
Introduction to the North Carolina SIDS data set

Roger Bivand

November 10, 2003

1 Introduction

This data set was presented first in Symons et al. (1983), analysed with reference to
the spatial nature of the data in Cressie and Read (1985), expanded in Cressie and
Chan (1989), and used in detail in Cressie’s monograph on statistics for spatial data
(1991, revised 1993). It is for the 100 counties of North Carolina, and includes counts
of numbers of live births (also non-white live births) and numbers of sudden infant
deaths, for the 1974–1978 and 1979–1984 periods. In Cressie and Read (1985), a
listing of county neighbours based on shared boundaries (contiguity) is given, and in
Cressie and Chan (1989), and in Cressie (1991, pp. 386–389), a different listing based
on the criterion of distance between county seats, with a cutoff at 30 miles. The county
seat location coordinates are given in miles in a local (unknown) coordinate reference
system. The data are also used to exemplify a range of functions in theS-PLUSspatial
statistics module user’s manual (Kaluzny et al., 1996).

2 Getting the data intoR

We will be using thespdeppackage, here version: spdep, version 0.2-6, 2003-11-10,
and themaptools package. The data from the sources refered to above is collected
in the nc.sids data set inspdep. But to map it, we also need access to data for the
county boundaries for North Carolina; this has been made available in themaptools
package in shapefile format1. These data are known to be geographical coordinates
(longitude-latitude in decimal degrees) and are assumed to use the NAD83 datum.

> library(spdep)

> library(maptools)

The shapefile format presupposes that you have three files with extensions*.shp ,
.shx , and.dbf , where the first contains the geometry data, the second the spatial
index, and the third the attribute data. They are required to have the same name apart
from the extension, and are read usingread.shape() . By default, this function reads
in the data in all three files, although it is only given the name of the file with the
geometry.

> sids.shp <- read.shape(system.file("shapes/sids.shp", package = "maptools"))

Shapefile Type: Polygon # of Shapes: 100

DBF field with "_" changed to CNTY.

1These data are taken with permission from:http://sal.agecon.uiuc.edu/datasets/
sids.zip .

1

http://sal.agecon.uiuc.edu/datasets/sids.zip
http://sal.agecon.uiuc.edu/datasets/sids.zip

DBF field with "_" changed to CNTY.ID
DBF field with "_" changed to CRESS.ID

The imported object inR has classMap, and is a list with two components,"Shapes" ,
which is a list of shapes, and"att.data" , which is a data frame with tabular data,
one row for each shape in"Shapes" . Let us move the attribute data to a separate data
frame for convenience:

> sids <- sids.shp$att.data
> names(sids)

[1] "AREA" "PERIMETER" "CNTY." "CNTY.ID" "NAME" "FIPS"
[7] "FIPSNO" "CRESS.ID" "BIR74" "SID74" "NWBIR74" "BIR79"

[13] "SID79" "NWBIR79"

> sidspolys <- Map2poly(sids.shp)
> sidscents <- get.Pcent(sids.shp)

> plotpolys(sidspolys)
> points(sidscents)

We can examine the names of the columns of the data frame to see what it contains —
in fact some of the same columns that we will be examining below, and some others
which will be useful in cleaning the data set. We will similarly convert the geometry
format of theMapobject to that of apolylist object, which will be easier to handle.
Finally, we retreive the centroids of the county polygons to use as label points. Using
the plotpolys() function frommaptools, we can display the polygon boundaries
and centroids, shown in Figure1.

Figure 1: County boundaries and polygon centroids, North Carolina

It may be of interest to look at the structure of a polygon list member. This is made
up of a two-column matrix with polygon coordinates. In general, each sub-polygon
will have equal first and last coordinates to ensure closure, but this is not absolutely re-
quired. Rows in the coordinate matrix set toNArepresent breaks between sub-polygons,
and are respected by the underlyingR graphics functions. The attributes contain fur-
ther information about the polygon:pstart is a list with from and to components,
which are vectors of first and last rows in the matrix for each sub-polygon in the object

2

— there arenParts elements in bothfrom andto . RingDir andringDir should be
the same (but are not here,ringDir is correct, andRingDir is wrong!), and are com-
puted in two different ways to determine whether each of thenParts sub-polygons
runs clockwise or counter-clockwise. Counter-clockwise sub-polygons are “holes” in
the surrounding sub-polygon. Finally,bbox contains the bounding box of this object.
Its appearance is shown in Figure2.

Figure 2: Plot of polygon 56 from the list of polygons.

> round(t(sidspolys[[56]]), 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] -75.783 -75.773 -75.545 -75.703 -75.741 -75.783 NA -75.891 -75.908
[2,] 36.225 36.229 35.788 36.050 36.050 36.225 NA 35.631 35.666

[,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18]
[1,] -76.021 -75.988 -75.818 -75.749 -75.729 -75.779 -75.891 NA -75.491
[2,] 35.669 35.893 35.924 35.869 35.665 35.579 35.631 NA 35.670

[,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
[1,] -75.534 -75.457 -75.526 -75.749 -75.692 -75.521 -75.475 -75.491
[2,] 35.769 35.617 35.228 35.190 35.235 35.281 35.564 35.670
attr(,"pstart")
attr(,"pstart")$from
[1] 1 8 18

attr(,"pstart")$to
[1] 6 16 26

attr(,"bbox")
[1] -76.02121 35.18983 -75.45698 36.22926
attr(,"RingDir")
[1] 1 1 1
attr(,"nParts")
[1] 3
attr(,"ringDir")
[1] 1 1 -1

> sidscents[56,]

[1] -75.80982 35.73548

> plot(sidspolys[[56]], type = "l", asp = 1, axes = FALSE, xlab = "",
+ ylab = "")

3

3 Getting the data ready to use

We will now access the data set reproduced from Cressie and collaborators, included
in spdep, and add the neighbour relationships used in Cressie and Chan (1989) to the
background map as a graph in blue:

> data(nc.sids)

> plotpolys(sidspolys, border = "grey")
> plot(ncCC89.nb, sidscents, add = TRUE, col = "blue")

Figure3 does not show what we wanted — it is obvious that the wrong nodes are being
connected to each other. This is specifically included here because it is more the rule
than the exception that spatial objects are placed in different order in different data
sources (or the numbers of objects may not agree, or some objects are aggregated in
one data source and not in another, the possibilities are endless).

Figure 3: Overplotting shapefile boundaries with 30 mile neighbour relations as a graph
(first attempt).

To see what is going on, we can list the first five rows of thesids data frame taken
from the shapefile, and the first five rows of thenc.sids data frame included inspdep
and taken directly from listings in the sources refered to above. TheCNTY.ID variable
is included in both sources, and is also theregion.id attribute of the Cressie/Chan
30 mile neighbour relations neighbour object.

> sids[1:5, c("CNTY.ID", "NAME", "BIR74")]

CNTY.ID NAME BIR74
1 1825 Ashe 1091
2 1827 Alleghany 487
3 1828 Surry 3188
4 1831 Currituck 508
5 1832 Northampton 1421

> nc.sids[1:5, c("CNTY.ID", "BIR74")]

CNTY.ID BIR74
Alamance 1904 4672
Alexander 1950 1333

4

Alleghany 1827 487
Anson 2096 1570
Ashe 1825 1091

> attr(ncCC89.nb, "region.id")[1:5]

[1] 1904 1950 1827 2096 1825

We can see that thenc.sids data frame is ordered alphabetically by county name
(as are the neighbour objects), while thesids data frame is ordered by ascending
CNTY.ID (as are the polygons). To resolve this, we could swap the rows of the neigh-
bour list objects, but we would also need to change all the identification numbers of the
spatial objects too, so it seems best to use a temporary file and functions for reading
and writing neighbour lists, and especially for exchanging them with other software
(including GeoDa).

> tmpGAL <- tempfile(pattern = "GAL")
> write.nb.gal(ncCC89.nb, file = tmpGAL, oldstyle = FALSE, shpfile = "sids",
+ ind = "CNTY.ID")
> CNTY.ID <- sids$CNTY.ID
> ncCC89.2.nb <- read.gal(file = tmpGAL, region.id = CNTY.ID)

When read.gal() is given aregion.id argument, it is used to match the incom-
ing data, and to reorder them on-the-fly, so that, as Figure4 shows, the re-ordered
neighbour list object now conforms with the order of the polygon list object.

> plotpolys(sidspolys, border = "grey")
> plot(ncCC89.2.nb, sidscents, add = TRUE, col = "blue")

Figure 4: Overplotting shapefile boundaries with 30 mile neighbour relations as a graph
(re-ordered neighbour list)

Printing the new object shows that it is a neighbour list object, with a very sparse
structure — if displayed as a matrix, only 3.94% of cells would be filled. Objects of
classnb contain a list as long as the number of counties; each component of the list
is a vector with the index numbers of the neighbours of the county in question, so that
the neighbours of the county withregion.id of "1825" can be retreived by matching
against the indices. More information can be obtained by usingsummary() on annb

5

object. Finally, we associate a vector of names with the neighbour list, through the
row.names argument. The names should be unique, as with data frame row names.

> ncCC89.2.nb

Neighbour list object:
Number of regions: 100
Number of nonzero links: 394
Percentage nonzero weights: 3.94
Average number of links: 3.94
2 regions with no links:
2000 2099

> r.id <- attr(ncCC89.2.nb, "region.id")
> ncCC89.2.nb[[match("1825", r.id)]]

[1] 2 18 19

> r.id[ncCC89.2.nb[[match("1825", r.id)]]]

[1] 1827 1874 1880

The neighbour list object records neighbours by their order in relation to the list itself,
so the neighbours list for the county withregion.id "1825" are the second, eigh-
teenth, and nineteenth in the list. We can retreive theirCNTY.ID codes by looking
them up in theregion.id attribute.

> sids[card(ncCC89.2.nb) == 0,]

AREA PERIMETER CNTY. CNTY.ID NAME FIPS FIPSNO CRESS.ID BIR74 SID74 NWBIR74
56 0.094 3.640 2000 2000 Dare 37055 37055 28 521 0 43
87 0.167 2.709 2099 2099 Hyde 37095 37095 48 338 0 134

BIR79 SID79 NWBIR79
56 1059 1 73
87 427 0 169

We should also note that this neighbour criterion generates two counties with no neigh-
bours, Dare and Hyde, whose county seats were more than 30 miles from their nearest
neighbours. Thecard() function returns the cardinality of the neighbour set. We need
to return to methods for handling no-neighbour objects later on. We will also show how
new neighbours lists may be constructed inR, and compare these with those from the
literature.

4 Preliminary exploration of the data (incomplete)

One of the first steps taken by Cressie and Read (1985) is to try to bring out spatial
trends by dividing North Carolina up into 4×4 rough rectangles. Just to see how this
works, let us map these rough rectangles before proceeding further (see Figure5). We
need to recall that thenc.sids data frame is not in the same order as the polygons.

> both <- factor(paste(nc.sids$L.id, nc.sids$M.id, sep = ":"))
> cols <- sample(rainbow(length(table(unclass(both)))))

> plotpolys(sidspolys, col = cols[both[order(nc.sids$CNTY.ID)]])
> legend(c(-84, -81), c(33.5, 34.6), legend = levels(both), fill = cols,
+ bty = "n", cex = 0.9, y.intersp = 0.9, ncol = 2)

(document to be extended in next release — terminates here to at least show how
maptoolsandspdepcan be used together).

6

Figure 5: Rough rectangles used by Cressie and Read (1985) to bring out spatial trends.

References

Cressie, N (1991), Statistics for spatial data. New York: Wiley.

Cressie, N, Chan NH (1989), Spatial modelling of regional variables.Journal of the
American Statistical Association84, 393–401.

Cressie, N, Read, TRC (1985), Do sudden infant deaths come in clusters?Statistics
and DecisionsSupplement Issue 2, 333–349.

Kaluzny, SP, Vega, SC, Cardoso, TP, Shelly, AA (1996),S-PLUSSPATIALSTATS
user’s manual version 1.0. Seattle: MathSoft Inc.

Symons, MJ, Grimson, RC, Yuan, YC (1983), Clustering of rare events.Biometrics
39, 193–205.

7

	Introduction
	Getting the data into R
	Getting the data ready to use
	Preliminary exploration of the data (incomplete)

