
gsubfn: Utilities for Strings and for Function

Arguments.

Gabor Grothendieck
GKX Associates Inc.

Abstract

gsubfn is an R package used for string matching, substitution and parsing. A seemingly
small generalization of gsub, namely allow the replacement string to be a replacement function,
formula or proto object, can result in significantly increased power and applicability. The
resulting function, gsubfn is the namesake of this package. Built on top of gsubfn is strapply
which is similar to gsubfn except that it returns the output of the function rather than
substituting it back into the source string. In the case of a replacement formula the formula is
interpreted as a function as explained in the text. In the case of a replacement proto object the
object space is used to store persistant data to be communicated from one function invocation
to the next as well as to store the replacement function/method itself.

The ability to have formula arguments that represent functions can be used not only in the
functions of the gsubfn package but can also be used with any R function without modifying its
source. Just preface any R function with fn$ and subject to certain rules which are intended
to distinguish which formulas are intended to be functions and which are not, the formula
arguments will be translated to functions, e.g. fn$integrate(~ x^2/, 0, 1). This facility
has widespread applicability right across R and its packages. match.funfn, is provided to
allow developers to readily build this functionality into their own functions so that even the
fn$ prefix need not be used.

Keywords: gsub, strings, R.

1. Introduction

The R system for statistical computing contains a powerful function for string substitution called
gsub which takes a regular expression, replacement string and source string and replaces all
matches of the regular expression in the source string with the replacement string. Parenthe-
sized items in the regular expression, called back references, can be referred to in the replacement
string further increasing the range of applications that gsub can address.

The key function and namesake of the gsubfn package is a function which is similar to gsub but
the replacement string can optionally be a replacement function, formula (representing a function)
or replacement proto object.

Associated functions built on top of gsubfn are strapply which is an apply style function that is
like gsubfn except that it returns the output of the replacement function rather than substituting
it back into the string.

In the case that a function is passed to gsubfn, for each match of the regular expression in
the source string, the replacement function is called with one argument per backreference or if no
backreferences with the match (unless instructed otherwise by the backref argument). Note that it
determines the number of backreferences by counting the number of occurrences of (in the regular
expression so if there are parentheses that are not back references it may be important to specify
their number explicitly with backref. The output of the replacement function is substituted back
into the string replacing the match. In those cases where persistance is needed between invocations
of the function a proto object containing a replacement method (a method is another name for

2 gsubfn: Utilities for Strings and for Function Arguments.

function in this context) can be used and the object itself can be used by the replacement method
as a repository for data that is to persist between calls to the replacement method. Such persistant
data might be counts, prior matches and so on. Also gsubfn automatically places the argument
values that gsubfn was called with as well as a count representing the number of matches so far
into the object for use by the function. pre and post functions can also be entered into the object
and are triggerred at the beginning and end, respectively, of each string.

The idea of using a replacement function is also found in the Lua language http://www.lua.org/

manual/5.1/manual.html#pdf-string.gsub. . gsubfn follows that idea and builds on it with
proto objects, formulas and associated function strapply.

The remainder of this article is organized as follows: Section ?? explains the use gsubfn with
replacement functions. Section ?? explains the use gsubfn with proto objects for applications
requiring persistance between calls. Section ?? explains the use strapply and Section ?? explains
the use of cat0 and paste0.

The functions specified in gsubfn can be specified as functions or using a formula notation. Fa-
cilities are included for using that notation with any R function, not just the ones in the gsubfn
package. Section ?? explains this facility even if the function in question, e.g. apply, integrate
was not so written and Section ?? explains how developers can embed this into their own functions.

Prerequisites. The reader should be familiar with R and, in particular the R gsub function. Within
R, help on gsub is found via the ?gsub command and on the net it can be found at

• http://stat.ethz.ch/R-manual/R-patched/library/base/html/grep.html

The reader should also be familiar with regular expressions. Within R, help on regular expressions
is found via the command ?regex and on the net it can be found at

• http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html

Other Internet sources of information on regular expressions not specifically concerned with R are

• Perl compatible regular expressions. http://www.pcre.org/

• Regular expressions. http://www.regular-expressions.info/

• Wikipedia. http://en.wikipedia.org/wiki/Regular_expression

The discussions of passing proto objects to gsubfn and strapply require a minimal understanding
of R environments using the R help command ?environment and the R Language Manual found
online at

• http://stat.ethz.ch/R-manual/R-patched/library/base/html/environment.html

• http://finzi.psych.upenn.edu/R/doc/manual/R-lang.html#Environment-objects

Since the use of the proto package itself is relatively restricted we will include sufficient information
so that outside reference to the proto package will be unnecessary for the restricted purpose of
using it here.1

2. The gsubfn Function

Introduction. The gsubfn function has a similar calling sequence to the R gsub function. The
first argument is a regular expression, the second argument is a replacement string, replacement
function, replacement formula representing a function or a replacement proto object. The third

1 More about proto is available in the four documents listed under Documentation on the proto home page:
http://hhbio.wasser.tu-dresden.de/projects/proto/ .

http://www.lua.org/manual/5.1/manual.html#pdf-string.gsub
http://www.lua.org/manual/5.1/manual.html#pdf-string.gsub
http://stat.ethz.ch/R-manual/R-patched/library/base/html/grep.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html
http://www.pcre.org/
http://www.regular-expressions.info/
http://en.wikipedia.org/wiki/Regular_expression
http://stat.ethz.ch/R-manual/R-patched/library/base/html/environment.html
http://finzi.psych.upenn.edu/R/doc/manual/R-lang.html#Environment-objects
http://hhbio.wasser.tu-dresden.de/projects/proto/

Gabor Grothendieck 3

argument is the source string or a vector of such strings. In this section we are mainly concerned
with replacement functions and replacement formulas representing replacement functions. In this
case the replacement function is called for each match. The match and back references are passed
as arguments. The input string is then copied to the output with the match being replaced with
the output of the replacement function.

Replacement function. The replacement function can be specified by a formula in which the left
hand side of the formula are the arguments separated by "+" (or any other valid formula symbol)
while the right hand side represents the body. The environment of the formula will be used as the
environment of the generated funciton. If the arguments are omitted then the free variables on
the right hand side are used in the order encountered.

Back References. If the backref argument is not specified then the match followed all backrefer-
ences are passed to the function as separate arguments. If backref is 0 then no back references
are passed. If backref is a postive integer, n, then the match and the first n back references are
passed. If backref is a negative integer then the match is not passed and the absolute value of
backref is used as the number of back references to pass. Since gsubfn uses a potentially time
consuming trial and error algorithm to automatically determine the number of back references the
performance can be sped up somewhat by specifying backref even if all back references are to be
passed.

Example. This example below replaces x:y pairs in s with their sum. The formula in this example
is equivalent to specifying the function function(x, y) as.numeric(x) + as.numeric(y) :

> s <- ’abc 10:20 def 30:40 50’

> gsubfn(’([0-9]+):([0-9]+)’, ~ as.numeric(x) + as.numeric(y), s)

[1] "abc 30 def 70 50"

3. gsubfn with list objects

Example. If the replacement object is a list then the match is matched against the names of
the list and the corresponding value is returned. If no name matches then the first unnamed list
component is returned. If there is still no match then the string to be matched is returned so that
effectively the lookup is ignored.

For example:

> dat <- c(’3.5G’, ’88P’, ’19’) # test data

> gsubfn(’[MGP]$’, list(M = ’e6’, G = ’e9’, P = ’e12’), dat)

[1] "3.5e9" "88e12" "19"

4. gsubfn with proto objects

Introduction. In some applications one may need information from prior matches on current
matches. This may be as simple as a count or as comprehensive as all prior matches. This is
accomplished by passing a proto object whose object space can contain variables to be shared
among the invocations of the matching function. The matching function itself is also be stored in
the object as are the arguments to gsubfn and a special variable count which is automatically set
to the match number.

Proto. A proto object is an R environment with an S3 class of c("proto", "environment"). A
proto object is created by calling the "proto" function with the components to be inserted given

4 gsubfn: Utilities for Strings and for Function Arguments.

as arguments. This is very similar to the way lists are constructed in R except that unlike a list a
proto object represents an R environment.

Example. The use of proto objects is best introduced via example. In the following example p is
a proto object which contains one function fun. A function component of a proto object is called
a method and we will use this terminology henceforth. In this example after the proto command
to create p we examine the class of p and check the components of p using ls. Also we display
the fun component itself. These are some of the basic operations on proto objects. Finally we run
gsubfn using the regular expression \\w+ and the proto object p. gsubfn looks for a component
called fun in p and uses that as the replacement method/function. The arguments to fun are
always the object itself, often represented by the formal argument this, self or just ., followed
by the match and back references. In this example there are no back references. Here fun simply
returns the match suffixed by the count of the match. The count variable is automatically placed
into p by gsubfn. This has the effect of suffixing the first word with with 1, the second with 2 and
so on. After running gsubfn we examine p again noticing all the components that were added by
gsubfn and we also examine the count component which shows how many matches were found.
Note that use of paste0 which is like paste but has a default sep of "".

> p <- proto(fun = function(this, x) paste0(x, "{", count, "}"))

> class(p)

[1] "proto" "environment"

> ls(p)

[1] "fun"

> with(p, fun)

function(this, x) paste0(x, "{", count, "}")

<environment: 0x02efd894>

> s <- c("the dog and the cat are in the house", "x y x")

> gsubfn("\\w+", p, s)

[1] "the{1} dog{2} and{3} the{4} cat{5} are{6} in{7} the{8} house{9}"

[2] "x{1} y{2} x{3}"

> ls(p)

[1] "backref" "count" "env" "fun" "match"

[6] "pattern" "replacement" "USE.NAMES" "x"

> p$count

[1] 3

pre and post. gsubfn knows about three methods: fun which we have already seen as well as
pre and post. The latter two are optional and are run before each string and after each string
respectively. Suppose we wish to suffix each word not by the count of all words but just by the
count of that word. Thus the third occurrence of "the" will be suffixed with 3 rather than 8. In
that case we will set up a words list in the pre method. This method will be invoked at the start
of each of the two strings in s. The words list itself is stored in the pwords proto object. Since all
the methods of a proto object can share its contents fun can also make use of it. In the example
below, each time we match a word, pwords$fun adds it to the list words, if not already there, and
increments it so that words[[”the”]] will be 1 after "the" is encountered for the first time, 2 after
the second time and so on. At the end of the example we look at what variables are in pwords

and also check the contents of the words list.

Gabor Grothendieck 5

> pwords <- proto(

+ pre = function(this) { this$words <- list() },

+ fun = function(this, x) {

+ if (is.null(words[[x]])) this$words[[x]] <- 0

+ this$words[[x]] <- words[[x]] + 1

+ paste0(x, "{", words[[x]], "}")

+ }

+)

> gsubfn("\\w+", pwords, "the dog and the cat are in the house")

[1] "the{1} dog{1} and{1} the{2} cat{1} are{1} in{1} the{3} house{1}"

> ls(pwords)

[1] "backref" "count" "env" "fun" "match"

[6] "pattern" "pre" "replacement" "USE.NAMES" "words"

[11] "x"

> dput(pwords$words)

structure(list(the = 3, dog = 1, and = 1, cat = 1, are = 1, ‘in‘ = 1,

house = 1), .Names = c("the", "dog", "and", "cat", "are",

"in", "house"))

Additional examples of the use of proto objects with gsubfn are available via the command
demo("gsubfn-proto").

5. strapply

Introduction. The strapply function is similar to the gsubfn function but instead of replacing the
matched strings it returns the output of the function in a list or simplified structure. A typical use
would be to split a string based on content rather than on delimiters. The arguments are analogous
to the arguments in apply. In both the object to be applied over is the first argument. A modifier,
which is an index for apply and a regular expression for strapply is the second argument. The
third argument is a function in both cases although in strapply, in analogy to gsubfn it can also be
a proto object. By default strapply uses the tcl regular expression engine but if the argument
engine="R" is used or if the function is a proto object then the R regular expression engine is
used instead. The tcl engine is much faster. The simplify argument is similar to the simplify

argument in sapply and, in fact, is passed to sapply if it is logical. If simplify is a function
or a formula representing a function then the output of strapply is passed as output to it via
do.call(simplify, output).

Example. To separate out the initial digits from the rest returning the the initial digits and the
rest as two separate fields we can write this:

> s <- c(’123abc’, ’12cd34’, ’1e23’)

> strapply(s, ’^([[:digit:]]+)(.*)’, c, simplify = rbind)

[,1] [,2]

[1,] "123" "abc"

[2,] "12" "cd34"

[3,] "1" "e23"

In this example we calculate the midpoint of each interval.

6 gsubfn: Utilities for Strings and for Function Arguments.

> as.num <- function(x) if (x == "NA") NA else as.numeric(x)

> rn <- c("[-11.9,-10.6]", "(NA,9.3]", "(9.3,8e01]", "(8.01,Inf]")

> colMeans(strapply(rn, "[^][(),]+", as.num, simplify = TRUE))

[1] -11.25 NA 44.65 Inf

combine. The combine argument can be specified as a function which is to be applied to the
output of the replacement function after each call. It defaults to c. Another popular choice is
list. The following example illustrates the difference:

> s <- c(’a:b c:d’, ’e:f’)

> dput(strapply(s, ’(.):(.)’, c))

list(c("a", "b", "c", "d"), c("e", "f"))

> dput(strapply(s, ’(.):(.)’, c, combine = list))

list(list(c("a", "b"), c("c", "d")), list(c("e", "f")))

>

strapply and proto. strapply can be used with proto in the same way as as gsubfn. For example,
suppose we wish to extract the words from a string together with their ordinal occurrence number.
Previously we did this with gsubfn and inserted the number back into the string. This time we
want to extract it.

> pwords2 <- proto(

+ pre = function(this) { this$words <- list() },

+ fun = function(this, x) {

+ if (is.null(words[[x]])) this$words[[x]] <- 0

+ this$words[[x]] <- words[[x]] + 1

+ list(x, words[[x]])

+ }

+)

> strapply("the dog and the cat are in the house", "\\w+", pwords2,

+ combine = list, simplify = x ~ do.call(rbind, x))

[,1] [,2]

[1,] "the" 1

[2,] "dog" 1

[3,] "and" 1

[4,] "the" 2

[5,] "cat" 1

[6,] "are" 1

[7,] "in" 1

[8,] "the" 3

[9,] "house" 1

> ls(pwords2)

[1] "combine" "count" "fun" "pattern" "pre" "simplify"

[7] "USE.NAMES" "words" "X"

> dput(pwords2$words)

Gabor Grothendieck 7

structure(list(the = 3, dog = 1, and = 1, cat = 1, are = 1, ‘in‘ = 1,

house = 1), .Names = c("the", "dog", "and", "cat", "are",

"in", "house"))

6. Miscellaneous

The cat0 and paste0 function are like cat and paste they have a default sep of "".

Here is an example of using paste0. This example retrieves overlapping segments consisting of
a space, letter, space, letter and space. Only the final space, letter, space is returned. Because
we did not specify backref it will think there are two back references (since it will interpret the
lookahead expression as an extra back reference); however, the second is empty so it does no harm
in passing it to paste0. It uses the zero-lookahead perl style pattern matching expression.

> strapply(’ a b c d e f ’, ’ [a-z](?=([a-z]))’, paste0)[[1]]

[1] " a" " b" " c" " d" " e"

7. fn

Wherever a function can be specified in gsubfn and strapply one can specify a formula instead
as discussed previously. This facility has been extended to work with any R function. Just preface
the function with fn$ and

1. formula arguments will be intercepted and translated to functions allowing a compact rep-
resentation of the call. Which formulas are actually translated to functions is dependent on
rules to be discussed. The right hand side of the formula represents the body of the function.
The left hand side of the formula represents the arguments and defaults to the free variables
in the order encountered. The environment of the function is set to the environment of the
formula. letters, LETTERS and pi are not considered free variables and will not appear in
arguments.

2. character arguments will be intercepted and quasi-perl style string interpolation will be
performed. Which character strings to operate on are dependent on rules to be discussed.

3. the simplify argument if its value is a function is intercepted. In that case if result is the re-
sult of running the function without the simplify argument then it returns do.call(simplify,
result).

The rules for determining which formulas to translate and which character strings to apply quasi-
perl style string interpolation are as follows:

1. any formula argument that has been specified with a double ~, i.e. ~~, is converted to a
function after removing the double ~ and replacing it with a single ~.

2. any character string argument that has been specified with a first character of \1 has string
interpolation applied to it after the \1 is removed.

3. if there are no formulas with double ~ and no character strings beginning with \1 then all
formulas are converted to functions and if there are no formulas then all character strings
have string interpolation done.

The last possibility is the actually the most commonly used and almost all our examples will
illustrate that case. For example,

8 gsubfn: Utilities for Strings and for Function Arguments.

> fn$integrate(~ sin(x) + sin(x), 0, pi/2)

2 with absolute error < 2.2e-14

> fn$lapply(list(1:4, 1:5), ~ LETTERS[x])

[[1]]

[1] "A" "B" "C" "D"

[[2]]

[1] "A" "B" "C" "D" "E"

> fn$mapply(~ seq_len(x) + y * z, 1:3, 4:6, 2) # list(9, 11:12, 13:15)

[[1]]

[1] 9

[[2]]

[1] 11 12

[[3]]

[1] 13 14 15

> fn$by(CO2[4:5], CO2[2], x ~ coef(lm(uptake ~ ., x)), simplify = rbind)

(Intercept) conc

Quebec 23.50304 0.02308005

Mississippi 15.49754 0.01238113

>

Here is an example where we have two formulas, one of which should be translated and another
should not. In this case we place a double ~ in the second formula to signify that one it represents
a function. The first formula is then correctly left untranslated. This example places a panel
number in the body of each panel.

> library(lattice)

> library(grid)

> print(fn$xyplot(uptake ~ conc | Plant, CO2,

+ panel = ~~ { panel.xyplot(...); grid.text(panel.number(), .1, .85) }))

As mentioned briefly above, the fn$ prefix will also intercept any simplify argument if that
argument is a function (but will not intercept it if it is TRUE or FALSE). In the case of inteception
it runs the command then applies do.call(simplify, result) to the result of the command. A
typical use would be with by as in the following example to calculate the regression coefficients
of uptake on conc for each Treatment. This replaces the sligtly uglier do.call construct which
would otherwise have been required.

> fn$by(CO2, CO2$Treatment, d ~ coef(lm(uptake ~ conc, d)), simplify = rbind)

(Intercept) conc

nonchilled 22.01916 0.01982458

chilled 16.98142 0.01563659

Gabor Grothendieck 9

Here are some additional examples to illustrate the wide range of application. The first replaces
codes with upper case letters. Note that LETTERS is never interpreted as a free variable so the
default argument is x here:

> fn$lapply(list(1:4, 1:3), ~ LETTERS[x])

[[1]]

[1] "A" "B" "C" "D"

[[2]]

[1] "A" "B" "C"

The next example uses aggregate to calculate the midrange of each of conc and uptake for each
Type. The calculation is repeated using cast from the reshape package and again using summaryBy

from the doBy package. Note that in two of the examples there are two formulas each and one is
to be regarded as a function and the other not so we must use double to distinguish the cases.

> fn$aggregate(iris[-5], iris[5], ~ mean(range(x)))

Species Sepal.Length Sepal.Width Petal.Length Petal.Width

1 setosa 5.05 3.35 1.45 0.35

2 versicolor 5.95 2.70 4.05 1.40

3 virginica 6.40 3.00 5.70 1.95

> library(reshape)

> fn$cast(Treatment ~ variable, data = melt(CO2, id = 1:3), ~~ mean(range(x)))

Treatment conc uptake

1 nonchilled 547.5 28.05

2 chilled 547.5 25.05

> library(doBy) # need version 0.9 or later

> fn$summaryBy(. ~ Treatment, CO2[3:5], FUN = ~~ c(midrange = mean(range(x))))

Treatment conc.midrange uptake.midrange

1 nonchilled 547.5 28.05

2 chilled 547.5 25.05

Here is another common use of aggregate or by. This calculates a weighted mean of the first
column using weights in the second column all grouped by columns A and B. The aggregate

example aggregates over indexes to circumvent the restriction of a single input to the aggregation
function. Both i and X are free variables but we only want i to be an argument so we must specify
it explicitly.

> set.seed(1)

> X <- data.frame(X = rnorm(24), W = runif(24), A = gl(2, 1, 24), B = gl(2, 2, 24))

> fn$aggregate(1:nrow(X), X[3:4], i ~ weighted.mean(X[i,1], X[i,2]))

A B x

1 1 1 -0.20178587

2 2 1 0.01591515

3 1 2 0.63162232

4 2 2 0.11378828

10 gsubfn: Utilities for Strings and for Function Arguments.

>

A number of mathematical functions take functions as arguments. Here we show the use of fn$

with integrate and optimize.

> fn$integrate(~1/((x+1)*sqrt(x)), lower = 0, upper = Inf)

3.141593 with absolute error < 2.7e-05

> fn$optimize(~ x^2, c(-1,1))

$minimum

[1] 0

$objective

[1] 0

S4 setGeneric and setMethod calls have function arguments that fn$ can be used with. In the
following example we create an S4 class ooc whose representation contains a single variable a. We
then define a generic function incr. In this case the function arguments cannot be deduced from
the body so we specify them explicitly. Then we define an incr method for class ooc. Since a is a
free variable again we must define the arguments explicitly to ensure that it is not automatically
included. Finally we illustrate the use of the incr method we just defined.

> setClass(’ooc’, representation(a = ’numeric’))

[1] "ooc"

> fn$setGeneric(’incr’, x + value ~ standardGeneric(’incr’))

[1] "incr"

> fn$setMethod(’incr’, ’ooc’, x + value ~ {x@a <- x@a+value; x})

[1] "incr"

> oo <- new(’ooc’, a = 1)

> oo <- incr(oo,1)

> oo

An object of class "ooc"

Slot "a":

[1] 2

One commonly used calculation in quantile regression is the creation of a regression plot for each
of a variety of values of tau. Here we plot x vs. y and then superimpose quantile regression lines
for various tau values using lapply to avoid a loop. The lapply function of tau is specified using
a formula.

> plot(engel$income, engel$foodexp, xlab = ’income’, ylab = ’food expenditure’)

> junk <- fn$lapply(1:9/10, tau ~ abline(coef(rq(foodexp ~ income, tau, engel))))

In time series we may wish to calculate a rolling summary of the data. In this case we calculate a
rolling midrange of the data using the zoo function rollapply:

Gabor Grothendieck 11

conc

up
ta

ke

10
20
30
40

200 600 1000

●

●
● ● ●

● ●1
Qn1

●

●

●
● ● ●

●2
Qn2

200 600 1000

●

●

● ● ● ● ●3
Qn3

●

●
●

● ●
●

●4
Qc1

●
●

●
●

● ● ●5
Qc3

●

●

●
● ● ●

●6
Qc2

●

●
● ● ● ● ●

7
Mn3

10
20
30
40

●

●

● ● ● ● ●

8
Mn2

10
20
30
40

●

●

●
● ● ●

●
9

Mn1

200 600 1000

●
● ● ● ● ● ●

10
Mc2

●

● ● ● ● ● ●

11
Mc3

200 600 1000

●
●

● ● ● ● ●

12
Mc1

Figure 1: fn$xyplot

●
●

●
●

●

●●
●

● ●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
● ●

●

●

●
●
●

●●

●

● ●

●

●
●

● ●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●
●

●● ●●●●
●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●●
●

●
●●

●
●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●

●

●●
●●

●

●
● ●

●

●

●

●

● ●

●

●

●
●
●●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●
●

●

1000 2000 3000 4000 5000

50
0

10
00

15
00

20
00

income

fo
od

 e
xp

en
di

tu
re

Figure 2: Plot engel data with quantile lines

12 gsubfn: Utilities for Strings and for Function Arguments.

> library(zoo)

> fn$rollapply(LakeHuron, 12, ~ mean(range(x)))

Time Series:

Start = 1880

End = 1966

Frequency = 1

[1] 580.825 580.825 580.735 580.735 580.735 580.410 580.410 580.410 580.410

[10] 580.060 579.960 579.960 579.705 579.385 579.125 579.075 578.955 578.955

[19] 579.020 579.035 579.035 579.065 579.415 579.415 579.350 579.100 579.100

[28] 579.100 579.100 579.050 579.050 579.110 579.115 579.115 579.115 579.115

[37] 579.115 579.095 578.965 578.445 578.445 578.445 578.445 578.665 578.665

[46] 578.665 578.665 578.665 578.410 578.410 578.410 578.410 578.410 578.410

[55] 578.410 577.860 577.330 577.925 577.925 577.925 578.225 578.230 578.255

[64] 578.420 578.420 578.490 579.040 579.400 579.400 579.400 579.400 579.400

[73] 579.030 578.990 578.990 578.990 578.990 578.870 578.185 577.960 577.785

[82] 577.530 577.530 577.850 577.850 577.925 577.960

A common statistical technique for assessing statistics is the bootstrap technique provided in
package boot. Here we compactly the bias and standard error of the median statistic using the
rivers data set and 2000 samples.

> library(boot)

> set.seed(1)

> fn$boot(rivers, ~ median(x[d]), R = 2000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = c(735, 320, 325, 392, 524, 450, 1459, 135, 465, 600,

330, 336, 280, 315, 870, 906, 202, 329, 290, 1000, 600, 505,

1450, 840, 1243, 890, 350, 407, 286, 280, 525, 720, 390, 250,

327, 230, 265, 850, 210, 630, 260, 230, 360, 730, 600, 306, 390,

420, 291, 710, 340, 217, 281, 352, 259, 250, 470, 680, 570, 350,

300, 560, 900, 625, 332, 2348, 1171, 3710, 2315, 2533, 780, 280,

410, 460, 260, 255, 431, 350, 760, 618, 338, 981, 1306, 500,

696, 605, 250, 411, 1054, 735, 233, 435, 490, 310, 460, 383,

375, 1270, 545, 445, 1885, 380, 300, 380, 377, 425, 276, 210,

800, 420, 350, 360, 538, 1100, 1205, 314, 237, 610, 360, 540,

1038, 424, 310, 300, 444, 301, 268, 620, 215, 652, 900, 525,

246, 360, 529, 500, 720, 270, 430, 671, 1770), statistic = function (x,

d)

median(x[d]), R = 2000)

Bootstrap Statistics :

original bias std. error

t1* 425 2.615 26.1902

Here is a plotting application that illustrates that pi is automatically excluded from default argu-
ments.

> x <- 0:50/50

> matplot(x, fn$outer(x, 1:8, ~ sin(x * k*pi)), type = ’blobcsSh’)

Gabor Grothendieck 13

Here we define matrix multiplication in terms of two calls to apply and the inner product definition.
The advantage of this is that it can easily be modified to use different inner products. This
illustrates a nested use of fn$:

> a <- matrix(4:1, 2); b <- matrix(1:4, 2) # test matrices

> fn$apply(b, 2, x ~ fn$apply(a, 1, y ~ sum(x*y)))

[,1] [,2]

[1,] 8 20

[2,] 5 13

> a %*% b

[,1] [,2]

[1,] 8 20

[2,] 5 13

Another example of nesting is the following which generates all subsequences of 1:4.

> L <- fn$apply(fn$sapply(1:4, ~ rbind(i,i:4), simplify = cbind), 2, ~ x[1]:x[2])

> dput(L)

list(1L, 1:2, 1:3, 1:4, 2L, 2:3, 2:4, 3L, 3:4, 4L)

In the Python language there exists a convenient notation for expressing lists with side conditions.
For example, [x*x for x in range(1,11) if x%2 == 0]. To express this in R using fn$ we
can write it like this which gets fairly close to the Python formulation:

> fn$sapply(1:10, ~ if (x%%2==0) x^2, simplify = c)

[1] 4 16 36 64 100

Here is an example of string interpolation:

> fn$cat("pi = $pi, exp = ‘exp(1)‘\n")

pi = 3.14159265358979, exp = 2.71828182845905

8. match.funfn and as.function.formula

Developers who wish to add the fn$ capability to their own functions (so that the user does not
have to prepend them with fn$) can use the supplied match.funfn function which in turn uses
the as.function.formula function to convert formulas to functions. match.funfn is like the
match.fun in R function except that it also converts formulas, not just character strings. For
example with the definition of sq shown below the formal argument f can be a formula, character
string or function as shown in the statements following:

> sq <- function(f, x) { f <- match.funfn(f); f(x^2) }

> sq(~ exp(x)/x, pi)

[1] 1958.912

14 gsubfn: Utilities for Strings and for Function Arguments.

> f <- function(x) exp(x)/x

> sq(’f’, pi) # character string

[1] 1958.912

> f <- function(x) exp(x)/x

> sq(f, pi)

[1] 1958.912

> sq(function(x) exp(x)/x, pi)

[1] 1958.912

9. Summary

By simply extending the replacement string in gsub to functions, formulas and proto objects we
obtain a function which on the surface appears nearly identical to gsub but, in fact, has powerful
ramifications for processing.

Computational details

The results in this paper were obtained using R 2.14.2 with the packages boot 1.3–4, doBy 4.5.1,
grid 2.14.2, gsubfn 0.6–1, lattice 0.20–0, proto 0.3–9.2, quantreg 4.76 and reshape 0.8.4.

R itself and all packages used are available from CRAN at http://CRAN.R-project.org/.

http://CRAN.R-project.org/

Gabor Grothendieck 15

111

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

fn
$o

ut
er

(x
, 1

:8
, ~

si
n(

x
*

k
*

pi
))

3
3
3
3
3
3333333

3
3
3
3
3
3
3
3
3
3
3333333

3
3
3
3
3
3
3
3
3
3
3333333

3
3
3
3
34

4
4
4
4
4444

4
4
4

4

4

4
4
4
4444

4
4
4
4

4

4
4
4
4
4444

4
4
4

4

4

4
4
4
4444

4
4
4
4

4

Figure 3: matplot(x, fn$outer(x, 1:8, ~ sin(x * k*pi)), type = ’blobcsSh’)

