CRAN Package Check Results for Package mlr3benchmark

Last updated on 2025-12-21 05:49:55 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.1.7 6.82 72.59 79.41 ERROR
r-devel-linux-x86_64-debian-gcc 0.1.7 4.80 49.78 54.58 ERROR
r-devel-linux-x86_64-fedora-clang 0.1.7 12.00 110.03 122.03 ERROR
r-devel-linux-x86_64-fedora-gcc 0.1.7 10.00 99.34 109.34 ERROR
r-devel-windows-x86_64 0.1.7 7.00 84.00 91.00 OK
r-patched-linux-x86_64 0.1.7 7.07 72.49 79.56 OK
r-release-linux-x86_64 0.1.7 6.53 75.26 81.79 ERROR
r-release-macos-arm64 0.1.7 OK
r-release-macos-x86_64 0.1.7 4.00 59.00 63.00 OK
r-release-windows-x86_64 0.1.7 8.00 83.00 91.00 OK
r-oldrel-macos-arm64 0.1.7 OK
r-oldrel-macos-x86_64 0.1.7 4.00 71.00 75.00 OK
r-oldrel-windows-x86_64 0.1.7 11.00 106.00 117.00 OK

Check Details

Version: 0.1.7
Check: examples
Result: ERROR Running examples in ‘mlr3benchmark-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: BenchmarkAggr > ### Title: Aggregated Benchmark Result Object > ### Aliases: BenchmarkAggr > > ### ** Examples > > # Not restricted to mlr3 objects > df = data.frame(tasks = factor(rep(c("A", "B"), each = 5), + levels = c("A", "B")), + learners = factor(paste0("L", 1:5)), + RMSE = runif(10), MAE = runif(10)) > as_benchmark_aggr(df, task_id = "tasks", learner_id = "learners") <BenchmarkAggr> of 10 rows with 2 tasks, 5 learners and 2 measures tasks learners RMSE MAE <fctr> <fctr> <num> <num> 1: A L1 0.26550866 0.2059746 2: A L2 0.37212390 0.1765568 3: A L3 0.57285336 0.6870228 4: A L4 0.90820779 0.3841037 5: A L5 0.20168193 0.7698414 6: B L1 0.89838968 0.4976992 7: B L2 0.94467527 0.7176185 8: B L3 0.66079779 0.9919061 9: B L4 0.62911404 0.3800352 10: B L5 0.06178627 0.7774452 > > if (requireNamespaces(c("mlr3", "rpart"))) { + library(mlr3) + task = tsks(c("pima", "spam")) + learns = lrns(c("classif.featureless", "classif.rpart")) + bm = benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 2))) + + # coercion + as_benchmark_aggr(bm) + } INFO [04:33:17.870] [mlr3] Running benchmark with 8 resampling iterations INFO [04:33:18.053] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/2) INFO [04:33:18.117] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/2) INFO [04:33:18.146] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/2) INFO [04:33:18.213] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/2) INFO [04:33:18.248] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/2) INFO [04:33:18.278] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 2/2) INFO [04:33:18.309] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/2) INFO [04:33:18.414] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 2/2) INFO [04:33:18.539] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.1.7
Check: tests
Result: ERROR Running ‘testthat.R’ [9s/11s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") # for more expect_*() functions + library("mlr3benchmark") + test_check("mlr3benchmark") + } INFO [04:33:25.915] [mlr3] Running benchmark with 4 resampling iterations INFO [04:33:26.217] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/1) INFO [04:33:26.304] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:33:26.402] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/1) INFO [04:33:26.443] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/1) INFO [04:33:26.650] [mlr3] Finished benchmark Saving _problems/test_BenchmarkAggr-101.R INFO [04:33:28.993] [mlr3] Running benchmark with 18 resampling iterations INFO [04:33:29.133] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 1/3) INFO [04:33:29.226] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 2/3) INFO [04:33:29.279] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 3/3) INFO [04:33:29.307] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/3) INFO [04:33:29.349] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 2/3) INFO [04:33:29.386] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 3/3) INFO [04:33:29.421] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 1/3) INFO [04:33:29.455] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 2/3) INFO [04:33:29.490] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 3/3) INFO [04:33:29.535] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [04:33:29.566] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [04:33:29.603] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [04:33:29.632] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [04:33:29.691] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [04:33:29.743] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [04:33:29.793] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 1/3) INFO [04:33:29.854] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 2/3) INFO [04:33:29.907] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 3/3) INFO [04:33:29.982] [mlr3] Finished benchmark Saving _problems/test_autoplot_BenchmarkAggr-48.R [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkAggr.R:101:3'): mlr3 coercions ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("holdout"))) at test_BenchmarkAggr.R:101:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_autoplot_BenchmarkAggr.R:48:3'): autoplot with BenchmarkAggr from mlr3::benchmark() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 3))) at test_autoplot_BenchmarkAggr.R:48:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.1.7
Check: examples
Result: ERROR Running examples in ‘mlr3benchmark-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: BenchmarkAggr > ### Title: Aggregated Benchmark Result Object > ### Aliases: BenchmarkAggr > > ### ** Examples > > # Not restricted to mlr3 objects > df = data.frame(tasks = factor(rep(c("A", "B"), each = 5), + levels = c("A", "B")), + learners = factor(paste0("L", 1:5)), + RMSE = runif(10), MAE = runif(10)) > as_benchmark_aggr(df, task_id = "tasks", learner_id = "learners") <BenchmarkAggr> of 10 rows with 2 tasks, 5 learners and 2 measures tasks learners RMSE MAE <fctr> <fctr> <num> <num> 1: A L1 0.26550866 0.2059746 2: A L2 0.37212390 0.1765568 3: A L3 0.57285336 0.6870228 4: A L4 0.90820779 0.3841037 5: A L5 0.20168193 0.7698414 6: B L1 0.89838968 0.4976992 7: B L2 0.94467527 0.7176185 8: B L3 0.66079779 0.9919061 9: B L4 0.62911404 0.3800352 10: B L5 0.06178627 0.7774452 > > if (requireNamespaces(c("mlr3", "rpart"))) { + library(mlr3) + task = tsks(c("pima", "spam")) + learns = lrns(c("classif.featureless", "classif.rpart")) + bm = benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 2))) + + # coercion + as_benchmark_aggr(bm) + } INFO [17:17:27.757] [mlr3] Running benchmark with 8 resampling iterations INFO [17:17:27.877] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/2) INFO [17:17:27.927] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/2) INFO [17:17:27.950] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/2) INFO [17:17:27.988] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/2) INFO [17:17:28.025] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/2) INFO [17:17:28.105] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 2/2) INFO [17:17:28.147] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/2) INFO [17:17:28.260] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 2/2) INFO [17:17:28.358] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.1.7
Check: tests
Result: ERROR Running ‘testthat.R’ [5s/5s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") # for more expect_*() functions + library("mlr3benchmark") + test_check("mlr3benchmark") + } INFO [17:17:32.099] [mlr3] Running benchmark with 4 resampling iterations INFO [17:17:32.220] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/1) INFO [17:17:32.258] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:32.289] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/1) INFO [17:17:32.342] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/1) INFO [17:17:32.427] [mlr3] Finished benchmark Saving _problems/test_BenchmarkAggr-101.R INFO [17:17:33.388] [mlr3] Running benchmark with 18 resampling iterations INFO [17:17:33.479] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 1/3) INFO [17:17:33.499] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 2/3) INFO [17:17:33.536] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 3/3) INFO [17:17:33.567] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/3) INFO [17:17:33.592] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 2/3) INFO [17:17:33.626] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 3/3) INFO [17:17:33.652] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 1/3) INFO [17:17:33.678] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 2/3) INFO [17:17:33.703] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 3/3) INFO [17:17:33.736] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [17:17:33.761] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [17:17:33.784] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [17:17:33.808] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [17:17:33.852] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [17:17:33.890] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [17:17:33.928] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 1/3) INFO [17:17:33.974] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 2/3) INFO [17:17:34.012] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 3/3) INFO [17:17:34.053] [mlr3] Finished benchmark Saving _problems/test_autoplot_BenchmarkAggr-48.R [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkAggr.R:101:3'): mlr3 coercions ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("holdout"))) at test_BenchmarkAggr.R:101:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_autoplot_BenchmarkAggr.R:48:3'): autoplot with BenchmarkAggr from mlr3::benchmark() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 3))) at test_autoplot_BenchmarkAggr.R:48:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.1.7
Check: examples
Result: ERROR Running examples in ‘mlr3benchmark-Ex.R’ failed The error most likely occurred in: > ### Name: BenchmarkAggr > ### Title: Aggregated Benchmark Result Object > ### Aliases: BenchmarkAggr > > ### ** Examples > > # Not restricted to mlr3 objects > df = data.frame(tasks = factor(rep(c("A", "B"), each = 5), + levels = c("A", "B")), + learners = factor(paste0("L", 1:5)), + RMSE = runif(10), MAE = runif(10)) > as_benchmark_aggr(df, task_id = "tasks", learner_id = "learners") <BenchmarkAggr> of 10 rows with 2 tasks, 5 learners and 2 measures tasks learners RMSE MAE <fctr> <fctr> <num> <num> 1: A L1 0.26550866 0.2059746 2: A L2 0.37212390 0.1765568 3: A L3 0.57285336 0.6870228 4: A L4 0.90820779 0.3841037 5: A L5 0.20168193 0.7698414 6: B L1 0.89838968 0.4976992 7: B L2 0.94467527 0.7176185 8: B L3 0.66079779 0.9919061 9: B L4 0.62911404 0.3800352 10: B L5 0.06178627 0.7774452 > > if (requireNamespaces(c("mlr3", "rpart"))) { + library(mlr3) + task = tsks(c("pima", "spam")) + learns = lrns(c("classif.featureless", "classif.rpart")) + bm = benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 2))) + + # coercion + as_benchmark_aggr(bm) + } INFO [17:44:25.371] [mlr3] Running benchmark with 8 resampling iterations INFO [17:44:26.040] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/2) INFO [17:44:26.228] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/2) INFO [17:44:26.356] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/2) INFO [17:44:26.618] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/2) INFO [17:44:26.766] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/2) INFO [17:44:26.846] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 2/2) INFO [17:44:26.964] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/2) INFO [17:44:27.253] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 2/2) INFO [17:44:27.454] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.1.7
Check: tests
Result: ERROR Running ‘testthat.R’ [13s/22s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") # for more expect_*() functions + library("mlr3benchmark") + test_check("mlr3benchmark") + } INFO [17:44:40.388] [mlr3] Running benchmark with 4 resampling iterations INFO [17:44:41.177] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/1) INFO [17:44:41.430] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:44:41.553] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/1) INFO [17:44:41.696] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/1) INFO [17:44:42.056] [mlr3] Finished benchmark Saving _problems/test_BenchmarkAggr-101.R INFO [17:44:46.341] [mlr3] Running benchmark with 18 resampling iterations INFO [17:44:46.843] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 1/3) INFO [17:44:46.962] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 2/3) INFO [17:44:47.104] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 3/3) INFO [17:44:47.223] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/3) INFO [17:44:47.345] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 2/3) INFO [17:44:47.413] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 3/3) INFO [17:44:47.468] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 1/3) INFO [17:44:47.536] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 2/3) INFO [17:44:47.655] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 3/3) INFO [17:44:47.796] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [17:44:47.861] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [17:44:47.936] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [17:44:48.041] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [17:44:48.264] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [17:44:48.447] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [17:44:48.632] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 1/3) INFO [17:44:48.866] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 2/3) INFO [17:44:49.048] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 3/3) INFO [17:44:49.252] [mlr3] Finished benchmark Saving _problems/test_autoplot_BenchmarkAggr-48.R [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkAggr.R:101:3'): mlr3 coercions ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("holdout"))) at test_BenchmarkAggr.R:101:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_autoplot_BenchmarkAggr.R:48:3'): autoplot with BenchmarkAggr from mlr3::benchmark() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 3))) at test_autoplot_BenchmarkAggr.R:48:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.1.7
Check: examples
Result: ERROR Running examples in ‘mlr3benchmark-Ex.R’ failed The error most likely occurred in: > ### Name: BenchmarkAggr > ### Title: Aggregated Benchmark Result Object > ### Aliases: BenchmarkAggr > > ### ** Examples > > # Not restricted to mlr3 objects > df = data.frame(tasks = factor(rep(c("A", "B"), each = 5), + levels = c("A", "B")), + learners = factor(paste0("L", 1:5)), + RMSE = runif(10), MAE = runif(10)) > as_benchmark_aggr(df, task_id = "tasks", learner_id = "learners") <BenchmarkAggr> of 10 rows with 2 tasks, 5 learners and 2 measures tasks learners RMSE MAE <fctr> <fctr> <num> <num> 1: A L1 0.26550866 0.2059746 2: A L2 0.37212390 0.1765568 3: A L3 0.57285336 0.6870228 4: A L4 0.90820779 0.3841037 5: A L5 0.20168193 0.7698414 6: B L1 0.89838968 0.4976992 7: B L2 0.94467527 0.7176185 8: B L3 0.66079779 0.9919061 9: B L4 0.62911404 0.3800352 10: B L5 0.06178627 0.7774452 > > if (requireNamespaces(c("mlr3", "rpart"))) { + library(mlr3) + task = tsks(c("pima", "spam")) + learns = lrns(c("classif.featureless", "classif.rpart")) + bm = benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 2))) + + # coercion + as_benchmark_aggr(bm) + } INFO [12:26:41.519] [mlr3] Running benchmark with 8 resampling iterations INFO [12:26:42.233] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/2) INFO [12:26:42.500] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/2) INFO [12:26:42.589] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/2) INFO [12:26:42.737] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/2) INFO [12:26:42.817] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/2) INFO [12:26:42.882] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 2/2) INFO [12:26:43.061] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/2) INFO [12:26:43.561] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 2/2) INFO [12:26:44.522] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.1.7
Check: tests
Result: ERROR Running ‘testthat.R’ [11s/16s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") # for more expect_*() functions + library("mlr3benchmark") + test_check("mlr3benchmark") + } INFO [12:26:55.417] [mlr3] Running benchmark with 4 resampling iterations INFO [12:26:55.925] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/1) INFO [12:26:56.054] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:26:56.119] [mlr3] Applying learner 'classif.featureless' on task 'spam' (iter 1/1) INFO [12:26:56.203] [mlr3] Applying learner 'classif.rpart' on task 'spam' (iter 1/1) INFO [12:26:56.597] [mlr3] Finished benchmark Saving _problems/test_BenchmarkAggr-101.R INFO [12:26:59.282] [mlr3] Running benchmark with 18 resampling iterations INFO [12:26:59.396] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 1/3) INFO [12:26:59.481] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 2/3) INFO [12:26:59.548] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 3/3) INFO [12:26:59.616] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/3) INFO [12:26:59.690] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 2/3) INFO [12:26:59.827] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 3/3) INFO [12:26:59.902] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 1/3) INFO [12:26:59.956] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 2/3) INFO [12:27:00.011] [mlr3] Applying learner 'rpart2' on task 'iris' (iter 3/3) INFO [12:27:00.064] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [12:27:00.119] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [12:27:00.163] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [12:27:00.209] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [12:27:00.293] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [12:27:00.385] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [12:27:00.479] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 1/3) INFO [12:27:00.621] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 2/3) INFO [12:27:00.804] [mlr3] Applying learner 'rpart2' on task 'sonar' (iter 3/3) INFO [12:27:00.998] [mlr3] Finished benchmark Saving _problems/test_autoplot_BenchmarkAggr-48.R [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkAggr.R:101:3'): mlr3 coercions ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("holdout"))) at test_BenchmarkAggr.R:101:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_autoplot_BenchmarkAggr.R:48:3'): autoplot with BenchmarkAggr from mlr3::benchmark() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 3))) at test_autoplot_BenchmarkAggr.R:48:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 1 | SKIP 0 | PASS 47 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.1.7
Check: examples
Result: ERROR Running examples in ‘mlr3benchmark-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: autoplot.BenchmarkAggr > ### Title: Plots for BenchmarkAggr > ### Aliases: autoplot.BenchmarkAggr > > ### ** Examples > > if (requireNamespaces(c("mlr3learners", "mlr3", "rpart", "xgboost"))) { + library(mlr3) + library(mlr3learners) + library(ggplot2) + + set.seed(1) + task = tsks(c("iris", "sonar", "wine", "zoo")) + learns = lrns(c("classif.featureless", "classif.rpart", "classif.xgboost")) + learns$classif.xgboost$param_set$values$nrounds = 50 + bm = benchmark(benchmark_grid(task, learns, rsmp("cv", folds = 3))) + obj = as_benchmark_aggr(bm) + + # mean and error bars + autoplot(obj, type = "mean", level = 0.95) + + if (requireNamespace("PMCMRplus", quietly = TRUE)) { + # critical differences + autoplot(obj, type = "cd",style = 1) + autoplot(obj, type = "cd",style = 2) + + # post-hoc friedman-nemenyi + autoplot(obj, type = "fn") + } + + } INFO [16:03:29.849] [mlr3] Running benchmark with 36 resampling iterations INFO [16:03:29.906] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 1/3) INFO [16:03:29.974] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 2/3) INFO [16:03:30.046] [mlr3] Applying learner 'classif.featureless' on task 'iris' (iter 3/3) INFO [16:03:30.122] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/3) INFO [16:03:30.168] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 2/3) INFO [16:03:30.205] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 3/3) INFO [16:03:30.247] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 1/3) INFO [16:03:30.330] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 2/3) INFO [16:03:30.408] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 3/3) INFO [16:03:30.481] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [16:03:30.529] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [16:03:30.561] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [16:03:30.591] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [16:03:30.657] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [16:03:30.707] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [16:03:30.759] [mlr3] Applying learner 'classif.xgboost' on task 'sonar' (iter 1/3) INFO [16:03:30.948] [mlr3] Applying learner 'classif.xgboost' on task 'sonar' (iter 2/3) INFO [16:03:31.069] [mlr3] Applying learner 'classif.xgboost' on task 'sonar' (iter 3/3) INFO [16:03:31.180] [mlr3] Applying learner 'classif.featureless' on task 'wine' (iter 1/3) INFO [16:03:31.214] [mlr3] Applying learner 'classif.featureless' on task 'wine' (iter 2/3) INFO [16:03:31.242] [mlr3] Applying learner 'classif.featureless' on task 'wine' (iter 3/3) INFO [16:03:31.295] [mlr3] Applying learner 'classif.rpart' on task 'wine' (iter 1/3) INFO [16:03:31.331] [mlr3] Applying learner 'classif.rpart' on task 'wine' (iter 2/3) INFO [16:03:31.367] [mlr3] Applying learner 'classif.rpart' on task 'wine' (iter 3/3) INFO [16:03:31.402] [mlr3] Applying learner 'classif.xgboost' on task 'wine' (iter 1/3) INFO [16:03:31.511] [mlr3] Applying learner 'classif.xgboost' on task 'wine' (iter 2/3) INFO [16:03:31.591] [mlr3] Applying learner 'classif.xgboost' on task 'wine' (iter 3/3) INFO [16:03:31.674] [mlr3] Applying learner 'classif.featureless' on task 'zoo' (iter 1/3) INFO [16:03:31.707] [mlr3] Applying learner 'classif.featureless' on task 'zoo' (iter 2/3) INFO [16:03:31.755] [mlr3] Applying learner 'classif.featureless' on task 'zoo' (iter 3/3) INFO [16:03:31.807] [mlr3] Applying learner 'classif.rpart' on task 'zoo' (iter 1/3) INFO [16:03:31.844] [mlr3] Applying learner 'classif.rpart' on task 'zoo' (iter 2/3) INFO [16:03:31.909] [mlr3] Applying learner 'classif.rpart' on task 'zoo' (iter 3/3) INFO [16:03:31.947] [mlr3] Applying learner 'classif.xgboost' on task 'zoo' (iter 1/3) INFO [16:03:32.037] [mlr3] Applying learner 'classif.xgboost' on task 'zoo' (iter 2/3) INFO [16:03:32.138] [mlr3] Applying learner 'classif.xgboost' on task 'zoo' (iter 3/3) Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: nthread, num_class, eval_metric. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. INFO [16:03:32.248] [mlr3] Finished benchmark Error: Global Friedman test non-significant (p > 0.05), try type = 'mean' instead. Execution halted Flavor: r-release-linux-x86_64