CRAN Package Check Results for Package lavaSearch2

Last updated on 2025-12-07 18:49:50 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 2.0.3 49.07 281.08 330.15 OK
r-devel-linux-x86_64-debian-gcc 2.0.3 30.85 172.05 202.90 ERROR
r-devel-linux-x86_64-fedora-clang 2.0.3 96.00 443.07 539.07 OK
r-devel-linux-x86_64-fedora-gcc 2.0.3 104.00 415.78 519.78 OK
r-devel-windows-x86_64 2.0.3 58.00 279.00 337.00 OK
r-patched-linux-x86_64 2.0.3 46.55 261.95 308.50 OK
r-release-linux-x86_64 2.0.3 44.71 262.74 307.45 OK
r-release-macos-arm64 2.0.3 OK
r-release-macos-x86_64 2.0.3 27.00 211.00 238.00 OK
r-release-windows-x86_64 2.0.3 57.00 277.00 334.00 OK
r-oldrel-macos-arm64 2.0.3 OK
r-oldrel-macos-x86_64 2.0.3 26.00 170.00 196.00 OK
r-oldrel-windows-x86_64 2.0.3 73.00 369.00 442.00 OK

Check Details

Version: 2.0.3
Check: tests
Result: ERROR Running ‘test-all.R’ [60s/67s] Running the tests in ‘tests/test-all.R’ failed. Complete output: > #library(lavaSearch2) > suppressPackageStartupMessages(library("testthat")) > suppressPackageStartupMessages(library("nlme")) > suppressPackageStartupMessages(library("multcomp")) > suppressPackageStartupMessages(library("Matrix")) > test_check("lavaSearch2") Loading required package: lavaSearch2 Loading required package: ggplot2 Loading required package: lava Attaching package: 'lava' The following object is masked from 'package:ggplot2': vars The following object is masked from 'package:testthat': compare lavaSearch2 version 2.0.3 Saving _problems/test1a-sCorrect-validObjects-46.R - simulation - multiple linear regression - mixed model - factor model - two factor model [ FAIL 1 | WARN 0 | SKIP 0 | PASS 266 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test1a-sCorrect-validObjects.R:46:1'): (code run outside of `test_that()`) ── Error in `normal_objective.lvm(x = structure(list(M = structure(c(0, 1, 0, 0), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), par = structure(c(NA_character_, NA_character_, NA_character_, NA_character_), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), cov = structure(c(1, 0, 0, 1), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), covpar = structure(c(NA, NA, NA, NA), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), fix = structure(c(NA_real_, NA_real_, NA_real_, NA_real_), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), covfix = structure(c(1, NA, NA, 0.930472125249212), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), latent = list(), mean = list(G = 0, X1 = -0.0949625805719669), index = list(vars = c("G", "X1"), manifest = c("G", "X1"), exogenous = "X1", latent = NULL, endogenous = "G", exo.idx = 2L, eta.idx = integer(0), exo.obsidx = 2L, endo.obsidx = 1L, obs.idx = 1:2, endo.idx = 1L, M = structure(c(0, 1, 0, 0), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), A = structure(c(0, 1, 0, 0), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), P = structure(c(1, 0, 0, 0.930472125249212), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), P0 = structure(c(0, 0, 0, 0), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), P1 = structure(c(0, 0, 0, 0), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), M0 = structure(c(0, 1, 0, 0), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), M1 = structure(c(0, 1, 0, 0), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), v0 = c(0, 0), v1 = c(0, 0), e0 = c(1, 1), e1 = c(1, 1), npar = 1, npar.reg = 1, npar.var = 0, npar.mean = 0, npar.ex = 2, constrain.par = NULL, parname.all = character(0), parname = character(0), which.diag = structure(integer(0), names = character(0)), covparname.all = logical(0), covparname = logical(0), meanfixed = c(G = TRUE, X1 = TRUE), meannamed = c(G = FALSE, X1 = FALSE), mparname.all = NULL, mparname = NULL, eparname.all = NULL, eparname = NULL, J = structure(c(1, 0, 0, 1), dim = c(2L, 2L)), Jy = structure(c(1, 0), dim = 1:2), px = structure(c(1, 0, 0, 0), dim = c(2L, 2L)), sparse = FALSE, mparname.idx = NULL, covparname.idx = NULL, parname.reg.idx = NULL, parname.reg.tidx = NULL, mparname.all.idx = NULL, eparname.all.idx = NULL, covparname.all.idx = NULL, parname.all.reg.idx = NULL, parname.all.reg.tidx = NULL, Ik = structure(c(1, 0, 0, 1), dim = c(2L, 2L)), Im = structure(c(1, 0, 0, 1), dim = c(2L, 2L)), Kkk = NULL, dA = structure(c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), dim = 4:3), dP = structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), dim = 4:3), dv = structure(c(0, 0, 0, 0, 0, 0), dim = 2:3), mean = NULL, reg = structure(c(2, 1), dim = 1:2, dimnames = list(NULL, c("regl", "pidxA"))), cov = structure(numeric(0), dim = c(0L, 2L), dimnames = list(NULL, c("covl", "pidxP"))), epar = structure(c(1, 2, 2, 3), dim = c(2L, 2L), dimnames = list(c("G:0|1", "G:1|2"), c("idxE", "pidxE"))), parval = list(), constrain.idx = NULL, parBelongsTo = list(mean = integer(0), reg = 1, cov = numeric(0), epar = c(2, 3), cpar = numeric(0))), exogenous = "X1", constrain = list(), constrainY = list(), attributes = list(randomslope = list(), survival = list(), parameter = list(`G:0|1` = TRUE, `G:1|2` = TRUE), categorical = list(), distribution = list(), nonlinear = list(), functional = list(), label = list(), heavytail = list(), heavytail.couple = list(), ordinalparname = list(G = c("G:0|1", "G:1|2")), type = c(G = "categorical"), liability = c(G = TRUE), ordinal = list(G = TRUE), nordinal = c(G = 3L), normal = c(G = FALSE)), noderender = list(fill = NULL, shape = NULL, label = NULL), edgerender = list(lty = NULL, lwd = NULL, col = NULL, textCol = NULL, est = NULL, arrowhead = NULL, dir = NULL, cex = NULL, futureinfo = list()), graphrender = list(recipEdges = "distinct"), graphdef = list(fill = "white", shape = "rectangle", label = expression(NA), lty = 1, lwd = 1, col = "black", textCol = "black", est = 0, arrowhead = "open", dir = "forward", cex = 1.5, label = expression(), futureinfo = NULL), expar = list(`G:0|1` = -1, `G:1|2` = -1), exfix = list(`G:0|1` = NA, `G:1|2` = NA), parpos = list(A = structure(c(0, 1, 0, 0), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), P = structure(c(0, 0, 0, 0), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), v = c(G = 0, X1 = 0), e = c(`G:0|1` = 2, `G:1|2` = 3), parval = list(), constrain.idx = NULL, constrainpar = NULL)), class = "lvm"), p = c(`G~X1` = 0, `G:0|1` = -1, `G:1|2` = -1), data = structure(list(Y = c(1.2569418317638, 1.23512286382084, -0.411273914554862, 2.11240625020891, -0.338667888400318, 2.95296896515032, 1.45291051040211, -2.02172687479631, 0.401495295314832, 0.871475219890594, 0.821624899664949, 3.88464973543691, -0.702368083183697, 0.671684493882024, 2.66568327521877, 0.1664919904816, 2.0849797489595, 1.54673582207094, 2.1810661203836, 1.43389749129279, -0.0776762439935006, -0.982405060199693, 1.29339431828716, -2.31464149224475, 0.35848321531753, 0.711533961178388, 0.561202577320179, 0.0652183801019313, 1.53425674657943, 0.539224616519264, 0.575472326910629, 0.555489824907466, -0.0282492771318835, 0.503093786894108, -0.839999057648287, -0.418583556508134, 0.857418941494943, -1.03326925352717, 0.342754722320584, 0.30322344792193, 1.41121922014856, 0.0322697274767973, -0.791915024221622, 3.30522621290243, 1.40482035179069, 2.03706399856182, 1.76317502093271, 0.800774764379953, 1.66016788263714, 2.74246240472635, 1.20825824556781, 1.41557595033108, 2.52305869908812, 1.27303986381913, -0.36085907783929, 0.465325353891301, -0.293381775260784, 1.68290304052931, -1.84549192528607, -1.28901326612011, 0.415571724764968, 0.99441523975922, -0.309268129412199, 0.640712577264763, 2.62746708088997, 2.53880654196311, 2.6948318524084, -1.94938194677798, 1.74650865552625, -1.681466894541, 0.243522314502207, -0.845072579674689, -0.904511216727243, 1.84352078016369, -0.060730139470933, 4.44988765762646, -1.25153770103158, -0.739200880579968, 1.90819048855213, 4.07140871886618, 2.01834114835806, 1.4208385261089, -0.647411867255057, 2.51809472733786, 2.05954454125952, 2.22704022635494, 1.3544793841347, 3.50176527516542, 0.5073722626405, 1.97240560364583, 0.69667468673944, 2.8038495305365, -0.611606579914246, 0.87829107132283, 0.126259597119402, 0.266880825107144, -1.31033673802135, -0.457588756574531, 0.0460742779785626, 2.12748537557204), X1 = c(-0.761804339178029, 0.419375405889908, -1.03994336463235, 0.711573965992631, -0.633213014967826, 0.563174664450148, 0.660986685831601, -1.65805085732545, 1.02816797701792, 1.12795361401459, -1.28015460342218, 1.12886822740957, -0.464134527164978, -0.315760209531366, 0.924293146834949, 0.0771447239857784, 1.03992360511188, 0.74188620673818, 1.25554485828952, 0.950918966456178, -0.481365607273294, 0.202881777969837, -0.0317397438377262, -1.19558030033457, 0.623681236848433, -0.91480448366691, 0.248758007708097, -1.06262279318038, -0.363982247195756, -1.20699485337827, 1.42921278138977, 0.633435890982831, -1.99681561765642, -0.681832173096207, -0.460055479310703, -0.983069194147765, 0.495331712888337, 0.725817500232534, 0.667298731892919, 0.954786436466587, -1.67533217929194, -1.20518539249191, -1.96325248922053, 1.47075230981397, 0.372472338550601, 1.06587933403768, 0.530649868357319, 0.101983445884131, 1.33778246578648, 0.0872347684911337, -0.391104207400449, -0.249867484595563, 1.15510474589615, -0.864727239830997, -0.866678342368315, -2.32101703034786, 0.608830168917854, 1.15000604820099, -1.19959767173686, -1.58000075454988, 0.653166193642188, -0.549408485122971, 0.521054525312535, -0.699403066409499, -0.438909314792203, -0.677319296116693, 0.95914119477535, -1.4681733294624, 0.18376389266813, -1.4351471826518, -1.13739989812347, -0.414645326877995, 0.143934288151356, 1.06202433069828, -0.570793902735398, 1.27718137641215, 0.22828932054008, -0.308813064502744, 0.959829130595579, 0.548822374812083, 0.42551309377198, 0.64350003512817, -1.36030614350351, -0.198506106403194, 0.619302676875377, 2.06820960503683, -0.30528475419725, 0.281245612229858, 0.6913173367059, 0.0463614381433206, 0.113029361625959, 0.995331874289131, -0.681151361321648, -1.27705724668769, -1.46869774983108, -0.313474066535868, -1.70365949266331, -1.35051465613771, -1.10209367720916, -1.09954301452935), X2 = structure(c(3L, 2L, 3L, 3L, 1L, 3L, 3L, 1L, 2L, 1L, 2L, 3L, 1L, 1L, 2L, 1L, 3L, 2L, 1L, 1L, 2L, 2L, 3L, 2L, 2L, 3L, 2L, 3L, 3L, 3L, 2L, 1L, 2L, 2L, 2L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 3L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 2L, 3L, 3L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 3L, 3L, 1L, 1L, 3L, 3L, 2L, 2L, 1L, 3L, 2L, 1L, 2L, 2L, 2L, 3L, 2L, 3L, 1L, 2L, 2L, 3L, 3L, 1L, 2L, 3L), levels = c("a", "b", "c"), class = "factor"), G = c(2, 2, 0, 2, 1, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 2, 2, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 2, 2, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 0, 2, 0, 2, 0, 1, 2, 0, 0, 2, 0, 2, 2, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 0, 2, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1, 2, 2, 0, 2)), row.names = c(NA, -100L), class = "data.frame"), S = structure(c(0.6736, 0.0470279275357041, 0.0470279275357041, 0.930472125249212), dim = c(2L, 2L), dimnames = list(c("G", "X1"), c("G", "X1"))), mu = c(G = 1.08, X1 = -0.0949625805719669), n = 100L, weights = NULL, data2 = NULL, offset = NULL)`: 'mets' package required Backtrace: ▆ 1. ├─lava::estimate(lvm(G ~ X1), data = d) at test1a-sCorrect-validObjects.R:46:1 2. ├─lava:::estimate.lvm(lvm(G ~ X1), data = d) 3. │ ├─base::do.call(Optim$method, optarg) 4. │ └─lava:::nlminb0(...) 5. │ └─lava:::nlminb2(...) 6. │ ├─base::do.call("nlminb", mypar) 7. │ └─stats::nlminb(...) 8. └─lava (local) objective(.par, ...) 9. ├─base::do.call(...) 10. └─lava:::normal_objective.lvm(...) [ FAIL 1 | WARN 0 | SKIP 0 | PASS 266 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc