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1 Overview

The goal of the OmicNavigator software is to facilitate the interactive exploration of
the results from an omics experiment. Using OmicNavigator, any bioinformatician
familiar with the basics of the R programming language can create and share a high-
quality, comprehensive dashboard for interactive investigation of the patterns and
signals in the data.

The steps include:

1. The bioinformatician analyzes the data from the omics experiment. This can
be done in R or any other platform (e.g. Array Studio).

2. The bioinformatician registers the results using the OmicNavigator R functions.
If the results were produced outside of R, they will need to be exported to �les,
and then imported into R.

3. The bioinformatician uses OmicNavigator to export the analysis results to a
study package and install it.

4. The bioinformatician can run the app locally or deploy it on a server.
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5. If the app is deployed, collaborators can access the dashboard directly in their
web browser.

2 Structure of analysis results

Before you start registering your data with OmicNavigator, it will be helpful to have
a high-level understanding of how OmicNavigator de�nes the main components of the
analysis results and how they relate to each other.

2.1 A study and its models

The largest unit of organization is the study. This corresponds to all the experiments
performed and analyses conducted in order to address a scienti�c question. A study
should contain all the relevant results that someone would need to evaluate the scien-
ti�c question. In more practical terms, any analyses that uses overlapping biological
samples should be included in the same study (e.g. if you measured transcript and
protein levels in the same samples).

A study has one or more models. The models can be very di�erent (one model for
transcript levels and another for protein levels) or very similar (same exact input data
but di�erential expression performed with two di�erent software packages).

study

model 1 model 2

example 1

transcript protein

example 2

edgeR DESeq2

2.2 Di�erential expression results

One of the primary type of results that OmicNavigator displays for interactive in-
vestigation is the statistical results from a di�erential expression analysis. Here �dif-
ferential expression� is broadly de�ned, e.g. this could be di�erential methylation or
any other molecular phenotype.
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Each model has one or more tests. Each test (also commonly referred to as a contrast)
refers to the statistical results from testing a single coe�cient (or a combination of
coe�cients) from the model.

For example, a model that compares cases versus controls will only have one test:

model: cases vs controls test: cases vs controls

A model that compares a control versus two di�erent treatments will likely have two
tests:

model: cases vs 2 treatments

test: treatment 1 vs controls

test: treatment 2 vs controls

And a model that compares three distinct groups will likely have 3 tests (since
(
3
2

)
= 3

pairwise comparisons):
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model: 3 groups

test: group 1 vs group 2

test: group 2 vs group 3

test: group 1 vs group 3

2.3 Enrichment analysis

A typical systems biology analysis to perform after a di�erential expression analysis
is to test for enrichment of the di�erentially expressed features in terms from curated
annotation databases (e.g. KEGG, Reactome). The OmicNavigator app provides a
table, network, and various other visualizations to explore the output of enrichment
analyses.

Similar to the di�erential expression results, enrichment analyses are also added per
model and per test. However, there is also the additional category of the annotation
database that was used for the enrichment (e.g. KEGG, Reactome). Thus each
enrichments table corresponds to a given study-annotation-test combination.

For example, imagine that enrichment analyses were performed with the KEGG and
Reactome annotations. A model that compares cases versus controls will have two
enrichments tables:

test: cases vs controls

test: cases vs controls

model: cases vs controls

annotation: KEGG

annotation: Reactome

A model that compares a control versus two di�erent treatments will have four en-
richment tables, 2 for each of the tests:
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test: treatment 1 vs controls

test: treatment 2 vs controls

test: treatment 1 vs controls

test: treatment 2 vs controls

model: cases vs 2 treatments

annotation: KEGG

annotation: Reactome

And a model that compares three distinct groups will have 6 enrichment tables, 2 for
each of the 3 tests:

test: group 1 vs group 2

test: group 2 vs group 3

test: group 1 vs group 3

test: group 1 vs group 2

test: group 2 vs group 3

test: group 1 vs group 3

model: 3 groups

annotation: KEGG

annotation: Reactome

2.4 Additional information

The primary data sets are the di�erential expression results and the enrichments
results. However, the more information you supply about the experimental data, the
more details will be included in the app.

For example, you can include metadata about the features, metadata about the sam-
ples, or the individual assay measurements (expression, methylation, phosphorylation,
etc.).
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This additional metadata can be added per model (e.g. di�erent feature metadata for
RNA versus protein measurements) or shared across models (e.g. if the same samples
are used in each model).

3 Step-by-step example

Now it's time to convert your results into an OmicNavigator study! Below you will
see how to:

1. Create a new OmicNavigator study

2. Add your existing results to your OmicNavigator study

3. Install your OmicNavigator study as an R package

4. Start the app to interactively explore your results

3.1 Example data: RNAseq123

As an illustrative example, this vignette uses the results from the Bioconductor work-
�ow package RNAseq123 [1]. It is a limma+voom analysis of RNA-seq data from 3
cell populations in the mouse mammary gland collected by Sheridan et al., 2015 [2].

The 3 cell populations are basal, luminal progenitor (LP), and mature luminal (ML).
In the RNAseq123 analysis, the primary di�erential expression results obtained are
for the tests �Basal versus LP� and �Basal versus ML�. This is similar to the design
diagrammed in Figure 2.2.

model: Main model

test: Basal vs ML

test: Basal vs LP

Furthermore they performed enrichment analysis with one annotation database: the
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Broad Institute's MSigDB c2 collection, which was converted converted from human
to mouse gene identi�ers by WEHI Bioinformatics.

model: Main model annotation: MSigDB c2

test: Basal vs ML

test: Basal vs LP

To obtain the results, I ran their script limmaWork�ow.R and saved some of the
objects to use in this vignette.

data("RNAseq123", package = "OmicNavigator")

ls()

[1] "Mm.c2" "barcodeData"

[3] "basal.vs.lp" "basal.vs.ml"

[5] "cam.BasalvsLP" "cam.BasalvsML"

[7] "enrichmentsFavicons" "enrichmentsIntersection"

[9] "enrichmentsLinkouts" "enrichmentsNetwork"

[11] "enrichmentsNetworkMinimal" "enrichmentsTable"

[13] "enrichmentsUpset" "group"

[15] "lane" "lcpm"

[17] "linkFeatures" "metaFeaturesLinkouts"

[19] "metaFeaturesTable" "modelID"

[21] "nodeFeatures" "reportLink"

[23] "resultsFavicons" "resultsIntersection"

[25] "resultsLinkouts" "resultsTable"

[27] "resultsTableTerm" "resultsUpset"

[29] "samplenames" "studies"

[31] "testID" "upsetCols"

Furthermore, after the analysis completed using the full data, I drastically subset the
results objects to create a minimal example. For example, it only contains di�erential
expression results for 24 features and enrichment analysis results for 4 annotation
terms.

You are welcome to follow along with these example data sets if you like. However,
the main goal of this document is for you to input your own study data into Omic-
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Navigator. The particular details of this speci�c study are not important. It happens
to be an RNA-seq analysis of mice that was analyzed with limma+voom, but none
of that has to apply to your own study.

3.2 Create an OmicNavigator study

The �rst step is to load the OmicNavigator package into the current R session.1

library(OmicNavigator)

Next run createStudy() to create your OmicNavigator study object. The �rst ar-
gument is the name of the study. The second argument (optional) is a description of
the study.

study <- createStudy(name = "vignetteExample",

description = "Bioc workflow package RNAseq123")

Because the name will be used when naming the study package, it must follow these
rules that apply to all R package names:

� Begin with a letter

� End with a letter or a number

� Be at least two characters long

� Only contain alphanumeric characters and periods (full stops)

For more details, run ?createStudy. For example, there are additional optional
arguments such as version, maintainer, and maintainerEmail.

3.3 Results

The RNAseq123 di�erential results were generated by the limma function topTreat().
The results for the test �Basal versus LP� are in basal.vs.lp and the results for
�Basal versus ML� are in basal.vs.ml.

head(basal.vs.lp)

ENTREZID SYMBOL TXCHROM logFC AveExpr t

19216 19216 Ptger1 chr8 -2.401062 4.263219 -8.911887

1If you haven't installed OmicNavigator yet, please see the �le README.md for the installation

instructions.

9



57811 57811 Rgr chr14 -5.048202 -1.579505 -7.777238

22068 22068 Trpc6 chr9 -4.202937 3.413562 -7.506933

12767 12767 Cxcr4 chr1 -3.631749 5.049865 -6.255800

16439 16439 Itpr2 chr6 -1.957691 6.412740 -5.533072

20866 20866 Stim1 chr7 1.842699 6.663871 5.377393

P.Value adj.P.Val

19216 7.535233e-06 0.0001299437

57811 2.197986e-05 0.0002819392

22068 2.797665e-05 0.0003377516

12767 1.031838e-04 0.0009651739

16439 2.368098e-04 0.0018990476

20866 2.866392e-04 0.0022225231

The �rst column contains the Entrez gene identi�er for each gene that they tested.
OmicNavigator refers to this primary feature identi�er of the study as the featureID.2

It must be unique, i.e. there must be only one row of results per featureID. The second
and third columns contain more information about the features: the gene symbol and
chromosomal location, respectively. OmicNavigator stores feature metadata columns
in a separate table, so these will be removed from the results table. The remaining
columns contain the quantitative measurements from the statistical test.

This table is almost ready for import into OmicNavigator. There are only two strict
requirements for a results table:

� The �rst column must be a unique character vector containing the featureID

� The remaining columns must be numeric vectors

Thus I only need to remove the second and third columns which include extra feature
metadata columns. These will be added separately as the features table in Section
3.7.

# Remove columns 2 and 3

basal.vs.lp.on <- basal.vs.lp[, -2:-3]

basal.vs.ml.on <- basal.vs.ml[, -2:-3]

head(basal.vs.ml.on)

ENTREZID logFC AveExpr t P.Value

2This example study happened to use Entrez gene identi�ers for the featureID. You can use

whichever featureID you like for your own study. OmicNavigator only requires that the featureID

is unique per feature, a character vector, and used consistently between the various input tables.
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22068 22068 -6.361321 3.413562 -12.828451 4.675483e-07

19216 19216 -2.323077 4.263219 -8.459881 1.119083e-05

21390 21390 2.415695 -1.790873 3.339258 4.828374e-03

22065 22065 2.538410 -3.098852 3.192573 6.057918e-03

16440 16440 -1.393191 7.836093 -3.019645 7.878121e-03

57811 57811 -2.656060 -1.579505 -3.024537 7.882325e-03

adj.P.Val

22068 1.774549e-05

19216 1.549012e-04

21390 2.323210e-02

22065 2.839212e-02

16440 3.577325e-02

57811 3.578257e-02

Tip: Order the results table by statistical signi�cance. The initial display of the
results table in the app will be exactly as you enter the table in R. The users can
of course manually sort the table by any of the columns, but it is convenient for the
initial display to highlight the most statistically signi�cant features. I omitted this
ordering step above because topTreat() automatically sorts the features by statistical
signi�cance.

Next I combine these two results tables. Recall from Figure 3.1 that the results are
de�ned for a given model and test combination. To represent this hierarchical rela-
tionship, OmicNavigator uses nested lists. Below I create a new list named results.
Its �rst element is the name of the model, main, referred to as the modelID. Then I
assign main a list where each element is the name of a test from that model, referred
to as the testID. Each element contains the result table for that test.

results <- list(

main = list(

basal.vs.lp = basal.vs.lp.on,

basal.vs.ml = basal.vs.ml.on

)

)

I add this to the OmicNavigator study with addResults().

study <- addResults(study, results)

For more details, run ?addResults.
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Important: You can stop here! The minimal required data for a valid OmicNav-
igator study is a single results table. Any additional data you add enables more
features in the app for exploring your study. See Section 6.4 for the mapping
between data elements and app features.

3.4 Enrichments

The RNAseq123 enrichments were generated by the limma function camera(). The
results for the test �Basal versus LP� are in cam.BasalvsLP and the results for �Basal
versus ML� are in cam.BasalvsML.

head(cam.BasalvsLP)

NGenes Direction PValue

REACTOME_ELEVATION_OF_CYTOSOLIC_CA2_LEVELS 8 Down 0.2761301

REACTOME_BINDING_AND_ENTRY_OF_HIV_VIRION 4 Down 0.6700697

REACTOME_PROSTANOID_LIGAND_RECEPTORS 7 Down 0.6978828

REACTOME_OPSINS 5 Down 0.7317891

FDR

REACTOME_ELEVATION_OF_CYTOSOLIC_CA2_LEVELS 0.5914291

REACTOME_BINDING_AND_ENTRY_OF_HIV_VIRION 0.8722180

REACTOME_PROSTANOID_LIGAND_RECEPTORS 0.8871448

REACTOME_OPSINS 0.9006782

The row names contain the names of the annotation terms used in the enrichment
analysis. OmicNavigator refers to these as the termID. The columns contain the
number of genes in each term (NGenes), the direction of the enrichment (Direction),
the nominal p-value (PValue), and the multiple-testing adjusted p-value (FDR).

Unlike the results table, OmicNavigator has strict requirements for the names and
contents of the enrichments table columns:

1. termID - the unique identi�er for each term

2. description - a human readable description of each term

3. nominal - the nominal statistical result from the enrichment test

4. adjusted - the statistical result adjusted for multiple testing

The object returned by camera() contains all the required information except the
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human readable description. Below I create new data frames to store the enrichments
tables. I perform some string processing of the termID to create the description.
If creating a human readable description is too onerous, you can simply repeat the
termID for this column.

# LP

cam.BasalvsLP.on <- data.frame(

termID = row.names(cam.BasalvsLP),

description = gsub("_", " ", tolower(row.names(cam.BasalvsLP))),

nominal = cam.BasalvsLP$PValue,

adjusted = cam.BasalvsLP$FDR,

stringsAsFactors = FALSE

)

# ML

cam.BasalvsML.on <- data.frame(

termID = row.names(cam.BasalvsML),

description = gsub("_", " ", tolower(row.names(cam.BasalvsML))),

nominal = cam.BasalvsML$PValue,

adjusted = cam.BasalvsML$FDR,

stringsAsFactors = FALSE

)

head(cam.BasalvsML.on)

termID

1 REACTOME_ELEVATION_OF_CYTOSOLIC_CA2_LEVELS

2 REACTOME_PROSTANOID_LIGAND_RECEPTORS

3 REACTOME_BINDING_AND_ENTRY_OF_HIV_VIRION

4 REACTOME_OPSINS

description nominal adjusted

1 reactome elevation of cytosolic ca2 levels 0.4119939 0.6745223

2 reactome prostanoid ligand receptors 0.4630303 0.7124122

3 reactome binding and entry of hiv virion 0.6426407 0.8298654

4 reactome opsins 0.6629803 0.8411875

Lastly I need to combine these two enrichments table. Recall from Figure 3.1 that the
enrichments are de�ned for a given model, annotation, and test combination. Again
a nested list is used to represent this hierarchical relationship. The nested list de�ned
below, enrichments, contains 3 levels: 1) modelID, 2) annotationID, 3) testID.

enrichments <- list(
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main = list(

c2 = list(

basal.vs.lp = cam.BasalvsLP.on,

basal.vs.ml = cam.BasalvsML.on

)

)

)

I add this to the OmicNavigator study with addEnrichments().

study <- addEnrichments(study, enrichments)

For more details, run ?addEnrichments.

3.5 Models

You can provide more detailed descriptions of your models. These will be displayed
in the app when a user hovers over each modelID. Below I describe the only model I
currently have for this study.

models <- list(

main = "limma+voom model of RNA-seq experiment of mouse mammary glands"

)

And then add it to the OmicNavigator study with addModels.

study <- addModels(study, models)

For more details, run ?addModels. Importantly, note that instead of a only adding
a single string as above, you could alternatively add a named list with additional
metadata to describe each modelID.

3.6 Tests

You can provide more detailed descriptions of your tests. These will be displayed in
the app when a user hovers over each testID. Below I describe the two tests that
were performed for the modelID main. The input must be a nested list, similar to
the input to addResults(). Each element of the top-level list is a modelID, and
each element of the nested list is a testID. The value is a single character string that
describes the test.
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tests <- list(

main = list(

basal.vs.lp = "Which genes are DE between Basal and LP cells?",

basal.vs.ml = "Which genes are DE between Basal and ML cells?"

)

)

I then add this to the OmicNavigator study with addTests.

study <- addTests(study, tests)

For more details, run ?addTests. Importantly, note that instead of a only adding
a single string as above, you could alternatively add a named list with additional
metadata to describe each testID.

3.7 Features

Recall that I removed the feature metadata columns from the results tables. I still
want to include these when exploring the results in the app. I can add them in the
features table of OmicNavigator. The features table has the following requirements:

� The �rst column must contain the study featureID. It must be unique, and it
must be a character vector. The row order doesn't have to match the order in
the results table(s).

� The remaining columns must all be character vectors.

Thus I can take the �rst 3 columns of one of the objects returned by topTreat() to
use as the features table for the modelID main.

basal.vs.lp[1:2, 1:6]

ENTREZID SYMBOL TXCHROM logFC AveExpr t

19216 19216 Ptger1 chr8 -2.401062 4.263219 -8.911887

57811 57811 Rgr chr14 -5.048202 -1.579505 -7.777238

features <- list(

main = basal.vs.lp[, 1:3]

)

And add it to the OmicNavigator study with addFeatures().

study <- addFeatures(study, features)

15



For more details, run ?addFeatures.

Tip: Be judicious in the number of columns you add to the features table. These
will be displayed in the app next to the di�erential expression results. If you have
too many features columns, they will obscure from the columns with the statistics.

3.8 Annotations

In addition to a table of enrichments, the app can also display a network view of the
enrichment results. In order to do this, OmicNavigator needs more information about
the annotation terms that were used. Each node of the network is a termID and the
edges between the nodes are determined by the number of shared features between
any two of the termID's. The more shared features, the thicker the edge line will be.3

The input format for the terms is a named list of character vectors. The names of the
list are the termID's. Each element is a character vector that contains the features
in that term. Conveniently the c2 terms are already in this format.

Mm.c2

$REACTOME_ELEVATION_OF_CYTOSOLIC_CA2_LEVELS

[1] "109305" "16438" "16439" "16440" "18436" "20866" "22065"

[8] "22068" "26946"

$REACTOME_PROSTANOID_LIGAND_RECEPTORS

[1] "14764" "19214" "19216" "19217" "19218" "19219" "19220" "19222"

[9] "21390"

$REACTOME_OPSINS

[1] "12057" "13603" "14539" "20132" "212541" "30044" "353344"

[8] "57811"

$REACTOME_BINDING_AND_ENTRY_OF_HIV_VIRION

[1] "105675" "12504" "12767" "12772" "12774" "19034" "268373"

[8] "382096"

Recall that I purposefully subset the data to provide a minimal example for this
User's Guide. This list only contains 4 terms, whereas the original Mm.c2 used in the

3The user of the app is able to choose which overlap metric to use when drawing the thickness

of the edge lines.
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RNAseq123 analysis has thousands of terms.

The annotations are added as a nested list. The �rst level is the names of the anno-
tations, referred to as the annotationID. This must match the annotationID used
when entering the enrichments tables (Section 3.4). The second level is a list that
describes each annotation. In addition to the list of terms, I include a human readable
description as well as the name of the column in the features table that was used in
the enrichments analysis (ENTREZID).

annotations <- list(

c2 = list(

terms = Mm.c2,

description = "Broad Institute's MSigDB c2 collection",

featureID = "ENTREZID"

)

)

If I were to perform an enrichment analysis with an annotation database that instead
used the gene symbols in its terms, then I would set featureID = "SYMBOL".

I add it to the OmicNavigator study with addAnnotations().

study <- addAnnotations(study, annotations)

For more details, run ?addAnnotations.

3.9 Barcodes

The app can create an interactive barcode plot4 to display the enrichments results for
a given termID. In order to enable this view, you �rst need to add some information
about how to construct the barcode plot.

The barcode plot displays the magnitude of the di�erential expression statistic for all
of the features contained in a given termID. In a di�erential expression analysis, this
is typically a t-statistic or F-statistic. Since the columns of the results table can be
named anything you like, OmicNavigator doesn't know which column to use.

In the RNAseq123 example, the test statistic is in the column t.

head(basal.vs.lp.on)

4If you're unfamiliar with barcode plots, check out the function barcodeplot() from the Bio-

conductor package limma.
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ENTREZID logFC AveExpr t P.Value

19216 19216 -2.401062 4.263219 -8.911887 7.535233e-06

57811 57811 -5.048202 -1.579505 -7.777238 2.197986e-05

22068 22068 -4.202937 3.413562 -7.506933 2.797665e-05

12767 12767 -3.631749 5.049865 -6.255800 1.031838e-04

16439 16439 -1.957691 6.412740 -5.533072 2.368098e-04

20866 20866 1.842699 6.663871 5.377393 2.866392e-04

adj.P.Val

19216 0.0001299437

57811 0.0002819392

22068 0.0003377516

12767 0.0009651739

16439 0.0018990476

20866 0.0022225231

In addition to specifying which column to use for the statistic in the barcode plot,
you can provide other optional values to customize the appearance of the plot. All of
the possible �elds are listed below.

� statistic (required) - The column name in the results table to use to construct
the barcode plot.

� absolute (optional) - Convert the statistic to its absolute value (default is
TRUE).

� logFoldChange (optional) - The column name in the results table that contains
the log fold change values. This is used to create an additional view containing
a violin plot.

� labelStat (optional) - The x-axis label to describe the statistic.

� labelLow (optional) - The left-side label to describe low values of the statistic.

� labelHigh (optional) - The right-side label to describe high values of the statis-
tic.

� featureDisplay (optional) - The feature variable to use to label the barcode
plot on hover. This is a column name from the features table.

Below I customize the barcode plot for the RNAseq123 example. I specify that the
test statistics are in the column t in the results table, the log fold change values are
in the column logFC, the x-axis is labeled as "abs(t)", and the ID that is displayed
when hovering over a line in the barcode plot is the column SYMBOL from the features
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table.5 This is contained in a nested list applied to the modelID main, and I add the
information to the study with addBarcodes().

barcodes <- list(

main = list(

statistic = "t",

logFoldChange = "logFC",

labelStat = "abs(t)",

featureDisplay = "SYMBOL"

)

)

study <- addBarcodes(study, barcodes)

For more details, run ?addBarcodes.

3.10 Install the study

Now I can install the study as an R package with installStudy().

installStudy(study)

If I needed to transfer the study package to a di�erent machine, instead of directly
installing it, I could export it as a package tarball with exportStudy().

exportStudy(study)

Then after I moved the study package tarball to another machine (or shared it with
a colleague), the study package could be installed with install.packages(). For
example, the example study from this vignette could be installed with the following
command.

install.packages("ONstudyvignetteExample_0.0.0.9000.tar.gz",

repos = NULL)

To remove an installed study package, see ?removeStudy.

3.11 Run the app locally

After the study package is installed, I can run startApp() to open the app in the
browser. If the study package was properly installed, I should be able to select it
from the app's menu. Note that the app can't be run from within RStudio Server.

5The default is the featureID, in this case the Entrez ID.
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startApp()

When I'm �nished exploring the results in the app, I can stop the web server by
returning to the R console and pressing the Esc key (Windows) or Ctrl-C (Linux,
macOS).

4 Custom plots

You can create custom plots to visualize the expression pattern of individual features
in the experiment. These will be displayed in the app when a user clicks on a speci�c
feature. In order for the app to be able to plot your data, you �rst need to add
information on the samples and assay measurements from the experiment.

4.1 Samples

You can add a table with metadata about the samples in your study, e.g. a column to
indicate �treatment� versus �control� samples. These sample metadata columns will
be made available to your custom plotting functions (more on that below in Section
4). The samples table must be a data frame that follows these requirements:

� The �rst column must contain the study sampleID. It must be unique, and it
must be a character vector.

In the RNAseq123 analysis, the sampleID is in the vector samplenames. The two
sample metadata variables for the experiment are group (the type of cell) and lane

(the lane the sample was sequenced on).

head(samplenames)

[1] "10_6_5_11" "9_6_5_11" "purep53" "JMS8-2" "JMS8-3"

[6] "JMS8-4"

table(group)

group

Basal LP ML

3 3 3

table(lane)

lane

L004 L006 L008
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3 4 2

I combine these 3 vectors into a data frame.

samplesTable <- data.frame(name = samplenames, group, lane)

head(samplesTable)

name group lane

1 10_6_5_11 LP L004

2 9_6_5_11 ML L004

3 purep53 Basal L004

4 JMS8-2 Basal L006

5 JMS8-3 ML L006

6 JMS8-4 LP L006

And I assign the table to the modelID main and add it to my OmicNavigator study.

samples <- list(main = samplesTable)

study <- addSamples(study, samples)

For more details, run ?addSamples.

4.2 Assays

In order to visualize the expression levels, I need to add these assay measurements
to the OmicNavigator study. The assays table is a data frame with the following
requirements:

� The row names should match the featureIDs in the �rst column of the features
table (order doesn't matter)

� The column names should match the sampleIDs in the �rst column of the sam-
ples table (order doesn't matter)

� The columns should all be numeric

The measurements you add should be ready to plot. In other words, you don't want
to perform data cleaning steps like �ltering and normalizing each time a plot needs
to be made. In the RNAseq123 example, I don't want to add the raw counts. Instead
I add the �ltered, normalized, log-transformed counts per million (CPM) contained
in the matrix lcpm.

lcpm[1:3, 1:3]
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Samples

Tags 10_6_5_11 9_6_5_11 purep53

12767 7.552094 5.086721 3.0429773

13603 2.679699 1.816975 1.5133290

21390 -1.825453 -2.457757 -0.4876709

Since the row and column names already use the study's featureID and sampleID,
respectively, all I have to do is convert it to a data frame.

assays <- list(main = as.data.frame(lcpm))

study <- addAssays(study, assays)

For more details, run ?addAssays.

4.3 Plots

The app will call all custom plotting functions by passing a list with the �ltered data
to the �rst argument. The name of the argument can be whatever you like. An
example is below.

nameOfPlot <- function(x) {

# Your custom plotting code

}

The input list that will be passed to your custom plotting function has the following
elements:

1. assays - A data frame that contains the assay measurements, �ltered to only
include the row(s) corresponding to the input featureID(s). If multiple fea-
tureIDs are requested, the rows are reordered to match the order of this input.
The column order is unchanged.

2. samples - A data frame that contains the sample metadata for the given mod-
elID. The rows are reordered to match the columns of the assays data frame.

3. features - A data frame that contains the feature metadata, �ltered to only in-
clude the row(s) corresponding to the input featureID(s). If multiple featureIDs
are requested, the rows are reordered to match the order of this input (and thus
match the order of the assays data frame).

4. results - optional. A data frame that contains test results, �ltered to only in-
clude the row(s) corresponding to the input featureID(s). If multiple featureIDs
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are requested, the rows are reordered to match the order of this input (and thus
match the order of the assays data frame).

When creating your custom plotting function, you don't need to create this list of
data frames manually. Instead, you can use the same function that OmicNavigator
uses internally, getPlottingData(). The code below obtains the input list that will
be passed to the custom plotting functions when an app user selects the featureID
"12767". Note how both the assays and features data frames only contain one row
each.

plottingData <- getPlottingData(study, modelID = "main", featureID = "12767")

plottingData

$assays

10_6_5_11 9_6_5_11 purep53 JMS8-2 JMS8-3 JMS8-4 JMS8-5

12767 7.552094 5.086721 3.042977 4.308618 4.635581 6.410611 2.968442

JMS9-P7c JMS9-P8c

12767 4.275112 7.189941

$samples

name group lane

1 10_6_5_11 LP L004

2 9_6_5_11 ML L004

3 purep53 Basal L004

4 JMS8-2 Basal L006

5 JMS8-3 ML L006

6 JMS8-4 LP L006

7 JMS8-5 Basal L006

8 JMS9-P7c ML L008

9 JMS9-P8c LP L008

$features

ENTREZID SYMBOL TXCHROM

1 12767 Cxcr4 chr1

Using this object, I create a boxplot to visualize the gene expression levels per cell
type.

boxplot(as.numeric(plottingData$assays[1, ]) ~ plottingData$samples$group,

col = c("pink", "purple", "gold"),

xlab = "Cell type", ylab = "Gene expression",
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main = plottingData$features$SYMBOL)
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Once I am satis�ed with the appearance of the plot, I can convert it to a function
that accepts one argument plottingData (reminder: you can name the argument
however you like, as long as you refer to it consistently in the body of your function).

cellTypeBox <- function(plottingData) {

boxplot(as.numeric(plottingData$assays[1, ]) ~ plottingData$samples$group,

col = c("pink", "purple", "gold"),

xlab = "Cell type", ylab = "Gene expression",

main = plottingData$features$SYMBOL)

}

The process is similar for creating a plot with the package ggplot2. However, since
these custom plotting functions will be added to an R package, you have to be slightly
more careful. Also note that I have to combine the assays and samples tables to create
the input data frame required by ggplot2.

library(ggplot2)

ggDataFrame <- cbind(plottingData$samples,

feature = as.numeric(plottingData$assays))

head(ggDataFrame, 3)

name group lane feature
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1 10_6_5_11 LP L004 7.552094

2 9_6_5_11 ML L004 5.086721

3 purep53 Basal L004 3.042977

ggplot(ggDataFrame, aes(x = group, y = feature, fill = group)) +

geom_boxplot() +

scale_fill_manual("Cell type", values = c("pink", "purple", "gold")) +

labs(x = "Cell type", y = "Gene expression",

title = plottingData$features$SYMBOL)
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When I convert my ggplot2 plot to a function, I need to preface all the references to
the columns of the data frame with .data$. This is required for properly resolving
these variables when the function is called from within a package. If you're interested
in learning more, see the ggplot2 vignette Using ggplot2 in packages. Also note that
you do not need to load the ggplot2 package inside the function. You will declare the
required package dependencies when you add the custom plots to the OmicNavigator
study.

cellTypeBoxGg <- function(plottingData) {

ggDataFrame <- cbind(plottingData$samples,

feature = as.numeric(plottingData$assays))

ggplot(ggDataFrame, aes(x = .data$group, y = .data$feature, fill = .data$group)) +
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geom_boxplot() +

scale_fill_manual("Cell type", values = c("pink", "purple", "gold")) +

labs(x = "Cell type", y = "Gene expression",

title = plottingData$features$SYMBOL)

}

The above plots visualize one gene at a time. I can also create custom plotting
functions that accept multiple featureIDs as input, which OmicNavigator refers to as
�multiFeature� plots. An app user can dynamically select a subset of featureIDs, and
these will be passed to your function. Below I create an example plotting function
that performs PCA using a subset of featureIDs.

twoFeatures <- getPlottingData(study, modelID = "main",

featureID = c("12767", "13603"))

twoFeatures

$assays

10_6_5_11 9_6_5_11 purep53 JMS8-2 JMS8-3 JMS8-4

12767 7.552094 5.086721 3.042977 4.3086184 4.635581 6.410611

13603 2.679699 1.816975 1.513329 0.7017626 2.337970 2.490683

JMS8-5 JMS9-P7c JMS9-P8c

12767 2.968442 4.275112 7.189941

13603 1.396267 1.223047 1.746081

$samples

name group lane

1 10_6_5_11 LP L004

2 9_6_5_11 ML L004

3 purep53 Basal L004

4 JMS8-2 Basal L006

5 JMS8-3 ML L006

6 JMS8-4 LP L006

7 JMS8-5 Basal L006

8 JMS9-P7c ML L008

9 JMS9-P8c LP L008

$features

ENTREZID SYMBOL TXCHROM

1 12767 Cxcr4 chr1

2 13603 Opn3 chr1
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plotPca <- function(x) {

if (nrow(x[["assays"]]) < 2) {

stop("This plotting function requires at least 2 features")

}

pca <- stats::prcomp(t(x[["assays"]]), scale. = TRUE)$x

plot(pca[, 1], pca[, 2], col = as.factor(x$samples$group),

xlab = "PC 1", ylab = "PC 2", main = "PCA")

text(pca[, 1], pca[, 2], labels = x$samples$group, pos = 2, cex = 0.5)

}

plotPca(twoFeatures)
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The above plots visualize assays data. It is also possible to create custom plotting
functions to visualize results data from a single or multiple tests. Moreover, those
can be plotted for a single or multiple features. For plotting results from a single
test, user should provide parameters study, modelID, featureID and testID when
calling getPlottingData(). For plotting results from multiple tests, testID must be
provided as a vector, and plotType must indicate �multiTest�. Note that plotType
may accept vector for handling �multiTest�, e.g. c(�singleFeature�, �multiTest�) and
c(�multiFeature�, �multiTest�). Below I create an example plotting function for a
scatterplot using log Fold Change from two testIDs.

multiTests <- getPlottingData(study, modelID = "main",
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featureID = row.names(study$assays$main),

testID = c("basal.vs.lp", "basal.vs.ml"))

plotMultiTestMf <- function(x) {

df <- data.frame(lapply(x$results, `[`, 2))

colnames(df)<- names(x$results)

plot(df$basal.vs.lp ~ df$basal.vs.ml,

xlab = paste0("log FC ", colnames(df)[2]),

ylab = paste0("log FC ", colnames(df)[3]))

abline(v=0, h = 0, col="grey")

}

plotMultiTestMf(multiTests)
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Now that I've created the custom plots for use in the app, I compile them into a
nested list and add them to the OmicNavigator study. The nested list has three
levels. The �rst is the modelIDs, in this case main. The second is the name of the
custom plotting functions as they were de�ned in the current R session, cellTypeBox,
cellTypeBoxGg, plotPca and plotMultiTestMf. The third is information about the
custom plotting function. The only required element is displayName, which is the text
that will be displayed in the app. You are encouraged to also specify the plotType,
e.g. "singleFeature", "multiFeature", c("multiTest", "multiFeature"). If
you do not specify the plotType, the plot will be assumed to be "singleFeature".
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An optional element is packages, in which you list any R packages that are required
for the plotting function to work. OmicNavigator uses this information to properly
construct the study package it creates.

plots <- list(

main = list(

cellTypeBox = list(

displayName = "Expression by cell type",

plotType = "singleFeature"

),

cellTypeBoxGg = list(

displayName = "Expression by cell type (ggplot2)",

plotType = "singleFeature",

packages = c("ggplot2")

),

plotPca = list(

displayName = "PCA",

plotType = "multiFeature",

packages = c("stats")

),

plotMultiTestMf = list(

displayName = "scatterplot",

plotType = c("multiTest", "multiFeature")

)

)

)

study <- addPlots(study, plots = plots)

For more details, run ?addPlots.

After you add the plotting functions, you can test that they work as you expect
using the same function called by the app, plotStudy(). Below I call both custom
�singleFeature� functions using featureID 21390.

plotStudy(study, modelID = "main", featureID = "21390",

plotID = "cellTypeBox")

29



Basal LP ML

−
3.

5
−

2.
5

−
1.

5
−

0.
5

Tbxa2r

Cell type

G
en

e 
ex

pr
es

si
on

plotStudy(study, modelID = "main", featureID = "21390",

plotID = "cellTypeBoxGg")
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And I can test the �multiFeature� function by passing it multiple featureIDs.

plotStudy(study, modelID = "main", featureID = c("21390", "19216"),
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plotID = "plotPca")
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Optionally, data related to test results can be plotted by providing a valid testID to
the plotStudy(). For instance, for modelID = "main" one could call plotStudy()
with testID = "basal.vs.lp" to be able to plot its test results. For plotting data
from multiple tests, plotType must be set to �multiTest�.

To make the custom plotting functions available in the app, re-install the study
package with installStudy().

5 Extras

I didn't include every possible addition in Section 3 above. Below are some extras you
can also include in your study package. Similar to many of the other elements, these
are purely optional. They are available to enhance your study package if you want
them. After adding any of these extra elements, remember to re-install the study
package with installStudy() for the changes to take e�ect in the app.

5.1 MetaFeatures

The features tables explained in Section 3.7 require that the �rst column containing
the study featureID is unique. This enforces a 1:1 mapping between the featureID
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and the other columns. In general this works well; however, it doesn't handle the
case where a given featureID may map to multiple other values of a di�erent variable.
For example, each Entrez gene ID used in the RNAseq123 study may map to 0, 1, or
more Ensembl gene IDs. While you could cram the multiple values into one column
using a separator like a semi-colon, this is discouraged since it will not display nicely
in the app's table. Instead you can add a metaFeatures table, which is a catch-all for
any information about the features that doesn't map 1:1.

The metaFeatures table has the following requirements:

� The �rst column must contain the featureID. Each featureID must also be
included in the corresponding features table. Not every featureID has to be
included, the order does not matter, and it is expected that the featureIDs will
be repeated.

� The remaining columns must be character vectors.

Adding the metaFeatures table is similar to the features table. Use a nested list to
assign the table(s) to a modelID, then use addMetaFeatures(). For more details,
run ?addMetaFeatures.

5.2 Reports

Some users of the app may be interested in learning more of the details of the analysis.
If you created a report of your analysis, you can add this to your OmicNavigator study.
Then it will be available for interested users. The report can be any �le format. You
need to provide a path to the �le on your local machine (in which case it will be
bundled into the study package), or you can provide a URL that points to the �le.

In this case, the RNAseq123 analysis report is hosted on Bioconductor's website.
Below I purposefully use a small text size in order to display the full URL.

reportUrl = "https://bioconductor.org/packages/release/workflows/vignettes/RNAseq123/inst/doc/limmaWorkflow.html"

As usual, I create a nested list with one entry per modelID.

reports <- list(

main = reportUrl

)

And add it to the OmicNavigator study with addReports().

study <- addReports(study, reports)
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For more details, run ?addReports.

5.3 Results table linkouts

You can provide linkouts to external resources for the features in your study. These
linkouts are embedded directly into the results table (Section 3.3). The linkout URLs
can use the featureID or any of the columns in the optional features table (Section
3.7).

For example, to provide a linkout for each Entrez ID in the RNAseq123 study, I
can use the linkout pattern https://www.ncbi.nlm.nih.gov/gene/. The Entrez
ID in each row will be appended to the linkout pattern to create the valid URL,
e.g. https://www.ncbi.nlm.nih.gov/gene/242505. Below I create a list with this
linkout. I use the special modelID �default� so that the linkouts are added to the
results table for every modelID. The name of the nested list is ENTREZID because that
is the name of the column.

resultsLinkouts <- list(

default = list(

ENTREZID = "https://www.ncbi.nlm.nih.gov/gene/"

)

)

Then I add the results linkouts to the study.

study <- addResultsLinkouts(study, resultsLinkouts)

For more details, run ?addResultsLinkouts.

5.4 Enrichments table linkouts

You can provide linkouts to external resources for the annotation terms used for your
enrichment analyses. These linkouts are embedded directly into the termID column
of the enrichments table (Section 3.4).

For example, to provide a linkout for each termID for the annotation c2 in the
RNAseq123 study, I can use the linkout pattern https://www.gsea-msigdb.org/

gsea/msigdb/cards/. The termID in each row will be appended to the linkout pat-
tern to create the valid URL, e.g. https://www.gsea-msigdb.org/gsea/msigdb/

cards/REACTOME_OPSINS. Below I create a list with this linkout. The name of the
list corresponds to the name of the annotationID.
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enrichmentsLinkouts <- list(

c2 = "https://www.gsea-msigdb.org/gsea/msigdb/cards/"

)

Then I add the enrichments linkouts to the study.

study <- addEnrichmentsLinkouts(study, enrichmentsLinkouts)

For more details, run ?addEnrichmentsLinkouts.

5.5 MetaFeatures table linkouts

You can provide linkouts to external resources for the metaFeatures in your study.
These linkouts are embedded directly into the metaFeatures table (Section 5.1). The
linkout URLs can use any of the columns in the optional metaFeatures table.

For more details, run ?addMetaFeaturesLinkouts.

5.6 Study metadata

You can add metadata to describe your study by passing a named list to to the
argument studyMeta when creating your study with createStudy. The names of the
list cannot contain spaces or colons, and they can't start with # or -. The values of
each list should be a single value.

For more details, run ?createStudy.

6 More information

This section contains more information about OmicNavigator studies.

6.1 Accessing elements from the OmicNavigator study

Each function to add elements to an OmicNavigator study, e.g. addFeatures(),
has a corresponding function to get elements from an OmicNavigator study, e.g.
getFeatures(). Below I collectively refer to these as �get� functions.

Calling a �get� function on the study without any additional arguments will return a
nested list with all the available information.

str(getFeatures(study))
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List of 1

$ main:'data.frame': 24 obs. of 3 variables:

..$ ENTREZID: chr [1:24] "19216" "57811" "22068" "12767" ...

..$ SYMBOL : chr [1:24] "Ptger1" "Rgr" "Trpc6" "Cxcr4" ...

..$ TXCHROM : chr [1:24] "chr8" "chr14" "chr9" "chr1" ...

Each �get� function also has arguments for �ltering the results. For example, specify-
ing modelID = "main" to getFeatures() returns the data frame with the features
for that modelID.

str(getFeatures(study, modelID = "main"))

'data.frame': 24 obs. of 3 variables:

$ ENTREZID: chr "19216" "57811" "22068" "12767" ...

$ SYMBOL : chr "Ptger1" "Rgr" "Trpc6" "Cxcr4" ...

$ TXCHROM : chr "chr8" "chr14" "chr9" "chr1" ...

The situation is analogous for elements that are more highly nested. For example,
the results tables are nested per test per model. Thus specifying the modelID returns
a list of the available tests, and specifying both the modelID and testID returns the
data frame.

str(getResults(study))

List of 1

$ main:List of 2

..$ basal.vs.lp:'data.frame': 24 obs. of 6 variables:

.. ..$ ENTREZID : chr [1:24] "19216" "57811" "22068" "12767" ...

.. ..$ logFC : num [1:24] -2.4 -5.05 -4.2 -3.63 -1.96 ...

.. ..$ AveExpr : num [1:24] 4.26 -1.58 3.41 5.05 6.41 ...

.. ..$ t : num [1:24] -8.91 -7.78 -7.51 -6.26 -5.53 ...

.. ..$ P.Value : num [1:24] 7.54e-06 2.20e-05 2.80e-05 1.03e-04 2.37e-04 ...

.. ..$ adj.P.Val: num [1:24] 0.00013 0.000282 0.000338 0.000965 0.001899 ...

..$ basal.vs.ml:'data.frame': 24 obs. of 6 variables:

.. ..$ ENTREZID : chr [1:24] "22068" "19216" "21390" "22065" ...

.. ..$ logFC : num [1:24] -6.36 -2.32 2.42 2.54 -1.39 ...

.. ..$ AveExpr : num [1:24] 3.41 4.26 -1.79 -3.1 7.84 ...

.. ..$ t : num [1:24] -12.83 -8.46 3.34 3.19 -3.02 ...

.. ..$ P.Value : num [1:24] 4.68e-07 1.12e-05 4.83e-03 6.06e-03 7.88e-03 ...

.. ..$ adj.P.Val: num [1:24] 1.77e-05 1.55e-04 2.32e-02 2.84e-02 3.58e-02 ...

str(getResults(study, modelID = "main"))
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List of 2

$ basal.vs.lp:'data.frame': 24 obs. of 6 variables:

..$ ENTREZID : chr [1:24] "19216" "57811" "22068" "12767" ...

..$ logFC : num [1:24] -2.4 -5.05 -4.2 -3.63 -1.96 ...

..$ AveExpr : num [1:24] 4.26 -1.58 3.41 5.05 6.41 ...

..$ t : num [1:24] -8.91 -7.78 -7.51 -6.26 -5.53 ...

..$ P.Value : num [1:24] 7.54e-06 2.20e-05 2.80e-05 1.03e-04 2.37e-04 ...

..$ adj.P.Val: num [1:24] 0.00013 0.000282 0.000338 0.000965 0.001899 ...

$ basal.vs.ml:'data.frame': 24 obs. of 6 variables:

..$ ENTREZID : chr [1:24] "22068" "19216" "21390" "22065" ...

..$ logFC : num [1:24] -6.36 -2.32 2.42 2.54 -1.39 ...

..$ AveExpr : num [1:24] 3.41 4.26 -1.79 -3.1 7.84 ...

..$ t : num [1:24] -12.83 -8.46 3.34 3.19 -3.02 ...

..$ P.Value : num [1:24] 4.68e-07 1.12e-05 4.83e-03 6.06e-03 7.88e-03 ...

..$ adj.P.Val: num [1:24] 1.77e-05 1.55e-04 2.32e-02 2.84e-02 3.58e-02 ...

str(getResults(study, modelID = "main", testID = "basal.vs.lp"))

'data.frame': 24 obs. of 6 variables:

$ ENTREZID : chr "19216" "57811" "22068" "12767" ...

$ logFC : num -2.4 -5.05 -4.2 -3.63 -1.96 ...

$ AveExpr : num 4.26 -1.58 3.41 5.05 6.41 ...

$ t : num -8.91 -7.78 -7.51 -6.26 -5.53 ...

$ P.Value : num 7.54e-06 2.20e-05 2.80e-05 1.03e-04 2.37e-04 ...

$ adj.P.Val: num 0.00013 0.000282 0.000338 0.000965 0.001899 ...

Conveniently, the �get� functions work exactly the same on both OmicNavigator study
objects de�ned in the current R session as well as installed OmicNavigator study
packages. Instead of passing the object, you pass the name of the OmicNavigator
study.

str(getFeatures("vignetteExample", modelID = "main"))

'data.frame': 24 obs. of 3 variables:

$ ENTREZID: chr "19216" "57811" "22068" "12767" ...

$ SYMBOL : chr "Ptger1" "Rgr" "Trpc6" "Cxcr4" ...

$ TXCHROM : chr "chr8" "chr14" "chr9" "chr1" ...
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6.2 Sharing elements across models

The example study only had one model. This was for ease of demonstration. How-
ever, you are able to have has many models as you like. As mentioned in Section 2.1,
di�erent models can be completely di�erent (e.g. transcripts versus protein measure-
ments) or very similar (e.g. addition of one extra coe�cient to the statistical model).
In the case where two or more models are very similar, it would be unnecessarily
tedious and storage-intensive to store identical information for multiple models of a
given study. To avoid this, OmicNavigator recognizes the special modelID default.
If a �get� function requests an element for a modelID which doesn't exist, it then
looks to see if there is a table available for the modelID default. This allows you to
specify shared elements that apply across models of a study as well as override the
default for a subset of the models.

As an example, in the RNAseq123 study, many of the elements could have been
added for the modelID default. This would make no di�erence when there is only one
model, and if another one was added, it would immediately share these elements. The
code below demonstrates how the default features table is returned when a modelID
is speci�ed that doesn't have its own features table.

studyWithDefault <- addFeatures(study, list(default = basal.vs.lp[, 1:3]))

str(getFeatures(studyWithDefault, modelID = "modelThatDoesntExistYet"))

'data.frame': 24 obs. of 3 variables:

$ ENTREZID: chr "19216" "57811" "22068" "12767" ...

$ SYMBOL : chr "Ptger1" "Rgr" "Trpc6" "Cxcr4" ...

$ TXCHROM : chr "chr8" "chr14" "chr9" "chr1" ...

6.3 Naming OmicNavigator study packages

OmicNavigator studies are installed as standard R packages on your machine. This
allows the app to query them using the OpenCPU framework. In order to distin-
guish them from other R packages, by default the pre�x �ONstudy� is added to the
package name. For example, an OmicNavigator study named �ABC� is installed as
�ONstudyABC�.

If you'd like to change the default pre�x, you can change the OmicNavigator package
option that controls this behavior, OmicNavigator.prefix. For example, to use the
pre�x �OmicNavigatorStudy�, you could add the following line to your .Rpro�le �le.

options(OmicNavigator.prefix = "OmicNavigatorStudy")
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For more details about this and other OmicNavigator package options, run ?OmicNavigator.

6.4 Mapping between data elements and app features

The minimum requirement for a valid OmicNavigator study is a single results table.
This will result in the app displaying an interactive table to explore the results. To
enable more interactive features, you can add more data. The table below maps the
app features to the required and optional data elements. Click on the links to be
taken to the relevant section.

App feature Required Optional

Results table Results (3.3) Features (3.7), resultsLink-
outs (5.3)

Enrichments
table

Enrichments (3.4) enrichmentsLinkouts (5.4)

Enrichments
network

Enrichments (3.4), Annota-
tions (3.8)

Enrichments
barcode

Barcodes (3.9), Enrichments
(3.4), Results (3.3)

Custom plots Plots (4.3), Assays (4.2),
Samples (4.1)

MetaFeatures
table

metaFeatures (5.1) metaFeaturesLinkouts (5.5)

6.5 Matching plot theme to app's appearance

Your custom plots will be displayed in the app. If you'd like, you can theme your plots
so that they better integrate with the app's appearance, e.g. with ggplot2::theme()

or ggplot2::scale_color_discrete(). Note that this is completely optional.

The app uses the following colors:

� orange-reddish #ff4400

� light orange #ff7e38

� navy blueish #2c3b78

� darker royal blueish #465fc5

� baby blueish #4cd2d5
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� royal blueish #1678c2

� white #fff

� lightish grey #e0e1e2

� light blackish #2e2e2e

You can use the hexadecimal codes for the colors directly in R, e.g.

op <- par(bg = "#e0e1e2", fg = "#2e2e2e", no.readonly = TRUE)

boxplot(mpg ~ cyl, data = mtcars, col = c("#ff4400", "#2c3b78", "#4cd2d5"))

par(op)

4 6 8

10
15

20
25

30

cyl

m
pg

The app's text is displayed in one of the following fonts. It will choose the �rst font
it �nds installed on the machine:

1. Lato

2. Arial

3. Helvetica

4. Any sans-serif font

Fair warning that getting R to use a custom installed font like Lato is non-trivial, and
it's even more di�cult to make it portable (i.e. so that the font will also work on the
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server where OmicNavigator is deployed or a colleague's machine). Two options for
R packages that can help you use custom fonts in R plots are showtext and extrafont.

7 Session information

� R version 4.2.2 Patched (2022-11-10 r83330), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=C.UTF-8, LC_NUMERIC=C, LC_TIME=C.UTF-8,
LC_COLLATE=C, LC_MONETARY=C.UTF-8, LC_MESSAGES=C.UTF-8,
LC_PAPER=C.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=C.UTF-8, LC_IDENTIFICATION=C

� Running under: Ubuntu 22.04.1 LTS

� Matrix products: default

� BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0

� LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: OmicNavigator 1.13.6, ggplot2 3.4.0, jsonlite 1.8.4

� Loaded via a namespace (and not attached): ONstudyABC 0.0.0.9000,
R6 2.5.1, Rcpp 1.0.9, UpSetR 1.4.0, cli 3.6.0, colorspace 2.0-3, compiler 4.2.2,
curl 4.3.3, data.table 1.14.6, dplyr 1.0.10, fansi 1.0.3, farver 2.1.1,
faviconPlease 0.1.2, generics 0.1.3, glue 1.6.2, grid 4.2.2, gridExtra 2.3,
gtable 0.3.1, httr 1.4.4, labeling 0.4.2, lifecycle 1.0.3, magrittr 2.0.3,
munsell 0.5.0, pillar 1.8.1, pkgcon�g 2.0.3, plyr 1.8.8, rlang 1.0.6, scales 1.2.1,
tibble 3.1.8, tidyselect 1.2.0, tools 4.2.2, utf8 1.2.2, vctrs 0.5.1, withr 2.5.0,
xml2 1.3.3
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