QCGWAS Quick Start Guide

The sheer number of options available in QCGWAS can be a bit overwhelming. However, running a QC of a GWAS results file is actually quite simple, and this guide will show you how to do so in a few easy steps.

Requirements
· A computer with R (preferably 64-bit) and the QCGWAS package installed
· A folder containing:

· A GWAS results file

· A header-translation table (a basic table can be found in the R\library\QCGWAS\doc folder)
In the examples below, we use “C:\data\preQC” as the folder, and “data1.txt” and “headers.txt” as the filenames.

1) Running a simple QC
Open R and load the package by typing:

library("QCGWAS")

setwd("C:/data/preQC")
The first command tells R to load the QCGWAS package. The second command tells R to use the specified folder as working directory. Note that the address is enclosed by quotation marks, and that R uses forward slash where Windows addresses use backslash.

Tip: use the in-built R script editor to enter your commands. This gives you the chance to check them for typos before running them. Select file > new script to open the editor. To execute commands from the editor, select them and press CTRL + R. Scripts can be saved, so you won’t have to retype the same commands every time you run a new QC.
Load the header-translation table
h_translations <- read.table("headers.txt", as.is = TRUE)

This command imports the file into R and saves it under the name h_translations. Type h_translations into the R console, and the contents of the file will appear. h_translation is a two-column table that is used to translate the column names (header) of the data file into the standard names used by QCGWAS. The standard names are in the left column; possible alternative names are in the right. QCGWAS will automatically convert the header to uppercase, so the right column must be entirely uppercase as well. Make sure that the column names of “data1.txt” are present and matched with the correct standard name, and then proceed to the next step.

Start the QC…
QCresults <- QC_GWAS("data1.txt",

header_translations = h_translations,

save_final_dataset = TRUE)
The time required for the QC depends on the file-size, processor speed, RAM memory and the options selected. A normal-sized (2.5M SNPs) GWAS file should take between 4 and 8 minutes.

… And inspect the output
If everything ran correctly, there will be a new folder in the working directory, containing the output of the QC. Their filenames start with “QC_data1”, including a (compressed) post-QC dataset named “QC_data1.txt.gz”. The R console will report any major issues encountered, but the most important output is the “QC_data1_log.txt” file. The top table of the log gives an overview of events during the QC. Further down are tables summarizing the data and the QC itself. For more details on how to interpret the output, check the documentation. You can access the internal documentation of QC_GWAS (or any other function) by typing:
?QC_GWAS

This will open an html file with an overview of the function input and output. Scroll down to ‘QC output files’ for more info. In addition, check the log file for warnings regarding missing columns. If these were to occur for columns you know are present in the data, then the translation table must be wrong.

Tip: the log file is formatted for easy viewing in a simple text editor like Notepad. Previous versions of QC_GWAS used a tab-delimitated format that was best viewed in spreadsheet program like Microsoft Excel. To restore the old format, add spreadsheet_friendly_log = TRUE to the function command line.
In case the QC aborted, the log file will be much shorter, but it will provide an indication of what went wrong. Possible errors include missing columns (usually due to an incomplete or incorrect translation table), invalid data or insufficient single nucleotide polymorphisms (SNPs) with all critical variables present.

2) Using the high-quality and QQ-plot filters
A number of tests in the QC use only high-quality (HQ) SNPs. The high-quality criteria are specified by using the following arguments: (note: this command is shown as illustration only. It’s not necessary to run it now; wait until we’ve shown you how to add the QQ filter arguments.)
QCresults <- QC_GWAS("data1.txt",

header_translations = h_translations,

save_final_dataset = TRUE,

HQfilter_FRQ = 0.05, HQfilter_HWE = 10^-4,
HQfilter_cal = 0.99, HQfilter_imp = 0.5,

NAfilter = TRUE)

This sets the allele-frequency (FRQ) threshold to 0.05, the Hardy-Weinberg Equilibrium (HWE) p-value threshold to 10-4, the call rate threshold to 0.99 and the imputation-quality threshold to 0.5. Finally, the NAfilter argument determines what happens to SNPs with a missing (NA) value for any of these variables. By default, the NA filter is set to TRUE, which means that missing values are excluded.

A few notes:

1. The HQ filter does not remove SNPs from the dataset; it merely excludes them from a number of tests (including the Manhattan plot).
2. If no HQ filters are specified, the function uses default values. These are FRQ = 0.01, HWE = 10-6, call rate = 0.95, imputation quality = 0.3, and NAfilter = TRUE.

3. To disable filtering, set the argument to NULL (e.g. HQfilter_imp = NULL).

4. The allele-frequency filter is two-sided. I.e. in the example it excludes SNPs with frequency < 0.05 OR > 1 – 0.05 = 0.95
5. By default, imputation quality is tested for imputed SNPs only, while call rate and HWE p-values are tested for genotyped SNPs only. This can be changed with the ignore_impstatus argument.
6. The HQ filter will not be applied to empty or nearly-empty columns. This is controlled by the use_threshold arguments.
7. For these and other advanced options, see the documentation.
The filters for the QQ-plot follow the same principles, but with two differences: it is possible specify a maximum of five filters; and they have an additional feature that allows for sample-size based filtering.

QCresults <- QC_GWAS("data1.txt",

header_translations = h_translations,

save_final_dataset = TRUE,

HQfilter_FRQ = 0.01, HQfilter_HWE = 10^-6,

HQfilter_cal = 0.95, HQfilter_imp = 0.3,

QQfilter_FRQ = c(NA, 0.01, 0.03, 0.05, 3),

QQfilter_HWE = c(NA, 10^-6, 10^-4),

QQfilter_cal = c(NA, 0.95, 0.98, 0.99),

QQfilter_imp = c(NA, 0.3, 0.5, 0.7, 0.9),

NAfilter = TRUE)

The multiple filter-values are strung together with the c(oncatenate) function:

c(0.3, 0.05, 0.07)
The above command sets five values for the allele-frequency (FRQ) filter: NA (missing values only), < 0.01, < 0.03, < 0.05, and a sample-size based filter. Filter-values ≥ 1 are divided by the sample size. The QQ-plot filters also use the NAfilter argument to handle missing values.
3) Checking the alleles against a reference
One useful option is the ability to check and correct the reported allele-information by comparing it to a reference file.
Create a HapMap allele reference
The v1.0-5 version of the package can automatically download the HapMap data from the website of the international HapMap project (bulk data downloads > bulk data > frequencies) and turn it into a reference file. To create a HapMap reference for a European population, execute the following code:
create_hapmap_reference(dir = "C:/data/hapmap",

download_hapmap = TRUE,

download_subset = "CEU",

filename = "ref_hapmap",

save_txt = FALSE, save_rdata = TRUE)
Again, the folder address uses forward rather than backslash. This will create a file ‘ref_hapmap.RData’.
Move the reference file to the data-directory, and start a new QC. (Again: this command is shown as illustration. It’s not necessary to run it now; wait until you have added the alternative reference.)
QCresults <- QC_GWAS("data1.txt",

header_translations = h_translations,

save_final_dataset = TRUE,

HQfilter_FRQ = 0.01, HQfilter_HWE = 10^-6,

HQfilter_cal = 0.95, HQfilter_imp = 0.3,

QQfilter_FRQ = c(NA, 0.01, 0.03, 0.05, 3),

QQfilter_HWE = c(NA, 10^-6, 10^-4),

QQfilter_cal = c(NA, 0.95, 0.98, 0.99),

QQfilter_imp = c(NA, 0.3, 0.5, 0.7, 0.9),

NAfilter = TRUE,

allele_ref_std = "ref_hapmap.Rdata",

allele_name_std = "HapMap",
remove_mismatches = TRUE,

check_ambiguous_alleles = FALSE)

The ‘allele_ref_std’ argument tells the QC to load ref_hapmap.Rdata and use it as standard (std) reference. It will check the allele-data against it, convert alleles to the opposite DNA-strand if necessary, and compare and correlate the allele-frequencies. If the correlation is below a certain threshold, it will generate a scatter plot. (For more information, look up the threshold_allele_freq and only_plot_if_threshold arguments in the documentation).
The ‘name_std’ argument is simply a name-tag used in the output. remove_mismatches tells the function to exclude any SNPs where the alleles did not match the reference (and could not be fixed by switching them to the opposite strand). Finally, check_ambiguous_alleles will generate additional scatter plots for SNPs with ambiguous and unambiguous allele-pairs. (This is FALSE by default, so adding the argument to the example is redundant. We just wanted to mention the possibility.)
Create an alternative allele reference
Many datasets contain SNPs that do not appear in the HapMap allele reference. However, if you are QC’ing multiple files for the same project (e.g. a meta-GWAS) it is still important to ensure that those SNPs have the same alleles in every file. QCGWAS can generate an alternative allele reference that is updated with any unknown SNPs it encounters.

QCresults <- QC_GWAS("data1.txt",

header_translations = h_translations,

save_final_dataset = TRUE,

HQfilter_FRQ = 0.01, HQfilter_HWE = 10^-6,

HQfilter_cal = 0.95, HQfilter_imp = 0.3,

QQfilter_FRQ = c(NA, 0.01, 0.03, 0.05, 3),

QQfilter_HWE = c(NA, 10^-6, 10^-4),

QQfilter_cal = c(NA, 0.95, 0.98, 0.99),

QQfilter_imp = c(NA, 0.3, 0.5, 0.7, 0.9),

NAfilter = TRUE,

allele_ref_std = "ref_hapmap.Rdata",

allele_name_std = "HapMap",

remove_mismatches = TRUE,

allele_ref_alt = NULL,

allele_name_alt = "alternative",

update_alt = TRUE,
update_savename = "ref_alternative",
update_as_rdata = TRUE)

The allele_ref_alt and name_alt arguments work in the same way as their _std equivalents. We set allele_ref_alt to NULL* because, the alternative allele-reference file doesn’t exist yet. By setting update_alt to TRUE, we tell the QC to update/ create an alternative reference if it encounters unknown SNPs. update_as_rdata toggles whether the reference is saved as an .RData file or a tab-delimitated .txt file. update_savename is the filename (without extension) used to save the reference.
(* In R, NULL essentially means “nothing”: it’s a variable with length 0. It is not to be confused with NA, which is a real (if missing) value with length 1.)
Executing the above command will generate a “ref_alternative.RData” file in addition to the usual QC output (provided that data1.txt contains unknown non-HapMap reference SNPs). To use this file in subsequent QC’s:
QCresults <- QC_GWAS("data2.txt",

header_translations = h_translations,

save_final_dataset = TRUE,

HQfilter_FRQ = 0.01, HQfilter_HWE = 10^-6,

HQfilter_cal = 0.95, HQfilter_imp = 0.3,

QQfilter_FRQ = c(NA, 0.01, 0.03, 0.05, 3),

QQfilter_HWE = c(NA, 10^-6, 10^-4),

QQfilter_cal = c(NA, 0.95, 0.98, 0.99),

QQfilter_imp = c(NA, 0.3, 0.5, 0.7, 0.9),

NAfilter = TRUE,

allele_ref_std = "ref_hapmap.Rdata",

allele_name_std = "HapMap",

remove_mismatches = TRUE,

allele_ref_alt = "ref_alternative.RData",

allele_name_alt = "alternative",

update_alt = TRUE,
update_as_rdata = TRUE,
backup_alt = TRUE)

Enter the filename (including the extension) in the allele_ref_alt argument. update_alt and update_as_rdata should be kept TRUE (as their default setting is FALSE) but it is no longer necessary to specify update_savename, as QC_GWAS can determine that from the allele_ref_alt argument. Finally, if the alternative reference is updated again, setting backup_alt to TRUE (default is FALSE) will tell the QC to back-up the pre-updated file before saving the update.

4) Options for loading and formatting
There are a number of additional options for loading data and for the format of the final dataset. These are not important for the QC itself, but they are helpful for managing the files.

Separate folders for input, output and auxiliary files
In the above examples, we put all files in a single folder, which was then designated as the R working directory. However, you can specify separate folders for input, output and auxiliary (header table and allele-references) files:

QCresults <- QC_GWAS("data1.txt",

dir_data = "C:/data/preQC",

dir_output = "C:/data/postQC",
dir_references = "C:/data/QC_files",
...)

Again, R uses forward slash were Windows uses backslash.
Name and format of final dataset
	Argument name
	Example
	Function

	filename_output
	"output1"
	The name of the output files (without extension)

	save_final_dataset
	TRUE or FALSE
	Should the post-QC data be saved? Default = TRUE.

	gzip_final_dataset
	TRUE or FALSE
	Should the final dataset be compressed? Default = TRUE.

	order_columns
	TRUE or FALSE
	Should the columns be ordered?

Default = FALSE.

	out_header
	"standard"
	Should the post-QC data use standard column names? See below for details.

	out_sep
	"\t"
	Column-separator in the post-QC file. The value in the example specifies tab.

	out_na
	"NA"
	The code for missing values in the post-QC file

	out_dec
	"."
	The decimal point in the post-QC file

There are more options available, but these are the most relevant ones. The out_header argument has multiple options. By default, the post-QC data will use the standard column names of QCGWAS. However, you can restore the original header by entering “original”. Other options are “GWAMA”, “PLINK”, “META”, to adjust the headers to the ones expected by those programs. Alternatively, you can specify a translation table similar to the one used in the header_translations argument. In that case the left column should contain the desired column names and the right one the standard names.
Automatic loading
In the above examples, we loaded the allele-reference data into R by specifying a filename. The same is possible with header_translations and out_header. Similarly, you can load the allele-references into R manually and then pass them to the function (though if you do this, and want to update the alternative allele-reference file, you do need to specify update_savename). (This command is shown as illustration. It’s not necessary to run it.)
hapmap_ref <- read.table("hapmap_ref.txt",

header = TRUE, as.is = TRUE)

alternative_ref <- read.table("alt_ref.txt",

header = TRUE, as.is = TRUE)

QCresults <- QC_GWAS("data1.txt",

header_translations = "headers.txt",
out_header = "new_headers.txt",

allele_ref_std = hapmap_ref,

allele_ref_alt = alternative_ref,

update_alt = TRUE,

update_as_rdata = FALSE,

update_savename = "alt_ref")
Additional options for loading the data
	Argument name
	Example
	Function

	column_separators
	c("\t","",";")
	The column separators used in the data

	na.strings
	c("NA", ".")
	The code used to indicate missing values

	imputed_T
	c("1","TRUE")
	The code used to indicate imputed SNPs in the pre-QC data

	imputed_F
	c("0","FALSE")
	The code used to indicate genotyped SNPs in pre-QC data

5) Automated QC of multiple files
Running separate QCs for multiple files is still a hassle, even when using a script. QCGWAS also includes a function to sequentially QC multiple files. The function works in the same way as QC_GWAS, with the same argument names. The only difference is that the arguments for the input and output filenames are different.
QC_series(
data_files= c("data1.txt","data2.txt","data3.txt"),

output_filenames = c("output1.txt","output2.txt","output3.txt"),
dir_data = "C:/data/preQC",

dir_output = "C:/data/postQC",

dir_references = "C:/data/QC_files",

header_translations = h_translations,

save_final_dataset = TRUE,

HQfilter_FRQ = 0.01, HQfilter_HWE = 10^-6,

HQfilter_cal = 0.95, HQfilter_imp = 0.3,

QQfilter_FRQ = c(NA, 0.01, 0.03, 0.05, 3),

QQfilter_HWE = c(NA, 10^-6, 10^-4),

QQfilter_cal = c(NA, 0.95, 0.98, 0.99),

QQfilter_imp = c(NA, 0.3, 0.5, 0.7, 0.9),

NAfilter = TRUE,

allele_ref_std = "ref_hapmap.Rdata",

allele_name_std = "HapMap",

remove_mismatches = TRUE,

allele_ref_alt = "ref_alternative.RData",

allele_name_alt = "alternative",

update_alt = TRUE, update_as_rdata = TRUE, backup_alt = TRUE)

This will analyse the files data 1-3 and save them as output 1-3. It will also create a few additional graphs that compare the QC results of the files side by side.
