
RcppArmadillo: Accelerating R
with High-Performance C++ Linear Algebra1

Dirk Eddelbuettela, Conrad Sandersonb,c

aDebian Project, http: // www. debian. org
bNICTA, PO Box 6020, St Lucia, QLD 4067, Australia

cQueensland University of Technology (QUT), Brisbane, QLD 4000, Australia

Abstract

The R statistical environment and language has demonstrated particular strengths
for interactive development of statistical algorithms, as well as data modelling
and visualisation. Its current implementation has an interpreter at its core which
may result in a performance penalty in comparison to directly executing user
algorithms in the native machine code of the host CPU. In contrast, the C++
language has no built-in visualisation capabilities, handling of linear algebra or
even basic statistical algorithms; however, user programs are converted to high-
performance machine code, ahead of execution. A new method avoids possible
speed penalties in R by using the Rcpp extension package in conjunction with
the Armadillo C++ matrix library. In addition to the inherent performance
advantages of compiled code, Armadillo provides an easy-to-use template-based
meta-programming framework, allowing the automatic pooling of several linear
algebra operations into one, which in turn can lead to further speedups. With
the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms
from R to C++ becomes straightforward. The algorithms retains the overall
structure as well as readability, all while maintaining a bidirectional link with
the host R environment. Empirical timing comparisons of R and C++ imple-
mentations of a Kalman filtering algorithm indicate a speedup of several orders
of magnitude.

Keywords: Software, R, C++, linear algebra

1. Overview

Linear algebra is a cornerstone of statistical computing and statistical soft-
ware systems. Various matrix decompositions, linear program solvers, and

1This vignette corresponds to a paper published in Computational Statistics and Data
Analysis. Currently still identical to the paper, this vignette version may over time receive
minor updates. For citations, please use Eddelbuettel and Sanderson (2014) as provided by
citation("RcppArmadillo"). This version corresponds to RcppArmadillo version 0.6.100.0.0
and was typeset on October 3, 2015.

Preprint submitted to Computational Statistics and Data Analysis October 3, 2015

http://www.debian.org
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://www.journals.elsevier.com/computational-statistics-and-data-analysis/
http://www.journals.elsevier.com/computational-statistics-and-data-analysis/

eigenvalue / eigenvector computations are key to many estimation and anal-
ysis routines. As generally useful procedures, these are often abstracted and
regrouped in specific libraries for linear algebra which statistical programmers
have provided for various programming languages and environments.

One such environment and statistical programming language is R (R De-
velopment Core Team, 2012). It has become a tool of choice for data analysis
and applied statistics (Morandat et al., 2012). While R has particular strengths
at fast prototyping and easy visualisation of data, its implementation has an
interpreter at its core. In comparison to running user algorithms in the na-
tive machine code of the host CPU, the use of an interpreter often results in
a performance penalty for non-trivial algorithms that perform elaborate data
manipulation (Morandat et al., 2012). With user algorithms becoming more
complex and increasing in functionality, as well as with data sets which con-
tinue to increase in size, the issue of execution speed becomes more important.

The C++ language offers a complementary set of attributes: while it has
no built-in visualisation capabilities nor handling of linear algebra or statistical
methods, user programs are converted to high-performance machine code ahead
of execution. It is also inherently flexible. One key feature is operator overload-
ing which allows the programmer to define custom behaviour for mathematical
operators such as +, −, ∗ (Meyers, 2005). C++ also provides language constructs
known as templates, originally intended to easily allow the reuse of algorithms
for various object types, and later extended to a programming construct in its
own right called template meta-programming (Vandevoorde and Josuttis, 2002;
Abrahams and Gurtovoy, 2004)

Operator overloading allows mathematical operations to be extended to user-
defined objects, such as matrices. This in turn allows linear algebra expressions
to be written in a more natural manner (eg. X = 0.1 ∗ A + 0.2 ∗ B), rather than
the far less readable traditional function call syntax, eg. X = add(multiply(0.1, A),multiply(0.2, B)).

Template meta-programming is the process of inducing the C++ compiler
to execute, at compile time, Turing-complete programs written in a somewhat
opaque subset of the C++ language (Vandevoorde and Josuttis, 2002; Abrahams
and Gurtovoy, 2004). These meta-programs in effect generate further C++ code
(often specialised for particular object types), which is finally converted into
machine code.

An early and influential example of exploiting both meta-programming and
overloading of mathematical operators was provided by the Blitz++ library
(Veldhuizen, 1998), targeted for efficient processing of arrays. Blitz++ employed
elaborate meta-programming to avoid the generation of temporary array objects
during the evaluation of mathematical expressions. However, the library’s ca-
pabilities and usage were held back at the time by the limited availability of
compilers correctly implementing all the necessary features and nuances of the
C++ language.

We present a new method of avoiding the speed penalty in R by using the
Rcpp extension package (Eddelbuettel and François, 2011, 2012; Eddelbuettel,
2013) in conjunction with the Armadillo C++ linear algebra library (Sanderson,
2010). Similar to Blitz++, Armadillo uses operator overloading and various

2

template meta-programming techniques to attain efficiency. However, it has
been written to target modern C++ compilers as well as providing a much
larger set of linear algebra operations than Blitz++. R programs augmented
to use Armadillo retain the overall structure as well as readability, all while
retaining a bidirectional link with the host R environment.

Section 2 provides an overview of Armadillo, followed by its integration with
the Rcpp extension package. Section 4 shows an example of an R program and
its conversion to C++ via Rcpp and Armadillo. Section 5 discusses an empirical
timing comparison between the R and C++ versions before Section 6 concludes.

2. Armadillo

The Armadillo C++ library provides vector, matrix and cube types (sup-
porting integer, floating point and complex numbers) as well as a subset of
trigonometric and statistics functions (Sanderson, 2010). In addition to ele-
mentary operations such as addition and matrix multiplication, various matrix
factorisations and submatrix manipulation operations are provided. The corre-
sponding application programming interface (syntax) enables the programmer to
write code which is both concise and easy-to-read to those familiar with script-
ing languages such as Matlab and R. Table 1 lists a few common Armadillo
functions.

Matrix multiplication and factorisations are accomplished through integra-
tion with the underlying operations stemming from standard numerical libraries
such as BLAS and LAPACK (Demmel, 1997). Similar to how environments
such as R are implemented, these underlying libraries can be replaced in a
transparent manner with variants that are optimised to the specific hardware
platform and/or multi-threaded to automatically take advantage of the now-
common multi-core platforms (Kurzak et al., 2010).

Armadillo uses a delayed evaluation approach to combine several operations
into one and reduce (or eliminate) the need for temporary objects. In contrast
to brute-force evaluations, delayed evaluation can provide considerable perfor-
mance improvements as well as reduced memory usage. The delayed evaluation
machinery is accomplished through template meta-programming (Vandevoorde
and Josuttis, 2002; Abrahams and Gurtovoy, 2004), where the C++ compiler
is induced to reason about mathematical expressions at compile time. Where
possible, the C++ compiler can generate machine code that is tailored for each
expression.

As an example of the possible efficiency gains, let us consider the expression
X = A − B +C, where A, B and C are matrices. A brute-force implementation
would evaluate A − B first and store the result in a temporary matrix T . The
next operation would be T +C, with the result finally stored in X. The creation
of the temporary matrix, and using two separate loops for the subtraction and
addition of matrix elements is suboptimal from an efficiency point of view.

Through the overloading of mathematical operators, Armadillo avoids the
generation of the temporary matrix by first converting the expression into a

3

set of lightweight Glue objects, which only store references to the matrices
and Armadillo’s representations of mathematical expressions (eg. other Glue

objects). To indicate that an operation comprised of subtraction and addition
is required, the exact type of the Glue objects is automatically inferred from the
given expression through template meta-programming. More specifically, given
the expression X = A − B +C, Armadillo automatically induces the compiler to
generate an instance of the lightweight Glue storage object with the following
C++ type:

Glue< Glue<Mat, Mat, glue_minus>, Mat, glue_plus>

where Glue<...> indicates that Glue is a C++ template class, with the items
between ‘<’ and ‘>’ specifying template parameters; the outer Glue<..., Mat,

glue_plus> is the Glue object indicating an addition operation, storing a ref-
erence to a matrix as well as a reference to another Glue object; the inner
Glue<Mat, Mat, glue_minus> stores references to two matrices and indicates
a subtraction operation. In both the inner and outer Glue, the type Mat specifies
that a reference to a matrix object is to be held.

The expression evaluator in Armadillo is then automatically invoked through
the “=” operation, which interprets (at compile time) the template parameters
of the compound Glue object and generates C++ code equivalent to:

for(int i=0; i<N; i++) { X[i] = (A[i] - B[i]) + C[i]; }

Armadillo function Description

X(1,2) = 3 Assign value 3 to element at location (1,2) of matrix X
X = A + B Add matrices A and B
X(span(1,2), span(3,4)) Provide read/write access to submatrix of X
zeros(rows [, cols [, slices])) Generate vector (or matrix or cube) of zeros
ones(rows [, cols [, slices])) Generate vector (or matrix or cube) of ones
eye(rows, cols) Matrix diagonal set to 1, off-diagonal elements set to 0
repmat(X, row_copies, col_copies) Replicate matrix X in block-like manner
det(X) Returns the determinant of matrix X
norm(X, p) Compute the p-norm of matrix or vector X
rank(X) Compute the rank of matrix X
min(X, dim=0); max(X, dim=0) Extremum value of each column of X (row if dim=1)
trans(X) or X.t() Return transpose of X
R = chol(X) Cholesky decomposition of X such that RT R = X
inv(X) or X.i() Returns the inverse of square matrix X
pinv(X) Returns the pseudo-inverse of matrix X
lu(L, U, P, X) LU decomp. with partial pivoting; also lu(L, U, X)

qr(Q, R, X) QR decomp. into orthogonal Q and right-triangular R
X = solve(A, B) Solve system AX = B for X
s = svd(X); svd(U, s, V, X) Singular-value decomposition of X

Table 1: Selected Armadillo functions with brief descriptions; see
http://arma.sf.net/docs.html for more complete documentation. Several optional
additional arguments have been omitted here for brevity.

4

where N is the number of elements in A, B and C, with A[i] indicating the i-th
element in A. As such, apart from the lightweight Glue objects (for which mem-
ory is pre-allocated at compile time), no other temporary object is generated,
and only one loop is required instead of two. Given a sufficiently advanced C++
compiler, the lightweight Glue objects can be optimised away, as they are au-
tomatically generated by the compiler and only contain compile-time generated
references; the resultant machine code can appear as if the Glue objects never
existed in the first place.

Note that due to the ability of the Glue object to hold references to other
Glue objects, far longer and more complicated operations can be easily accom-
modated. Further discussion of template meta-programming is beyond the scope
of this paper; for more details, the interested reader is referred to Vandevoorde
and Josuttis (2002) as well as Abrahams and Gurtovoy (2004). Reddy et al.
(2013) provide a recent application of Armadillo in computer vision and pattern
recognition.

3. RcppArmadillo

The RcppArmadillo package (François et al., 2012) employs the Rcpp pack-
age (Eddelbuettel and François, 2011, 2012; Eddelbuettel, 2013) to provide a
bidirectional interface between R and C++ at the object level. Using tem-
plates, R objects such as vectors and matrices can be mapped directly to the
corresponding Armadillo objects.

1 R> library(inline)

R>

3 R> g <- cxxfunction(signature(vs="numeric"),

+ plugin="RcppArmadillo", body=’

5 + arma::vec v = Rcpp::as<arma::vec >(vs);

+ arma::mat op = v * v.t();

7 + double ip = arma::as_scalar(v.t() * v);

+ return Rcpp::List:: create(Rcpp::Named("outer")=op,

9 + Rcpp::Named("inner")=ip);

+’)

11 R> g(7:11)

$outer

13 [,1] [,2] [,3] [,4] [,5]

[1,] 49 56 63 70 77

15 [2,] 56 64 72 80 88

[3,] 63 72 81 90 99

17 [4,] 70 80 90 100 110

[5,] 77 88 99 110 121

19

$inner

21 [1] 415

Listing 1: Integrating Armadillo-based C++ code via the RcppArmadillo package.

5

Consider the simple example in Listing 1. Given a vector, the g() function
returns both the outer and inner products. We load the inline package (Sklyar
et al., 2012), which provides cxxfunction() that we use to compile, link and
load the C++ code which is passed as the body argument. We declare the
function signature to contain a single argument named ‘vs’. On line five, this
argument is used to instantiate an Armadillo column vector object named ‘v’
(using the templated conversion function as() from Rcpp). In lines six and
seven, the outer and inner product of the column vector are calculated by ap-
propriately multiplying the vector with its transpose. This shows how the *

operator for multiplication has been overloaded to provide the appropriate op-
eration for the types implemented by Armadillo. The inner product creates a
scalar variable, and in contrast to R where each object is a vector type (even if
of length one), we have to explicitly convert using as_scalar() to assign the
value to a variable of type double.

Finally, the last line creates an R named list type containing both results.
As a result of calling cxxfunction(), a new function is created. It contains
a reference to the native code, compiled on the fly based on the C++ code
provided to cxxfunction() and makes it available directly from R under a
user-assigned function name, here g(). The listing also shows how the Rcpp and
arma namespaces are used to disambiguate symbols from the two libraries; the
:: operator is already familiar to R programmers who use the NAMESPACE
directive in R in a similar fashion.

The listing also demonstrates how the new function g() can be called with
a suitable argument. Here we create a vector of five elements, containing values
ranging from 7 to 11. The function’s output, here the list containing both outer
and inner product, is then displayed as it is not assigned to a variable.

This simple example illustrates how R objects can be transferred directly into
corresponding Armadillo objects using the interface code provided by Rcpp.
It also shows how deployment of RcppArmadillo is straightforward, even for
interactive work where functions can be compiled on the fly. Similarly, usage
in packages is also uncomplicated and follows the documentation provided with
Rcpp (Eddelbuettel and François, 2012; Eddelbuettel, 2013).

4. Kalman Filtering Example

The Kalman filter is ubiquitous in many engineering disciplines as well as in
statistics and econometrics (Tusell, 2011). A recent example of an application
is volatility extraction in a diffusion option pricing model (Li, 2013). Even
in its simplest linear form, the Kalman filter can provide simple estimates by
recursively applying linear updates which are robust to noise and can cope with
missing data. Moreover, the estimation process is lightweight and fast, and
consumes only minimal amounts of memory as few state variables are required.
We discuss a standard example below. The (two-dimensional) position of an
object is estimated based on past values. A 6 × 1 state vector includes X and
Y coordinates determining the position, two variables for speed (or velocity) VX

6

and VY relative to the two coordinates, as well as two acceleration variables AX

and AY .
We have the positions being updated as a function of the velocity

X = X0 + VXdt and Y = Y0 + VYdt,

and the velocity being updated as a function of the (unobserved) acceleration:

Vx = VX,0 + AXdt and Vy = VY,0 + AYdt.

With covariance matrices Q and R for (Gaussian) error terms, the standard
Kalman filter estimation involves a linear prediction step resulting in a new
predicted state vector, and a new covariance estimate. This leads to a residuals
vector and a covariance matrix for residuals which are used to determine the
(optimal) Kalman gain, which is then used to update the state estimate and
covariance matrix.

All of these steps involve only matrix multiplication and inversions, making
the algorithm very suitable for an implementation in any language which can
use matrix expressions. An example for Matlab is provided on the Mathworks
website2 and shown in Listing 2.

1 % Copyright 2010 The MathWorks , Inc.

function y = kalmanfilter(z)

3 dt=1;

% Initialize state transition matrix

5 A=[1 0 dt 0 0 0; 0 1 0 dt 0 0;... % [x], [y]

0 0 1 0 dt 0; 0 0 0 1 0 dt;... % [Vx], [Vy]

7 0 0 0 0 1 0 ; 0 0 0 0 0 1]; % [Ax], [Ay]

H = [1 0 0 0 0 0; 0 1 0 0 0 0]; % Init. measuremnt mat

9 Q = eye(6);
R = 1000 * eye(2);

11 persistent x_est p_est % Init. state cond.

if isempty(x_est)
13 x_est = zeros(6, 1); % x_est =[x,y,Vx ,Vy ,Ax ,Ay]’

p_est = zeros(6, 6);

15 end

17 x_prd = A * x_est; % Predicted state + covar.

p_prd = A * p_est * A’ + Q;

19

S = H * p_prd ’ * H’ + R; % Estimation

21 B = H * p_prd ’;
klm_gain = (S \ B)’;

23

% Estimated state and covariance

25 x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;

27 y = H * x_est; % Comp. estim. measurements

end % of the function

2See http://www.mathworks.com/products/matlab-coder/demos.html?file=/products/

demos/shipping/coder/coderdemo_kalman_filter.html.

7

http://www.mathworks.com/products/matlab-coder/demos.html?file=/products/demos/shipping/coder/coderdemo_kalman_filter.html
http://www.mathworks.com/products/matlab-coder/demos.html?file=/products/demos/shipping/coder/coderdemo_kalman_filter.html

Listing 2: Basic Kalman filter in Matlab.

FirstKalmanR <- function(pos) {

2

kalmanfilter <- function(z) {

4 dt <- 1

A <- matrix(c(1, 0, dt, 0, 0, 0, 0, 1, 0, dt, 0, 0,

x, y

6 0, 0, 1, 0, dt , 0, 0, 0, 0, 1, 0, dt,

Vx , Vy

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1)

, # Ax , Ay

8 6, 6, byrow=TRUE)

H <- matrix(c(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

10 2, 6, byrow=TRUE)

Q <- diag (6)

12 R <- 1000 * diag (2)

14 xprd <- A %*% xest # predicted state and

covriance

pprd <- A %*% pest %*% t(A) + Q

16

S <- H %*% t(pprd) %*% t(H) + R # estimation

18 B <- H %*% t(pprd)

kalmangain <- t(solve(S, B))

20

estimated state and covariance , assign to vars in

parent env

22 xest <<- xprd + kalmangain %*% (z - H %*% xprd)

pest <<- pprd - kalmangain %*% H %*% pprd

24

compute the estimated measurements

26 y <- H %*% xest

}

28 xest <- matrix(0, 6, 1)

pest <- matrix(0, 6, 6)

30

N <- nrow(pos)

32 y <- matrix(NA , N, 2)

for (i in 1:N) {

34 y[i,] <- kalmanfilter(t(pos[i,,drop=FALSE]))

}

36 invisible(y)

}

Listing 3: Basic Kalman filter in R (referred to as FirstKalmanR).

A straightforward R implementation can be written as a close transcription
of the Matlab version; we refer to this version as FirstKalmanR. It is shown

8

in Listing 3. A slightly improved version (where several invariant statements
are moved out of the repeatedly-called function) is provided in Listing 4 on
page 9 showing the function KalmanR. The estimates of the state vector and
its covariance matrix are updated iteratively. The Matlab implementation uses
two variables declared ‘persistent’ for this. In R, which does not have such an
attribute for variables, we store them in the enclosing environment of the outer
function KalmanR, which contains an inner function kalmanfilter that is called
for each observation.

Armadillo provides efficient vector and matrix classes to implement the
Kalman filter. In Listing 5 on page 10, we show a simple C++ class containing
a basic constructor as well as one additional member function. The constructor
can be used to initialise all variables as we are guaranteed that the code in the
class constructor will be executed exactly once when this class is instantiated.
A class also makes it easy to add ‘persistent’ local variables, which is a feature
we need here. Given such a class, the estimation can be accessed from R via a
short and simple routine such as the one shown in Listing 6.

1 KalmanR <- function(pos) {

3 kalmanfilter <- function(z) {

predicted state and covariance

5 xprd <- A %*% xest

pprd <- A %*% pest %*% t(A) + Q

7

estimation

9 S <- H %*% t(pprd) %*% t(H) + R

B <- H %*% t(pprd)

11

kalmangain <- t(solve(S, B))

13

estimated state and covariance

15 ## assigned to vars in parent env

xest <<- xprd + kalmangain %*% (z - H %*% xprd)

17 pest <<- pprd - kalmangain %*% H %*% pprd

19 ## compute the estimated measurements

y <- H %*% xest

21 }

23 dt <- 1

A <- matrix(c(1, 0, dt , 0, 0, 0, # x

25 0, 1, 0, dt, 0, 0, # y

0, 0, 1, 0, dt , 0, # Vx

27 0, 0, 0, 1, 0, dt, # Vy

0, 0, 0, 0, 1, 0, # Ax

29 0, 0, 0, 0, 0, 1), # Ay

6, 6, byrow=TRUE)

31 H <- matrix(c(1, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0),

9

33 2, 6, byrow=TRUE)

Q <- diag (6)

35 R <- 1000 * diag (2)

N <- nrow(pos)

37 Y <- matrix(NA , N, 2)

39 xest <- matrix(0, 6, 1)

pest <- matrix(0, 6, 6)

41

for (i in 1:N) {

43 Y[i,] <- kalmanfilter(t(pos[i,,drop=FALSE]))

}

45 invisible(Y)

}

Listing 4: An improved Kalman filter implemented in R (referred to as KalmanR).

using namespace arma;

2

class Kalman {

4 private:

mat A, H, Q, R, xest , pest;

6 double dt;

8 public:

// constructor , sets up data structures

10 Kalman () : dt(1.0) {

A.eye(6,6);

12 A(0,2) = A(1,3) = A(2,4) = A(3,5) = dt;

H.zeros (2,6);

14 H(0,0) = H(1,1) = 1.0;

Q.eye(6,6);

16 R = 1000 * eye(2,2);

xest.zeros (6,1);

18 pest.zeros (6,6);

}

20

// sole member function: estimate model

22 mat estimate(const mat & Z) {

unsigned int n = Z.n_rows , k = Z.n_cols;

24 mat Y = zeros(n, k);

mat xprd , pprd , S, B, kalmangain;

26 colvec z, y;

28 for (unsigned int i = 0; i<n; i++) {

z = Z.row(i).t();

30 // predicted state and covariance

xprd = A * xest;

32 pprd = A * pest * A.t() + Q;

// estimation

10

34 S = H * pprd.t() * H.t() + R;

B = H * pprd.t();

36 kalmangain = (solve(S, B)).t();

// estimated state and covariance

38 xest = xprd + kalmangain * (z - H * xprd);

pest = pprd - kalmangain * H * pprd;

40 // compute the estimated measurements

y = H * xest;

42 Y.row(i) = y.t();

}

44 return Y;

}

46 };

Listing 5: A Kalman filter class in C++, using Armadillo classes.

R> kalmanSrc <- ’

2 + mat Z = as<mat >(ZS); // passed from R

+ Kalman K;

4 + mat Y = K.estimate(Z);

+ return wrap(Y);’

6 R> KalmanCpp <- cxxfunction(signature(ZS="numeric"),

+ body=kalmanSrc , include=

kalmanClass ,

8 + plugin="RcppArmadillo")

Listing 6: A Kalman filter function implemented in a mixture of R and C++ code, using the
RcppArmadillo package to embed Armadillo based C++ code (using the Kalman class from
Listing 5) within R code. The resulting program is referred to as KalmanCpp.

The content of Listing 5 is assigned to a variable kalmanClass which (on
line seven) is passed to the include= argument. This provides the required class
declaration and definition. The four lines of code in lines two to five, assigned to
kalmanSrc, provide the function body required by cxxfunction(). From both
these elements and the function signature argument, cxxfunction() creates a
very simple yet efficient C++ implementation of the Kalman filter which we can
access from R. Given a vector of observations Z, it estimates a vector of position
estimates Y.

This is illustrated in Figure 1 which displays the original object trajectory
(using light-coloured square symbols) as well as the position estimates provided
by the Kalman filter (using dark-coloured circles). This uses the same dataset
provided by the Mathworks for their example; the data is believed to be simu-
lated.

We note that this example is meant to be illustrative and does not attempt
to provide a reference implementation of a Kalman filter. R contains several
packages providing various implementations, as discussed in the survey provided
by Tusell (2011).

5. Empirical Speed Comparison

11

−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Trajectory
Estimate

Figure 1: An example of object trajectory and the corresponding Kalman filter estimate.

R> require(rbenchmark)

2 R> require(compiler)

R>

4 R> FirstKalmanRC <- cmpfun(FirstKalmanR)

R> KalmanRC <- cmpfun(KalmanR)

6 R>

R> ## Read data , ensure identical results

8 R> pos <- as.matrix(read.table("pos.txt", header=FALSE ,

+ col.names=c("x","y")))

10 R> stopifnot(all.equal(KalmanR(pos), KalmanRC(pos)),

+ all.equal(KalmanR(pos), KalmanCpp(pos)),

12 + all.equal(FirstKalmanR(pos), FirstKalmanRC(pos)

),

+ all.equal(KalmanR(pos), FirstKalmanR(pos)))

14 R>

R> res <- benchmark(KalmanR(pos), KalmanRC(pos),

16 + FirstKalmanR(pos), FirstKalmanRC(pos),

+ KalmanCpp(pos),

18 + columns = c("test", "replications",

+ "elapsed", "relative"),

20 + order="relative",

+ replications =100)

12

Implementation Time in seconds Relative to best solution

KalmanCpp 0.73 1.0
KalmanRimpC 21.10 29.0
KalmanRimp 22.01 30.2
KalmanRC 28.64 39.3
KalmanR 31.30 43.0
FirstKalmanRC 49.40 67.9
FirstKalmanR 64.00 88.0

Table 2: Performance comparison of various implementations of a Kalman filter. KalmanCpp
is the RcppArmadillo based implementation in C++ shown in Listings 5 and 6. KalmanRimp
is an improved version supplied by an anonymous referee which uses the crossprod function
instead of explicit transpose and multiplication. KalmanR is the R implementation shown in
Listing 4; FirstKalmanR is a direct translation of the original Matlab implementation shown in
Listing 3. In all cases, the trailing ‘C’ denotes a byte-compiled variant of the corresponding R
code. Timings are averaged over 500 replications. The comparison was made using R version
2.15.2, Rcpp version 0.10.2 and RcppArmadillo version 0.3.6.1 on Ubuntu 12.10 running in
64-bit mode on a 2.67 GHz Intel i7 processor.

Listing 7: R code for timing comparison of Kalman filter implementations.

Listing 7 contains the code for creating a simple benchmarking exercise.
It compares several functions for implementing the Kalman filter, all executed
within the R environment. Specifically, we examine the initial R version FirstKalmanR

shown in Listing 3, a refactored version KalmanR shown in Listing 4, an improved
version3 due to an anonymous referee (not shown, but included in the package),
as well as byte-compiled versions (designated with a trailing ‘C’) created by
using the byte-code compiler introduced with R version 2.13.0 (Tierney, 2012).
Finally, the C++ version shown in Listings 5 and 6 is used. Also shown are
the R statements for creating the byte-compiled variants via calls to cmpfun().
This is followed by a test to ensure that all variants provide the same results.
Next, the actual benchmark is executed before the result is displayed.

The results are shown in Table 2. Optimising and improving the R code has
merits: we notice a steady improvement from the slowest R version to the fastest
R version. Byte-compiling R code provides an additional performance gain
which is more pronounced for the slower variant than the fastest implementation
in R. However, the KalmanCpp function created using RcppArmadillo clearly
outperforms all other variants, underscoring the principal point of this paper.

These results are consistent with the empirical observations made by Moran-
dat et al. (2012), who also discuss several reasons for the slow speed of R com-
pared to the C language, a close relative of C++.

3The improved version replaces explicit transpose and multiplication with the crossprod

function.

13

6. Conclusion

This paper introduced the RcppArmadillo package for use within the R
statistical environment. By using the Rcpp interface package, RcppArmadillo
brings the speed of C++ along with the highly expressive Armadillo linear al-
gebra library to the R language. A small example implementing a Kalman filter
illustrated two key aspects. First, orders of magnitude of performance gains can
be obtained by deploying C++ code along with R. Second, the ease of use and
readability of the corresponding C++ code is similar to the R code from which
it was derived.

This combination makes RcppArmadillo a compelling tool in the arsenal of
applied researchers deploying computational methods in statistical computing
and data analysis. As of early-2013, about 30 R packages on CRAN deploy
RcppArmadillo4, showing both the usefulness of Armadillo and its acceptance
by the R community.

Acknowledgements

NICTA is funded by the Australian Government as represented by the De-
partment of Broadband, Communications and the Digital Economy, as well as
the Australian Research Council through the ICT Centre of Excellence program.

Adam M. Johansen provided helpful comments on an earlier draft. Com-
ments by two anonymous referees and one editor further improved the paper
and are gratefully acknowledged.

References

Abrahams, D., Gurtovoy, A., 2004. C++ Template Metaprogramming: Con-
cepts, Tools, and Techniques from Boost and Beyond. Addison-Wesley Pro-
fessional.

Demmel, J. W., 1997. Applied Numerical Linear Algebra. SIAM, ISBN 978-
0898713893.

Eddelbuettel, D., 2013. Seamless R and C++ Integration with Rcpp. Springer,
New York.

Eddelbuettel, D., François, R., 2011. Rcpp: Seamless R and C++ integration.
Journal of Statistical Software 40 (8), 1–18.
URL http://www.jstatsoft.org/v40/i08/

Eddelbuettel, D., François, R., 2012. Rcpp: Seamless R and C++ Integration.
R package version 0.10.2.
URL http://CRAN.R-Project.org/package=Rcpp

4See http://cran.r-project.org/package=RcppArmadillo for more details.

14

http://www.jstatsoft.org/v40/i08/
http://CRAN.R-Project.org/package=Rcpp
http://cran.r-project.org/package=RcppArmadillo

Eddelbuettel, D., Sanderson, C., March 2014. Rcpparmadillo: Accelerating R
with high-performance C++ linear algebra. Computational Statistics and
Data Analysis 71, 1054–1063.
URL http://dx.doi.org/10.1016/j.csda.2013.02.005

François, R., Eddelbuettel, D., Bates, D., 2012. RcppArmadillo: Rcpp integra-
tion for Armadillo templated linear algebra library. R package version 0.3.6.1.
URL http://CRAN.R-Project.org/package=RcppArmadillo

Kurzak, J., Bader, D. A., Dongarra, J. (Eds.), 2010. Scientific Computing with
Multicore and Accelerators. CRC Press, ISBN 978-1439825365.

Li, J., 2013. An unscented Kalman smoother for volatility extraction: Evidence
from stock prices and options. Computational Statistics and Data Analysis
58, 15–26.

Meyers, S., 2005. Effective C++: 55 Specific Ways to Improve Your Pro-
grams and Designs, 3rd Edition. Addison-Wesley Professional, ISBN 978-
0321334879.

Morandat, F., Hill, B., Osvald, L., Vitek, J., 2012. Evaluating the design of
the R language. In: ECOOP 2012: Proceedings of European Conference on
Object-Oriented Programming.

R Development Core Team, 2012. R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna, Austria,
ISBN 3-900051-07-0.
URL http://www.R-project.org/

Reddy, V., Sanderson, C., Lovell, B. C., 2013. Improved foreground detection
via block-based classifier cascade with probabilistic decision integration. IEEE
Transactions on Circuits and Systems for Video Technology 23 (1), 83–93.

Sanderson, C., 2010. Armadillo: An open source C++ algebra library for fast
prototyping and computationally intensive experiments. Tech. rep., NICTA.
URL http://arma.sourceforge.net

Sklyar, O., Murdoch, D., Smith, M., Eddelbuettel, D., François, R., 2012. inline:
Inline C, C++, Fortran function calls from R. R package version 0.3.10.
URL http://CRAN.R-Project.org/package=inline

Tierney, L., 2012. A byte-code compiler for R. Manuscript, Department of Statis-
tics and Actuarial Science, University of Iowa.
URL www.stat.uiowa.edu/~luke/R/compiler/compiler.pdf

Tusell, F., 2011. Kalman filtering in R. Journal of Statistical Software 39 (2),
1–27.
URL http://www.jstatsoft.org/v39/i02

15

http://dx.doi.org/10.1016/j.csda.2013.02.005
http://CRAN.R-Project.org/package=RcppArmadillo
http://www.R-project.org/
http://arma.sourceforge.net
http://CRAN.R-Project.org/package=inline
www.stat.uiowa.edu/~luke/R/compiler/compiler.pdf
http://www.jstatsoft.org/v39/i02

Vandevoorde, D., Josuttis, N. M., 2002. C++ Templates: The Complete Guide.
Addison-Wesley Professional.

Veldhuizen, T. L., 1998. Arrays in Blitz++. In: ISCOPE ’98: Proceedings of the
Second International Symposium on Computing in Object-Oriented Parallel
Environments. Springer-Verlag, London, UK, pp. 223–230, ISBN 3-540-65387-
2.

16

	Overview
	Armadillo
	RcppArmadillo
	Kalman Filtering Example
	Empirical Speed Comparison
	Conclusion

