
REVISED ARTICLE CURRENTLY UNDER REVIEW 1

Rcpp: Seamless R and C++ integration
by Dirk Eddelbuettel and Romain François

Abstract The Rcpp package simplifies integrat-
ing C++ code with R. It provides a consistent
C++ class hierarchy that maps various types of
R objects (vectors, functions, environments, ...)
to dedicated C++ classes. Object interchange be-
tween R and C++ is managed by simple, flexi-
ble and extensible concepts which include broad
support for C++ STL idioms. C++ code can be
compiled, linked and loaded on the fly. Flexible
error and exception code handling is provided.
Rcpp substantially lowers the barrier for pro-
grammers wanting to combine C++ code with R.

Introduction

R is an extensible system. The ‘Writing R Extensions’
manual (R Development Core Team, 2010a) describes
in detail how to augment R with compiled code, fo-
cusing mostly on the C language. The R API de-
scribed in ‘Writing R Extensions’ is based on a set
of functions and macros operating on SEXP, the in-
ternal representation of R objects. In this article, we
discuss the functionality of the Rcpp package, which
simplifies the usage of C++ code in R. Combining R
and C++ is not a new idea, so we start with a short
review of other approaches and give some historical
background on the development of Rcpp.

The Rcpp package combines two distinct APIs.
The first—which we call ‘classic Rcpp API’—exists
since the first version of Rcpp. While still con-
tained in the package to ensure compatibility, its
use is otherwise deprecated. All new development
should use the richer second API. It is enclosed in
the Rcpp C++ namespace, and corresponds to the
redesigned code base. This article highlights some
of the key design and implementation choices of the
new API: lightweight encapsulation of R objects in
C++ classes, automatic garbage collection strategy,
code inlining, data interchange between R and C++
and error handling.

Several examples are included to illustrate the
benefits of using Rcpp as opposed to the traditional
R API. Many more examples are available within the
package, both as explicit examples and as part of the
numerous unit tests.

Historical Context

Rcpp first appeared in 2005 as a contribution (by
Samperi) to the RQuantLib package (Eddelbuettel
and Nguyen, 2010) before becoming a CRAN pack-
age in early 2006. Several releases (all by Samperi)
followed in quick succession under the name Rcpp.
The package was then renamed to RcppTemplate;

several more releases followed during 2006 under
the new name. However, no new releases were made
during 2007, 2008 or most of 2009. Following a few
updates in late 2009, it has since been withdrawn
from CRAN.

Given the continued use of the package, Ed-
delbuettel decided to revitalize it. New releases,
using the initial name Rcpp, started in November
2008. These already included an improved build and
distribution process, additional documentation, and
new functionality—while retaining the existing in-
terface. This constitutes the ‘classic Rcpp’ interface
(not described in this article) which will be main-
tained for the foreseeable future.

Yet C++ coding standards continued to evolve
(Meyers, 2005). In 2009, Eddelbuettel and François
started a significant redesign of the code base which
added numerous new features. Several of these are
described below in the section on the Rcpp API inter-
face, as well as in the eight vignettes included with
the package. This new API is our current focus, and
we intend to both extend and support it in future de-
velopment of the package.

Comparison

Integration of C++ and R has been addressed by sev-
eral authors; the earliest published reference is prob-
ably Bates and DebRoy (2001). An unpublished pa-
per by Java, Gaile, and Manly (2007) expresses sev-
eral ideas that are close to some of our approaches,
though not yet fully fleshed out. The Rserve package
(Urbanek, 2003, 2010) was another early approach,
going back to 2002. On the server side, Rserve trans-
lates R data structures into a binary serialization for-
mat and uses TCP/IP for transfer. On the client side,
objects are reconstructed as instances of Java or C++
classes that emulate the structure of R objects.

The packages rcppbind (Liang, 2008), RAbstrac-
tion (Armstrong, 2009a) and RObjects (Armstrong,
2009b) are all implemented using C++ templates.
However, neither has matured to the point of a
CRAN release and it is unclear how much usage
these packages are seeing beyond their own authors.

CXXR (Runnalls, 2009) comes to this topic from
the other side: its aim is to completely refactor R on
a stronger C++ foundation. CXXR is therefore con-
cerned with all aspects of the R interpreter, REPL,
threading—and object interchange between R and
C++ is but one part. A similar approach is discussed
by Temple Lang (2009a) who suggests making low-
level internals extensible by package developers in
order to facilitate extending R. Another slightly dif-
ferent angle is offered by Temple Lang (2009b) who
uses compiler output for references on the code in
order to add bindings and wrappers.

REVISED ARTICLE CURRENTLY UNDER REVIEW 2

Rcpp Use Cases

The core focus of Rcpp has always been on allowing
the programmer to add C++-based functions. Here,
we use ‘function’ in the standard mathematical sense
of providing results (output) given a set of parame-
ters or data (input). This was facilitated from the ear-
liest releases using C++ classes for receiving various
types of R objects, converting them to C++ objects
and allowing the programmer to return the results to
R with relative ease.

This API therefore supports two typical use cases.
First, one can think of replacing existing R code with
equivalent C++ code in order to reap performance
gains. This case is conceptually easy as there may
not be (built- or run-time) dependencies on other C
or C++ libraries. It typically involves setting up data
and parameters—the right-hand side components of
a function call—before making the call in order to
provide the result that is to be assigned to the left-
hand side. Second, Rcpp facilitates calling functions
provided by other libraries. The use resembles the
first case: data and parameters are passed via Rcpp
to a function set-up to call code from an external li-
brary.

The Rcpp API

More recently, the Rcpp API has been redesigned
and extended, based on the usage experience of sev-
eral years of Rcpp deployment, needs from other
projects, knowledge of the internal R API, as well as
current C++ design approaches. The new features
in Rcpp were also motivated by the needs of other
projects such as RInside (Eddelbuettel and François,
2010) for easy embedding of R in C++ applications
and RProtoBuf (François and Eddelbuettel, 2010)
that interfaces with the Protocol Buffers library.

A First Example

#include <Rcpp.h>

RcppExport SEXP convolve3cpp(SEXP a, SEXP b) {

Rcpp::NumericVector xa(a);

Rcpp::NumericVector xb(b);

int n_xa = xa.size(), n_xb = xb.size();

int nab = n_xa + n_xb - 1;

Rcpp::NumericVector xab(nab);

for (int i = 0; i < n_xa; i++)

for (int j = 0; j < n_xb; j++)

xab[i + j] += xa[i] * xb[j];

return xab;

}

We can highlight several aspects. First, only a sin-
gle header file Rcpp.h is needed to use the Rcpp API.
Second, given two arguments of type SEXP, a third
is returned. Third, both inputs are converted to C++
vector types provided by Rcpp (and we have more to
say about these conversions below). Fourth, the use-
fulness of these classes can be seen when we query
the vectors directly for their size—using the size()

member function—in order to reserve a new result
type of appropriate length, and with the use of the
operator[] to extract and set individual elements of
the vector. Fifth, the computation itself is straightfor-
ward embedded looping just as in the original exam-
ples in the ’Writing R Extensions’ manual (R Devel-
opment Core Team, 2010a). Sixth, the return conver-
sion from the NumericVector to the SEXP type is also
automatic.

We argue that this Rcpp-based usage is much eas-
ier to read, write and debug than the C macro-based
approach supported by R itself.

Rcpp Class hierarchy

The Rcpp::RObject class is the basic class of the new
Rcpp API. An instance of the RObject class encap-
sulates an R object (SEXP), exposes methods that are
appropriate for all types of objects and transparently
manages garbage collection.

The most important aspect of the RObject class is
that it is a very thin wrapper around the SEXP it en-
capsulates. The SEXP is indeed the only data member
of an RObject. The RObject class does not interfere
with the way R manages its memory and does not
perform copies of the object into a suboptimal C++
representation. Instead, it merely acts as a proxy to
the object it encapsulates so that methods applied to
the RObject instance are relayed back to the SEXP in
terms of the standard R API.

The RObject class takes advantage of the explicit
life cycle of C++ objects to manage exposure of the
underlying R object to the garbage collector. The
RObject effectively treats its underlying SEXP as a re-
source. The constructor of the RObject class takes the
necessary measures to guarantee that the underlying
SEXP is protected from the garbage collector, and the
destructor assumes the responsibility to withdraw
that protection.

By assuming the entire responsibility of garbage
collection, Rcpp relieves the programmer from writ-
ing boiler plate code to manage the protection stack
with PROTECT and UNPROTECT macros.

The RObject class defines a set of member func-
tions applicable to any R object, regardless of its
type. This ranges from querying properties of the
object (isNULL, isObject, isS4), management of the
attributes (attributeNames, hasAttribute, attr) to
handling of slots1 (hasSlot, slot).

1The member functions that deal with slots are only applicable to S4 objects; otherwise an exception is thrown.

REVISED ARTICLE CURRENTLY UNDER REVIEW 3

Derived classes

Internally, an R object must have one type amongst
the set of predefined types, commonly referred to
as SEXP types. The ‘R Internals’ manual (R Devel-
opment Core Team, 2010b) documents these various
types. Rcpp associates a dedicated C++ class for
most SEXP types, and therefore only exposes func-
tionality that is relevant to the R object that it encap-
sulates.

For example Rcpp::Environment contains mem-
ber functions to manage objects in the associated
environment. Similarly, classes related to vectors—
IntegerVector, NumericVector, RawVector,
LogicalVector, CharacterVector, GenericVector

(also known as List) and ExpressionVector—
expose functionality to extract and set values from
the vectors.

The following sub-sections present typical uses of
Rcpp classes in comparison with the same code ex-
pressed using functions and macros of the R API.

Numeric vectors

The following code snippet is taken from Writing R
extensions (R Development Core Team, 2010a). It
creates a numeric vector of two elements and assigns
some values to it.

SEXP ab;

PROTECT(ab = allocVector(REALSXP, 2));

REAL(ab)[0] = 123.45;

REAL(ab)[1] = 67.89;

UNPROTECT(1);

Although this is one of the simplest examples in
Writing R extensions, it seems verbose and it is not
obvious at first sight what is happening. Memory
is allocated by allocVector; we must also supply
it with the type of data (REALSXP) and the number
of elements. Once allocated, the ab object must be
protected from garbage collection. Lastly, the REAL

macro returns a pointer to the beginning of the ac-
tual array; its indexing does not resemble either R or
C++.

Using the Rcpp::NumericVector class, the code
can be rewritten:

Rcpp::NumericVector ab(2);

ab[0] = 123.45;

ab[1] = 67.89;

The code contains fewer idiomatic decorations.
The NumericVector constructor is given the num-
ber of elements the vector contains (2), which hides
a call to the allocVector we saw previously. Also
hidden is protection of the object from garbage col-
lection, which is a behavior that NumericVector in-
herits from RObject. Values are assigned to the first

and second elements of the vector as NumericVector
overloads the operator[].

The snippet can also be written more concisely
using the create static member function of the
NumericVector class:

Rcpp::NumericVector ab =

Rcpp::NumericVector::create(123.45, 67.89);

It should be noted that although the copy con-
structor of the NumericVector class is used, it does
not imply copies of the underlying array, only the
SEXP (i.e. a simple pointer) is copied.

Character vectors

A second example deals with character vectors and
emulates this R code

> c("foo", "bar")

Using the traditional R API, the vector can be al-
located and filled as such:

SEXP ab;

PROTECT(ab = allocVector(STRSXP, 2));

SET_STRING_ELT(ab, 0, mkChar("foo"));

SET_STRING_ELT(ab, 1, mkChar("bar"));

UNPROTECT(1);

This imposes on the programmer knowl-
edge of PROTECT, UNPROTECT, SEXP, allocVector,
SET_STRING_ELT, and mkChar.

Using the Rcpp::CharacterVector class, we can
express the same code more concisely:

Rcpp::CharacterVector ab(2);

ab[0] = "foo";

ab[1] = "bar";

R and C++ data interchange

In addition to classes, the Rcpp package contains two
functions to perform conversion of C++ objects to R
objects and back.

C++ to R : wrap

The C++ to R conversion is performed by the
Rcpp::wrap templated function. It uses advanced
template metaprogramming techniques2 to convert
a wide and extensible set of types and classes to the
most appropriate type of R object. The signature of
the wrap template is:

template <typename T>

SEXP wrap(const T& object);

2A discussion of template metaprogramming (Vandevoorde and Josuttis, 2003; Abrahams and Gurtovoy, 2004) is beyond the scope of
this article.

REVISED ARTICLE CURRENTLY UNDER REVIEW 4

The templated function takes a reference to a
‘wrappable’ object and converts this object into a
SEXP, which is what R expects. Currently wrappable
types are :

• primitive types: int, double, ... which are con-
verted into the corresponding atomic R vectors;

• std::string objects which are converted to R
atomic character vectors;

• STL containers such as std::vector<T> or
std::list<T>, as long as the template param-
eter type T is itself wrappable;

• STL maps which use std::string for keys
(e.g. std::map<std::string,T>); as long as
the type T is wrappable;

• any type that implements implicit conversion
to SEXP through the operator SEXP();

• any type for which the wrap template is fully
specialized.

Wrappability of an object type is resolved at com-
pile time using modern techniques of template meta
programming and class traits. The Rcpp-extending

vignette discusses in depth how to extend wrap

to third-party types. The RcppArmadillo package
(François, Eddelbuettel, and Bates, 2010) features
several examples. The following example shows that
the design allows composition:

RcppExport SEXP someFunction() {

std::vector<std::map<std::string,int> > v;

std::map<std::string, int> m1;

std::map<std::string, int> m2;

m1["foo"]=1; m1["bar"]=2;

m2["foo"]=1; m2["bar"]=2; m2["baz"]=3;

v.push_back(m1);

v.push_back(m2);

return Rcpp::wrap(v);

}

The code creates a list of two named vectors,
equal to the result of this R statement:

list(c(bar = 2L, foo = 1L) ,

c(bar = 2L, baz = 3L, foo = 1L))

R to C++ : as

The reverse conversion is implemented by variations
of the Rcpp::as template whose signature is:

template <typename T>

T as(SEXP x) throw(not_compatible);

It offers less flexibility and currently handles
conversion of R objects into primitive types (bool,
int, std::string, ...), STL vectors of primitive types
(std::vector<bool>, std::vector<double>, etc ...)
and arbitrary types that offer a constructor that takes
a SEXP. In addition as can be fully or partially spe-
cialized to manage conversion of R data structures to
third-party types as can be seen for example in the
RcppArmadillo package which eases transfer of R
matrices and vectors to the optimised data structures
in the Armadillo linear algebra library (Sanderson,
2010).

Implicit use of converters

The converters offered by wrap and as provide a very
useful framework to implement code logic in terms
of C++ data structures and then explicitly convert
data back to R.

In addition, the converters are also used implic-
itly in various places in the Rcpp API. Consider
the following code that uses the Rcpp::Environment

class to interchange data between C++ and R.

// access vector 'x' from global env.

Rcpp::Environment global =

Rcpp::Environment::global_env();

std::vector<double> vx = global["x"];

// create a map<string,string>

std::map<std::string,std::string> map;

map["foo"] = "oof";

map["bar"] = "rab";

// push the STL map to R

global["y"] = map;

In the first part of the example, the code ex-
tracts a std::vector<double> from the global envi-
ronment. In order to achieve this, the operator[] of
Environment uses the proxy pattern (Meyers, 1995)
to distinguish between left hand side (LHS) and right
hand side (RHS) use. The output of the operator is an
instance of the nested class Environment::Binding,
which defines a templated implicit conversion oper-
ator that allows a Binding to be assigned to any type
that Rcpp::as is able to handle.

In the second part of the example, LHS use of
the Binding instance is implemented through its as-
signment operator, which is also templated and uses
Rcpp::wrap to perform the conversion to a SEXP that
can be assigned to the requested symbol in the global
environment.

The same mechanism is used throughout the API.
Examples include access/modification of object at-
tributes, slots, elements of generic vectors (lists),
function arguments, nodes of dotted pair lists, lan-
guage calls and more.

REVISED ARTICLE CURRENTLY UNDER REVIEW 5

Environment: Using the Rcpp API

Environment stats("package:stats");

Function rnorm = stats["rnorm"];

return rnorm(10, Named("sd", 100.0));

Environment: Using the R API

SEXP stats = PROTECT(

R_FindNamespace(mkString("stats")));

SEXP rnorm = PROTECT(

findVarInFrame(stats, install("rnorm")));

SEXP call = PROTECT(

LCONS(rnorm,

CONS(ScalarInteger(10),

CONS(ScalarReal(100.0),R_NilValue))));

SET_TAG(CDDR(call), install("sd"));

SEXP res = PROTECT(eval(call, R_GlobalEnv));

UNPROTECT(4);

return res;

Language: Using the Rcpp API

Language call("rnorm",10,Named("sd",100.0));

return call.eval();

Language: Using the R API

SEXP call = PROTECT(

LCONS(install("rnorm"),

CONS(ScalarInteger(10),

CONS(ScalarReal(100.0),R_NilValue))));

SET_TAG(CDDR(call), install("sd"));

SEXP res = PROTECT(eval(call, R_GlobalEnv));

UNPROTECT(2);

return res;

Table 1: Rcpp versus the R API: Four ways of calling rnorm(10L, sd=100) in C / C++. We have removed the
Rcpp:: prefix for readability; this corresponds to adding a directive using namespace Rcpp; in the code.

Function calls

The next example shows how to use Rcpp to emu-
late the R code rnorm(10L, sd=100.0). As shown in
Table 1, the code can be expressed in several ways
in either Rcpp or the standard R API. The first ver-
sion shows the use of the Environment and Function

classes by Rcpp. The second version shows the use of
the Language class, which manage calls (LANGSXP).
For comparison, we also show both versions using
the standard R API.

This example illustrates that the Rcpp API per-
mits us to work with code that is easier to read, write
and maintain. More examples are available as part of
the documentation included in the Rcpp package, as
well as among its over seven hundred and seventy
unit tests.

Using code ‘inline’

Extending R with compiled code also needs to ad-
dress how to reliably compile, link and load the code.
While using a package is preferable in the long run,
it may be too involved for quick explorations. An al-
ternative is provided by the inline package (Sklyar,
Murdoch, Smith, Eddelbuettel, and François, 2010)

which compiles, links and loads a C, C++ or Fortran
function—directly from the R prompt using simple
functions cfunction and cxxfunction. The latter
provides an extension which works particularly well
with Rcpp via so-called ‘plugins’ which provide in-
formation about additional header file and library lo-
cations.

The use of inline is possible as Rcpp can be in-
stalled and updated just like any other R package
using e.g. the install.packages() function for ini-
tial installation as well as update.packages() for up-
grades. So even though R / C++ interfacing would
otherwise require source code, the Rcpp library is al-
ways provided ready for use as a pre-built library
through the CRAN package mechanism.3

The library and header files provided by Rcpp
for use by other packages are installed along with
the Rcpp package. The LinkingTo: Rcpp directive
in the DESCRIPTION file lets R compute the location
of the header file. The Rcpp package provides appro-
priate information for the -L switch needed for link-
ing via the function Rcpp:::LdFlags() that provide
this information. It can be used by Makevars files of
other packages, and inline makes use of it internally
so that all of this is done behind the scenes without
the need for explicitly setting compiler or linker op-
tions.

3This presumes a platform for which pre-built binaries are provided. Rcpp is available in binary form for Windows and OS X users
from CRAN, and as a .deb package for Debian and Ubuntu users. For other systems, the Rcpp library is automatically built from source
during installation or upgrades.

REVISED ARTICLE CURRENTLY UNDER REVIEW 6

The convolution example provided above can be
rewritten for use by inline as shown below. The
function body is provided by the character vari-
able src, the function header is defined by the ar-
gument signature—and we only need to enable
plugin="Rcpp" to obtain a new function fun based
on the C++ code in src:

> src <- '

+ Rcpp::NumericVector xa(a);

+ Rcpp::NumericVector xb(b);

+ int n_xa = xa.size(), n_xb = xb.size();

+

+ Rcpp::NumericVector xab(n_xa + n_xb - 1);

+ for (int i = 0; i < n_xa; i++)

+ for (int j = 0; j < n_xb; j++)

+ xab[i + j] += xa[i] * xb[j];

+ return xab;

+ '

> fun <- cxxfunction(

+ signature(a="numeric", b="numeric"),

+ src, plugin="Rcpp")

> fun(1:3, 1:4)

[1] 1 4 10 16 17 12

Using STL algorithms

The C++ Standard Template Library (STL) offers a
variety of generic algorithms designed to be used
on ranges of elements (Plauger, Stepanov, Lee, and
Musser, 2000). A range is any sequence of objects
that can be accessed through iterators or pointers. All
Rcpp classes from the new API representing vectors
(including lists) can produce ranges through their
member functions begin() and end(), effectively
supporting iterating over elements of an R vector.

The following code illustrates how Rcpp might
be used to emulate a simpler4 version of lapply us-
ing the transform algorithm from the STL.

> src <- '

+ Rcpp::List input(data);

+ Rcpp::Function f(fun);

+ Rcpp::List output(input.size());

+ std::transform(

+ input.begin(), input.end(),

+ output.begin(),

+ f);

+ output.names() = input.names();

+ return output;

+ '

> cpp_lapply <- cxxfunction(

+ signature(data="list", fun = "function"),

+ src, plugin="Rcpp")

We can use this to calculate a summary of each
column of the faithful data set included with R.

> cpp_lapply(faithful, summary)

$eruptions

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.600 2.163 4.000 3.488 4.454 5.100

$waiting

Min. 1st Qu. Median Mean 3rd Qu. Max.

43.0 58.0 76.0 70.9 82.0 96.0

Error handling

Code that uses both R and C++ has to deal with two
concurrent error handling models. Rcpp simplifies
this and allows both systems to work together.

C++ exceptions in R

The internals of the R condition mechanism and the
implementation of C++ exceptions are both based
on a layer above POSIX jumps. These layers both
assume total control over the call stack and should
not be used together without extra precaution. Rcpp
contains facilities to combine both systems so that
C++ exceptions are caught and recycled into the R
condition mechanism.

Rcpp defines the BEGIN_RCPP and END_RCPP

macros that should be used to bracket code that
might throw C++ exceptions.

RcppExport SEXP fun(SEXP x){

BEGIN_RCPP

int dx = Rcpp::as<int>(x);

if(dx > 10)

throw std::range_error("too big");

return Rcpp::wrap(dx * dx);

END_RCPP

}

The macros are simply defined to avoid code rep-
etition. They expand to simple try/catch blocks:

RcppExport SEXP fun(SEXP x){

try{

int dx = Rcpp::as<int>(x);

if(dx > 10)

throw std::range_error("too big");

return Rcpp::wrap(dx * dx);

} catch(std::exception& __ex__){

forward_exception_to_r(__ex__);

} catch(...){

::Rf_error("c++ exception "

"(unknown reason)");

}

}

Using BEGIN_RCPP and END_RCPP — or the ex-
panded versions — guarantees that the stack is first
unwound in terms of C++ exceptions, before the

4The version of lapply does not allow use of the ellipsis (...).

REVISED ARTICLE CURRENTLY UNDER REVIEW 7

problem is converted to the standard R error man-
agement system (Rf_error).

The forward_exception_to_r function uses run-
time type information to extract information about
the class of the C++ exception and its message, so
that dedicated handlers can be installed on the R
side.

> f <- function(x) .Call("fun", x)

> tryCatch(f(12),

+ "std::range_error" = function(e) {

+ conditionMessage(e)

+ })

[1] "too big"

> tryCatch(f(12),

+ "std::range_error" = function(e) {

+ class(e)

+ })

[1] "std::range_error" "C++Error"

[3] "error" "condition"

R error in C++

R currently does not offer C-level mechanisms to
deal with errors. To overcome this problem, Rcpp
uses the Rcpp::Evaluator class to evaluate an ex-
pression in an R-level tryCatch block. The error, if
any, that occurs while evaluating the function is then
translated into an C++ exception that can be dealt
with using regular C++ try/catch syntax.

Performance comparison

In this section, we present several different ways to
leverage Rcpp to rewrite the convolution example
taken from R Development Core Team (2010a).

As part of the redesign of Rcpp, data copy is kept
to the absolute minimum: the RObject class and all
its derived classes are just a container for a SEXP ob-
ject. We let R perform all memory management and
access data though the macros or functions offered
by the standard R API.

The implementation of the operator[] is de-
signed to be as efficient as possible, using both in-
lining and caching, but even this implementation is
still less efficient than the reference C implementa-
tion described in R Development Core Team (2010a).

Rcpp follows design principles from the STL,
and classes such as NumericVector expose iterators
that can be used for sequential scans of the data.
Algorithms using iterators are usually more effi-
cient than those that operate on objects using the
operator[]. The following version illustrate the use
of the NumericVector::iterator.

#include <Rcpp.h>

RcppExport SEXP convolve4cpp(SEXP a, SEXP b){

Rcpp::NumericVector xa(a), xb(b);

int n_xa = xa.size(), n_xb = xb.size();

Rcpp::NumericVector xab(n_xa + n_xb - 1);

typedef Rcpp::NumericVector::iterator

vec_iterator;

vec_iterator ia = xa.begin(),

ib = xb.begin();

vec_iterator iab = xab.begin();

for (int i = 0; i < n_xa; i++)

for (int j = 0; j < n_xb; j++)

iab[i + j] += ia[i] * ib[j];

return xab;

}

One of the focuses of recent developments of
Rcpp is called ‘Rcpp sugar’, and aims to provide R-
like syntax in C++. A discussion of Rcpp sugar is
beyond the scope of this article, but for illustrative
purposes we have included another version of the
convolution algorithm based on Rcpp sugar.

#include <Rcpp.h>

RcppExport SEXP convolve11cpp(SEXP a, SEXP b){

Rcpp::NumericVector xa(a), xb(b);

int n_xa = xa.size(), n_xb = xb.size();

Rcpp::NumericVector xab(n_xa+n_xb-1,0.0);

Rcpp::Range r(0, n_xb-1);

for (int i=0; i<n_xa; i++, r++)

xab[r] += Rcpp::noNA(xa[i]) *

Rcpp::noNA(xb);

return xab ;

}

Rcpp sugar allows manipulation of entire subsets
of vectors at once, thanks to the Range class. Rcpp
sugar uses techniques such as expression templates,
lazy evaluation and loop unrolling to generate very
efficient code. The noNA template function marks its
argument to indicates that it does not contain any
missing values—an assumption made implicitly by
other versions—allowing sugar to compute the indi-
vidual operations without having to test for missing
values.

Implementation Time in Relative
millisec to R API

R API (as benchmark) 218
Rcpp sugar 145 0.67
NumericVector::iterator 217 1.00
NumericVector::operator[] 282 1.29
RcppVector<double> 683 3.13

Table 2: Performance for convolution example

We have benchmarked the various implementa-
tions by averaging over 5000 calls of each function

REVISED ARTICLE CURRENTLY UNDER REVIEW 8

with a and b containing 200 elements each.5 The tim-
ings are summarized in Table 2.

The first implementation, written in C and us-
ing the traditional R API provides our base case.
It takes advantage of pointer arithmetics, therefore
does not pay the price of C++’s object encapsulation
or operator overloading. The slowest implementa-
tion comes from the (deprecated) classic Rcpp API.
It is clearly behind in terms of efficiency. The dif-
ference is mainly caused by the many unnecessary
copies that the older code performs.

The second-slowest solution uses the more effi-
cient new Rcpp API. While already orders of magni-
tude faster than the preceding solution, it illustrates
the price of object encapsulation and of calling an
overloaded operator[] as opposed to using direct
pointer arithmetics as in the reference case.

The next implementation uses iterators rather
than indexing. Its performance is indistinguishable
from the base case. This shows that use of C++ does
not necessarily imply any performance penalty.

Finally, the fastest implementation uses Rcpp
sugar. It performs significantly better than the base
case: explicit loop unrolling provides vectorization at
the C++ level which is responsible for this speedup.

On-going development

Rcpp is in very active development: Current work
in the package (and in packages such as RcppAr-
madillo) focuses on further improving interoperabil-
ity between R and C++. Two core themes are ‘Rcpp
sugar’ as well as ‘Rcpp modules’ both of which are
discussed in specific vignettes in the package.

‘Rcpp sugar’ brings syntactic sugar at the C++
level, including optimized binary operators and
many R functions such as ifelse, sapply, any, ...
The main technique used in Rcpp sugar is expression
templates pioneered by the Blitz++ library (Veld-
huizen, 1998) and since adopted by projects such as
Armadillo (Sanderson, 2010). Access to most of the
d/p/q/r-variants of the statistical distribution func-
tions has also been added, enabling the use of expres-
sions such as dnorm(X, m, s) for a numeric vector
X and scalars m and s. Similarly, and continuing Ta-
ble 1, the R expression rnorm(10L, sd=100) can now
be written in C++ as rnorm(10, 0, 100) where C++
semantics require the second parameter to be used.

‘Rcpp modules’ allows programmers to expose
C++ functions and classes at the R level. This of-
fers access to C++ code from R using even less in-
terface code than by writing accessor function. Mod-
ules are inspired by the Boost.Python library (Abra-
hams and Grosse-Kunstleve, 2003) that provides sim-
ilar functionality for Python. C++ Classes exposed
by Rcpp modules are shadowed by reference classes
that have been introduced in R 2.12.0.

Summary

The Rcpp package presented here greatly simplifies
integration of compiled C++ code with R.

The class hierarchy allows manipulation of R data
structures in C++ using member functions and oper-
ators directly related to the type of object being used,
thereby reducing the level of expertise required to
master the various functions and macros offered by
the internal R API. The classes assume the entire re-
sponsibility of garbage collection of objects, relieving
the programmer from book-keeping operations with
the protection stack and enabling him/her to focus
on the underlying problem.

Data interchange between R and C++ code—
performed by the wrap and as template functions—
allows the programmer to write logic in terms of
C++ data structures and facilitates use of modern li-
braries such as the Standard Template Library and
its containers and algorithms. The wrap() and as()

template functions are extensible by design and can
be used either explicitly or implicitly throughout the
API. By using only thin wrappers around SEXP ob-
jects and adopting C++ idioms such as iterators, the
footprint of the Rcpp API is very lightweight, and
does not incur a significant performance penalty.

The Rcpp API offers opportunities to dramati-
cally reduce the complexity of code, which should
improve code readability, maintainability and reuse.

Acknowledgments

Detailed comments and suggestions by an editor as
well as two anonymous referees are gratefully ac-
knowledged. We are also thankful for code contri-
butions by Doug Bates and John Chambers, as well
as for very helpful suggestions by Uwe Ligges, Brian
Ripley and Simon Urbanek concerning the build sys-
tems for different platforms. Last but not least, sev-
eral users provided very fruitful ideas for new or ex-
tended features via the rcpp-devel mailing list.

Bibliography

D. Abrahams and R. W. Grosse-Kunstleve. Build-
ing Hybrid Systems with Boost.Python. Boost Con-
sulting, 2003. URL http://www.boostpro.com/

writing/bpl.pdf.

D. Abrahams and A. Gurtovoy. C++ Template
Metaprogramming: Concepts, Tools and Techniques
from Boost and Beyond. Addison-Wesley, Boston,
2004.

W. Armstrong. RAbstraction: C++ abstraction for R ob-
jects, 2009a. URL http://github.com/armstrtw/

5The code for this example is contained in the directory inst/examples/ConvolveBenchmarks in the Rcpp package.

http://www.boostpro.com/writing/bpl.pdf
http://www.boostpro.com/writing/bpl.pdf
http://github.com/armstrtw/rabstraction
http://github.com/armstrtw/rabstraction
http://github.com/armstrtw/rabstraction

REVISED ARTICLE CURRENTLY UNDER REVIEW 9

rabstraction. Code repository last updated July
22, 2009.

W. Armstrong. RObjects: C++ wrapper for R objects (a
better implementation of RAbstraction, 2009b. URL
http://github.com/armstrtw/RObjects. Code
repository last updated November 28, 2009.

D. M. Bates and S. DebRoy. C++ classes for R ob-
jects. In K. Hornik and F. Leisch, editors, Proceed-
ings of the 2nd International Workshop on Distributed
Statistical Computing (DSC 2001), TU Vienna, Aus-
tria, 2001.

D. Eddelbuettel and R. François. RInside: C++ classes
to embed R in C++ applications, 2010. URL http://

CRAN.R-Project.org/package=RInside. R pack-
age version 0.2.3.

D. Eddelbuettel and K. Nguyen. RQuantLib: R in-
terface to the QuantLib library, 2010. URL http:

//CRAN.R-Project.org//package=RQuantLib. R
package version 0.3.4.

R. François and D. Eddelbuettel. RProtoBuf: R Inter-
face to the Protocol Buffers API, 2010. URL http:

//CRAN.R-Project.org//package=RProtoBuf. R
package version 0.2.0.

R. François, D. Eddelbuettel, and D. Bates. Rcp-
pArmadillo: Rcpp integration for Armadillo templated
linear algebra library, 2010. URL http://CRAN.

R-Project.org//package=RcppArmadillo. R
package version 0.2.7.

J. J. Java, D. P. Gaile, and K. E. Manly. R/Cpp:
Interface classes to simplify using R objects
in C++ extensions. Unpublished manuscript,
University at Buffalo, July 2007. URL
http://sphhp.buffalo.edu/biostat/research/

techreports/UB_Biostatistics_TR0702.pdf.

G. Liang. rcppbind: A template library for R/C++ de-
velopers, 2008. URL http://R-Forge.R-Project.

org//projects/rcppbind. R package version 1.0.

S. Meyers. More Effective C++: 35 New Ways to Im-
prove Your Programs and Designs. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1995. ISBN 020163371X.

S. Meyers. Effective C++: 55 Specific Ways to Im-
prove Your Programs and Designs. Addison-Wesley
Professional, third edition, 2005. ISBN 978-
0321334879.

P. Plauger, A. Stepanov, M. Lee, and D. R. Musser.
The C++ Standard Template Library. Prentice Hall
PTR, 2000. ISBN 978-0134376332.

R Development Core Team. Writing R extensions.
R Foundation for Statistical Computing, Vienna,
Austria, 2010a. URL http://CRAN.R-Project.

org/doc/manuals/R-exts.html.

R Development Core Team. R internals. R Foun-
dation for Statistical Computing, Vienna, Austria,
2010b. URL http://CRAN.R-Project.org/doc/

manuals/R-ints.html.

A. Runnalls. Aspects of CXXR internals. In Directions
in Statistical Computing, University of Copenhagen,
Denmark, 2009.

C. Sanderson. Armadillo: An open source C++ al-
gebra library for fast prototyping and computa-
tionally intensive experiments. Technical report,
NICTA, 2010. URL http://arma.sf.net.

O. Sklyar, D. Murdoch, M. Smith, D. Eddelbuettel,
and R. François. inline: Inline C, C++, Fortran
function calls from R, 2010. URL http://CRAN.

R-Project.org//package=inline. R package ver-
sion 0.3.6.

D. Temple Lang. A modest proposal: an approach to
making the internal R system extensible. Computa-
tional Statistics, 24(2):271–281, May 2009a.

D. Temple Lang. Working with meta-data from
C/C++ code in R: the RGCCTranslationUnit pack-
age. Computational Statistics, 24(2):283–293, May
2009b.

S. Urbanek. Rserve: A fast way to provide R func-
tionality to applications. In K. Hornik, F. Leisch,
and A. Zeileis, editors, Proceedings of the 3rd Inter-
national Workshop on Distributed Statistical Comput-
ing (DSC 2003), TU Vienna, Austria, 2003.

S. Urbanek. Rserve: Binary R server, 2010. URL http:

//CRAN.R-Project.org//package=Rserve. R
package version 0.6-2.

D. Vandevoorde and N. M. Josuttis. C++ Templates:
The Complete Guide. Addison-Wesley, Boston, 2003.

T. L. Veldhuizen. Arrays in Blitz++. In ISCOPE ’98:
Proceedings of the Second International Symposium
on Computing in Object-Oriented Parallel Environ-
ments, pages 223–230, London, UK, 1998. Springer-
Verlag. ISBN 3-540-65387-2.

Dirk Eddelbuettel
Debian Project
Chicago, IL
USA
edd@debian.org

Romain François
Professional R Enthusiast
1 rue du Puits du Temple, 34 000 Montpellier
FRANCE
romain@r-enthusiasts.com

http://github.com/armstrtw/rabstraction
http://github.com/armstrtw/rabstraction
http://github.com/armstrtw/RObjects
http://CRAN.R-Project.org/package=RInside
http://CRAN.R-Project.org/package=RInside
http://CRAN.R-Project.org//package=RQuantLib
http://CRAN.R-Project.org//package=RQuantLib
http://CRAN.R-Project.org//package=RProtoBuf
http://CRAN.R-Project.org//package=RProtoBuf
http://CRAN.R-Project.org//package=RcppArmadillo
http://CRAN.R-Project.org//package=RcppArmadillo
http://sphhp.buffalo.edu/biostat/research/techreports/UB_Biostatistics_TR0702.pdf
http://sphhp.buffalo.edu/biostat/research/techreports/UB_Biostatistics_TR0702.pdf
http://R-Forge.R-Project.org//projects/rcppbind
http://R-Forge.R-Project.org//projects/rcppbind
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://CRAN.R-Project.org/doc/manuals/R-ints.html
http://CRAN.R-Project.org/doc/manuals/R-ints.html
http://arma.sf.net
http://CRAN.R-Project.org//package=inline
http://CRAN.R-Project.org//package=inline
http://CRAN.R-Project.org//package=Rserve
http://CRAN.R-Project.org//package=Rserve
mailto:edd@debian.org
mailto:romain@r-enthusiasts.com

	Rcpp: Seamless R and C++ integration
	Introduction
	Historical Context
	Comparison
	Rcpp Use Cases

	The Rcpp API
	A First Example
	Rcpp Class hierarchy
	Derived classes
	Numeric vectors
	Character vectors

	R and C++ data interchange
	C++ to R : wrap
	R to C++ : as
	Implicit use of converters

	Function calls
	Using code `inline'
	Using STL algorithms
	Error handling
	C++ exceptions in R
	R error in C++

	Performance comparison
	On-going development
	Summary
	Acknowledgments

