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Abstract

I present in this paper the package gmm that I wrote for the object oriented and open
source statistical package R to compute the generalized method of moments (GMM) and
the generalized empirical likelihood (GEL) estimators. There were no statistical package
until now that included procedures to implement GEL, and those which offer a GMM
procedure are not very flexible. The package presented here includes most of the recent
development in this area. Its implementation is presented through both theoretical and
applied examples.
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1. Introduction

Usually, when one needs to estimate parameters using the generalized method of moments
(GMM) of Hansen (1982), they face very few options. Softwares that offer this estimation
procedure are in general quite restrictive. For example, they do not have many options related
to the computation of the heteroskedasticity and autocorrelation covariance matrix (HAC)
of the moment conditions. And most of them offer only the two step or the iterated GMM.
They don’t include a procedure to implement the continuous updated estimator even if recent
theoretical studies demonstrate its superiority at least asymptotically. That is why several
econometricians rely on homemade algorithms, written in Matlab, Gauss or other commercial
statistical packages, which are written exclusively for their specific models. Although there
may be some advantages to work with our own algorithm, it does raise the question of the
reliability of the results. Everyone have heard the story of a scholar not being able to reproduce
someone else’s results. It is not easy to write a reliable algorithm and these stories may be the
result of researchers falling in one the many numerical pitfalls. Even commercial algorithms
often produce different results and there is no way to know why because their sources are
note open.

Asymptotic properties of GMM and generalized empirical likelihood (GEL) are now well
established in the econometric literature. Newey and Smith (2004) and Anatolyev (2005)
have come a little closer to finite sample by exploring second order asymptotic properties,
but it is still only asymptotics. These results are important but they may be far away from
actual finite sample porterties. In order to analyze the behavior of GMM and GEL in small
samples, there are no other ways than to rely on numerical simulations. Because of the
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rapid technological progress in computing, it is getting much faster to simulate complicated
models. We just need to make sure our results are reliable. Guggenberger (2008) contradicts
some of the asymptotic results which show the superiority of empirical likelihood over GMM
using simulations. I tried to reproduce his results without success. When I presented results
from simulations at the Canadian Economic Association meeting to compare GMM for a
continuum of moment conditions of Carrasco and Florens (2000) and GEL for a continuum
of moment conditions of Chaussé (2008), one of the question I got was: ”Are you sure you
did it correctly?”. It is a legitimate question. We can easily see if a mathematical proof is
wrong, but detecting errors in simulations is much harder. Methods like continuous updated
estimator (CUE) or GEL require to solve highly nonlinear system of equations. We therefore
need to be careful when writing programs to implement them.

The solution I offer makes it possible to everyone to test the algorithm either by doing simu-
lations, model estimations or by exploring the codes. It is the most interesting aspect of the
open source world. There can be many contributors who help improving the package. And
the more popular it will become, the more reliable it will be. We will then be able to spend
our precious time understanding and interpreting the simulation results instead of trying to
find what went wrong in the programming. I could have chosen another open source software
like Octave (a pseudo clone of Matlab) or Scilab, but R is more adapted to econometrics and
statistics. Furthermore, its object oriented approach allows very efficient programming.

The paper is organized as follows. Section 2 covers the GMM method while section 3 presents
the GEL. In each section, we start with a brief summary of the method and then show how
to implement it trough examples. Section 4 concludes.

2. Generalized method of moments

Before going to the estimation procedure, let us make a quick summary of what this method is
about. Those who are not too familiar with this method and want a more detailed presentation
should go through Hansen (1982) and Hansen, Heaton, and Yaron (1996) or consult a textbook
such as Hamilton (1994).

2.1. The method

We want to estimate a vector of parameters θ ∈ Rp from the following q × 1 vector of
unconditional moment conditions:

E[g(θ, xt)] = 0 (1)

One of the biggest advantage of GMM is that it requires very few assumptions and can be
seen as a method which embeds many others such as least squares (LS), maximum likelihood
(ML) or instrumental variables (IV). For example, the following linear model:

Y = Xβ + u

can be estimated by LS which would imply the following moment conditions:

E(Xtut) = 0
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estimated from a sample of T observations by the sample moment conditions:

1
T
X ′u = 0

The same model can be estimated by ML in which case the moment conditions would be:

E

[
dlt(β)
dβ

]
= 0

where lt(β) is the density of ut. The last example, IV, is the method that most of the
time is associated with GMM. The linear model is estimated using the conditional moment
conditions E(ut|Ht) = 0, where Ht is a set of instruments. From these conditional moment
conditions, we can construct unconditional moment conditions like E(Htut) = 01 with their
sample counterparts:

1
T
H ′u = 0

This is probably the most attractive feature of GMM. Relying only on conditional moments to
estimate a model allows us, in theory, to estimate fragments of a complete system of equations.
It is quite appealing knowing that all our models are fragments of the real world. However,
there is no such thing as free lunch as we all know. Therefore, the advantages of GMM come
with a cost. The properties of its estimators depend heavily on the choice of the instruments.
A bad choice can create very bad estimators. A lot of research is being made to improve our
understanding of GMM. That is why we need a common numerical tool so that results can
be compared without worrying about the reliability of the algorithm.

The above examples, by its linear framework, do not enlighten the needs of a well written
algorithm. There are three features of GMM that makes it hard to implement. Firstly, the
moment conditions E(g(θ, xt)) = 0 don’t need to be linear functions of θ. Secondly, the
number of conditions is not limited by the dimension of θ which forces us to replace the
requirement of solving the sample moment conditions:

ḡ(θ) ≡ 1
T

T∑
t=1

g(θ, xt) = 0

by the necessity of minimizing the quadratic function ḡ(θ)′Wḡ(θ), where W is a positive
definite and symmetric q × q matrix. Finally, the optimal matrix W as been shown to be:

W ∗ =
{

lim
T→∞

V ar(
√
T ḡ(θ)) ≡ Ω(θ)

}−1

(2)

This optimal matrix can be estimated in general by replacing the asymptotic variance by an
HAC matrix like the one proposed by Newey and West (1987a). The general form is:

Ω̂ =
T−1∑

s=−(T−1)

kh(s)Γ̂s(θ∗) (3)

1In fact any unconditional moment conditions of the form E(utf(Ht)) = 0 are also valid.
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where, kh(s) is a kernel, h is the bandwidth which can be chosen using a procedure such as
the ones proposed by Newey and West (1987a) or Andrews (1991),

Γ̂s(θ∗) =
1
T

∑
t

g(θ∗, xt)g(θ∗, xt+s)′

and θ∗ is a convergent estimate of θ. The GMM estimator θ̂ is therefore defined as:

θ̂ = arg min
θ
ḡ(θ)′Ω̂(θ∗)−1ḡ(θ) (4)

The asymptotic properties of the GMM estimators do not depend on the way we estimate the
optimal matrix but their finite sample properties do. Furthermore, they are certainly affected
by the numerical algorithm used to obtain the estimates.

The original version of GMM proposed by Hansen (1982) is called two-step GMM (2SGMM).
It obtains θ∗ by minimizing ḡ(θ)′ḡ(θ). The algorithm is therefore simple:

1- Compute θ∗ = arg minθ ḡ(θ)′ḡ(θ)

2- Compute the HAC matrix Ω̂(θ∗)

3- Compute the 2SGMM θ̂ = arg minθ ḡ(θ)′
[
Ω̂(θ∗)

]−1
ḡ(θ)

In order to improve the properties of 2SGMM, Hansen et al. (1996) suggest two other methods.
The first one is the iterative version of 2SGMM (ITGMM) and can be computed as follows:

1- Compute θ0 = arg minθ ḡ(θ)′ḡ(θ)

2- Compute the HAC matrix Ω̂(θ0)

3- Compute the θ1 = arg minθ ḡ(θ)′
[
Ω̂(θ0)

]−1
ḡ(θ)

4- If ‖θ0 − θ1‖ < tol stops, else θ0 = θ1 and go to 2-

5- Define the ITGMM estimator θ̂ = θ1

where tol can be set as small as we want to increase the precision.

In the other method, no preliminary estimate is used to obtain the HAC matrix. The lat-
ter is treated as a function of θ and is allowed to change when the optimization algorithm
computes the numerical derivatives. It is therefore continuously updated as we move toward
the minimum. For that, it is called the continuous updated estimator (CUE). Because of the
complexity of the HAC matrix, CUE is highly nonlinear. We therefore need to be careful
when choosing the starting values. A good choice could be to use the 2SGMM. The algorithm
is simple but with a much bigger numerical challenge.

1- Compute θ0 using 2SGMM

2- Compute the CUE estimate defined as

θ̂ = arg min
θ
ḡ(θ)′

[
Ω̂(θ)

]−1
ḡ(θ)

using θ0 as starting values.
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According to Newey and Smith (2004) and Anatolyev (2005), 2SGMM and ITGMM are
second order asymptotic equivalent. In other words, the choice of the convergent estimate θ∗

in Ω̂(θ∗) does not matter. Iterating will just improve the efficiency of θ∗. However, this is an
asymptotic result. It does not say how it affects the finite sample properties. On the other
hand, they showed that the second order asymptotic bias of CUE is smaller. Unfortunately
this method is not available in any popular statistical package.

2.2. GMM with R

The package gmm can be found on the comprehensive R archive network (CRAN,
http://CRAN.R-project.org/) with any other R packages. Once installed, it can be loaded
the usual way.

> require(gmm)

Many options are available but in many cases they can be set to their default values. We start
with a general presentation in which moment conditions do not come from a linear model.
The minimum requirement is to define a function that produces a T × q matrix g(θ) with
typical element [g(θ)]ti = gi(θ, xt). Here is an example that was proposed by Dieter Rozenich,
a student from Vienna University of Economics and Business Administration in Austria. It
is not something we want to do in practice, but it shows well how to implement the gmm()
algorithm.

Estimating the parameters of a normal distribution

For the two parameters of a normal distribution (µ, σ) we have the following three moment
conditions2:

m1 = µ− xi
m2 = σ2 − (xi − µ)2

m3 = x3
i − µ(µ2 + 3σ2)

(m1,m2) can be directly obtained by the definition of (µ, σ). The third moment condition
comes from the third derivative of the moment generating function evaluated at 0.

First we generate normally distributed random numbers and compute the two parameters:

> set.seed(123)

> n <- 1000

> x1 <- rnorm(n, mean = 4, sd = 2)

> mean(x1)

[1] 4.032256

> sd(x1)

[1] 1.98339

2I want to thank Dieter Rozenich for providing this example. Most of what is written in this section come
from him.

http://CRAN.R-project.org/
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After, we define the moment function

> g <- function(tet, x) {

+ m1 <- (tet[1] - x)

+ m2 <- (tet[2]^2 - (x - tet[1])^2)

+ m3 <- x^3 - tet[1] * (tet[1]^2 + 3 * tet[2]^2)

+ f <- cbind(m1, m2, m3)

+ return(f)

+ }

We then run gmm() using the starting values (µ0, σ
2
0) = (0, 0)

> res <- gmm(g, x1, c(0, 0))

> res$par

Theta[1] Theta[2]
4.037008 1.976157

It is however strongly suggested to provide the gradient G(θ) = Dθḡ(θ) which is a q×p matrix
with typical element Gij = ∂ḡi(θ)/∂θj . In our example:

∂g(θ, xt)
∂θ

=

 1 0
2(xt − µ) 2σ
−3(µ2 + σ2) −6µσ

 ,

Which implies that

G ≡ ∂ḡ(θ)
∂θ

=

 1 0
2(x̄− µ) 2σ
−3(µ2 + σ2) −6µσ

 ,

and the following function computes it:

> Dg <- function(tet, x) {

+ jacobian <- matrix(c(1, 2 * (-tet[1] + mean(x)), -3 * tet[1]^2 -

+ 3 * tet[2]^2, 0, 2 * tet[2], -6 * tet[1] * tet[2]), nrow = 3,

+ ncol = 2)

+ return(jacobian)

+ }

We can then use it in the gmm() algorithm:

> res2 <- gmm(g, x1, c(0, 0), grad = Dg)

> res2$par

Theta[1] Theta[2]
4.037008 1.976157

The result is not different because the gradient is only used to estimate the asymptotic
covariance matrix of

√
T (θ̂ − θ) which is (G′Ω−1G)−1. We can compare them using the

summary() method:
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> summary(res)$par

Estimate Std. Error t value Pr(>|t|)
Theta[1] 4.03701 0.06117 65.99483 0
Theta[2] 1.97616 0.04259 46.40320 0

> summary(res2)$par

Estimate Std. Error t value Pr(>|t|)
Theta[1] 4.03701 0.06117 65.99483 0
Theta[2] 1.97616 0.04259 46.40320 0

In a simple model like this one, it does not make any difference whether the gradient is
provided or not. But it should always be provided when it is possible. It is more reliable.

Example with iid moment conditions

The second example is a linear model with an endogeneity problem. It is the same model
used by Carrasco (2007) to compare several methods which deal with the many instruments
problem. We want to estimate δ from:

yt = δWt + εt

with δ = 0.1 and
Wt = e−x

2
t + ut,

where (εt, ut) ∼ iidN(0,Σ) with

Σ =
(

1 0.5
0.5 1

)
Any power of xt can be used as instrument because it is clearly orthogonal to εt and correlated
with Wt. For the exercise, (xt, x2

t , x
3
t ) will be the selected instruments. This simple example

will allow us to see what gmm() can do without worrying about selecting the right parameters
for the HAC matrix.

The first step is to generate the model (with T = 400):

> require(mvtnorm)

> sig <- matrix(c(1, 0.5, 0.5, 1), 2, 2)

> t <- 500

> e <- rmvnorm(t, sigma = sig)

> x2 <- rnorm(t)

> w <- exp(-x2^2) + e[, 1]

> y <- 0.1 * w + e[, 2]

where rmvnorm() is a multivariate normal distribution random generator which is included
in the package mvtnorm. For a linear model, we do not need to write a function g(θ, x).
We only need to give the instruments and a formula that characterizes the linear model (see
help(lm) for more details). In the following, h is a 200× 3 matrix of instruments.
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> h <- cbind(x2, x2^2, x2^3)

> fct <- y ~ w

The moment conditions are:

E

 (yt − α− δWt)xt
(yt − α− δWt)x2

t

(yt − α− δWt)x3
t

 = 0

where the intercept α is always included. In order the remove the intercept, the option
”intercept=FALSE” must be added. Since we should never exclude the intercept, this case
will not be considered.
The moment conditions of this example are iid. Therefore, we can add the option vcov="iid".
This option tells gmm() to estimate the covariance matrix of

√
T ḡ(θ∗) as follows:

Ω̂(θ∗) =
1
T

T∑
t=1

g(θ∗, xt)g(θ∗, xt)′

Once gmm() executed, the method summary() can be applied to the object created by the
algorithm. It gives details about the estimation.

> res <- gmm(fct, x = h)

> summary(res)

$met
GMM method
"twoStep"

$kernel
kernel for cov matrix
"Quadratic Spectral"

$algo
NULL

$par
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01700 0.10673 -0.15932 0.87342
w 0.22094 0.15388 1.43573 0.15108

$J_test
[1] Test-J degrees of freedom is 2

$j
J-test Pz(>j)

Test E(g)=0: 0.767123 0.6814302

attr(,"class")
[1] "summary.gmm"
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Notice that the gradient was not provided. In the case of linear models with the function
g(θ, x) replaced by a formula, the computation of the analytical gradient is embedded in
gmm(). It is therefore note required. Along with the information on the parameters esti-
mates, summary() computes the J-test of overidentifying restrictions. It tests the hypothesis
H0E(g(θ, xt)) = 0 using the statistics T ḡ(θ̂)′[Ω̂(θ∗]−1ḡ(θ̂) ∼ χ2

q−p.

By default, the 2SGMM is computed. Other methods can be chosen by modifying the option
”type”. The second possibility is ITGMM:

> res2 <- gmm(fct, x = h, type = "iterative")

> summary(res2)$par

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01035 0.10688 -0.09687 0.92283
w 0.21157 0.15405 1.37335 0.16964

> summary(res2)$j

J-test Pz(>j)
Test E(g)=0: 0.743245 0.6896145

where the option crit= (default is 10−7) can be set as small as we want to increase the
precision and maxiter= increased if ITGMM fails to converge. The third method is CUE.
As you can see, the estimates from ITGMM is used as starting values. However, the starting
values is required only when a function g(θ, x) is provided instead of a formula. So it is not
necessary.

> res3 <- gmm(fct, x = h, res2$par, type = "cue")

> summary(res3)$par

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01216 0.10683 -0.11380 0.90940
w 0.21452 0.15400 1.39303 0.16361

> summary(res3)$j

J-test Pz(>j)
Test E(g)=0: 0.742832 0.689757

It is possible to produce confidence intervals by adding the option interval=a, where a is
the level of confidence. It can be extracted from summary() this way:

> summary(res3, interval = 0.95)$interval

Theta_lower Theta_upper
(Intercept) -0.2215397 0.197226
w -0.0873064 0.516349
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It is also possible to do hypothesis tests of the form H0 : Rθ = c using lintest() that comes
with the package. It produces a Wald test. For example, if we want to test H0 : α = 0, δ = 0.1
we would proceed this way:

> R <- diag(2)

> c <- matrix(c(0, 0.1), 2, 1)

> lintest(res3, R, c)

[[1]]
[1] "Wald test for H0: R(Theta)=c"

$H0
Null Hypothesis

[1,] (Intercept) = 0
[2,] w = 0.1

$result
Statistics P-Value

Wald test 2.740553 0.2540367

A last comment before we go to the next example. When we provide a linear formula
to gmm(), ITGMM and 2SGMM are computed using an analytical solution. That’s why
a starting value is not required. However, there exists no analytical solution for CUE.
If no starting values are provided, then the analytical solution with the identity as ma-
trix of weights is used by default. However, I believe it is always a good idea to give the
best possible starting values, especially with CUE which is known to be a very unstable
method. It is also possible to add options to the optim() algorithm for better conver-
gence. This is done by adding the option control=list(). For example, you can keep
track of the convergence with control=list(trace=TRUE) or increase the number of itera-
tions with control=list(maxit=1000). You can also choose another optimization algorithm
with method="BFGS", for example. See help(optim) for more details.

Estimating the AR coefficients of an ARMA process

Now we turn to a time series example in which the computation of the HAC matrix is required.
We want to estimate the AR coefficients of the following process:

Xt = 1, 4Xt−1 − 0, 6Xt−2 + ut

where ut = 0, 6εt−1 − 0, 3εt−2 + εt and εt ∼ iidN(0, 1). In other words, Xt is an ARMA(2,2).
We can estimate the AR coefficients by using Xt−s for s > 2 as instruments since they are
uncorrelated with ut. So we choose (Xt−3, Xt−4, Xt−5, Xt−6) and a sample size of 400. Here
again, the choice of the instruments is arbitrary since it is not our goal to talk about the opti-
mal choice. First, we can easily generate an ARMA process using the function arima.sim():

> t <- 400

> x3 <- arima.sim(n = t, list(ar = c(1.4, -0.6), ma = c(0.6, -0.3)))

> xt <- x3[7:t]
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> xt1 <- x3[6:(t - 1)]

> xt2 <- x3[5:(t - 2)]

> h2 <- cbind(x3[4:(t - 3)], x3[3:(t - 4)], x3[2:(t - 5)], x3[1:(t -

+ 6)])

> fct2 <- xt ~ xt1 + xt2

> res <- gmm(fct2, x = h2)

> summary(res)$par

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02578 0.06057 -0.42558 0.67041
xt1 1.44274 0.08269 17.44712 0.00000
xt2 -0.65185 0.06442 -10.11863 0.00000

> summary(res)$j

J-test Pz(>j)
Test E(g)=0: 1.556592 0.4591879

As it is shown above, the optimal matrix, when moment conditions are based on time series,
is an HAC matrix which is defined by equation (3). Usually, the default values work fine
and do not need to be modified. But, for those who knows what they are doing and want to
explore different options, we will give a brief review3. If the reader wants advice on which
option is best, he should consult the literature about properties of HAC matrices. It is not
the purpose of this article.

First, there are five choices of kernel: Truncated, Bartlett, Parzen, Tukey-Hanning and
Quadratic spectral4. They can be selected by adding the option kernel=. By default, the
Quadratic Spectral is used as it was shown to be the optimal kernel by Andrews (1991).
However, they have their advantages. For example, the simplicity of the Bartlett kernel pro-
posed by Newey and West (1987a) could be more stable numerically when dealing with highly
nonlinear models, especially with CUE. In many cases, the choice does not seem to affect the
estimates. We can see this by using the HAC() function that comes with the package. It is
the function that computes the HAC covariance matrix of

√
T ḡ(θ∗) from the T × q matrix

g(θ∗, x). We can also use it to compute the HAC matrix of any vector of sample means of
weakly dependent processes. For example, we can estimate the variance of

√
T x̄ of the above

ARMA(2, 2):

> x3 <- matrix(x3, 400, 1)

> HAC(x3)

[,1]
[1,] 47.68067

3Tools to compute that matrix are modified versions of functions included in the package sandwich. For a
complete review of all options, see Zeileis (2006).

4The first three have been proposed by White (1984), Newey and West (1987a) and Gallant (1987) respec-
tively and the last two, applied to HAC estimation, by Andrews (1991). But the latter gives a good review of
all five.



12 GMM and GEL with R

We can see that the different kernels produce similar estimates of
√

(T )x̄:

> HAC(x3, kernel = "Truncated")

[,1]
[1,] 39.2354

> HAC(x3, kernel = "Bartlett")

[,1]
[1,] 43.97312

> HAC(x3, kernel = "Parzen")

[,1]
[1,] 45.11607

> HAC(x3, kernel = "Tukey-Hanning")

[,1]
[1,] 45.86285

where only Truncated seems to deviate from the others. It will be shown below that the
Truncated kernel is more useful with the GEL method to smooth the moment conditions. It
is rarely used to compute HAC matrices.

The second choice is the bandwidth selection method. By default it is the automatic selection
proposed by Andrews (1991). It is also possible to choose the automatic selection of Newey
and West (1994) by adding bw=bwNeweyWest2 (without quotes because bwNeweyWest2 is
a function). There are few other options but I will present only the most important (See
help(gmm) or help(HAC) for details on the other ones). A prewhitened kernel estimator
can be computed using the option prewhite=. By default, it is set to FALSE. If you want à
prewhitened estimator, you need to select the order of the VAR used to obtain it. For example,
if you want a VAR(1), the option prewhite=1 is required. The argument in favor of using this
estimator is that it seems to improve the properties of hypothesis tests on parameters which
are computed with the HAC matrix. For more details , see Andrews and Monahan (1992).

We conclude this section with an example on how to modify these options.

> res <- gmm(fct2, x = h2, kernel = "Bartlett", prewhite = 1, bw = bwNeweyWest2,

+ type = "iterative")

> summary(res)$par

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01963 0.06483 -0.30274 0.76209
xt1 1.41697 0.07910 17.91461 0.00000
xt2 -0.63169 0.06401 -9.86811 0.00000
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Testing the CAPM

The last example is an application in finance. We want to test one of the implications of the
capital asset pricing model (CAPM). It is a simple example taken from Campbell, Lo, and
Mackinlay (1996). It is a good example because it shows how to apply the GMM algorithm
to estimate a system of equations. We want to estimate the following model:

(Rt −Rf ) = α+ β(Rmt −Rf ) + εt,

where Rt is a N × 1 vector of returns on stocks, Rmt if the return of the market portfolio
(a proxy of it), Rf is the risk-free rate and εt if a vector error terms with covariance matrix
Σt. So εt can be heteroskedastic and autocorrelated. The data are the daily returns of ten
selected stocks taken from Yahoo-Finance and the risk-free rate and returns of the market
portfolio that can be found on Kenneth R. French’s web site from January 1993 to February
20095. One implication of the CAPM is that the vector α should be zero. So we want to test
the hypothesis H0 : α = 0. The instrument is simply (Rmt − Rf ) which implies that the
model is just identified.

> data(Finance)

> r <- Finance[1:300, 1:10]

> rf <- Finance[1:300, "rf"]

> rm <- Finance[1:300, "rm"]

> z <- as.matrix(r - rf)

> t <- nrow(z)

> zm <- matrix(rm - rf, t, 1)

> res <- gmm(z ~ zm, x = zm)

> summary(res)$par

Estimate Std. Error t value Pr(>|t|)
WMK_(Intercept) -0.00467 0.05748 -0.08123 0.93526
UIS_(Intercept) 0.10235 0.11846 0.86401 0.38758
ORB_(Intercept) 0.14587 0.21227 0.68721 0.49195
MAT_(Intercept) 0.03590 0.10609 0.33833 0.73511
ABAX_(Intercept) 0.09174 0.27258 0.33657 0.73644
T_(Intercept) 0.02310 0.07582 0.30471 0.76059
EMR_(Intercept) 0.02993 0.05477 0.54641 0.58478
JCS_(Intercept) 0.11680 0.16275 0.71768 0.47296
VOXX_(Intercept) 0.02087 0.17444 0.11965 0.90476
ZOOM_(Intercept) -0.21914 0.19673 -1.11391 0.26532
WMK_zm 0.31719 0.13076 2.42575 0.01528
UIS_zm 1.26272 0.22784 5.54211 0.00000
ORB_zm 1.49391 0.42138 3.54524 0.00039
MAT_zm 1.01499 0.22899 4.43253 0.00001
ABAX_zm 1.08898 0.57801 1.88401 0.05956
T_zm 0.84898 0.16218 5.23482 0.00000

5The symbols of the stocks taken from http://ca.finance.yahoo.com/ are (WMK, UIS, ORB, MAT,
ABAX, T, EMR, JCS, VOXX, ZOOM) and K. R. French’s web site is http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html

http://ca.finance.yahoo.com/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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EMR_zm 0.74079 0.10460 7.08231 0.00000
JCS_zm 0.95882 0.35882 2.67213 0.00754
VOXX_zm 1.48217 0.38027 3.89762 0.00010
ZOOM_zm 2.07770 0.31617 6.57140 0.00000

> R <- cbind(diag(10), matrix(0, 10, 10))

> c <- matrix(0, 10, 1)

> lintest(res, R, c)

[[1]]
[1] "Wald test for H0: R(Theta)=c"

$H0
Null Hypothesis

[1,] WMK_(Intercept) = 0
[2,] UIS_(Intercept) = 0
[3,] ORB_(Intercept) = 0
[4,] MAT_(Intercept) = 0
[5,] ABAX_(Intercept) = 0
[6,] T_(Intercept) = 0
[7,] EMR_(Intercept) = 0
[8,] JCS_(Intercept) = 0
[9,] VOXX_(Intercept) = 0
[10,] ZOOM_(Intercept) = 0

$result
Statistics P-Value

Wald test 4.118292 0.9418528

3. Generalized empirical likelihood

As for GMM we start by giving a brief review of the method. But since, in general, applied
econometricians are not too familiar with it, the presentation will be more detailed. I am not
aware of any applied works that use GEL. It is so recent that we are still studying its properties
through simulations (see for example Guggenberger and Hahn (2005)) and asymptotic analysis
(see Newey and Smith (2004) and Anatolyev (2005)).

3.1. The method

As for GMM, GEL is based on the moment conditions

E(g(θ, xt)) = 0.

In general we can write the sample moment conditions as follows:

g̃(θ) =
T∑
t=1

ptg(θ, xt) = 0,
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instead of the usual ḡ(θ) = 0, where pt is the probability associated with xt. That’s the main
difference between GMM et GEL. Because GEL does not restrict all the probabilities to be
(1/T ), but instead select them in such a way that the moment conditions are satisfied exactly,
sample means computed using these probabilities have better properties, at least in theory,
under certain assumptions. That includes the sample mean of the Jacobian or the covariance
matrix of the moment conditions which are part of the distribution of θ̂6. Asymptotically,
GEL seems to have better properties than GMM, but Guggenberger and Hahn (2005)) and
Guggenberger (2008) show, using simple linear simulations, that it may not be the case in
finite sample. I think that most of the bad results come from numerical problems. In fact,
I could not reproduce the results from the second paper. This is one of the reasons why I
started this package project. With a difficult method like that, we need to have a common
tool so that results can be compared. Furthermore, everyone can contribute to improve it
since everything is open source and then transparent.
Another difference between GEL and GMM is how they deal with the fact that g(θ, xt) can be
a conditional heteroskedastic and weakly dependent process. We saw above that in this case
GMM simply choose an appropriate covariance matrix estimator. For GEL, Smith (2001)
proposes to replace g(θ, xt) by:

gw(θ, xt) =
m∑

s=−m
w(s)g(θ, xt−s)

where w(s) are kernel based weights that sum to one. This allows GEL to reach the same
asymptotic efficiency as GMM (see also Kitamura and Stutzer (1997) and Smith (1997)). The
sample moment conditions become:

g̃(θ) =
T∑
t=1

ptg
w(θ, xt) = 0 (5)

Of course, the above equation has infinitely many solutions since we have (T+p) unknown.
So we want to choose pt as close as possible to (1/T). The metric used as distance is what
characterizes the different methods that are part of the family of GEL. We first present the
dual of GEL, which allow a better understanding. The estimator is defined as the solution to
the following constraint minimization problem:

θ̂n = arg min
θ,pt

T∑
t=1

hT (pt), (6)

subject to (7)
T∑
t=1

ptg
w(θ, xt) = 0 and (8)

T∑
t=1

pt = 1, (9)

where hT (pt) has to belong to the following Cressie-Read family of discrepancies:

hT (pt) =
[γ(γ + 1)]−1[(Tpt)γ+1 − 1]

T
.

6This a very simple way to present the advantages of GEL. see Newey and Smith (2004) but more details
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In that case, Smith (1997) showed that the empirical likelihood method (EL) of Owen (2001)
(γ = 0) and the exponential tilting of Kitamura and Stutzer (1997) (γ = −1) belong to the
GEL family of estimators while Newey and Smith (2004) show that it is also the case for the
continuous updating estimator (CUEGEL to differentiate with the CUE of gmm) of Hansen
et al. (1996) (γ = 1). This family of estimator that we call GEL is defined as the solution to
the following saddle point problem:

θ̂ = arg min
θ

[
max
λ

1
T

T∑
t=1

ρ
(
λ′gw(θ, xt)

)]
(10)

where in our case λ is the Lagrange multiplier associated with the constraint (8). ρ(v) depends
on the γ in the discrepancy function h(). It is a strictly concave function which is normalized
so that ρ′(0) = ρ′′(0) = −1. It can be shown that ρ(v) = ln (1− v) corresponds to the EL
method, ρ(v) = − exp (v) to the ET and to CUE if ρ(v) is quadratic.

The estimators are obtain by solving the following system of equations:

T∑
t=1

ptg
w(θ, xt) = 0, (11)

T∑
t=1

ptλ
′
(
∂gw(θ, xt)

∂θ

)
= 0, (12)

with
pt =

1
T
ρ′
(
λ′gw(θ, xt)

)
. (13)

In the method gel() that comes with the package, the numerical algorithm optim() minimizes
equation (10), where λ is substituted by the solution of condition (11) which is obtain by
applying a Newton method. It gives more control to the user this way. But before playing
with the control variables, it is important to know how the iterative method works7. The
iterative procedure relating λ from iteration i − 1 to iteration i is given by the following
difference equation (gt is defined as gw(θ, xt) for simplicity):

λi = λi−1 −

[
1
T

T∑
t=1

ρ′′(λ′i−1gt)gtg
′
t

]−1 [
1
T

T∑
t=1

ρ′(λ′i−1gt)gt

]

The iterative procedure starts at λ0 = 0 because it is its asymptotic value. It stops when
‖λi − λi−1‖ reaches a certain tolerance level or if the number of iterations passes a predeter-
mined value. In the first case, we have normal convergence, while in the second we have no
convergence.

In order to test the overidentifying restrictions, Smith (2004) proposes three tests which are
all asymptotically distributed as a χ2

q−p like the J-test of GMM. In fact one of them is the
J-test defined as:

T ḡw(θ̂)′[Ω̂(θ̂)]−1ḡw(θ̂),

7This Newton method for solving nonlinear system of equations is explained in any textbook on numerical
methods.
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the second is a Lagrange multiplier test (LM):

LM = T λ̂′Ω̂(θ̂)λ̂

and the last is a likelihood ratio test (LR):

LR = 2

[
T∑
t=1

ρ
(
λ̂′gw(θ̂, xt)

)
− ρ(0)

]

3.2. GEL with R

The same examples will be presented which will allow us to compare the results with those
of GMM.

Estimating the parameters of a normal distribution

We start with this simple example. Since the observations are iid, we do not need to smooth
the moment functions g(θ, xt). It is the default value (smooth=FALSE). Notice that we should
choose a good starting values. GEL is a very nonlinear method. So the choice of starting
values is very important. The best choice is the sample mean and the standard deviation. By
default the option type= is set to ”EL”. We need to modify it if we want the other methods.

> res_el <- gel(g, x1, c(mean(x1), sd(x1)))

> sres_el <- summary(res_el)

> sres_el$par

Estimate Std. Error t value Pr(>|t|)
Theta[1] 4.0347 0.06064 66.53706 0
Theta[2] 1.9799 0.04260 46.48072 0

> sres_el$lambda

Estimate Std. Error t value Pr(>|t|)
Lambda[1] -0.11803 0.11611 -1.01658 0.30936
Lambda[2] -0.02357 0.02499 -0.94353 0.34541
Lambda[3] -0.00195 0.00193 -1.00990 0.31254

> sres_el$test

statistics p-value
LR test 0.9861826 0.3206772
LM test 1.0159535 0.3134808
J test 0.9724292 0.3240751

Each Lagrange multiplier is the shadow price of the constraint implied by moment condition.
An unbinding constraint will produce a multiplier close to zero. Therefore, its value informs
us on the validity of the moment condition. In the above results, the three λ̂ are not significant
which is consistent with the three tests of overidentifying restrictions. We can compare the
results with the other two methods. We start with ET:
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> res_et <- gel(g, x1, c(mean(x1), sd(x1)), type = "ET")

> summary(res_et)$par

Estimate Std. Error t value Pr(>|t|)
Theta[1] 4.03460 0.06066 66.5151 0
Theta[2] 1.97829 0.04263 46.4067 0

then with CUE:

> res_cue <- gel(g, x1, c(mean(x1), sd(x1)), type = "CUE")

> summary(res_cue)$par

Estimate Std. Error t value Pr(>|t|)
Theta[1] 4.03391 0.06069 66.46913 0
Theta[2] 1.97644 0.04266 46.32564 0

If you compare the last results with CUE (which is not reported here), they are very close.
The CUEGEL is the easiest to compute, which is not surprising since in this case ρ(v) is
quadratic. On the other hand, EL is the hardest because the domain of ρ(v) is constraint.
Indeed, ρ(v) = log(1 − v), which implies that we need λ′g(θ, xt) < 1 for all t. Therefore, it
is much harder to solve for λ̂. In such problems, it is like trying to find the minimum inside
a maze. Each time we get caught in a dead end, we have to go back. We can compare the
execution time of each method:

> system.time(gel(g, x1, c(mean(x1), sd(x1))))

user system elapsed
1.312 0.004 1.321

> system.time(gel(g, x1, c(mean(x1), sd(x1)), type = "ET"))

user system elapsed
0.224 0.000 0.224

> system.time(gel(g, x1, c(mean(x1), sd(x1)), type = "CUE"))

user system elapsed
0.572 0.004 0.579

However, it may be worth waiting, because theoretical results suggest that EL produces
estimators with the best properties.
Notice that the method summary() produces different output when applied to an object of
class ”gel” or ”gmm” which are produced respectively by gel() and gmm(). This is the beauty
of object oriented programming. The same method can be applied to an object of class ”lm”,
in which case it produces results from an ols estimation or to an object of class ”vector” to
obtain some statistical properties of the object. Here, the method summary() applied to a
”gel” object reports the λ̂, θ̂ along with their standard deviations and also several results
about the quality of the solution that we need to understand. We can see all the variables
computed by summary by typing names(summary object):
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> names(summary(res_el))

[1] "type" "par" "lambda" "test" "badrho"
[6] "conv_par" "conv_pt" "conv_moment" "conv_lambda"

The first value of interest is ”badrho”. As Newey and Smith (2004) say, There may be no λ
that solves the first order conditions within the domain of ρ(v) in finite sample. We can only
say that the probability that it exists goes to one as T goes to infinity. The only method
that is susceptible to create that problem is EL. When it happens, the observations for which
λ′g(θ, xt) ≥ 1 are dropped and ”badrho” returns how many there are.

> summary(res_el)$badrho

Number_of_bad_rho
0

The second value of interest is ”conv lambda” which returns a message about the convergence
quality of the iterative Newton algorithm (see the function get_lamb() for details) used to
solve for λ̂. It speaks by itself, so no further explanations are required.

> summary(res_el)$conv_lamb

Convergence_code_for_lambda
"Normal convergence"

If the convergence fails, there are options that can be modified such as the number of iterations
or the tolerance level. See help(gel) and help(get_lamb) for more details. Another possible
alternative is to let optim() do everything for you by setting the option optlam="numeric".
It takes in general more times to compute the results and it is more hazardous. But you have
the choice.

The last three values of interest are ”conv par” that returns the convergence code of optim()
which should be 0 (see help(optim)), ”conv pt”, defined as

∑T
t=1 p̂t, which should be close

to 1 and ”conv moment” gives
∑T

t=1 p̂tg
w(θ̂, xt) that should be a vector of zeros.

> summary(res_el)$conv_par

Convergence_code_theta
10

> summary(res_el)$conv_moment

Sample_moment_with_pt
[1,] -7.226885e-18
[2,] 4.696120e-17
[3,] -3.946496e-17

> summary(res_el)$conv_pt
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Sum_of_pt
1

The results show that the solution satisfies all convergence criteria.

A fourth method is available. It is called the exponentially tilted empirical likelihood (ETEL)
and was proposed by Schennach (2007). However, it does not belong to the family of GEL
estimators. It solves the problem of misspecified models. In such models there may not exist
any pseudo values to which θ̂ converges as the sample size increases. ETEL uses the ρ() of
ET to solve for λ and the ρ() of EL to solve for θ. It is an appealing alternative to EL because
she shows that ETEL shares the same properties as EL but without the difficulties associated
with the computation of λ̂. That’s why I included it in the package so we can analyze it
further. We conclude this example with this last method.

> res <- gel(g, x1, c(mean(x1), sd(x1)), type = "ETEL")

> summary(res)$par

Estimate Std. Error t value Pr(>|t|)
Theta[1] 4.05710 0.05972 67.92991 0
Theta[2] 2.00059 0.04232 47.26819 0

> system.time(gel(g, x1, c(mean(x1), sd(x1)), type = "ETEL"))

user system elapsed
0.472 0.000 0.471

Example with iid moment conditions

We can cover this example quickly because there is not much to learn that we do not already
know, except for the fact that, as for GMM, we can use a formula instead of a function when
we estimate a linear model. Here again, we do not need to smooth the moment function
because the observations are iid.

Lets start with a complete summary of the results from the EL method. We can use the
GMM estimator with the identity matrix as starting values. We have not seen yet how to do
it. We only need the define the option wmatrix="ident":

> tet0 <- gmm(fct, x = h, wmatrix = "ident")$par

> res <- gel(fct, x = h, tet0)

> summary(res)

$type
Type of GEL

"EL"

$par
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01336 0.10267 -0.13014 0.89646
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w 0.21597 0.15017 1.43819 0.15038

$lambda
Estimate Std. Error t value Pr(>|t|)

Intercept -0.00381 0.05963 -0.06384 0.94910
h1 -0.04414 0.07990 -0.55250 0.58060
h2 0.00515 0.03960 0.12994 0.89661
h3 0.02234 0.02453 0.91072 0.36244

$test
statistics p-value

LR test 0.7970740 0.6713014
LM test 0.8783238 0.6445764
J test 0.7459213 0.6886923

$badrho
Number_of_bad_rho

0

$conv_par
Convergence_code_theta

0

$conv_pt
Sum_of_pt

1

$conv_moment
Sample_moment_with_pt

[1,] -4.426594e-18
[2,] -9.359714e-19
[3,] 2.777421e-18
[4,] -2.978168e-18

$conv_lambda
Convergence_code_for_lambda

"Normal convergence"

attr(,"class")
[1] "summary.gel"

The results are not very different from GMM and all the convergence codes are fine. Results
from the other EL methods are comparable. We conclude this subsection by showing that
the method lintest() can also be applied to an object of class ”gel”.

> R <- matrix(c(0, 1), 1, 2)

> c <- 0.1
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> lintest(res, R, c)

[[1]]
[1] "Wald test for H0: R(Theta)=c"

$H0
Null Hypothesis

[1,] w = 0.1

$result
Statistics P-Value

Wald test 0.596409 0.4399515

Estimating the AR coefficients of an ARMA process

Now we need to deal with weakly dependent observations, which requires us to smooth the
sample moment function. First, we need to set the option smooth=TRUE, then we need to select
the kernel. Before going to the estimation procedure, we need to understand the relationship
between the smoothing kernel and the HAC estimator that will result from this choice. The
reason why we need to smooth the moment functions is that GEL estimates the covariance
matrix of ḡ(θ, xt), as if we had iid observations, using the expression (1/T )

∑T
t=1(gtg′t). We

can show that substituting gt by gwt in this expression results in an HAC estimator. But there
is not a one to one relationship between the smoothing kernel and the kernel that appears
in the HAC estimator. For example, we can show that if the smoothing kernel is Truncated,
then the kernel in the HAC estimator is the Bartlett. Lets consider the truncated kernel with
a bandwidth of 2. This implies that w(s) = 1/5 for |s| ≤ 2 and 0 otherwise. Then, the
expression for the covariance matrix becomes:

1
T

T∑
t=1

gwt (gwt )′ =
1
T

T∑
t=1

(
2∑

s=−2

1
5
gt+s

)(
2∑

l=−2

1
5
g′t+l

)
,

=
1
25

2∑
s=−2

2∑
l=−2

(
1
T

T∑
t=1

gt+sg
′
t+l

)
,

=
1
25

2∑
s=−2

2∑
l=−2

Γ̂s−l,

=
1
25

4∑
s=−4

(5− |s|)Γ̂s,

=
4∑

s=−4

(
1
5
− |s|

25

)
Γ̂s,

=
T−1∑

s=−T+1

k5(s)Γ̂s,



Pierre Chaussé 23

where k5(s) is the Bartlett kernel with a bandwith of 5 which is defined as

K5(s) =
{

1/5 + |s|/25 if |s| ≤ 5
0 otherwise

.

See Smith (2001) for more details. The model will therefore be estimated using the kernel
Truncated. As for the HAC matrix in gmm(), it is also possible to choose the bandwidth
selection method by modifying the option bw. Here are the results:

> tet0 <- gmm(fct2, x = h2, wmatrix = "ident")$par

> res <- gel(fct2, x = h2, tet0, smooth = TRUE, kernel = "Truncated")

> summary(res)

$type
Type of GEL

"EL"

$par
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02754 0.09584 -0.28734 0.77385
xt1 1.43489 0.11538 12.43664 0.00000
xt2 -0.64452 0.09007 -7.15588 0.00000

$lambda
Estimate Std. Error t value Pr(>|t|)

Intercept 0.00115 0.02794 0.04134 0.96702
h1 0.08469 0.02722 3.11084 0.00187
h2 -0.22600 0.05465 -4.13506 0.00004
h3 0.21403 0.04856 4.40765 0.00001
h4 -0.05674 0.02075 -2.73471 0.00624

$test
statistics p-value

LR test 4.579198 0.10130706
LM test 4.681219 0.09626897
J test 4.464897 0.10726548

$badrho
Number_of_bad_rho

0

$weights
[1] 1 1

$conv_par
Convergence_code_theta

0
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$conv_pt
Sum_of_pt

1

$conv_moment
Sample_moment_with_pt

[1,] -5.163513e-18
[2,] 5.142845e-17
[3,] 5.522655e-18
[4,] -4.787430e-18
[5,] -1.016440e-17

$conv_lambda
Convergence_code_for_lambda

"Normal convergence"

attr(,"class")
[1] "summary.gel"

We covered most of what the package can do. There are some more options available that we
have not talked about. Those who are interested can consult the help that comes with the
package.

4. Conclusion

A complete package to estimate models based on GMM and GEL has been presented. This
package is the only one available to apply GEL methods. It also offers more options than
most popular statistical packages to implement GMM. Because it is part of the open source
software R, it makes it easier for econometricians to contribute to its improvement. If it gains
in popularity, it would become a very useful and reliable tool to analyze and understand
better GMM et GEL.
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