normally use par to set these parameters before
invoking a graphics command. However, unlike normal graphics commands, those in
PBSmapping actually alter the margins, so we adopt a different approach in which plt is reset
with each high-level command. Advanced users wishing to set the plot region using the par
parameters mai or mar can disable the default initial size with the argument plt=NULL.

2.3.3. Computational Functions

PBSmapping contains many functions that perform computations on PolySets and other
data structures. Appendix F lists them all, but we give further details for some of them here,
including formulas or algorithms for implementation and references for further reading. In
alphabetic order, this list below highlights key features of selected functions in the package.

• calcArea computes polygon areas by the formula (Rokne 1996)

 ()
−

=
++ −=

1

1
112

1 n

i
iiii yxyxA ,

for the area A of a polygon with vertices niyx ii ,,1),,(= , where vertices 1 and n

correspond to the same point:),(),(11 nn yxyx = . This formula assumes identical units for

x and y (an aspect ratio 1), as in UTM coordinates. The function automatically converts
longitude-latitude coordinates to UTM before calculating the area.

 –10–

PBSmapping User’s Guide Jun 22, 2017

• calcCentroid computes polygon centroid coordinates),(yx by the formulae
(Bourke 1988)

 ()()
−

=
+++ −+=

1

1
1116

1 n

i
iiiiii yxyxxx

A
x

 ()()
−

=
+++ −+=

1

1
1116

1 n

i
iiiiii yxyxyy

A
y

for a polygon with vertices niyx ii ,,1),,(= , where vertices 1 and n correspond to the

same point:),(),(11 nn yxyx = and A is computed by the formula shown above in the

definition of calcArea. These formulas scale automatically to the units of x and y and
consequently do not depend on the projection attribute.

• calcConvexHull calculates the convex hull for a given set of points using the function
chull() in R’s package grDevices.

• calcGCdist calculates the great-circle distance between geographic (LL) coordinates
along a spherical surface using the shortest distance and disregarding topography. This
function uses two formulae (Haversine and Spherical Law of Cosines) to provide a quick
distance calculation between two geographic coordinates. The function following
(calcLength) performs the same task for polylines in a PolySet.

Method 1: Haversine Formula

 () () () ()2 2
2 1 1 2 2 1sin 2 cos cos sin 2a φ φ φ φ λ λ= − + −

 ()2atan2 , 1c a a= −

 d Rc=

where, φ = latitude (in radians), λ = longitude (in radians)

 R = radius (km) of the Earth,
 a = square of half the chord length between the points,
 c = angular distance in radians,
 d = great-circle distance (km) between two points.

Method 2: Spherical Law of Cosines

 () () () () ()()1 2 1 2 2 1acos sin sin cos cos cosd Rφ φ φ φ λ λ= + −

The initial bearing (aka forward azimuth) for the start point can be calculated using:

 () () () () () () ()()2 1 2 1 2 1 2 2 1atan2 sin cos ,cos sin sin cos cosθ λ λ φ φ φ φ φ λ λ= − − −

where, φ = latitude (in radians), λ = longitude (in radians)

 θ = Initial bearing theta (degrees) for the start point.

• calcLength calculates polyline lengths using Pythagoras’ Theorem when the projection is
UTM or 1. Thus, the distance d between points),(yx and)','(yx is

 22)'()'(yyxxd −+−= .

 –11–

PBSmapping User’s Guide Jun 22, 2017

The function also supports longitude-latitude coordinates),(yx by calculating great circle
distances between polygon vertices. In this case, the distance d between two points is
(Chamberlain 2001)

 −+

 −=

2
'sin)'(cos)(cos

2
'sinarcsin2 22 xxyyyyRd ,

where 6371.3=R km denotes the earth’s mean radius (Wikipedia 2004).

• calcMidRange calculates midpoints of the X and Y ranges for each given polygon.
• calcSummary calculates summary statistics for a PolySet, given a user-defined function.
• calcVoronoi calculates the Voronoi (Dirichlet) tesselation for a set of points (using the

deldir function from the package deldir) and creates a PolySet. See Figure 8 of the
PBSmodelling user’s guide (Schnute et al. 2006) for an example called CalcVor.

• clipLines (and clipPolys) clips polylines (and polygons) within a specified rectangle,
possibly smaller than the bounding rectangle, using the Sutherland-Hodgman clipping
algorithm (Foley et al. 1996, p. 124-127).

• closePolys adds corners from the bounding rectangle, if needed, to close polylines into
polygons.

• combinePolys combines several polygons into a single polygon by modifying the PID and
SID indices.

• convCP converts results from contourlines into a PolySet.
• convDP converts EventData/PolyData into a PolySet.
• convLP converts two polylines into a polygon.
• convUL converts between UTM and longitude-latitude coordinates using the extensive

formulas presented in Ordnance Survey (2010).
• dividePolys divides a single polygon (with several outer-contour components) into

several polygons, a polygon for each outer contour, by modifying the PID and SID indices.
• findCells finds the cells in a grid PolySet that contain events specified in EventData,

using the “crossings test” algorithm described later in this section.
• findPolys finds the polygons in a PolySet that contain events specified in EventData,

using the “crossings test” algorithm described later in this section.
• isConvex determines which polygons in a PolySet are convex, using an algorithm

described below.
• isIntersecting finds polygons that self-intersect by comparing each edge pairwise with

every other edge.
• joinPolys performs set theoretic operations (union, intersection, difference, and

exclusive-or) on polygons using the Clipper library developed by Angus Johnson. See
Figure 13 of the PBSmodelling user’s guide (Schnute et al. 2006) for an example called
FishTows (Fig.14 in most recent version).

• thickenPolys adds vertices to polygons using an algorithm described below.
• thinPolys thins the number of polygon vertices, based on the Douglas-Peuker line

simplification algorithm (Douglas and Peucker 1973), as illustrated in Figure 4.

Our function isConvex first calls isIntersecting to determine whether or not a polygon
self-intersects. If it does, it cannot be convex and the result is FALSE. Otherwise, the function
proceeds. Three sequential points in a non-self-intersecting polygon describe a left turn, a
straight line, or a right turn. The function locates the first non-straight turn (left or right) in a

http://www.angusj.com/delphi/clipper.php

 –12–

PBSmapping User’s Guide Jun 22, 2017

polygon and checks that all subsequent turns are either the same or straight. If so, the polygon
is convex; otherwise it is not.

Like calcLength, thickenPolys also supports the longitude-latitude projection. In this
case, tol is measured in kilometres and distances are computed along great circles
(Chamberlain 2001).

-128 -127 -126 -125 -124

48
.5

49
49

.5
50

50
.5

51

Longitude (°)

La
tit

ud
e

(°
)

A

-128 -127 -126 -125 -124
Longitude (°)

B

Figure 4. (A) Vancouver Island clipped from the PolySet nepacLL and (B) the result of applying
thinPolys to this polygon with a tolerance of ten kilometres.

When the projection is UTM or 1, our function thickenPolys accepts a tolerance

specified in X or Y units (kilometres in the UTM case). It operates in two distinct modes. When
keepOrig=TRUE, it retains all original vertices and adds vertices, as required, along each edge.
Thus, if the distance between two sequential original vertices exceeds the specified tolerance
tol, it adds enough vertices spaced evenly between them so that sequential vertices lie at most
the distance tol apart. When keepOrig=FALSE, the algorithm guarantees only that the first
vertex of each polygon appears in the result. Starting at that vertex, the algorithm walks through
the polygon while summing distances between vertices. When the cumulative distance exceeds
tol, it adds a vertex on the line segment under inspection. It then resets the distance sum and
continues walking the polygon from this new vertex.

2.3.4. Associating Points with Polygons

As discussed in the definition of LocationSet (Section 2.1), our function findPolys solves
the “points-in-polygons” problem. Given a set of points (EventData) and a collection of polygons
(a PolySet), which points lie in which polygons? Several algorithms solve this problem,
including:

• The crossings test. Draw a ray from the trial point in a fixed direction (e.g., upward). If
the ray crosses an even number of polygon edges, the point must be outside. For an
inside point, the number of crossings must be odd.

• The angle summation (or winding number) test. Sum the angles swept by a ray from
the trial point to sequential vertices of the polygon. For a point outside the polygon, the
angles sum to 0 because the ray sweeps back and forth, returning to the starting point.
For an inside point, the ray traces a full circle, and the angles do not sum to zero.

We use the crossings test because it performs faster than angle summation (Hains 1994,
p. 26-27). The latter requires large numbers of trigonometric function calls.

 –13–

PBSmapping User’s Guide Jun 22, 2017

After finding the polygons that contain various events, an analyst often wants to compute
statistics associated with the events that occur inside each polygon. For example, in a fishery
context, what is the total catch from all fishing events within each management region? Our
function combineEvents supports such calculations. The function makeProps can then relate
polygon properties, such as colour used for plotting, to these computed statistical values.

2.3.5. Set Theoretic Operations

We include the function joinPolys to apply set theoretic operations (difference,
intersection, union, and exclusive-or) to one or two PolySets. Our joinPolys function interfaces
with the Clipper library developed by Angus Johnson. Previously, it interfaced with the General
Polygon Clipper library by Alan Murta at the University of Manchester. We keep this historic
reference to GPC because joinPolys remains faithful to Murta’s definition of a generic
polygon, which we describe below.

Murta (2004) defines a generic polygon (or polygon set) as zero or more disjoint polygonal
contours that define boundaries of the polygon region. Some contours can represent inner
boundaries that define holes in the region. Each contour can be convex, concave, or self-
intersecting.

In our PolySet, the polygons associated with each unique PID correspond to a generic
polygon with some restrictions. Some of our functions do not support self-intersecting polygons.
Furthermore, the SID contours cannot be arranged in arbitrary order because we require that
hole contours follow the outer contours in which they lie.

The function joinPolys can also accept two PolySet arguments P and Q. In this case,
the function returns a PolySet with all possible pairwise applications of op between generic
polygons in P and Q. For example, if P contains (A, B, C) and Q contains (D, E), then
joinPolys returns a PolySet with six PIDs corresponding to the six generic polygons A op D,
B op D, C op D, A op E, B op E, and C op E. More generally, if P and Q include m and n generic
polygons, respectively, then the function returns a PolySet with nm × generic polygons.
If 1=m or 1=n , the output preserves PIDs from the PolySet with more than one generic
polygon. Figure 5 illustrates the four supported set theoretic operations applied to crescent-
shaped polygons A and B.

http://www.angusj.com/delphi/clipper.php
http://www.cs.man.ac.uk/%7Etoby/alan/software/
http://www.cs.man.ac.uk/%7Etoby/alan/software/

 –14–

PBSmapping User’s Guide Jun 22, 2017

Polygon A

A

Polygon B

B

A "INT" B

C

A "UNION" B

D

A "DIFF" B

E

A "XOR" B

F

Figure 5. Example of the joinPolys logic operations. Panels A and B display the first and
second PolySets, respectively. Panels C to F illustrate the intersection, union, difference, and
exclusive-or operations, respectively.

Applied to one PolySet P, our function joinPolys applies the set theoretic operation op

sequentially to the generic polygons in P. For example, suppose that P contains three generic
polygons (A, B, C). Then the function returns a PolySet containing the generic polygon
((A op B) op C), represented as one PID with possibly many SIDs.

2.4. Shoreline Data

To portray fishery data along Canada’s Pacific coast, we need a PolySet that defines the
relevant shoreline. Originally, we began with a polyline of the British Columbia coast, digitized
manually from a marine map. To convert this object to a meaningful closed polygon, we devised
the functions fixBound and closePolys. Satellite imagery and other sources, however, make
our initial coastline obsolete. For example, Wessel and Smith (1996) have used information
from the public domain to assemble a Global Self-consistent, Hierarchical, High-resolution
Geography (GSHHG) database for the entire planet. They make this available via the Internet
as binary files in five different resolutions for shorelines: full (gshhs_f.b), high (gshhs_h.b),
intermediate (gshhs_i.b), low (gshhs_l.b), and crude (gshhs_c.b). They also supply software
as C source code for .

• converting the data to an ASCII (plain text) format (gshhs.c);
• thinning the data by reducing the number of points sensibly (gshhs_dp.c).

http://www.soest.hawaii.edu/pwessel/gshhg/

 –15–

PBSmapping User’s Guide Jun 22, 2017

Their thinning software uses an algorithm devised by Douglas and Peucker (1973), whose
initials dp appear in the file name. The dp is also an abbreviation of “decimate polygons”.

We have created a function called importGSHHS that works directly on a specified binary
data file from Wessel (resolution choice left to the user) to create a PBSmapping PolySet. The
user can choose to further alter the resolution of the newly created PolySet using our function
thinPolys. Alternatively, the user can thin Wessel’s full-resolution database (gshhs_f.b)
directly using gshhs_dp.c (after compilation to an executable file) to a desired resolution, then
use PBSmapping’s importGSHHS on the modified binary database. At the time of writing,
importGSHHS supports Wessel’s format for data files version 2.2.0, created July 15, 2011.
Wessel’s database gshhs+wdbii_2.2.0.zip contains geographical coordinates for shorelines
(gshhs), rivers (wbd_rivers), and borders (wdb_borders). The latter two come from World
DataBank II (WDBII) with the five resolutions mentioned above.

PBSmapping includes four data sets derived from the GSHHS databases (Table 2). These
all use longitude-latitude (LL) coordinates. The nepac data sets contain the northeastern Pacific
Ocean shoreline in a region that extends roughly from California to Alaska (Figure 2), and the
world data sets cover the planet (Figure 1). As discussed in section 2.2, longitude coordinates x
take continuous values meaningful for the intended map, with °= 0x on the Greenwich prime
meridian.

Table 2. PolySets derived from various resolution GSHHG databases.

PolySet Wessel DB Thin Longitude Latitude Vertices Polygons
nepacLL* gshhs_h.b 0.2 km °−≤≤°− 110190 x °≤≤° 7234 y 75,305 495

nepacLLhigh gshhs_f.b 0.1 km °−≤≤°− 110190 x °≤≤° 7234 y 192,762 9,986

worldLL* gshhs_l.b 5.0 km °≤≤°− 36020 x °≤≤°− 8490 y 30,129 190

worldLLhigh* gshhs_i.b 1.0 km °≤≤°− 36020 x °≤≤°− 8490 y 187,101 1,367

*Excludes polygons with fewer than 15 vertices after thinning.

Explicitly, the commands to create the above PolySets are:

worldLL =
importGSHHS("gshhs_l.b",xlim=c(-20,360),ylim=c(-90,90),level=1,n=15,xoff=0)

worldLL = .fixGSHHSWorld(worldLL)

worldLLhigh =

importGSHHS("gshhs_i.b",xlim=c(-20,360),ylim=c(-90,90),level=1,n=15,xoff=0)
worldLLhigh = .fixGSHHSWorld(worldLLhigh)

nepacLL =

importGSHHS("gshhs_h.b",xlim=c(-190,-110),ylim=c(34,72),level=1,n=15,xoff=-360)

nepacLLhigh =

importGSHHS("gshhs_f.b",xlim=c(-190,-110),ylim=c(34,72),level=1,n=0,xoff=-360)
nepacLLhigh = thinPolys(nepacLLhigh, tol=0.1, filter=3)

2.5. Bathymetry Data

Smith and Sandwell (1997) have produced global seafloor topography from satellite
altimetry and ship depth soundings. A web-based data acquisition form allows users to extract a
region after entering longitude and latitude coordinate ranges. Appendix B documents how to
import their data for use with PBSmapping.

http://topex.ucsd.edu/cgi-bin/get_data.cgi

 –16–

PBSmapping User’s Guide Jun 22, 2017

R provides a contour function to plot contour lines. This function lacks a save argument
and does not return contour coordinates. Instead, the contourLines function accomplishes this
task, giving a list that captures continuous contours as single polylines (Figure 6).

-131 -130 -129

50
.5

5
1

5
1

.5
5

2
5

2
.5

53

Longitude (°)

L
at

itu
d

e
(°

)

Figure 6. The R contourLines function returns a single polyline for each continuous contour.
Our function convCP converts the list output from contourLines into a list object that has

two components: a PolySet with contour coordinates and PolyData with the depth of each
contour. The package PBSdata includes a data set (isobaths) of bathymetric contours for
Canada’s Pacific coast. In addition, several functions ease the manual procedure of converting
polylines into polygons, including

• convLP to convert two polylines into a single polygon;
• closePolys to close the polygons in a PolySet;
• fixBound to fix the boundary points of a PolySet.

2.6. Examples and Applications

Our library includes an illustrative PolySet towTracks containing the longitude-latitude
coordinates of 45 tow tracks from a longspine thornyhead (Sebastolobus altivelis) survey in
2001. Figure 7 portrays these data relative to the west coast of Vancouver Island, drawn with
shoreline data clipped from the PolySet nepacLL. The PolyData object towData specifies the
depth of each tow, represented in the figure by colours corresponding to depth intervals
(black = 500-800 m, red = 800-1200 m, dark blue = 1200-1600 m).

 –17–

PBSmapping User’s Guide Jun 22, 2017

-127.5 -127 -126.5 -126

48
.5

49
49

.5

Longitude (°)

La
tit

ud
e

(°
)

LTS Survey Tracks
500-800 m

800-1200 m
1200-1600 m

Vancouver
Island

Figure 7. Tracks for 45 tows performed during the 2001 Longspine Thornyhead (Sebastolobus
altivelis) survey along the west coast of Vancouver Island (Starr et al. 2002). Each tow track
is colour-coded by depth stratum. Data: PolySet towTracks and PolyData towData.

Figure 8 illustrates the use of our software to calculate polygon areas using the function

calcArea. We examine a region along the south-west British Columbia coast that includes a
cluster of islands in the Strait of Georgia. Shoreline data come from the PolySet nepacLLhigh.
Because area calculations do not make sense in the longitude-latitude projection, we convert
the PolySet to UTM coordinates, with comparable X and Y coordinates (km), and then clip to the
desired region. (The calcArea function will also automatically convert PolySets with
projection=“LL” to UTM before calculation.) The figure shows areas for six selected islands,
highlighted in yellow. Island centroids, derived using calcCentroid, give reference coordinates
for printing island names and areas.

 –18–

PBSmapping User’s Guide Jun 22, 2017

900 910 920 930 940

53
80

53
90

54
00

54
10

54
20

54
30

54
40

UTM Easting (km)

U
T

M
 N

or
th

in
g

(k
m

)

Saltspring
193

San Juan
149

Galiano
63

N Pender
30

Mayne
26

Saturna
35

Vancouver Island

Strait of Georgia

Figure 8. Areas (km2) of selected islands in the southern Strait of Georgia. Shoreline data have
been clipped from nepacLLhigh after conversion to UTM coordinates.

Figure 9 portrays data from Pacific Ocean Perch (POP, Sebastes alutus) surveys
conducted along the central BC coast during the years 1966-1989. The EventData object
surveyData contains information from each tow, including the longitude, latitude, depth, catch,
and effort (tow duration). These data also imply the computed value of catch per unit effort
(CPUE = catch/effort). Code for this figure includes the following key function calls:

• plotMap to draw a coastal map of this region, clipped from nepacLL;
• makeGrid to create a grid in the region of interest;
• findCells to associate tows with the appropriate grid cells;
• combineEvents to calculate the mean CPUE within each cell;
• addPolys to draw cells with colours (in the polyProps argument) scaled to the CPUE;
• points (the native R function) to plot events on the map.

 –19–

PBSmapping User’s Guide Jun 22, 2017

-131 -130 -129 -128

51
51

.5
52

52
.5

Longitude (°)

La
tit

ud
e

(°
)

POP Surveys (1966-89)

CPUE (kg/h)
0 - 50

50 - 300

300 - 750

750 - 1500

1500 - 25000

Figure 9. Portrayal of surveyData from Pacific Ocean Perch (Sebastes alutus) surveys in the
central coast region of British Columbia from 1966-89, with shoreline data clipped from
nepacLL. Colours portray the mean catch per unit effort (CPUE) within each grid cell
(0.1º by 0.1º). Circles show locations of individual tows.

PBSmapping can also display non-geographical data, such as technical drawings, network

diagrams, and transportation schematics. For example, we use a PolySet to construct the proof
of Pythagoras’ Theorem in Figure 10, where the caption explains the logic leading to the famous

result 222 cba =+ . Incidentally, Devlin (1998, chapter 6, p. 221) mentions an historical incident
that nicely distinguishes maps from network diagrams. A now familiar drawing of the London
Underground (see the PDF file marked “Standard Tube map” at Transit for London) fails to
represent geography correctly, but contains exactly the information passengers need to
navigate the system. It took two years for the designer, Henry C. Beck, to persuade his
superiors that his drawing would prove useful to the public.

https://tfl.gov.uk/maps/track/tube

 –20–

PBSmapping User’s Guide Jun 22, 2017

Pythagoras' Theorem: a² + b² = c²

Proof:
(a + b)² = 4 triangles + a² + b² = 4 triangles + c²

a

b

c

a²

b²

c²

Figure 10. Proof of Pythagoras’ Theorem. A PolySet defines all geometric objects in this figure,
and PolyData determine the colours for plotting. Four blue triangles plus the yellow

square)(2a and the green square)(2b equal four blue triangles plus the red square)(2c ;

consequently, 222 cba =+ .

2.7. Strengths, Limitations, and Alternatives

PBSmapping works with data exported from database tables, where records may not have
a definite order. The POS field in our PolySet definition imposes the required order for polylines
and polygons. This field also provides a convenient means of distinguishing inner and outer
boundaries. Our PolySets have a flat structure with at most two levels, corresponding to primary
and secondary IDs. We have found these limitations acceptable in the context of our work.
Sceptical readers might challenge our choices and prefer more complex hierarchical structures.
For example, Becker and Wilks (1993, 1995) define polygons as composites of polylines, so
that a common boundary between two regions need be defined only once and then referenced
in each regional definition. In our approach, all vertices of a common boundary must be
repeated in each regional definition.

We designed our software explicitly to address a few key issues in the spatial
representation of fishery data:

 –21–

PBSmapping User’s Guide Jun 22, 2017

• easy importation from databases, Geographic Information Systems, and other sources,
such as the shoreline data compiled by Wessel and Smith (1996);

• precise control over the boundaries chosen for clipping from a larger map;
• support for longitude-latitude and UTM easting-northing coordinates;
• computational ability to associate events with polygons in which they lie;
• flexible plotting tools that summarise events within grids and other polygons.

Different purposes could well lead to other designs.

In addition to their comprehensive shoreline database, Wessel and Smith have designed
and released a free collection of Generic Mapping Tools (GMT) that provide a serious
alternative to our software. These tools operate in the DOS/UNIX environment and support
many more projections than PBSmapping. They also store polygons in a more efficient file
format than our PolySet data frames. We designed PBSmapping for the R environment, with its
rich support for statistical and mathematical analysis. We have also included numerous
algorithms from computational geometry, such as findPolys and joinPolys. Readers may,
however, find GMT more useful for map formats not supported in PBSmapping. Appendix C
shows some comparative examples of code written in both environments.

Because PBSmapping includes features often supported by a Geographic Information
System (GIS), a free GIS package might also provide an alternative to the software described
here. The FreeGIS web site summarizes the current status of free GIS programs and data.
Their listings receive frequent updates and show a pattern of steady growth.

http://gmt.soest.hawaii.edu/
http://www.freegis.org/

 –22–

PBSmapping User’s Guide Jun 22, 2017

3. COMMAND LINE UTILITIES

The PBSmapping package for R includes several algorithms that we have also
implemented as stand-alone command-line utilities1. These can handle very large data sets that
may be too large for the R working environment. Furthermore, some users may wish to
implement computational geometry calculations without reference to the R language. Our
utilities make this possible by directly processing text files with the appropriate data format.
They have been compiled with the same C code used for the dynamically linked library (DLL) in
R. For each utility, a corresponding .c file provides a front end to shared code for the
algorithms. Source code appears in the R library directory \PBSmapping\Utils\.

3.1. clipPolys.exe (Clip Polygons)

The application clipPolys.exe reads an ASCII file containing a PolySet (explained
further below) and then clips it. The command

clipPolys.exe /i IFILE [/o OFILE] [/x MIN_X] [/X MAX_X] [/y MIN_Y] [/Y MAX_Y]

has five arguments as follows:

• /i IFILE ASCII input file containing a PolySet (required);
• /o OFILE ASCII output file (defaults to standard output);
• /x MIN_X lower X limit (defaults to minimum X in the PolySet);
• /X MAX_X upper X limit (defaults to maximum X in the PolySet);
• /y MIN_Y lower Y limit (defaults to minimum Y in the PolySet);
• /Y MAX_Y upper Y limit (defaults to maximum Y in the PolySet).

The first line of the PolySet input file must contain the field names (PID, SID, POS, X, Y), where
SID is optional. Subsequent lines must contain the data, with the same number of fields per row
as in the header line. All fields must be delimited by white space. The program generates a
properly formatted PolySet. By default (unless otherwise specified by /o), this result goes to
standard output, which can be redirected to a text file (e.g., > file.txt).

3.2. convUL.exe (Convert between UTM and LL)

The application convUL.exe reads an ASCII file containing two fields named X and Y, as
described further below. The command

convUL.exe /i IFILE [/o OFILE] (/u | /l) [/m] /z ZONE

has the arguments:

• /i IFILE ASCII input file containing the X and Y data (required);
• /o OFILE ASCII output file (defaults to standard output);
• /u (or /l) convert to UTM (longitude-latitude) coordinates (required);
• /m use metres instead of kilometres as UTM measurement;
• /z ZONE source or destination zone for the UTM coordinates (required).

The input file must have an initial header line with field names, including X and Y. Subsequent
lines contain the data, with all fields separated by white space. The program converts each
(X, Y) pair to a new pair (X2, Y2). The output file matches the input file, with the fields (X2, Y2)
appended to the end of each line. The default standard output can be redirected to a text file.

1 These have not been tested for many years now. Please let authors know if their use causes problems.

 –23–

PBSmapping User’s Guide Jun 22, 2017

3.3. findPolys.exe (Points-in-Polygons)

The application findPolys.exe reads two ASCII files: one containing a PolySet and the
other containing EventData. The program then determines which events fall inside the available
polygons. The command

findPolys.exe /p POLY_FILE /e EVENT_FILE [/o OFILE]

has the arguments:

• /p POLY_FILE ASCII input file containing the PolySet (required);
• /e EVENT_FILE ASCII input file containing EventData (required);
• /o OFILE ASCII output file (defaults to standard output).

The header line in both input files must contain field names, and subsequent lines must contain
the relevant fields of data delimited by white space. The PolySet must have field names
(PID, SID, POS, X, Y), where SID is optional. The EventData must have fields (EID, X, Y). The
program writes a properly formatted LocationSet with three or four columns
(EID, PID, SID, Bdry), where SID may be missing (Section 2.1). The default standard output can
be redirected to a text file.

ACKNOWLEDGEMENTS

We thank Dr. Jim Uhl and Dr. Peter Walsh in the Computing Science Department,
Malaspina University-College, for encouraging and facilitating the role of students in applied
fisheries research. Without the dedicated work of these students, named in the Preface, we
could not have produced the software described here. We also acknowledge the valuable
shoreline and bathymetry databases compiled by Dr. Paul Wessel, Dr. Walter Smith, and Dr. D.
T. Sandwell (Wessel and Smith 1996; Smith and Sandwell 1997). In particular, we thank Dr.
Paul Wessel for permission to redistribute data from the GSHHS database. Code from other
authors seriously enhances this version of PBSmapping. Dr. Gary Robinson has kindly allowed
us to use his code for a stack-based Douglas-Peuker line simplification routine, implemented in
our thinPolys function. Our colleague Brian Krishka helped prepare various data objects. The
PBSmapping package could not exist without R and GCC. We express admiration and gratitude
to the remarkable teams that build, document, and distribute such outstanding free software.

 –24–

PBSmapping User’s Guide Jun 22, 2017

REFERENCES

Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988) The new S language: a programming
environment for data analysis and graphics. Wadsworth and Books/Cole. Pacific Grove, CA.

Becker, R.A., and Wilks, A.R. (1993) Maps in S. Statistics Research Report 93.2. AT&T Bell
Laboratories, Murray Hill, NJ. 21 p.

Becker, R.A., and Wilks, A.R. (1995, rev. 1997) Constructing a geographical database.
Statistics Research Report 95.2. AT&T Bell Laboratories, Murray Hill, NJ. 23 p.

Boers, N.M., Haigh, R., and Schnute, J.T. (2004) PBS Mapping 2: developer’s guide. Canadian
Technical Report of Fisheries and Aquatic Sciences 2550.

Bourke, P. (1988 July) Calculating the area and centroid of a polygon. Accessed Aug 3, 2004.

Chamberlain, R. (1996 October) GIS FAQ Q5.1: Great-circle distance between two points.
Accessed Aug 3, 2004.

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2000) Computational
geometry: algorithms and applications: second edition. Springer: Berlin.

Devlin, K.J. (1998) The language of mathematics: making the invisible visible. W. H. Freeman
and Company. New York, NY. 344 p. (Reference taken from the first paperback printing
2000)

Douglas, D.H., and Peucker, T.K. (1973) Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Canadian Cartographer 10:112-22.

Environmental Systems Research Institute (ESRI). (1996) ArcView GIS: the geographic
information system for everyone. ESRI Press, Redlands, CA.

Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F. (1996) Computer graphics principles
and practice: second edition in C. Addison-Wesley Publishing Co. Boston, MA.

Haigh, R., and Schnute, J. (1999) A relational database for climatological data. Canadian
Manuscript Report of Fisheries and Aquatic Sciences 2472. 26 p.

Hains, E. (1994) Point in polygon strategies. Chapter 1.4, p. 24-46 in: Heckbert, P.S. 1994.
Graphics Gems IV. Academic Press, San Diego, CA. 575 p.

Murta, A. (2004) Jul 15. General polygon clipper homepage. Accessed Aug 3, 2004.

Ordnance Survey. (1998) The ellipsoid and the Transverse Mercator projection. Geodetic
Information Paper No. 1 (version 2.2). Ordnance Survey, Southampton, UK. 20 p.

Ordnance Survey. (2010) A guide to coordinate systems in Great Britain. Report D00659 (v2.1).
Southampton, UK.

Rokne, J. (1996) The area of a simple polygon. p. 5-6 in: Arvo, J. 1996. Graphics Gems II.
Academic Press. San Diego, CA. 672 p.

Rutherford, K.L. (1999) A brief history GFCATCH (1954-1995), the groundfish catch and effort
database at the Pacific Biological Station. Canadian Technical Report of Fisheries and
Aquatic Sciences 2299. 66 p.

Schnute, J.T., Boers, N.M., and Haigh, R. (2003) PBS Software: maps, spatial analysis, and
other utilities. Canadian Technical Report of Fisheries and Aquatic Sciences 2496: 82 p.

http://ect.bell-labs.com/sl/doc/93.2.ps
http://ect.bell-labs.com/sl/doc/95.2.ps
http://waves-vagues.dfo-mpo.gc.ca/Library/285693.pdf
http://www.seas.upenn.edu/%7Esys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf
http://www.movable-type.co.uk/scripts/gis-faq-5.1.html
http://waves-vagues.dfo-mpo.gc.ca/Library/234432.pdf
http://www.cs.man.ac.uk/%7Etoby/alan/software/
http://fgg-web.fgg.uni-lj.si/%7E/mkuhar/Zalozba/TM_projection.pdf
https://www.ordnancesurvey.co.uk/docs/support/guide-coordinate-systems-great-britain.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/243214.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/243214.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/277935.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/277935.pdf

 –25–

PBSmapping User’s Guide Jun 22, 2017

Schnute, J.T., Boers, N.M., and Haigh, R. (2004) PBS Mapping 2: User’s Guide. Canadian
Technical Report of Fisheries and Aquatic Sciences 2549: viii + 126 p.

Schnute, J.T., Couture-Beil, A., and Haigh, R. (2006) PBS Modelling 1: user’s guide. Canadian
Technical Report of Fisheries and Aquatic Sciences 2674: viii + 114 p.

Schnute, J.T., Haigh, R., Krishka, B.A., and Starr, P. (2001) Pacific ocean perch assessment for
the west coast of Canada in 2001. Canadian Science Advisory Secretariat Research
Document 2001/138. 90 p.

Schnute, J.T., Wallace, C.G., and Boxwell, T.A. (1996) A relational database shell for marked
Pacific salmonid data. Canadian Technical Report of Fisheries and Aquatic Sciences 2090A.
28 p.

Sinclair, C.A., and Olsen N. (2002) Groundfish research cruises conducted by the Pacific
Biological Station, Fisheries and Oceans Canada, 1944-2002. Canadian Manuscript Report
of Fisheries and Aquatic Sciences 2617. 91 p.

Sipser, M. (1997) Introduction to the theory of computation. PWS Publishing Company. Boston,
MA. 396 p.

Smith, W.H.F., and Sandwell, D.T. (1997) Global seafloor topography from satellite altimetry
and ship depth soundings. Science 277: 1957-1962.

Starr, P.J., Krishka, B.A., and Choromanski, E.M. (2002) Trawl survey for thornyhead biomass
estimation off the west coast of Vancouver Island, September 15 – October 2, 2001.
Canadian Technical Report of Fisheries and Aquatic Sciences 2421. 60 p.

Venables, W.N., and Ripley, B.D. (1999) Modern applied statistics with S-PLUS (3rd Edition).
Springer-Verlag. New York, NY. 501 p.

Venables, W.N., and Ripley, B.D. (2000) S programming. Springer-Verlag. New York, 264 p.

Wessel, P., and Smith, W.H.F. (1996) A global, self-consistent, hierarchical, high-resolution
shoreline database. Journal of Geophysical Research 101: 8741-8743.

Wikipedia. (2004) Earth radius. Accessed Aug 19, 2004.

Wirth, N. (1975) Algorithms + data structures = programs. Prentice-Hall. Englewood Cliffs, NJ.
366 p.

http://waves-vagues.dfo-mpo.gc.ca/Library/285683.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/326794.pdf
http://www.dfo-mpo.gc.ca/csas-sccs/publications/resdocs-docrech/2001/2001_138-eng.htm
http://www.dfo-mpo.gc.ca/csas-sccs/publications/resdocs-docrech/2001/2001_138-eng.htm
http://waves-vagues.dfo-mpo.gc.ca/Library/194343.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/194343.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/269141.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/269141.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/269823.pdf
http://waves-vagues.dfo-mpo.gc.ca/Library/269823.pdf
https://en.wikipedia.org/wiki/Earth_radius

 –26–

PBSmapping User’s Guide Jun 22, 2017

APPENDIX A. PBSDATA PACKAGE

This appendix documents the objects available in the R-package PBSdata, which is not
distributed on CRAN but remains available on GitHub: pbs-software/pbs-data. Fisheries and
Oceans personnel can also obtain the package from a PBS Intranet website. Look for a link on
the left entitled “Most recent PBS R Packages”.

Table A1. Data sets available in PBSdata.

Object Description
bctopo Topo: British Columbia Sea Floor Topography
bgcp Topo: Biogeochemical Provinces
claradat Data: Tow Catches of Species in Queen Charlotte Sound
dbr.rem Data: Annual Catches of Rockfish by Sector
eez.bc Topo: Exclusive Economic Zone for BC Coast
fos.fid Code: Fishery Codes in GFFOS
gear Code: Gear Codes for Various DFO Databases
hsgrid Topo: Hecate Strait Assemblage Survey Grid
hsisob Topo: Hecate Strait Isobaths
hssa Topo: Hecate Strait Survey Area
iphc.rbr Data: Longline Indices of Rockfish Catch from the IPHC SSA
iphc.rer Data: Longline Indices of Rockfish Catch from the IPHC SSA
iphc.yyr Data: Longline Indices of Rockfish Catch from the IPHC SSA
isobath Topo: Isobaths (100 to 1800 m, at 100 m intervals)
locality Topo: Localities in Pacific Marine Fisheries Commission Minor Areas
ltea Topo: Longspine Thornyhead Exploratory Management Areas
ltmose07 Topo: Longspine Thornyhead Fishing Grounds (WCVI)
ltmose12 Topo: Longspine Thornyhead Fishing Grounds (WCVI)
ltsa Topo: Longspine Thornyhead Survey Strata (WCVI)
ltsa.bad Topo: No-Trawl Zones in Longspine Thornyhead Survey Area
ltxa Topo: Longspine Thornyhead Experimental Management Areas
major Topo: Pacific Marine Fisheries Commission Major Areas
minor Topo: Pacific Marine Fisheries Commission Minor Areas
nage394 Data: Age Frequency by Year for Rougheye Rockfish
orfhistory Data: Historic Landings of Rockfish in BC
parVec Data: Initial Parameter Vector for Model Fits
pcoda Topo: Hecate Strait Pacific Cod Monitoring Survey Areas
pjsa Code: Paul J Starr Locality Codes
pl230 Topo: 230 Degree True Line from Lookout Island
pmfc Code: Pacific Marine Fisheries Commission Areas
pop.age Data: Pacific Ocean Perch Age Data (5AB, 5CD)
pop.pmr.qcss Data: Pacific Ocean Perch (p, mu, rho) for QCS Synoptic Survey
popa Topo: Pacific Ocean Perch Population Areas
qcb Topo: Queen Charlotte Basin Surficial Geology
qcssa Topo: Queen Charlotte Sound Survey Strata
rca Topo: Rockfish Conservation Areas
species Code: Species Codes and Names (primarily for marine fisheries)
spn Code: Species Code Vector
srfa Topo: Slope Rockfish Assessment Areas
srfs Topo: Slope Rockfish Assessment Subareas
testdatC Data: Fisheries Catch Data with Species by Column

https://github.com/pbs-software/pbs-data
http://dfbcv9twvasp001/sql

 –27–

PBSmapping User’s Guide Jun 22, 2017

Object Description
testdatR Data: Fisheries Catch Data with Species by Row
trawlability Topo: Fisher Knowledge of Towable Bottom
utilize Code: Utilization Codes for Various DFO Databases
wchgsa Topo: West Coast Haida Gwaii Survey Area
wcvisa Topo: West Coast of Vancouver Island Survey Strata
ymr.rem Data: Annual Catches of Rockfish by Sector

 –28–

PBSmapping User’s Guide Jun 22, 2017

APPENDIX B. BATHYMETRY DATA

Smith and Sandwell (1997) have produced a global seafloor topography database from
satellite altimetry and ship depth soundings. Using the web-based data acquisition form, users
can extract a region from this database. The form returns an ASCII file containing X, Y, and Z
coordinates. To use this data file with PBSmapping, first load it into R with the native function
read.table, which creates a data frame with three fields. Our function makeTopography can
convert this data frame to a list object with vectors x and y and an outer product matrix z, ready
for use by the functions contour or contourLines. In particular, contourLines produces a list
object that can be easily converted to a PolySet using convCP, which in turn produces a list
object consisting of a PolySet (with contour coordinates) and PolyData (with the depth of each
contour).

Example
Bathymetry for a small section of the Aleutian Islands, Alaska,
where a user would specify coordinates xlim=c(-162,-158) and ylim=c(53,57) in the web-
based acquisition form referenced above, and save Topography to a file called aleutian.txt
(also provided in the library directory PBSmapping\extra\).

require(PBSmapping);
isob <- c(100,500,1000,2500,5000);
icol <- rgb(0,0,seq(255,100,len=length(isob)),max=255);

afile <- paste(system.file(package="PBSmapping"),
 "/extra/aleutian.txt",sep="")
aleutian <- read.table(afile, header=F,col.names=c("x","y","z"))
aleutian$x <- aleutian$x - 360
aleutian$z <- -aleutian$z
alBathy <- makeTopography(aleutian)
alCL <- contourLines(alBathy,levels=isob)
alCP <- convCP(alCL)
alPoly <- alCP$PolySet
attr(alPoly,"projection") <- "LL"

plotMap(alPoly,type="n");
addLines(alPoly,col=icol);
data(nepacLL); addPolys(nepacLL,col="gold");
legend(x="topleft",bty="n",col=icol,lwd=2,legend=as.character(isob));

http://topex.ucsd.edu/cgi-bin/get_data.cgi

 –29–

PBSmapping User’s Guide Jun 22, 2017

APPENDIX C. GENERIC MAPPING TOOLS (GMT)

Generic Mapping Tools (GMT) and PBSmapping have many similar features, although
they operate in different environments. We built PBSmapping for the R statistical platform,
whereas Wessel and Smith developed GMT to run as commands for the UNIX operating
system. Each environment imposes limitations on its respective tools. The following discussion
focuses on image types, one of the fundamental areas where the programs differ.

Images are commonly stored in two basic formats, raster and vector. The raster (or bit
map) format uses a grid of squares, where each square is assigned characteristics like colour
and transparency. The image’s resolution, often measured in “dots per inch”, determines the
density of the grid. When this density is less than the resolution of the output device, the image
may appear jagged because distinct squares are visible. Choosing a sufficiently high-resolution
image for an output device may result in a large file size. The vector format stores coordinates
for control points of lines, curves, and other shapes. Scaling algorithms use these coordinates to
produce an image at any specified size with a consistently smooth appearance. In a mapping
context, vector formats are usually preferred over raster formats.

Unlike R, the UNIX environment does not have native support for generating images.
Wessel and Smith decided that GMT programs would output (optionally encapsulated)
postscript files. This vector-based format is more popular in UNIX than Windows and is poorly
supported by some word processors, such as Microsoft Word. On the other hand, PBSmapping
inherits support from the R environment for common raster (e.g., BMP, JPG) and vector
(e.g., WMF) file formats. Users of Windows operating systems may find PBSmapping’s output
somewhat more convenient than that from GMT.

Converting GMT’s postscript output to a better-supported graphics format can be
achieved through the Ghostscript graphical user interface GSview. Through an option in
GSview’s “Edit” menu, the program converts PS files to the popular EMF and WMF vector formats.
However, we obtained somewhat erratic results from this process and had greater success with
raster images produced with the convert option in the “File” menu.

Figure C1 and Figure C2 compare PBSmapping with GMT. We show the code used to
produce these images in both environments. Although one R command can span multiple lines,
one GMT command cannot. For clarity, however, we span GMT commands across multiple
lines in the listing below. In familiar UNIX notation, we indicate spanning by escaping the new-
line character with a backslash (\).

http://www.cs.wisc.edu/%7Eghost/gsview/

 –30–

PBSmapping User’s Guide Jun 22, 2017

Code for Figure C1

R: (Panel A)
data(nepacLL); # load the nepacLL data set
plotMap(nepacLL, # plot the nepacLL data set
 xlim=c(-129.3, -122.2), # limit the region horizontally
 ylim=c(47.5, 51.5), # limit the region vertically
 plt=c(0.16, 0.97, 0.16, 0.97), # specify the plot region size
 col=rgb(255, 255, 195, # set the foreground colour
 maxColorValue=255),
 bg=rgb(224, 253, 254, # set the background colour
 maxColorValue=255),
 tck=c(-0.03), # set the tick mark length
 cex = 1.8, # adjust the font size
 mgp=c(1.9, 0.7, 0)); # adjust the axis label locations

GMT: (Panel B)
gmtset ANOT_FONT_SIZE = 26p # set the annotation font size
pscoast Dh \ # plot the high resolution data set
 -A0/0/1 \ # skip inner polygons (holes)
 -R-129.3/-122.2/47.5/51.5 \ # limit the region horizontally and vertically
 -JM7i \ # use the Mercator projection, 7 inches wide
 -G255/255/195 \ # set the foreground colour
 -S224/253/254 \ # set the background colour
 -Ba2/a1WSne \ # mark every 2 (X) and 1 (Y) degrees on W & S axes
 -W0.5p \ # set the pen width to 0.5 points
 -P \ # portrait mode
 > GMT-VI.ps # output to the postscript file GMT-VI.ps

-128 -126 -124

48
49

50
51

Longitude (°)

La
tit

ud
e

(°
)

Figure C1. (A) Vancouver Island, as plotted in PBSmapping, compared with (B) the same region
as output from GMT.

Code for Figure C2

A B

 –31–

PBSmapping User’s Guide Jun 22, 2017

R: (Panel A)
data(nepacLL); # load the nepacLL data set
plotMap(nepacLL, # plot the nepacLL data set
 xlim=c(-127.89, -125.68), # limit the region horizontally
 ylim=c(47.85, 49.97), # limit the region vertically
 plt=c(0.16, 0.97, 0.16, 0.97), # specify the plot region size
 col=rgb(255, 255, 195, # set the foreground colour
 maxColorValue=255),
 bg=rgb(224, 253, 254, # set the background colour
 maxColorValue=255),
 tck=c(-0.03), # set the tick mark length
 cex=1.8, # adjust the font size
 mgp=c(1.9, 0.7, 0)); # adjust the axis label locations
data(towTracks); # load the towTracks data set
addLines(towTracks, # add the towTracks data set
 col=rgb(255, 0, 0, # set the colour
 maxColorValue=255),
 lwd=0.5); # set the line width

GMT: (Panel B)
gmtset ANOT_FONT_SIZE = 20p # set the annotation font size
pscoast -Dh \ # plot the high resolution data set
 -R-127.89/-125.68/47.85/49.97 \ # limit the region horizontally and vertically
 -JM5i \ # use the Mercator projection, 5 inches wide
 -G255/255/195 \ # set the foreground colour
 -S224/253/254 \ # set the background colour
 -Ba0.5/a0.5WSne \ # mark every 0.5 (X) and 0.5 (Y) degr. on W&S axes
 -W0.5p \ # set the pen width to 0.5 points
 -P \ # portrait mode
 -K \ # allow for appending more plot code
 > GMT-Tow.ps # output to the postscript file GMT-Tow.ps
psxy -R-127.89/-125.68/47.85/49.97 \ # limit the region
 -JM5i \ # add using the Mercator projection, 5 inches wide
 -W0.5p/255/0/0 \ # set the pen width to 0.5 points and set the colour
 -M \ # ASCII file contains multiple polylines
 -H0 \ # ASCII file does not contain a header
 -O \ # overlay; lay plot on top of earlier one
 < GMT-Tow.txt \ # input ASCII file GMT-Tow.txt
 >> GMT-Tow.ps # append output to the postscript file GMT-Tow.ps

 –32–

PBSmapping User’s Guide Jun 22, 2017

-127.5 -127 -126.5 -126

48
48

.5
49

49
.5

Longitude (°)

La
tit

ud
e

(°
)

Figure C2. Tow tracks off the west coast of Vancouver Island drawn by (A) PBSmapping
(B) GMT produced (B).

Format of GMT-tow.txt:
> # a ‘>’ signifies the start of each polyline
-126.26545 48.523133 # vertices follow: X coordinate, white space, Y
coordinate
-126.265233 48.523716
-126.265183 48.524283
…
>
-126.385483 48.532567
-126.3861 48.5327
-126.3868 48.53285
…

B A

 –33–

PBSmapping User’s Guide Jun 22, 2017

APPENDIX D. SOURCE CODE FOR FIGURES

To help beginners use PBSmapping, we include source code for all figures in this report. A
global function .PBSclr provides the colours for the examples, and default dots and dashes are
provided by .PBSdot and .PBSdash, respectively. These objects are exported from the
NAMESPACE and are globally available once PBSmapping is loaded.

Global colours, dots, and dashes

Figures for PBSmapping examples (last modified: 2013-04-10)
#--
Historical values for compatibilityy with S-Plus (defunct)
.PBSdot <- 3; .PBSdash <- 2
.PBSclr <- function(){
 PBSclr = list(black=c(0,0,0),
 sea=c(224,253,254), land=c(255,255,195), red=c(255,0,0),
 green=c(0,255,0), blue=c(0,0,255), yellow=c(255,255,0),
 cyan=c(0,255,255), magenta=c(255,0,255), purple=c(150,0,150),
 lettuce=c(205,241,203), moss=c(132,221,124), irish=c(54,182,48),
 forest=c(29,98,27), white=c(255,255,255), fog=c(223,223,223))
 PBSclr <- lapply(PBSclr,function(v) {rgb(v[1],v[2],v[3],maxColorValue=255) })
 return(PBSclr) }

Figure 1 – World UTM Zones

.PBSfig01 <- function() { # World UTM Zones
 clr <- .PBSclr()
 data(worldLL,nepacLL,envir=sys.frame(sys.nframe()))
 par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------
 plotMap(worldLL, ylim=c(-90, 90), bg=clr$sea, col=clr$land, tck=-0.023,
 mgp=c(1.9, 0.7, 0), cex=1.2, plt=c(.08,.98,.08,.98))
 # add UTM zone boundaries
 abline(v=seq(-18, 360, by=6), lty=1, col=clr$red)
 # add prime meridian
 abline(v=0, lty=1, lwd=2, col=clr$black)
 # calculate the limits of the 'nepacLL' PolySet
 xlim <- range(nepacLL$X) + 360
 ylim <- range(nepacLL$Y)
 # create and then add the 'nepacLL' rectangle
 region <- data.frame(PID=rep(1,4), POS=1:4, X=c(xlim[1],xlim[2],xlim[2],xlim[1]),
 Y=c(ylim[1],ylim[1],ylim[2],ylim[2]))
 region <- as.PolySet(region, projection="LL")
 addPolys(region, lwd=2, border=clr$blue, density=0)
 # add labels for some UTM zones
 text(x=seq(183.2, by=6, length=9), y=rep(85,9), adj=0.5, cex=0.65, label=1:9)
 box() }

Figure 2 – nepacLL UTM Zones in LL Space
.PBSfig02 <- function() { # nepacLL UTM Zones in LL Space
 clr <- .PBSclr(); dot <- .PBSdot
 data(nepacLL,envir=sys.frame(sys.nframe()))
 par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------
 plotMap(nepacLL, col=clr$land, bg=clr$sea, tck=-0.014,
 mgp=c(1.9,0.7,0), cex=1.2, plt=c(.08,.98,.08,.98))
 # add lines separating UTM zones
 utms <- seq(-186, -110, 6)
 abline(v=utms, col=clr$red)
 # add the central meridian of zone 6
 abline(v=-147, lty=dot, col=clr$black)
 # create and then add labels for the UTM zones
 cutm <- diff(utms) / 2
 nzon <- length(cutm)

 –34–

PBSmapping User’s Guide Jun 22, 2017

 cutm <- cutm + utms[1:nzon]
 text(cutm,rep(50.75,nzon),c(60,1:(nzon-1)),cex=1.3,col=clr$red)
 box() }

Figure 3 – nepacLL UTM Zones in UTM Space

.PBSfig03 <- function() { # nepacLL UTM Zones in UTM Space
 clr <- .PBSclr(); dot <- .PBSdot
 data(nepacLL,envir=sys.frame(sys.nframe()))
 zone <- 6; xlim <- range(nepacLL$X); ylim <- range(nepacLL$Y)
 utms <- seq(-186,-110,6) #'utms' vector for creating PolySet and EventData below
 # create UTM zones
 lutms <- data.frame(PID=rep(1:length(utms), each=2),
 POS=rep(c(1,2), times=length(utms)), X=rep(utms,each=2),
 Y = rep(c(ylim[1], ylim[2]), times=length(utms)))
 lutms <- as.PolySet(lutms, projection="LL", zone=zone)
 lutms <- thickenPolys(lutms, tol=25, close=FALSE)
 uutms <- convUL(lutms)
 # create label locations (central meridians)
 lcms <- data.frame(EID=1:(length(diff(utms)/2)),
 X=utms[1:(length(utms)-1)]+diff(utms)/2,
 Y=rep(50.75, length(diff(utms)/2)))
 lcms <- as.EventData(lcms, projection="LL", zone=zone)
 ucms <- convUL(lcms)
 nepacUTM <- nepacLL; attr(nepacUTM,"zone") <- zone # convert to correct zone
 nepacUTM <- convUL(nepacUTM)
 par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------
 plotMap(nepacUTM, col=clr$land, bg=clr$sea, tck=-0.017,
 mgp=c(1.9,0.7,0), cex=1.0, plt=c(0.07,0.97,0.07,0.98))
 addLines(uutms, col=clr$red)
 lines(x=c(500, 500),y=c(4100,7940),lty=dot,col=clr$black)
 text(ucms$X,ucms$Y,c(60,1:(length(utms)-2)),cex=1.3,col=clr$red)
 box() }

Figure 4 – thinPolys on Vancouver Island

.PBSfig04 <- function() { # thinPolys on Vancouver Island
 clr <- .PBSclr();
 data(nepacLL,envir=sys.frame(sys.nframe()))
 par(mfrow=c(1,2),omi=c(0,0,0,0)) #------Plot-the-figure------
 vi <- nepacLL[nepacLL$PID==33,]
 xlim <- range(vi$X) + c(-0.25, 0.25); ylim <- range(vi$Y) + c(-0.25, 0.25)
 # plot left figure (normal Vancouver Island)
 plotMap(vi, xlim, ylim, col=clr$land, bg=clr$sea, tck=-0.028,
 mgp=c(1.9,0.7,0), cex=1.0, plt=c(0.14,1.00,0.07,0.97))
 text(x=xlim[2]-0.5, y=ylim[2]-0.3, "A", cex=1.6)
 # plot right figure (thinned Vancouver Island)
 plotMap(thinPolys(vi, tol=10), xlim, ylim, col=clr$land, bg=clr$sea,
 tck=c(-0.028, 0), tckLab=c(TRUE, FALSE),
 mgp=c(1.9, 0.7, 0), cex=1.0, plt=c(0.00, 0.86, 0.07, 0.97))
 text(x=xlim[2]-0.5, y=ylim[2]-0.3, "B", cex=1.6)
 box() }

 –35–

PBSmapping User’s Guide Jun 22, 2017

Figure 5 – joinPolys on Crescents
.PBSfig05 <- function() { # joinPolys on Crescents
 clr <- .PBSclr(); dash <- .PBSdash
 radius <- c(5, 4) # two radii of the circles
 size <- abs(diff(radius)) + 0.1 # size of crescent
 shiftB <- 3.5 # distance to shift second crescent
 pts <- 120 # points in outer circle
 cex <- 1.0 # character expansion for labels
 off <- 1.2 # panel label offset
 xlim <- c(0, radius[1]*2 + shiftB) + c(-1,1)
 ylim <- c(0, radius[1]*2) + c(-2,1)
 Mmin <- .10 # minimum OMI
 Rdin <- par()$din[2]/par()$din[1]
 Rfig <- (3*diff(ylim))/(2*diff(xlim))
 if (Rdin > Rfig) {
 width <- par()$din[1] - 2 * Mmin
 height <- width * (3*diff(ylim))/(2*diff(xlim))
 Mmax <- (par()$din[2] - height) / 2
 parOmi <- c(Mmax,Mmin,Mmax,Mmin) }
 else {
 height <- par()$din[2] - 2 * Mmin
 width <- height * (2*diff(xlim))/(3*diff(ylim))
 Mmax <- (par()$din[1] - width) / 2
 parOmi <- c(Mmin,Mmax,Mmin,Mmax) }
 polyA <- list()
 for (i in 1:length(radius)) {
 polyA[[i]] <- as.PolySet(data.frame(PID=rep(1,pts), POS = 1:pts,
 X =radius[i]*cos(seq(0, 2*pi, len=pts)),
 Y =radius[i]*sin(seq(0, 2*pi, len=pts))), projection = 1)
 polyA[[i]][, c("X","Y")] <- polyA[[i]][, c("X","Y")] + radius[i] }
 # centre B within A
 polyA[[2]][,c("X","Y")] <- polyA[[2]][,c("X","Y")] + (radius[1]-radius[2])
 # shift B right
 polyA[[2]]$X <- polyA[[2]]$X + size
 # create 'polysA' and 'polysB'
 polyA <- as.PolySet(joinPolys(polyA[[1]], polyA[[2]], operation="DIFF"), projection=1)
 polyB <- polyA
 polyB$X<- abs(polyB$X - (radius[1] * 2)) + shiftB
 par(mfrow=c(3,2),mai=c(0,0,0,0),omi=parOmi) #------Plot-the-figure------
 lab <- list()
 lab$text <- c("Polygon A", "Polygon B", "A \"INT\" B","A \"UNION\" B",
 "A \"DIFF\" B", "A \"XOR\" B")
 lab$cex <- rep(cex, 6); lab$x <- rep(mean(xlim), 6); lab$y <- rep(-0.8, 6)
 # panel A: polyA
 plotMap(polyA,xlim=xlim,ylim=ylim,xlab="",ylab="",axes=FALSE,col=clr$red,plt=NULL)
 text(lab$text[1], x=lab$x[1], y=lab$y[1], cex=lab$cex[1])
 text(xlim[1]+off, ylim[2]-off, "A", cex=1.6); box()
 # panel B: polyB
 plotMap(polyB,xlim=xlim,ylim=ylim,xlab="",ylab="",axes=FALSE,col=clr$blue,plt=NULL)
 text(lab$text[2], x=lab$x[2], y=lab$y[2], cex=lab$cex[2])
 text(xlim[1]+off, ylim[2]-off, "B", cex=1.6); box()
 # panels C to F
 ops <- c(NA, NA, "INT", "UNION", "DIFF", "XOR")
 cols <- c(NA, NA, clrred, clrpurple, clrred, clrmagenta)
 panel <- c(NA, NA, "C", "D", "E", "F")
 for (i in 3:6) {
 plotMap(NULL,xlim=xlim,ylim=ylim,projection=1,xlab="",ylab="",axes=FALSE,plt=NULL)
 addPolys(polyA, border=clr$red, lty=dash)
 addPolys(polyB, border=clr$blue, lty=dash)
 addPolys(joinPolys(polyA, polyB, operation=ops[i]), col=cols[i])
 text(lab$text[i], x=lab$x[i], y=lab$y[i], cex=lab$cex[i])
 text(xlim[1]+off, ylim[2]-off, panel[i], cex=1.6); box(); } }

 –36–

PBSmapping User’s Guide Jun 22, 2017

Figure 6 – contourLines in Queen Charlotte Sound

.PBSfig06 <- function() { # contourLines in Queen Charlotte Sound
 clr <- .PBSclr();
 data(nepacLL,bcBathymetry,envir=sys.frame(sys.nframe()));
 isob <- contourLines(bcBathymetry, levels=c(250, 1000))
 p <- convCP(isob)
 attr(p$PolySet,"projection") <- "LL"
 p$PolyData$col <- rep(c(clrred, clrgreen, clr$blue, clr$yellow,
 clr$cyan, clr$magenta, clr$fog), length=nrow(p$PolyData))
 xlim <- c(-131.8382, -128.2188)
 ylim <- c(50.42407, 53.232476)
 region <- clipPolys(nepacLL, xlim=xlim, ylim=ylim)
 par(mfrow=c(1,1),omi=c(0,0,0,0)) #-----Plot-the-figure------
 plotMap(region, xlim=xlim, ylim=ylim, col=clr$land, bg=clr$sea, tck=-0.02,
 mgp=c(2,.75,0), cex=1.2, plt=c(.08,.98,.08,.98))
 addLines(p$PolySet, polyProps=p$PolyData, lwd=3)
 box() }

Figure 7 – towTracks from Longspine Thornyhead Survey

.PBSfig07 <- function() { # towTracks from Longspine Thornyhead Survey
 clr <- .PBSclr();
 data(nepacLL,towTracks,towData,envir=sys.frame(sys.nframe()));
 # add a colour column 'col' to 'towData'
 pdata <- towData; pdata$Z <- pdata$dep
 pdata <- makeProps(pdata, breaks=c(500,800,1200,1600), "col",
 c(clr$black, clr$red, clr$blue))
 par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------
 plotMap(nepacLL, col=clr$land, bg=clr$sea, xlim=c(-127.8,-125.5), ylim=c(48,49.8),
 tck=-0.01, mgp=c(2,.5,0), cex=1.2, plt=c(.08,1,.08,.98))
 addLines(towTracks, polyProps=pdata, lwd=3)
 # right-justify the legend labels
 temp <- legend(x=-127.6, y=48.4, legend=c(" "," "," "), lwd=3, bty="n",
 text.width=strwidth("1200-1600 m"), col=c(clr$black,clr$red,clr$blue))
 text(temp$rect$left+temp$rect$w, temp$text$y,
 c("500-800 m", "800-1200 m", "1200-1600 m"), pos=2)
 text(temp$rect$left+temp$rect$w/2,temp$rect$top,pos=3,"LTS Survey Tracks");
 text(-125.6,49.7,"Vancouver\nIsland",cex=1.2,adj=1)
 box() }

Figure 8 – calcArea of the Southern Gulf Islands

.PBSfig08 <- function() { # calcArea of the Southern Gulf Islands
 clr <- .PBSclr();
 data (nepacLLhigh,envir=sys.frame(sys.nframe()))
 xlim <- c(-123.6, -122.95); ylim <- c(48.4, 49); zone <- 9
 # assign 'nepacLLhigh' to 'nepacUTMhigh' (S62) and change to UTM coordinates
 nepacUTMhigh <- nepacLLhigh; attr(nepacUTMhigh,"zone") <- zone
 nepacUTMhigh <- convUL(nepacUTMhigh)
 # convert limits to UTM
 temp <- data.frame(PID=1:4,POS=rep(1,4),X=c(xlim,xlim),Y=c(ylim,rev(ylim)))
 temp <- convUL(as.PolySet(temp, projection="LL", zone=zone))
 xlim <- range(temp$X); ylim <- range(temp$Y)
 # prepare areas
 isles <- clipPolys(nepacUTMhigh,xlim,ylim)
 areas <- calcArea(isles);
 # PIDs and labels for Gulf Islands
 bigPID <- areas[rev(order(areas$area)),][c(2:4,6:8),"PID"];
 labelData <- data.frame(PID = bigPID,
 label=c("Saltspring","San Juan","Galiano","Saturna","N Pender","Mayne"))
 labelData <- merge(labelData, areas, all.x=TRUE)
 labelData$label <- paste(as.character(labelData$label),

 –37–

PBSmapping User’s Guide Jun 22, 2017

 round(labelData$area), sep="\n")
 par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------
 plotMap(isles, col=clr$land, bg=clr$sea, tck=-.010,
 mgp=c(1.9,.7,0), cex=1, plt=c(.07,.98,.07,.98))
 # add the highlighted Gulf Islands
 bigisles <- isles[is.element(isles$PID,labelData$PID),]
 addPolys(bigisles,col=clr$yellow)
 labXY <- calcCentroid(isles)
 labXY$Y<- labXY$Y + 2 # centre vertically
 labelData <- merge(labelData, labXY, all.x = TRUE)
 attr(labelData,"projection") <- "UTM"
 addLabels(labelData, placement="DATA", cex=1.25)
 text(898,5385,"Vancouver Island",adj=0, cex=1.25)
 text(925,5435,"Strait of Georgia",adj=0, cex=1.25) }

Figure 9 – combineEvents in Queen Charlotte Sound

.PBSfig09 <- function() { # combineEvents in Queen Charlotte Sound
 clr <- .PBSclr();
 data(nepacLL,surveyData,envir=sys.frame(sys.nframe()));
 events <- surveyData
 xl <- c(-131.8, -127.2); yl <- c(50.5, 52.7)
 # prepare EventData; clip it, omit NA entries, and calculate CPUE
 events <- events[events$X >= xl[1] & events$X <= xl[2] &
 events$Y >= yl[1] & events$Y <= yl[2],]
 events <- na.omit(events)
 events$cpue <- events$catch/(events$effort/60)
 # make a grid for the Queen Charlotte Sound
 grid <- makeGrid(x=seq(-131.6,-127.6,.1), y=seq(50.6,52.6,.1),
 projection="LL", zone=9)
 # locate EventData in grid
 locData<- findCells(events, grid)
 events$Z <- events$cpue
 pdata <- combineEvents(events, locData, FUN=mean)
 brks <- c(0,50,300,750,1500,25000); lbrks <- length(brks)
 cols <- c(clr$lettuce, clr$moss, clr$irish, clr$forest, clr$black)
 pdata <- makeProps(pdata, brks, "col", cols)
 par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------
 plotMap(nepacLL, col=clr$land, bg=clr$sea, xlim=xl, ylim=yl, tck=-0.015,
 mgp=c(2,.5,0), cex=1.2, plt=c(.08,.98,.08,.98))
 addPolys(grid, polyProps=pdata)
 for (i in 1:nrow(events)) {
 # plot one point at a time for clarity
 points(events$X[i], events$Y[i], pch=16,cex=0.50,col=clr$white)
 points(events$X[i], events$Y[i], pch=1, cex=0.55,col=clr$black) }
 yrtxt <- paste("(",min(events$year),"-",
 substring(max(events$year),3),")",sep="")
 text(xl[1]+.5,yl[2]-.1,paste("POP Surveys",yrtxt),cex=1.2,adj=0)
 # add a legend; right-justify the legend labels
 temp <- legend(x=xl[1]+.3, y=yl[1]+.7, legend = rep(" ", 5),
 text.width=strwidth("1500 - 25000"), bty="n", fill=cols)
 text(temp$rect$left + temp$rect$w, temp$text$y, pos=2,
 paste(brks[1:(lbrks-1)],brks[2:lbrks], sep=" - "))
 text(temp$rect$left+temp$rect$w/2,temp$rect$top,pos=3,"CPUE (kg/h)",cex=1); }

Figure 10 – Pythagoras' Theorem Visualized

.PBSfig10 <- function() { # Pythagoras' Theorem Visualized
 clr <- .PBSclr();
 data(pythagoras,envir=sys.frame(sys.nframe()))
 # create properties for colouring the polygons
 pythProps <- data.frame(PID=c(1, 6:13, 4, 15, 3, 5, 2, 14),

 –38–

PBSmapping User’s Guide Jun 22, 2017

 Z=c(rep(1, 9), rep(2, 2), rep(3, 2), rep(4, 2)))
 pythProps <- makeProps(pythProps, c(0, 1.1, 2.1, 3.1, 4.1), "col",
 c(clr$blue, clr$red, clr$yellow, clr$green))
 par(mfrow=c(1,1),omi=c(0,0,0,0)) #------Plot-the-figure------
 plotMap(pythagoras, plt=c(.01,.99,.01,.95), lwd=2,
 xlim=c(.09,1.91), ylim=c(0.19,2.86), polyProps=pythProps,
 axes=FALSE, xlab="", ylab="", main="Pythagoras' Theorem: a\262 + b\262 = c\262")
 text(x = 0.1, y = 1.19, adj=0, "Proof:")
 text(x = 0.1, y = 1.10, adj=0,
 "(a + b)\262 = 4 triangles + a\262 + b\262 = 4 triangles + c\262")
 labels <- data.frame(X=c(1.02,1.66,0.65),Y=c(1.50,2.20,2.76),label=c("a","b","c"))
 text(labels$X, labels$Y, as.character(labels$label), cex=1.2)
 text(1.03, 1.81, "a\262", cex=1.2, col=clr$black)
 text(1.43, 2.21, "b\262", cex=1.2, col=clr$black)
 text(0.87, 2.46, "c\262", cex=1.2, col=clr$black) }

Run command file “PBSfigs.r”

.PBSfigs <- function(nfigs=1:10) { # Draw all figures with numbers in nfigs
 #while (!is.null(dev.list())) dev.off(dev.cur())
 for (i in nfigs) {
 figStr <- paste(".PBSfig",ifelse(i<10,"0",""),i,sep="")
 get(figStr)();
 cat(figStr); readline(); } }

 –39–

PBSmapping User’s Guide Jun 22, 2017

APPENDIX E. PBSMAPPING FUNCTION DEPENDENCIES

This appendix documents function dependencies within PBSmapping. All functions appear
as underlined entries in the alphabetic list. If a function depends on others, the list of
dependencies appears below the underlined name. Following a standard in UNIX and R,
functions whose name begins with a period (dot functions) are considered hidden from the user,
who would normally use only the non-hidden functions that call them. The names here apply
primarily to the R working environment, but functions designated ‘(C)’ are implemented in C
source code and compiled in the DLL for the mapping package. R invokes these functions with
the call .C(…). Functions designated ‘(S)’ exist as sub-functions only within the R function.

.addAxis

.addAxis2

.addBubblesLegend

.addCorners
calcConvexHull

.addFeature
.addProps
.validatePolyProps

.addLabels

.addProps

.calcDist

.calcOrientation
calcOrientation (C)

.checkClipLimits

.checkProjection

.checkRDeps

.clip
clip (C)
extractPolyData

.closestPoint

.createFastIDdig

.createGridIDs

.createIDs
.createFastIDdig

.expandEdges
.closestPoint
calcConvexHull

.fixGSHHSWorld
findPolys
fixPOS

.getBasename

.getGridPars
makeGrid

.initPlotRegion

.insertNAs

.mat2df

.plotMaps
.addAxis
.addLabels
.initPlotRegion
.validateXYData
addLines
addPoints
addPolys

.preparePolyProps
.createIDs
.validatePolyData

.rollupPolys
rollupPolys (C)

.validateData
.createIDs

.validateEventData
.validateData

.validateLocationSet
.validateData

.validatePolyData
.validateData

.validatePolyProps
.validateData

.validatePolySet

.validateData

.validateXYData
.validateData

 – 40 –

PBSmapping User’s Guide Jun 22, 2017

addBubbles
.addBubblesLegend
.validateEventData

addCompass
as.EventData
calcGCdist

addLabels
.addFeature
.checkProjection
.validateEventData
.validatePolyData
.validatePolySet
calcCentroid
calcMidRange
calcSummary
is.EventData
is.PolyData

addLines
.addProps
.checkProjection
.clip
.createFastIDdig
.createIDs
.preparePolyProps
.validatePolyProps
.validatePolySet
is.PolyData

addPoints
.addFeature
.checkProjection
.validateEventData
.validatePolyData
is.PolyData

addPolys
.addProps
.checkProjection
.clip
.createFastIDdig
.createIDs
.preparePolyProps
.rollupPolys
.validatePolyProps
.validatePolySet
is.PolyData

addStipples
.addFeature
.checkProjection
.clip
.validatePolySet
findPolys
is.PolyData
thickenPolys

as.EventData
.validateEventData
is.EventData

as.LocationSet
.validateLocationSet
is.LocationSet

as.PolyData
.validatePolyData
is.PolyData

as.PolySet
.validatePolySet
is.PolySet

calcArea
.rollupPolys
.validatePolySet
calcArea (C)
convUL
is.PolyData

calcCentroid
.rollupPolys
.validatePolySet
calcCentroid (C)
is.PolyData

calcConvexHull
.validateXYData
grDevices::chull
is.PolySet

calcGCdist

calcLength
.validatePolySet
.rollupPolys
.calcDist
.createIDs

calcMidRange
.validatePolySet
calcSummary
is.PolyData

calcSummary
.createIDs
.rollupPolys
.validatePolySet
is.PolyData

calcVoronoi
.checkRDeps
.validateXYData
deldir::deldir
.addCorners
.expandEdges

clipLines
.clip
.validatePolySet
is.PolySet

clipPolys
.clip
.validatePolySet
is.PolySet

closePolys
.validatePolySet
closePolys (C)
is.PolySet

combineEvents
.validateEventData
is.PolyData

combinePolys
.validatePolySet
.createIDs

convCP
is.PolyData

convDP
.validatePolyData
is.PolySet

convLP
.validatePolySet
is.PolySet

convUL
.validateXYData
convUL (C)

dividePolys
.validatePolySet
.createIDs

extractPolyData
.createIDs
.validatePolySet
is.PolyData

findCells
.validateEventData
.validatePolySet
findCells (C)
is.LocationSet

findPolys
.validateEventData
.validatePolySet
findPolys (C)
is.LocationSet

 – 41 –

PBSmapping User’s Guide Jun 22, 2017

fixBound
.validatePolySet
is.PolySet

fixPOS
.rollupPolys
.validatePolySet
is.PolySet

importEvents
as.EventData

importGSHHS
checkClipLimits
importGSHHS (C)

importLocs
as.LocationSet

importPolys
as.PolySet
as.PolyData

importShapefile
.checkRDeps
.getBasename
maptools:Rshapeget (C)
.calcOrientation
foreign:read.dbf

is.EventData
.validateEventData

is.LocationSet
.validateLocationSet

is.PolyData
.validatePolyData

is.PolySet
.validatePolySet

isConvex
.validatePolySet
is.PolyData
isConvex (C)

isIntersecting
.validatePolySet
is.PolyData
isIntersecting (C)

joinPolys
.validatePolySet
is.PolySet
joinPolys (C)

locateEvents
is.EventData

locatePolys
.validatePolyData
is.PolySet

makeGrid
is.PolySet

makeProps
.validatePolyData
is.PolyData

makeTopography

placeHoles
.calcOrientation
.checkRDeps

plotLines
.plotMaps
is.PolyData

plotMap
.plotMaps
is.PolyData

plotPoints
.plotMaps
is.PolyData

plotPolys
.plotMaps
is.PolyData

print.EventData
summary.EventData

print.LocationSet
summary.LocationSet

print.PolyData
summary.PolyData

print.PolySet
summary.PolySet

print.summary.PBS

refocusWorld
.createIDs
.shiftRegion (S)
.validatePolySet

summary.EventData

summary.LocationSet
.createIDs

summary.PolyData
.createIDs

summary.PolySet
.createIDs

thickenPolys
.calcDist
.createIDs
.validatePolySet
is.PolySet
thickenPolys (C)

thinPolys
.validatePolySet
is.PolySet
thinPolys (C)

 – 42 –

PBSmapping User’s Guide Jun 22, 2017

APPENDIX F. PBSMAPPING FUNCTIONS AND DATA

This appendix documents the objects (functions and data) available in PBSmapping.
Subsequent pages give indexed technical documentation for every object generated from *.Rd
files written for the R documentation system. The package PBSmodelling includes a directory
called PBStools\ that contains useful batch files for building R packages, including the creation
of the indexed manual included after Table F1.

Table F1. Functions and data sets in PBSmapping, arranged alphabetically within categories.

Category Object Description
User constant PBSprint Specify whether to print summaries

Import importEvents Import a text file and convert into EventData
 functions importLocs Import a text file and convert into a LocationSet
 importPolys Import a text file and convert into a PolySet
 importGSHHS Import data from a GSHHS database
 importShapefile Import an ESRI shapefile

Plotting addBubbles Add bubbles to maps
 functions addCompass Add a compass rose to an existing map
 addLabels Add labels to an existing plot
 addLines Add a PolySet to an existing plot as polylines
 addPoints Add EventData/PolyData to an existing plot as points
 addPolys Add a PolySet to an existing plot as polygons
 addStipples Add stipples to an existing plot
 plotLines Plot a PolySet as polylines
 plotMap Plot a PolySet as a map
 plotPoints Plot EventData/PolyData as points
 plotPolys Plot a PolySet as polygons

Computational appendPolys Append a two-column matrix to a PolySet
 functions calcArea Calculate the areas of polygons
 calcCentroid Calculate the centroids of polygons
 calcConvexHull Calculate the convex hull for a set of points
 calcGCdist Calculate great-circle distance between LL coordinates.
 calcLength Calculate the length of polylines
 calcMidRange Calculate midpoints of the X and Y ranges for polygons
 calcSummary Apply functions to polygons in a PolySet
 calcVoronoi Calculate Voronoi tesselation for a set of points
 clipLines Clip a PolySet as polylines
 clipPolys Clip a PolySet as polygons
 closePolys Close a PolySet
 combineEvents Combine measurements of events in same polygon
 combinePolys Combine several polygons into a single polygon
 convCP Convert results from contourlines into PolySet
 convDP Convert EventData/PolyData into a PolySet
 convLP Convert polylines into a polygon
 convUL Convert coordinates between UTM/LL projections
 dividePolys Divide a single polygon into several polygons
 extractPolyData Extract PolyData from a PolySet
 findCells Find cells in a grid that contain events in EventData
 findPolys Find polygons that contain events in EventData
 fixBound Fix the boundary points of a PolySet
 fixPOS Fix the POS column of a PolySet
 isConvex Determine whether polygons are convex
 isIntersecting Determine whether polygons are self-intersecting

 – 43 –

PBSmapping User’s Guide Jun 22, 2017

Category Object Description
 joinPolys Join one or two PolySets using a set theoretic operation
 locateEvents Locate events on the current plot
 locatePolys Locate polygons on the current plot
 makeGrid Make a grid of polygons
 makeProps Make polygon properties
 makeTopography Make topography data from freely available online data
 placeHoles Place holes under correct solids
 refocusWorld Refocus the worldLL / worldLLhigh data sets
 thickenPolys Thicken a PolySet of polygons
 thinPolys Thin a PolySet of polygons

Object-related as. Coerce a data frame to an object with class:
 functions EventData EventData
 LocationSet LocationSet
 PolyData PolyData
 PolySet PolySet
 is. Determine whether an object is:
 EventData EventData
 LocationSet a LocationSet
 PolyData PolyData
 PolySet a PolySet
 print. Print:
 EventData an EventData object
 LocationSet a LocationSet object
 PolyData a PolyData object
 PolySet a PolySet object
 summary.PBS the summary of a PBSmapping object
 summary. Summarize:
 EventData EventData
 LocationSet a LocationSet
 PolyData PolyData
 PolySet a PolySet

Data sets bcBathymetry Bathymetry data spanning British Columbia’s coast
 nepacLL Northeast Pacific shoreline (normal resolution)
 nepacLLhigh Northeast Pacific shoreline (high resolution)
 pythagoras Pythagoras’ theorem diagram PolySet
 surveyData Survey data
 towData Tow data
 towTracks Tow track polyline data
 worldLL World ocean shoreline (normal resolution)
 worldLLhigh World ocean shoreline (high resolution)

	Abstract
	Résumé
	Preface
	1. Introduction
	1.1. Software Installation

	2. Functions and Data
	2.1. Data Structures for Maps
	2.1.1. PolySet
	2.1.2. PolyData
	2.1.3. EventData
	2.1.4. LocationSet

	2.2. Map Projections
	2.3. PBSmapping Functions and Algorithms
	2.3.1. Import Functions
	2.3.2. Graphics Functions
	2.3.3. Computational Functions
	2.3.4. Associating Points with Polygons
	2.3.5. Set Theoretic Operations

	2.4. Shoreline Data
	2.5. Bathymetry Data
	2.6. Examples and Applications
	2.7. Strengths, Limitations, and Alternatives

	3. Command Line Utilities
	3.1. clipPolys.exe (Clip Polygons)
	3.2. convUL.exe (Convert between UTM and LL)
	3.3. findPolys.exe (Points-in-Polygons)

	Acknowledgements
	References
	Appendix A. PBSdata package
	Appendix B. Bathymetry Data
	Appendix C. Generic Mapping Tools (GMT)
	Appendix D. Source Code for Figures
	Appendix E. PBSmapping Function Dependencies
	Appendix F. PBSmapping Functions and Data

