CRAN Package Check Results for Maintainer ‘Jouni Helske <jouni.helske at iki.fi>’

Last updated on 2026-02-11 11:51:28 CET.

Package ERROR NOTE OK
bssm 3 11
changer 14
diagis 14
ggstudent 14
KFAS 3 11
ramcmc 14
Rlibeemd 2 12
seqHMM 2 12
tsPI 2 12
walker 3 11

Package bssm

Current CRAN status: NOTE: 3, OK: 11

Version: 2.0.3
Check: installed package size
Result: NOTE installed size is 34.7Mb sub-directories of 1Mb or more: data 1.1Mb doc 2.8Mb libs 30.2Mb Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package changer

Current CRAN status: OK: 14

Package diagis

Current CRAN status: OK: 14

Package ggstudent

Current CRAN status: OK: 14

Package KFAS

Current CRAN status: ERROR: 3, OK: 11

Version: 1.6.0
Check: tests
Result: ERROR Running ‘test-all.R’ [12s/13s] Running the tests in ‘tests/test-all.R’ failed. Complete output: > library(testthat) > test_check("KFAS") Loading required package: KFAS Please cite KFAS in publications by using: Jouni Helske (2017). KFAS: Exponential Family State Space Models in R. Journal of Statistical Software, 78(10), 1-39. doi:10.18637/jss.v078.i10. Call: SSModel(formula = t12 ~ SSMcycle(period = 10, type = "common", Q = 2) + SSMcycle(period = 10, type = "distinct", P1 = diag(c(1, 1, 2, 2)), Q = diag(1:2)) + SSMtrend(2, type = "common", Q = diag(c(1, 0.5))) + SSMtrend(2, type = "distinct", Q = list(diag(0.1, 2), diag(0.01, 2)), P1 = diag(c(0.1, 0.01, 0.1, 0.01))) + SSMseasonal(period = 4, type = "common") + SSMseasonal(period = 4, type = "distinct", Q = diag(c(2, 3)), P1 = diag(c(2, 2, 2, 3, 3, 3))) + SSMseasonal(period = 5, type = "common", sea.type = "trig") + SSMseasonal(period = 5, type = "distinct", sea.type = "trig", Q = diag(c(0.1, 0.2)), P1 = diag(rep(c(0.1, 0.2), each = 4))) + SSMarima(ar = 0.9, ma = 0.2) + SSMregression(~-1 + x, index = 1, Q = 1, data = d)) State space model object of class SSModel Dimensions: [1] Number of time points: 100 [1] Number of time series: 2 [1] Number of disturbances: 25 [1] Number of states: 38 Names of the states: [1] x.t1 level slope level.t1 slope.t1 [6] level.t2 slope.t2 sea_dummy1 sea_dummy2 sea_dummy3 [11] sea_dummy1.t1 sea_dummy2.t1 sea_dummy3.t1 sea_dummy1.t2 sea_dummy2.t2 [16] sea_dummy3.t2 sea_trig1 sea_trig*1 sea_trig2 sea_trig*2 [21] sea_trig1.t1 sea_trig*1.t1 sea_trig2.t1 sea_trig*2.t1 sea_trig1.t2 [26] sea_trig*1.t2 sea_trig2.t2 sea_trig*2.t2 cycle cycle* [31] cycle.t1 cycle*.t1 cycle.t2 cycle*.t2 arima1.t1 [36] arima2.t1 arima1.t2 arima2.t2 Distributions of the time series: [1] gaussian Object is a valid object of class SSModel.Saving _problems/testGLM-203.R Saving _problems/testGLM-214.R Saving _problems/testGLM-225.R Saving _problems/testGLM-236.R Saving _problems/testGLM-247.R [ FAIL 5 | WARN 0 | SKIP 0 | PASS 570 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('testGLM.R:202:3'): Residuals for Gaussian GLM works properly ────── Expected `as.numeric(rstandard(kfas.gaussian, type = "pearson"))` to equal `rstandard(glm.gaussian, type = "pearson")`. Differences: 20/20 mismatches (average diff: 0.0434) [1] -1.305 - -1.375 == 0.0706 [2] 0.829 - 0.874 == -0.0449 [3] 0.224 - 0.236 == -0.0121 [4] 1.632 - 1.720 == -0.0883 [5] -0.805 - -0.849 == 0.0436 [6] -0.639 - -0.673 == 0.0346 [7] 0.209 - 0.220 == -0.0113 [8] -0.760 - -0.801 == 0.0411 [9] 0.451 - 0.475 == -0.0244 ... ── Failure ('testGLM.R:213:3'): Residuals for Poisson GLM works properly ─────── Expected `as.numeric(rstandard(kfas.poisson, type = "pearson"))` to equal `rstandard(glm.poisson, type = "pearson")`. Differences: 9/9 mismatches (average diff: 0.499) [1] -1.053 - -1.693 == 0.6403 [2] 1.436 - 2.054 == -0.6178 [3] -0.249 - -0.368 == 0.1190 [4] -0.351 - -0.564 == 0.2134 [5] -1.306 - -1.867 == 0.5617 [6] 1.618 - 2.392 == -0.7734 [7] 1.404 - 2.257 == -0.8537 [8] -0.131 - -0.187 == 0.0562 [9] -1.369 - -2.024 == 0.6545 ── Failure ('testGLM.R:224:3'): Residuals for Binomial GLM works properly ────── Expected `as.numeric(rstandard(kfas.binomial, type = "pearson"))` to equal `rstandard(glm.binomial, type = "pearson")`. Differences: 12/12 mismatches (average diff: 0.116) [1] -0.1488 - -0.1804 == 0.03155 [2] 0.4013 - 0.5188 == -0.11747 [3] 0.2739 - 0.3370 == -0.06314 [4] -0.9065 - -1.1300 == 0.22357 [5] -0.0334 - -0.0414 == 0.00806 [6] 0.8971 - 1.0234 == -0.12624 [7] -1.1779 - -1.3858 == 0.20798 [8] -0.1792 - -0.2182 == 0.03891 [9] 0.8180 - 0.9725 == -0.15451 ... ── Failure ('testGLM.R:235:3'): Residuals for Gamma GLM works properly ───────── Expected `as.numeric(rstandard(kfas.gamma2, type = "pearson"))` to equal `rstandard(glm.gamma, type = "pearson")`. Differences: 9/9 mismatches (average diff: 0.175) [1] 2.355 - 3.2471 == -0.89260 [2] -0.406 - -0.4648 == 0.05920 [3] -0.884 - -0.9630 == 0.07860 [4] -0.922 - -0.9849 == 0.06282 [5] -1.006 - -1.0681 == 0.06168 [6] -0.425 - -0.4559 == 0.03046 [7] 0.041 - 0.0455 == -0.00451 [8] 0.609 - 0.7059 == -0.09684 [9] 1.342 - 1.6293 == -0.28763 ── Failure ('testGLM.R:246:3'): Residuals for negative binomial GLM works properly ── Expected `as.numeric(rstandard(kfas.NB, type = "pearson"))` to equal `rstandard(glm.NB, type = "pearson")`. Differences: 146/146 mismatches (average diff: 0.0411) [1] -1.1437 - -1.2378 == 0.0941 [2] -0.4169 - -0.4512 == 0.0343 [3] -0.1746 - -0.1890 == 0.0144 [4] -0.7612 - -0.8010 == 0.0398 [5] -0.7612 - -0.8010 == 0.0398 [6] 0.0268 - 0.0282 == -0.0014 [7] 0.7164 - 0.7538 == -0.0374 [8] 0.9134 - 0.9611 == -0.0477 [9] -0.2934 - -0.3186 == 0.0252 ... [ FAIL 5 | WARN 0 | SKIP 0 | PASS 570 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.6.0
Check: tests
Result: ERROR Running ‘test-all.R’ [28s/30s] Running the tests in ‘tests/test-all.R’ failed. Complete output: > library(testthat) > test_check("KFAS") Loading required package: KFAS Please cite KFAS in publications by using: Jouni Helske (2017). KFAS: Exponential Family State Space Models in R. Journal of Statistical Software, 78(10), 1-39. doi:10.18637/jss.v078.i10. Call: SSModel(formula = t12 ~ SSMcycle(period = 10, type = "common", Q = 2) + SSMcycle(period = 10, type = "distinct", P1 = diag(c(1, 1, 2, 2)), Q = diag(1:2)) + SSMtrend(2, type = "common", Q = diag(c(1, 0.5))) + SSMtrend(2, type = "distinct", Q = list(diag(0.1, 2), diag(0.01, 2)), P1 = diag(c(0.1, 0.01, 0.1, 0.01))) + SSMseasonal(period = 4, type = "common") + SSMseasonal(period = 4, type = "distinct", Q = diag(c(2, 3)), P1 = diag(c(2, 2, 2, 3, 3, 3))) + SSMseasonal(period = 5, type = "common", sea.type = "trig") + SSMseasonal(period = 5, type = "distinct", sea.type = "trig", Q = diag(c(0.1, 0.2)), P1 = diag(rep(c(0.1, 0.2), each = 4))) + SSMarima(ar = 0.9, ma = 0.2) + SSMregression(~-1 + x, index = 1, Q = 1, data = d)) State space model object of class SSModel Dimensions: [1] Number of time points: 100 [1] Number of time series: 2 [1] Number of disturbances: 25 [1] Number of states: 38 Names of the states: [1] x.t1 level slope level.t1 slope.t1 [6] level.t2 slope.t2 sea_dummy1 sea_dummy2 sea_dummy3 [11] sea_dummy1.t1 sea_dummy2.t1 sea_dummy3.t1 sea_dummy1.t2 sea_dummy2.t2 [16] sea_dummy3.t2 sea_trig1 sea_trig*1 sea_trig2 sea_trig*2 [21] sea_trig1.t1 sea_trig*1.t1 sea_trig2.t1 sea_trig*2.t1 sea_trig1.t2 [26] sea_trig*1.t2 sea_trig2.t2 sea_trig*2.t2 cycle cycle* [31] cycle.t1 cycle*.t1 cycle.t2 cycle*.t2 arima1.t1 [36] arima2.t1 arima1.t2 arima2.t2 Distributions of the time series: [1] gaussian Object is a valid object of class SSModel.Saving _problems/testGLM-203.R Saving _problems/testGLM-214.R Saving _problems/testGLM-225.R Saving _problems/testGLM-236.R Saving _problems/testGLM-247.R [ FAIL 5 | WARN 0 | SKIP 0 | PASS 570 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('testGLM.R:202:3'): Residuals for Gaussian GLM works properly ────── Expected `as.numeric(rstandard(kfas.gaussian, type = "pearson"))` to equal `rstandard(glm.gaussian, type = "pearson")`. Differences: 20/20 mismatches (average diff: 0.0434) [1] -1.305 - -1.375 == 0.0706 [2] 0.829 - 0.874 == -0.0449 [3] 0.224 - 0.236 == -0.0121 [4] 1.632 - 1.720 == -0.0883 [5] -0.805 - -0.849 == 0.0436 [6] -0.639 - -0.673 == 0.0346 [7] 0.209 - 0.220 == -0.0113 [8] -0.760 - -0.801 == 0.0411 [9] 0.451 - 0.475 == -0.0244 ... ── Failure ('testGLM.R:213:3'): Residuals for Poisson GLM works properly ─────── Expected `as.numeric(rstandard(kfas.poisson, type = "pearson"))` to equal `rstandard(glm.poisson, type = "pearson")`. Differences: 9/9 mismatches (average diff: 0.499) [1] -1.053 - -1.693 == 0.6403 [2] 1.436 - 2.054 == -0.6178 [3] -0.249 - -0.368 == 0.1190 [4] -0.351 - -0.564 == 0.2134 [5] -1.306 - -1.867 == 0.5617 [6] 1.618 - 2.392 == -0.7734 [7] 1.404 - 2.257 == -0.8537 [8] -0.131 - -0.187 == 0.0562 [9] -1.369 - -2.024 == 0.6545 ── Failure ('testGLM.R:224:3'): Residuals for Binomial GLM works properly ────── Expected `as.numeric(rstandard(kfas.binomial, type = "pearson"))` to equal `rstandard(glm.binomial, type = "pearson")`. Differences: 12/12 mismatches (average diff: 0.116) [1] -0.1488 - -0.1804 == 0.03155 [2] 0.4013 - 0.5188 == -0.11747 [3] 0.2739 - 0.3370 == -0.06314 [4] -0.9065 - -1.1300 == 0.22357 [5] -0.0334 - -0.0414 == 0.00806 [6] 0.8971 - 1.0234 == -0.12624 [7] -1.1779 - -1.3858 == 0.20798 [8] -0.1792 - -0.2182 == 0.03891 [9] 0.8180 - 0.9725 == -0.15451 ... ── Failure ('testGLM.R:235:3'): Residuals for Gamma GLM works properly ───────── Expected `as.numeric(rstandard(kfas.gamma2, type = "pearson"))` to equal `rstandard(glm.gamma, type = "pearson")`. Differences: 9/9 mismatches (average diff: 0.175) [1] 2.355 - 3.2471 == -0.89260 [2] -0.406 - -0.4648 == 0.05920 [3] -0.884 - -0.9630 == 0.07860 [4] -0.922 - -0.9849 == 0.06282 [5] -1.006 - -1.0681 == 0.06168 [6] -0.425 - -0.4559 == 0.03046 [7] 0.041 - 0.0455 == -0.00451 [8] 0.609 - 0.7059 == -0.09684 [9] 1.342 - 1.6293 == -0.28763 ── Failure ('testGLM.R:246:3'): Residuals for negative binomial GLM works properly ── Expected `as.numeric(rstandard(kfas.NB, type = "pearson"))` to equal `rstandard(glm.NB, type = "pearson")`. Differences: 146/146 mismatches (average diff: 0.0411) [1] -1.1437 - -1.2378 == 0.0941 [2] -0.4169 - -0.4512 == 0.0343 [3] -0.1746 - -0.1890 == 0.0144 [4] -0.7612 - -0.8010 == 0.0398 [5] -0.7612 - -0.8010 == 0.0398 [6] 0.0268 - 0.0282 == -0.0014 [7] 0.7164 - 0.7538 == -0.0374 [8] 0.9134 - 0.9611 == -0.0477 [9] -0.2934 - -0.3186 == 0.0252 ... [ FAIL 5 | WARN 0 | SKIP 0 | PASS 570 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.6.0
Check: tests
Result: ERROR Running ‘test-all.R’ [26s/27s] Running the tests in ‘tests/test-all.R’ failed. Complete output: > library(testthat) > test_check("KFAS") Loading required package: KFAS Please cite KFAS in publications by using: Jouni Helske (2017). KFAS: Exponential Family State Space Models in R. Journal of Statistical Software, 78(10), 1-39. doi:10.18637/jss.v078.i10. Call: SSModel(formula = t12 ~ SSMcycle(period = 10, type = "common", Q = 2) + SSMcycle(period = 10, type = "distinct", P1 = diag(c(1, 1, 2, 2)), Q = diag(1:2)) + SSMtrend(2, type = "common", Q = diag(c(1, 0.5))) + SSMtrend(2, type = "distinct", Q = list(diag(0.1, 2), diag(0.01, 2)), P1 = diag(c(0.1, 0.01, 0.1, 0.01))) + SSMseasonal(period = 4, type = "common") + SSMseasonal(period = 4, type = "distinct", Q = diag(c(2, 3)), P1 = diag(c(2, 2, 2, 3, 3, 3))) + SSMseasonal(period = 5, type = "common", sea.type = "trig") + SSMseasonal(period = 5, type = "distinct", sea.type = "trig", Q = diag(c(0.1, 0.2)), P1 = diag(rep(c(0.1, 0.2), each = 4))) + SSMarima(ar = 0.9, ma = 0.2) + SSMregression(~-1 + x, index = 1, Q = 1, data = d)) State space model object of class SSModel Dimensions: [1] Number of time points: 100 [1] Number of time series: 2 [1] Number of disturbances: 25 [1] Number of states: 38 Names of the states: [1] x.t1 level slope level.t1 slope.t1 [6] level.t2 slope.t2 sea_dummy1 sea_dummy2 sea_dummy3 [11] sea_dummy1.t1 sea_dummy2.t1 sea_dummy3.t1 sea_dummy1.t2 sea_dummy2.t2 [16] sea_dummy3.t2 sea_trig1 sea_trig*1 sea_trig2 sea_trig*2 [21] sea_trig1.t1 sea_trig*1.t1 sea_trig2.t1 sea_trig*2.t1 sea_trig1.t2 [26] sea_trig*1.t2 sea_trig2.t2 sea_trig*2.t2 cycle cycle* [31] cycle.t1 cycle*.t1 cycle.t2 cycle*.t2 arima1.t1 [36] arima2.t1 arima1.t2 arima2.t2 Distributions of the time series: [1] gaussian Object is a valid object of class SSModel.Saving _problems/testGLM-203.R Saving _problems/testGLM-214.R Saving _problems/testGLM-225.R Saving _problems/testGLM-236.R Saving _problems/testGLM-247.R [ FAIL 5 | WARN 0 | SKIP 0 | PASS 570 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('testGLM.R:202:3'): Residuals for Gaussian GLM works properly ────── Expected `as.numeric(rstandard(kfas.gaussian, type = "pearson"))` to equal `rstandard(glm.gaussian, type = "pearson")`. Differences: 20/20 mismatches (average diff: 0.0434) [1] -1.305 - -1.375 == 0.0706 [2] 0.829 - 0.874 == -0.0449 [3] 0.224 - 0.236 == -0.0121 [4] 1.632 - 1.720 == -0.0883 [5] -0.805 - -0.849 == 0.0436 [6] -0.639 - -0.673 == 0.0346 [7] 0.209 - 0.220 == -0.0113 [8] -0.760 - -0.801 == 0.0411 [9] 0.451 - 0.475 == -0.0244 ... ── Failure ('testGLM.R:213:3'): Residuals for Poisson GLM works properly ─────── Expected `as.numeric(rstandard(kfas.poisson, type = "pearson"))` to equal `rstandard(glm.poisson, type = "pearson")`. Differences: 9/9 mismatches (average diff: 0.499) [1] -1.053 - -1.693 == 0.6403 [2] 1.436 - 2.054 == -0.6178 [3] -0.249 - -0.368 == 0.1190 [4] -0.351 - -0.564 == 0.2134 [5] -1.306 - -1.867 == 0.5617 [6] 1.618 - 2.392 == -0.7734 [7] 1.404 - 2.257 == -0.8537 [8] -0.131 - -0.187 == 0.0562 [9] -1.369 - -2.024 == 0.6545 ── Failure ('testGLM.R:224:3'): Residuals for Binomial GLM works properly ────── Expected `as.numeric(rstandard(kfas.binomial, type = "pearson"))` to equal `rstandard(glm.binomial, type = "pearson")`. Differences: 12/12 mismatches (average diff: 0.116) [1] -0.1488 - -0.1804 == 0.03155 [2] 0.4013 - 0.5188 == -0.11747 [3] 0.2739 - 0.3370 == -0.06314 [4] -0.9065 - -1.1300 == 0.22357 [5] -0.0334 - -0.0414 == 0.00806 [6] 0.8971 - 1.0234 == -0.12624 [7] -1.1779 - -1.3858 == 0.20798 [8] -0.1792 - -0.2182 == 0.03891 [9] 0.8180 - 0.9725 == -0.15451 ... ── Failure ('testGLM.R:235:3'): Residuals for Gamma GLM works properly ───────── Expected `as.numeric(rstandard(kfas.gamma2, type = "pearson"))` to equal `rstandard(glm.gamma, type = "pearson")`. Differences: 9/9 mismatches (average diff: 0.175) [1] 2.355 - 3.2471 == -0.89260 [2] -0.406 - -0.4648 == 0.05920 [3] -0.884 - -0.9630 == 0.07860 [4] -0.922 - -0.9849 == 0.06282 [5] -1.006 - -1.0681 == 0.06168 [6] -0.425 - -0.4559 == 0.03046 [7] 0.041 - 0.0455 == -0.00451 [8] 0.609 - 0.7059 == -0.09684 [9] 1.342 - 1.6293 == -0.28763 ── Failure ('testGLM.R:246:3'): Residuals for negative binomial GLM works properly ── Expected `as.numeric(rstandard(kfas.NB, type = "pearson"))` to equal `rstandard(glm.NB, type = "pearson")`. Differences: 146/146 mismatches (average diff: 0.0411) [1] -1.1437 - -1.2378 == 0.0941 [2] -0.4169 - -0.4512 == 0.0343 [3] -0.1746 - -0.1890 == 0.0144 [4] -0.7612 - -0.8010 == 0.0398 [5] -0.7612 - -0.8010 == 0.0398 [6] 0.0268 - 0.0282 == -0.0014 [7] 0.7164 - 0.7538 == -0.0374 [8] 0.9134 - 0.9611 == -0.0477 [9] -0.2934 - -0.3186 == 0.0252 ... [ FAIL 5 | WARN 0 | SKIP 0 | PASS 570 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package ramcmc

Current CRAN status: OK: 14

Package Rlibeemd

Current CRAN status: NOTE: 2, OK: 12

Version: 1.4.4
Check: CRAN incoming feasibility
Result: NOTE Maintainer: ‘Jouni Helske <jouni.helske@iki.fi>’ Found the following (possibly) invalid file URI: URI: https//cranlogs.r-pkg.org:443/badges/Rlibeemd From: README.md Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Package seqHMM

Current CRAN status: NOTE: 2, OK: 12

Version: 2.1.0
Check: installed package size
Result: NOTE installed size is 25.6Mb sub-directories of 1Mb or more: libs 23.3Mb Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64

Package tsPI

Current CRAN status: NOTE: 2, OK: 12

Version: 1.0.4
Check: CRAN incoming feasibility
Result: NOTE Maintainer: ‘Jouni Helske <jouni.helske@iki.fi>’ No Authors@R field in DESCRIPTION. Please add one, modifying Authors@R: person(given = "Jouni", family = "Helske", role = c("aut", "cre"), email = "jouni.helske@iki.fi") as necessary. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Package walker

Current CRAN status: NOTE: 3, OK: 11

Version: 1.0.10
Check: installed package size
Result: NOTE installed size is 115.6Mb sub-directories of 1Mb or more: libs 114.2Mb Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 1.0.10
Check: for GNU extensions in Makefiles
Result: NOTE GNU make is a SystemRequirements. Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64