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1 Introduction
This data set was presented first in Symons et al. (1983), analysed with reference to
the spatial nature of the data in Cressie and Read (1985), expanded in Cressie and
Chan (1989), and used in detail in Cressie (1991). It is for the 100 counties of North
Carolina, and includes counts of numbers of live births (also non-white live births) and
numbers of sudden infant deaths, for the July 1, 1974 to June 30, 1978 and July 1, 1979
to June 30, 1984 periods. In Cressie and Read (1985), a listing of county neighbours
based on shared boundaries (contiguity) is given, and in Cressie and Chan (1989), and
in Cressie (1991, pp. 386–389), a different listing based on the criterion of distance
between county seats, with a cutoff at 30 miles. The county seat location coordinates
are given in miles in a local (unknown) coordinate reference system. The data are also
used to exemplify a range of functions in the S-PLUS spatial statistics module user’s
manual (Kaluzny et al., 1996).

2 Getting the data into R
We will be using the spdep package, here version: spdep, version 0.5-51, 2012-09-
25, the sp package and the maptools package. The data from the sources refered to
above is documented in the help page for the nc.sids data set in spdep. The actual
data, included in a shapefile of the county boundaries for North Carolina has been
made available in the maptools package1. These data are known to be geographical
coordinates (longitude-latitude in decimal degrees) and are assumed to use the NAD27
datum.
> library(sp)
> library(maptools)
> library(spdep)
> nc_file <- system.file("etc/shapes/sids.shp", package="spdep")[1]
> llCRS <- CRS("+proj=longlat +datum=NAD27")
> nc <- readShapeSpatial(nc_file, ID="FIPSNO", proj4string=llCRS)

The shapefile format presupposes that you have three files with extensions *.shp,
*.shx, and *.dbf, where the first contains the geometry data, the second the spa-
tial index, and the third the attribute data. They are required to have the same name
apart from the extension, and are read here using readShapeSpatial() into the

1These data are taken with permission from: http://sal.agecon.uiuc.edu/datasets/
sids.zip.
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SpatialPolygonsDataFrame object nc; the class is defined in sp. The centroids
of the largest polygon in each county are available using the coordinates method
from sp as a two-column matrix, and can be used to place labels:
> plot(nc, axes=TRUE)
> text(coordinates(nc), label=nc$FIPSNO, cex=0.5)
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Figure 1: County boundaries and polygon centroids, North Carolina

We can examine the names of the columns of the data frame to see what it contains
— in fact some of the same columns that we will be examining below, and some others
which will be useful in cleaning the data set.
> names(nc)

[1] "SP_ID" "CNTY_ID" "east" "north" "L_id"
[6] "M_id" "names" "AREA" "PERIMETER" "CNTY_"

[11] "NAME" "FIPS" "FIPSNO" "CRESS_ID" "BIR74"
[16] "SID74" "NWBIR74" "BIR79" "SID79" "NWBIR79"

> summary(nc)

Object of class SpatialPolygonsDataFrame
Coordinates:

min max
x -84.32385 -75.45698
y 33.88199 36.58965
Is projected: FALSE
proj4string : [+proj=longlat +datum=NAD27]
Data attributes:

SP_ID CNTY_ID east north
37001 : 1 Min. :1825 Min. : 19.0 Min. : 6.0
37003 : 1 1st Qu.:1902 1st Qu.:178.8 1st Qu.: 97.0
37005 : 1 Median :1982 Median :285.0 Median :125.5
37007 : 1 Mean :1986 Mean :271.3 Mean :122.1
37009 : 1 3rd Qu.:2067 3rd Qu.:361.2 3rd Qu.:151.5
37011 : 1 Max. :2241 Max. :482.0 Max. :182.0
(Other):94

L_id M_id names AREA
Min. :1.00 Min. :1.00 Alamance : 1 Min. :0.0420
1st Qu.:1.00 1st Qu.:2.00 Alexander: 1 1st Qu.:0.0910
Median :2.00 Median :3.00 Alleghany: 1 Median :0.1205
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Mean :2.12 Mean :2.67 Anson : 1 Mean :0.1263
3rd Qu.:3.00 3rd Qu.:3.25 Ashe : 1 3rd Qu.:0.1542
Max. :4.00 Max. :4.00 Avery : 1 Max. :0.2410

(Other) :94
PERIMETER CNTY_ NAME FIPS

Min. :0.999 Min. :1825 Alamance : 1 37001 : 1
1st Qu.:1.324 1st Qu.:1902 Alexander: 1 37003 : 1
Median :1.609 Median :1982 Alleghany: 1 37005 : 1
Mean :1.673 Mean :1986 Anson : 1 37007 : 1
3rd Qu.:1.859 3rd Qu.:2067 Ashe : 1 37009 : 1
Max. :3.640 Max. :2241 Avery : 1 37011 : 1

(Other) :94 (Other):94
FIPSNO CRESS_ID BIR74 SID74

Min. :37001 Min. : 1.00 Min. : 248 Min. : 0.00
1st Qu.:37050 1st Qu.: 25.75 1st Qu.: 1077 1st Qu.: 2.00
Median :37100 Median : 50.50 Median : 2180 Median : 4.00
Mean :37100 Mean : 50.50 Mean : 3300 Mean : 6.67
3rd Qu.:37150 3rd Qu.: 75.25 3rd Qu.: 3936 3rd Qu.: 8.25
Max. :37199 Max. :100.00 Max. :21588 Max. :44.00

NWBIR74 BIR79 SID79 NWBIR79
Min. : 1.0 Min. : 319 Min. : 0.00 Min. : 3.0
1st Qu.: 190.0 1st Qu.: 1336 1st Qu.: 2.00 1st Qu.: 250.5
Median : 697.5 Median : 2636 Median : 5.00 Median : 874.5
Mean :1050.8 Mean : 4224 Mean : 8.36 Mean : 1352.8
3rd Qu.:1168.5 3rd Qu.: 4889 3rd Qu.:10.25 3rd Qu.: 1406.8
Max. :8027.0 Max. :30757 Max. :57.00 Max. :11631.0

We will now examine the data set reproduced from Cressie and collaborators, in-
cluded in spdep, and add the neighbour relationships used in Cressie and Chan (1989)
to the background map as a graph shown in Figure 2:
> gal_file <- system.file("etc/weights/ncCR85.gal", package="spdep")[1]
> ncCR85 <- read.gal(gal_file, region.id=nc$FIPSNO)
> ncCR85

Neighbour list object:
Number of regions: 100
Number of nonzero links: 492
Percentage nonzero weights: 4.92
Average number of links: 4.92

> gal_file <- system.file("etc/weights/ncCC89.gal", package="spdep")[1]
> ncCC89 <- read.gal(gal_file, region.id=nc$FIPSNO)
> ncCC89

Neighbour list object:
Number of regions: 100
Number of nonzero links: 394
Percentage nonzero weights: 3.94
Average number of links: 3.94
2 regions with no links:
37055 37095

> plot(nc, border="grey")
> plot(ncCC89, coordinates(nc), add=TRUE, col="blue")

Printing the neighbour object shows that it is a neighbour list object, with a very
sparse structure — if displayed as a matrix, only 3.94% of cells would be filled. Objects
of class nb contain a list as long as the number of counties; each component of the list is
a vector with the index numbers of the neighbours of the county in question, so that the
neighbours of the county with region.id of "37001" can be retreived by matching
against the indices. More information can be obtained by using summary() on an nb
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Figure 2: Overplotting county boundaries with 30 mile neighbour relations as a graph.

object. Finally, we associate a vector of names with the neighbour list, through the
row.names argument. The names should be unique, as with data frame row names.
> ncCC89

Neighbour list object:
Number of regions: 100
Number of nonzero links: 394
Percentage nonzero weights: 3.94
Average number of links: 3.94
2 regions with no links:
37055 37095

> r.id <- attr(ncCC89, "region.id")
> ncCC89[[match("37001", r.id)]]

[1] 17 19 32 41 68

> r.id[ncCC89[[match("37001", r.id)]]]

[1] 37033 37037 37063 37081 37135

The neighbour list object records neighbours by their order in relation to the list itself,
so the neighbours list for the county with region.id "37001" are the seventeenth,
nineteenth, thirty-second, forty-first and sixty-eighth in the list. We can retreive their
codes by looking them up in the region.id attribute.
> as.character(nc$NAME)[card(ncCC89) == 0]

[1] "Dare" "Hyde"

We should also note that this neighbour criterion generates two counties with no neigh-
bours, Dare and Hyde, whose county seats were more than 30 miles from their nearest
neighbours. The card() function returns the cardinality of the neighbour set. We need
to return to methods for handling no-neighbour objects later on. We will also show how
new neighbours lists may be constructed in R, and compare these with those from the
literature.
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2.1 Probability mapping
Rather than review functions for measuring and modelling spatial dependence in the
spdep package, we will focus on probability mapping for disease rates data. Typically,
we have counts of the incidence of some disease by spatial unit, associated with counts
of populations at risk. The task is then to try to establish whether any spatial units seem
to be characterised by higher or lower counts of cases than might have been expected
in general terms (Bailey and Gatrell, 1995).

An early approach by Choynowski (1959), described by Cressie and Read (1985)
and Bailey and Gatrell (1995), assumes, given that the true rate for the spatial units is
small, that as the population at risk increases to infinity, the spatial unit case counts are
Poisson with mean value equal to the population at risk times the rate for the study area
as a whole. Choynowski’s approach folds the two tails of the measured probabilities
together, so that small values, for a chosen α, occur for spatial units with either unusu-
ally high or low rates. For this reason, the high and low counties are plotted separately
in Figure 3.
> ch <- choynowski(nc$SID74, nc$BIR74)
> nc$ch_pmap_low <- ifelse(ch$type, ch$pmap, NA)
> nc$ch_pmap_high <- ifelse(!ch$type, ch$pmap, NA)
> prbs <- c(0,.001,.01,.05,.1,1)
> nc$high = cut(nc$ch_pmap_high, prbs)
> nc$low = cut(nc$ch_pmap_low,prbs )

> spplot(nc, c("low", "high"), col.regions=grey.colors(5))

low

high

(0,0.001]
(0.001,0.01]
(0.01,0.05]
(0.05,0.1]
(0.1,1]

Figure 3: Probability map of North Carolina counties, SIDS cases 1974–78, α = 0.05,
reproducing Cressie and Read (1985), Figure 1.

For more complicated thematic maps, it may be helpful to use ColorBrewer (http:
//colorbrewer.org) colour palettes. Here we will only use the grey sequential
palette, available in R in the RColorBrewer package (the colours are copied here to
avoid loading the package).

While the choynowski() function only provides the probability map values re-
quired, the probmap() function returns raw (crude) rates, expected counts (assuming
a constant rate across the study area), relative risks, and Poisson probability map values
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calculated using the standard cumulative distribution function ppois(). This does not
fold the tails together, so that counties with lower observed counts than expected, based
on population size, have values in the lower tail, and those with higher observed counts
than expected have values in the upper tail, as Figure 4 shows.
> pmap <- probmap(nc$SID74, nc$BIR74)
> nc$pmap <- pmap$pmap
> brks <- c(0,0.001,0.01,0.025,0.05,0.95,0.975,0.99,0.999,1)
> library(RColorBrewer)

> spplot(nc, "pmap", at=brks, col.regions=rev(brewer.pal(9, "RdBu")))

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Probability map of North Carolina counties, SIDS cases 1974–78, reproduc-
ing Kaluzny et al. (1996), p. 57, Figure 3.28.

Marilia Carvalho (personal communication) and Virgilio Gómez Rubio (Gómez
Rubio, Ferrándiz and López, 2003) have pointed to the unusual shape of the distribution
of the Poisson probability values (Figure 5), repeating the doubts about probability
mapping voiced by Cressie (1991, p. 392): “an extreme value . . . may be more due to its
lack of fit to the Poisson model than to its deviation from the constant rate assumption”.
There are many more high values than one would have expected, suggesting perhaps
overdispersion, that is that the ratio of the variance and mean is larger than unity.
> hist(nc$pmap, main="")

One ad-hoc way to assess the impact of the possible failure of our assumption
that the counts follow the Poisson distribution is to estimate the dispersion by fitting
a generalized linear model of the observed counts including only the intercept (null
model) and offset by the observed population at risk (suggested by Marilia Carvalho
and associates):
> res <- glm(SID74 ~ offset(log(BIR74)), data=nc, family="quasipoisson")
> nc$stdres <- rstandard(res)
> brks <- c(-4, -3, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 3, 4)

> spplot(nc, "stdres", at=brks, col.regions=rev(brewer.pal(11, "RdBu")))

The dispersion is equal to 2.2786, much greater than unity; we calculate the cor-
rected probability map values by taking the standardised residuals of the model, taking
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Figure 5: Histogram of Poisson probability values.

the size of the dispersion into account; the results are shown in Figure 6. Many fewer
counties appear now to have unexpectedly large or small numbers of cases. This is an
ad-hoc adjustment made because R provides access to a wide range of model-fitting
functions that can be used to help check our assumptions. Gómez Rubio, Ferrándiz
and López (2003) chose rather to construct a probability map under the hypothesis that
data are drawn from a Negative Binomial distribution.

−4
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−1

0

1

2

3

4

Figure 6: Standardised residual values from the fit of a quasi-Poisson fit of the null
model for SIDS rates 1974-78, North Carolina counties.

So far, none of the maps presented have made use of the spatial dependence possi-
bly present in the data. A further elementary step that can be taken is to map Empirical
Bayes estimates of the rates, which are smoothed in relation to the raw rates. The un-
derlying question here is linked to the larger variance associated with rate estimates
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for counties with small populations at risk compared with counties with large popu-
lations at risk. Empirical Bayes estimates place more credence on the raw rates of
counties with large populations at risk, and modify them much less than they modify
rates for small counties. In the case of small populations at risk, more confidence is
placed in either the global rate for the study area as a whole, or for local Empirical
Bayes estimates, in rates for a larger moving window including the neighbours of the
county being estimated. The function used for this in spdep is EBlocal(), initially
contributed by Marilia Carvalho. It parallels a similar function in GeoDa, but uses the
Bailey and Gatrell (1995) interpretation of Marshall (1991), rather than that in GeoDa
(Anselin, Syabri and Smirnov, 2002).
> global_rate <- sum(nc$SID74)/sum(nc$BIR74)
> nc$Expected <- global_rate * nc$BIR74
> res <- EBlocal(nc$SID74, nc$Expected, ncCC89, zero.policy=TRUE)
> nc$EB_loc <- res$est
> brks <- c(0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5)
> spl <- list("sp.text", loc=coordinates(nc)[card(ncCC89) == 0,], txt=rep("*", 2), cex=1.2)

> spplot(nc, "EB_loc", at=brks, col.regions=rev(brewer.pal(8, "RdBu")), sp.layout=spl)

The results are shown in Figure 7. Like other relevant functions in spdep, EBlocal()
takes a zero.policy argument to allow missing values to be passed through. In this
case, no local estimate is available for the two counties with no neighbours, marked by
stars.

*
*

0

1

2

3

4

5

Figure 7: Local Empirical Bayes estimates for SIDS rates per 1000 using the 30 mile
county seat neighbours list.

In addition to Empirical Bayes smoothing globally, used both for disease mapping
and the Assun cão and Reis correction to Moran’s I for rates data (to shrink towards
the global rate when the population at risk is small, here as a Monte Carlo test), lists of
local neighbours can be used to shrink towards a local rate.

> EBImoran.mc(nc$SID74, nc$BIR74, nb2listw(ncCC89, style="B", zero.policy=TRUE), nsim=999, zero.policy=TRUE)

Monte-Carlo simulation of Empirical Bayes Index

data: cases: nc$SID74, risk population: nc$BIR74
weights: nb2listw(ncCC89, style = "B", zero.policy = TRUE)
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number of simulations + 1: 1000

statistic = 0.254, observed rank = 999, p-value = 0.001
alternative hypothesis: greater

3 Exploration and modelling of the data
One of the first steps taken by Cressie and Read (1985) is to try to bring out spatial
trends by dividing North Carolina up into 4×4 rough rectangles. Just to see how this
works, let us map these rough rectangles before proceeding further (see Figure 8).
> nc$both <- factor(paste(nc$L_id, nc$M_id, sep=":"))
> nboth <- length(table(unclass(nc$both)))

> spplot(nc, "both", col.regions=sample(rainbow(nboth)))

1:2
1:3
1:4
2:1
2:2
2:3
2:4
3:1
3:2
3:3
3:4
4:3

Figure 8: Rough rectangles used by Cressie and Read (1985) to bring out spatial trends.

Cressie constructs a transformed SIDS rates variable, 1974–78, for his analyses
(with co-workers). We can replicate his stem-and-leaf figure on p. 396 in the book,
taken from Cressie and Read (1989):
> nc$ft.SID74 <- sqrt(1000)*(sqrt(nc$SID74/nc$BIR74) + sqrt((nc$SID74+1)/nc$BIR74))
> stem(round(nc$ft.SID74, 1), scale=2)

The decimal point is at the |

0 | 9
1 | 111244
1 | 567789999
2 | 0011111222334444
2 | 55555666677778999999999
3 | 000111122333333344444444
3 | 5568999
4 | 013344
4 | 555557
5 | 2
5 |
6 | 3
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3.1 Median polish smoothing
Cressie (1991, pp. 46–48, 393–400) discusses in some detail how smoothing may be
used to partition the variation in the data into smooth and rough. In order to try it out on
the North Carolina SIDS data set, we will use a coarse gridding into four columns and
four rows given by Cressie (1991, pp. 553–554), where four grid cells are empty; these
are given by variables L_id and M_id in object nc. Next we aggregate the number of
live births and the number of SIDS cases 1974–1978 for the grid cells:
> mBIR74 <- tapply(nc$BIR74, nc$both, sum)
> mSID74 <- tapply(nc$SID74, nc$both, sum)

Using the same Freeman-Tukey transformation as is used for the county data, we
coerce the data into a correctly configured matrix, some of the cells of which are empty.
The medpolish function is applied to the matrix, being told to remove empty cells;
the function iterates over the rows and columns of the matrix using median to extract
an overall effect, row and column effects, and residuals:
> mFT <- sqrt(1000)*(sqrt(mSID74/mBIR74) + sqrt((mSID74+1)/mBIR74))
> mFT1 <- t(matrix(mFT, 4, 4, byrow=TRUE))
> med <- medpolish(mFT1, na.rm=TRUE, trace.iter=FALSE)
> med

Median Polish Results (Dataset: "mFT1")

Overall: 2.765802

Row Effects:
[1] -0.728192882 0.001560182 0.861279153 -0.001560182

Column Effects:
[1] 0.00000000 -0.03564965 0.44969186 0.00000000

Residuals:
[,1] [,2] [,3] [,4]

[1,] -0.089076 0.089076 0.33761 -0.089076
[2,] 0.089076 -0.089076 -0.33761 0.089076
[3,] 0.327702 -0.327702 -0.93746 0.327702
[4,] -0.324994 0.324994 0.49479 -0.324994

Returning to the factors linking rows and columns to counties, and generating ma-
trices of dummy variables using model.matrix, we can calculate fitted values of the
Freeman-Tukey adjusted rate for each county, and residuals by subtracting the fitted
value from the observed rate. Naturally, the fitted value will be the same for counties
in the same grid cell:
> mL_id <- model.matrix(~ as.factor(nc$L_id) -1)
> mM_id <- model.matrix(~ as.factor(nc$M_id) -1)
> nc$pred <- c(med$overall + mL_id %*% med$row + mM_id %*% med$col)
> nc$mp_resid <- nc$ft.SID74 - nc$pred

> cI_ft <- pretty(nc$ft.SID74, n=9)
> pal_ft <- colorRampPalette(brewer.pal(6, "YlOrBr"))(length(cI_ft)-1)
> p1 <- spplot(nc, c("ft.SID74"), col.regions=pal_ft, at=cI_ft, col="grey30", main="FT transformed SIDS rate")
> p2 <- spplot(nc, c("pred"), col.regions=pal_ft, at=cI_ft, col="grey30", main="Median-polish fit")
> atn <- pretty(nc$mp_resid[nc$mp_resid < 0])
> atp <- pretty(nc$mp_resid[nc$mp_resid >= 0])
> pal <- c(rev(brewer.pal(length(atn-1), "YlOrRd")), brewer.pal(length(atp[-1]), "YlGnBu")[-1])
> p3 <- spplot(nc, "mp_resid", at=c(atn, atp[-1]), col.regions=pal, col="grey30", main="Median-polish residuals")
> plot(p1, split=c(1,1,1,3), more=TRUE)
> plot(p2, split=c(1,2,1,3), more=TRUE)
> plot(p3, split=c(1,3,1,3), more=FALSE)
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Figure 9: Freeman-Tukey transformed SIDS rates, fitted smoothed values, residuals,
and Tukey additivity plot.

Figure 9 shows the median polish smoothing results as three maps, the observed
Freeman-Tukey transformed SIDS rates, the fitted smoothed values, and the residuals.
In addition, a plot for the median polish object is also shown, plotting the smooth
residuals against the outer product of the row and column effects divided by the overall
effect, which would indicate a lack of additivity between row and column if this was the
case — this is more relevant for analysis of tables of covariates rather than geographical
grids.

3.2 CAR model fitting
We will now try to replicate three of the four models fitted by (Cressie and Chan, 1989)
to the transformed rates variable. The first thing to do is to try to replicate their 30 mile
distance between county seats neighbours, which almost works. From there we try to
reconstruct three of the four models they fit, concluding that we can get quite close, but
that a number of questions are raised along the way.

Building the weights is much more complicated, because they use a combination of
distance-metric and population-at-risk based weights, but we can get quite close (see
also Kaluzny et al., 1996):
> sids.nhbr30.dist <- nbdists(ncCC89, cbind(nc$east, nc$north))
> sids.nhbr <- listw2sn(nb2listw(ncCC89, glist=sids.nhbr30.dist, style="B", zero.policy=TRUE))
> dij <- sids.nhbr[,3]
> n <- nc$BIR74
> el1 <- min(dij)/dij
> el2 <- sqrt(n[sids.nhbr$to]/n[sids.nhbr$from])
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> sids.nhbr$weights <- el1*el2
> sids.nhbr.listw <- sn2listw(sids.nhbr)

The first model (I) is a null model with just an intercept, the second (II) includes all
the 12 parcels of contiguous counties in 4 east-west and 4 north-south bands, while the
fourth (IV) includes the transformed non-white birth-rate:
> nc$ft.NWBIR74 <- sqrt(1000)*(sqrt(nc$NWBIR74/nc$BIR74) + sqrt((nc$NWBIR74+1)/nc$BIR74))

Cressie identifies Anson county as an outlier, and drops it from further analysis.
Because the weights are constructed in a complicated way, they will be subsetted by
dropping the row and column of the weights matrix:
> lm_nc <- lm(ft.SID74 ~ 1, data=nc)
> outl <- which.max(rstandard(lm_nc))
> as.character(nc$names[outl])

[1] "Anson"

> W <- listw2mat(sids.nhbr.listw)
> W.4 <- W[-outl, -outl]
> sids.nhbr.listw.4 <- mat2listw(W.4)
> nc2 <- nc[!(1:length(nc$CNTY_ID) %in% outl),]

It appears that both numerical issues (convergence in particular) and uncertainties
about the exact spatial weights matrix used make it difficult to reproduce the results of
Cressie and Chan (1989), also given in Cressie (1991). We now try to replicate them
for the null weighted CAR model (Cressie has intercept 2.838, θ̂ 0.833, for k=1):
> ecarIaw <- spautolm(ft.SID74 ~ 1, data=nc2, listw=sids.nhbr.listw.4, weights=BIR74, family="CAR")
> summary(ecarIaw)

Call:
spautolm(formula = ft.SID74 ~ 1, data = nc2, listw = sids.nhbr.listw.4,

weights = BIR74, family = "CAR")

Residuals:
Min 1Q Median 3Q Max

-2.010292 -0.639658 -0.062209 0.443549 2.018065

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.945323 0.095135 30.959 < 2.2e-16

Lambda: 0.86814 LR test value: 22.83 p-value: 1.7701e-06

Log likelihood: -118.8432
ML residual variance (sigma squared): 1266.5, (sigma: 35.588)
Number of observations: 99
Number of parameters estimated: 3
AIC: 243.69

The spatial parcels model also seems to work, with Cressie’s θ̂ 0.710, and the other
coefficients agreeing more or less by rank:
> ecarIIaw <- spautolm(ft.SID74 ~ both - 1, data=nc2, listw=sids.nhbr.listw.4, weights=BIR74, family="CAR")
> summary(ecarIIaw)

Call:
spautolm(formula = ft.SID74 ~ both - 1, data = nc2, listw = sids.nhbr.listw.4,

weights = BIR74, family = "CAR")

Residuals:
Min 1Q Median 3Q Max

-2.55896 -0.46338 -0.02035 0.38935 2.05682
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

both1:2 2.06223 0.20016 10.3031 < 2.2e-16
both1:3 2.91823 0.14139 20.6400 < 2.2e-16
both1:4 4.11486 0.29939 13.7439 < 2.2e-16
both2:1 2.57650 0.26905 9.5762 < 2.2e-16
both2:2 2.17403 0.18222 11.9305 < 2.2e-16
both2:3 2.67397 0.15329 17.4443 < 2.2e-16
both2:4 3.11361 0.24699 12.6062 < 2.2e-16
both3:1 2.94400 0.29893 9.8486 < 2.2e-16
both3:2 2.65391 0.14098 18.8250 < 2.2e-16
both3:3 2.91619 0.17099 17.0552 < 2.2e-16
both3:4 3.20425 0.20349 15.7468 < 2.2e-16
both4:3 3.80286 0.20806 18.2781 < 2.2e-16

Lambda: 0.2109 LR test value: 1.3088 p-value: 0.25261

Log likelihood: -99.25505
ML residual variance (sigma squared): 891.48, (sigma: 29.858)
Number of observations: 99
Number of parameters estimated: 14
AIC: 226.51

Finally, the non-white model repeats Cressie’s finding that much of the variance of
the transformed SIDS rate for 1974–8 can be accounted for by the transformed non-
white birth variable (Cressie intercept 1.644, b̂ 0.0346, θ̂ 0.640 — not significant):
> ecarIVaw <- spautolm(ft.SID74 ~ ft.NWBIR74, data=nc2, listw=sids.nhbr.listw.4, weights=BIR74, family="CAR")
> summary(ecarIVaw)

Call:
spautolm(formula = ft.SID74 ~ ft.NWBIR74, data = nc2, listw = sids.nhbr.listw.4,

weights = BIR74, family = "CAR")

Residuals:
Min 1Q Median 3Q Max

-1.99188 -0.44824 0.15464 0.60655 1.95584

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.4365406 0.2252431 6.3777 1.797e-10
ft.NWBIR74 0.0408552 0.0062916 6.4936 8.379e-11

Lambda: 0.22339 LR test value: 1.1557 p-value: 0.28235

Log likelihood: -114.0284
ML residual variance (sigma squared): 1201.3, (sigma: 34.659)
Number of observations: 99
Number of parameters estimated: 4
AIC: 236.06

> nc2$fitIV <- fitted.values(ecarIVaw)

> spplot(nc2, "fitIV", cuts=12, col.regions=grey.colors(13, 0.9, 0.3))

> ecarIawll <- spautolm(ft.SID74 ~ 1, data=nc2, listw=sids.nhbr.listw.4, weights=BIR74, family="CAR", llprof=seq(-0.1, 0.9020532358, length.out=100))

> plot(ll ~ lambda, ecarIawll$llprof, type="l")
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